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SOME SPECIAL BOUNDARY PROBLEMS IN T H E 
THEORY OF HARMONIC FUNCTIONS. 

BY DR. T. H . GRONWALL. 

(Read before the American Mathematical Society, September 11, 1912.) 

1. I N his paper on "Le problème de Dirichlet dans une 
aire annulaire/ ' Rendiconti del Circolo Matematico di Palermo, 
volume 33 (1912), pages 134-174, H. Villat has shown that 
when u(p, 0) is harmonic, uniform, and regular in the circular 
ring R > p > r, and subject to the boundary conditions 

(1) u(R, 0) = *(0), u(r, 0) = ¥(0), 

$(0) and ^(0) being integrable for 0 ^ 0 ^ 2w and satisfying 
the condition 

(2) ${d)de= -^{B)ie 
Jo JQ 

necessary for the uniformity of u(p, 0), then this function is 
given by 

(3) 

i(p, 6)+iv(P, 6)=-2 ƒ % ( « ) ^ ( £ l o g ^ + z (0-a))da 

- Z 2 I ^ ( « ) T - ( r o g ^ + z ( 0 - « ) W 
7T J 0 (73 \Z7T Jti TT J 

where a and <73 are the Weierstrass elliptic sigma functions, 
the periods co and co' satisfying the conditions 

co' co' 1 J? 
co and -r real, — = - l o g - . 

% ^co 7T r 

Villat's proof consists in a somewhat lengthy discussion of 
the integrals in (3), similar to the ordinary treatment of 
Poisson's integral. 

Fejér* has solved Dirichlet's problem for a circle without 
the use of Poisson's integral. In the present note, I propose 

* L. Fejér, "Untersuchungen über trigonometrische Reihen," Math. 
Annalen, vol. 58 (1904), pp. 51-69. 
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to extend Fejér's process to obtain Villat's results (and the 
corresponding ones in three-dimensional space) in a consider­
ably shorter way than by the method referred to. 

2. We first notice that, <£(0) and SF(0) being integrable, 
their Fourier coefficients 

•J /»2TT 1 /*2n 

an = - I &(OÙ) cos nada, bn = ~ \ $(«) sin nada, 

(4) 

If7 7 1 f ' 
an'= — I ty(a) cos nada, bn — — I ty(a) sin nada 

7T Jo 7T Jo 
exist, which fact we denote by 

n °° 
$(0) co ~ -f ^2 (an cos nd + &n sin nô), 

<5) , -
CI 

*(0) ~ 4 - + Z (a»; cos n(9 + &»' sin nd), 

the equivalence sign <*> implying no statement whatever in 
regard to the convergence of the right-hand members. We 
now assume a development 

An °° 
<P* 0) = ~ + ]T (An cos nd +Bn sin n6)pn 

«9 -
+ S (Cn cos nô + Dn sin n0)p n, 

w = l 

make p = R and p = r, and identify the resulting Fourier 
series, term by term, with the Fourier series (5) for <&(0) and 
\F(0) respectively, which gives the equations 

AQ = <2o = dn , 

(7) AnR
n + CnRrn = an, BnR

n + DnRrn = bn, 
Anr

n + C n f» = an', Bnr
n + Dnr~n = 6„' 

( n = l , 2, 3, • • • ) • 

The two equations for A0 are consistent by (2), and from the 
others we obtain, making r = qR, so that q < 1, 

An = _ " g > „ < T " - «»'), B» = ^n-~n{inq~n - bn'), 

Rn Rn 

Cn = _ (a.' - a.?"), D» = ^ r Z T ^ ( 6 » ' ~ bnq
n). 
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To investigate the convergence of (6), we note that, when n is 
large enough to make q2n < | , 

An | = R~n 

Bn | = Rr» 

an — an
fqn 

n2n 

(9) 

bn - bn'qn 

1 - q* 

< 2R-»( \an\ + \an'\), 

< 2R-( | bn | + | bn' | ), 

Gn I = Rnqn\~ 5 ? | < 2r-( | a„ | + ! a„' | ), 

Dn | = fl"çn 

1 — q2n 

bn' - bnqn 

1 n1n < 2r»( | 6» | + | 6„' | ). 

Now, <ï>(0) and ^(0) being integrable, - a„, - bn, - an', - bn' are 
lb lb it lb 

bounded for all values of n,* and therefore it follows from 
(9) that both series in (6), together with their partial deriva­
tives term by term to any order, are uniformly convergent, 
the first for p ^ R — e, O 5Ï 0 ^ 2ir, and the second for 
p ^ r + e , 0 ^ 0 ^ 2x, where e is positive and as small as 
we like. 

Hence the expression (6) is harmonic, uniform, and regular 
for R > p > r. To show that the boundary conditions (1) 
are satisfied, we shall use the following lemma:f 
Let 
(10) F(x, 0) = £ un(0)x», 

n=0 

and suppose that the (eventually divergent) series 

£ un(6) 

is summable by Cesàro's mean values of the first order, with 
the sum s(0) (that is, the limit 

(ID 
i 

lim — ^ E 5> , (0) = *(*) 

* Fejér, 1. c. 
t Fejér, 1. c , § 2, specializing his general theorem by making t = log (l/#), 

<p(t) — e~K Compare also G. H. Hardy, "Some theorems concerning 
infinite series," Math. Annalen, vol. 64 (1907), pp. 77-94. 
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does exist); then (10) is convergent f or 0 ^ x < 1 and 

(12) lim ^(1 - h, 0) = s(0), 
h=+0 

and on any range for 0 where (11) holds uniformly the same 
is true of (12). 

Now the Fourier series (5) for $(0) is uniformly summable 
of the first order with the sum <£(0) on any range where <£(0) 
is continuous.* Furthermore, the series 

oo 

*i(0) = X) iPn cos nd + Dn sin nd)R~n, 

being uniformly convergent, is obviously uniformly summable 
of the first order with the sum $i(0); hence, by (7), the series 

An °° 
ir+Jl(An cos nd + Bn sin nd)Rn 

is uniformly summable of the first order with the sum $(0) 
— <£i(0). Making x = pjR and applying the lemma, it is 
seen that 

(13) lim u(R(l - A), 0) = *(0) - *x(0) + *x(0) = $(0) 
fc=+0 

uniformly on any range where $(0) is continuous. Making 
x — rfp and reasoning in the same way on ^(0) , we obtain 

(14) ümu^YZTÏ' *) = *(*) 

uniformly on any range where ^(0) is continuous, so that our 
expression (6) satisfies all the conditions of the problem. 

Introducing the values (4) into (8) and using well known 
formulae in elliptic functions, we may easily reduce (6) to the 
form (3). 

3. Now suppose that $(0) is continuous for 0 = 0O, and let 
the point p, 0 approach R, 0O along any continuous path 
P — p(d) instead of the radius. For any positive e we may 
find a 5 such that, <£(0) being continuous for 0 = 0O, 

| *(0) - #(0O) | < Je for 0o - 5 < 0 < 0O + 5. 

* Fejér, 1. c , § 1. 
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By (13), there exists an rj independent of 0 such that 

| u(R(l - A), 0) - $(0) | < h 

for 0 < h ^ rj and 0O - ô < 0 < 0O + 8, 

and according to the definition of p(0) there exists a 5' < 5 
such that 

0 < E - p(0) < «1? for 0o - Ô' < 0 < 0o + 8'. 

The combination of these inequalities gives 

| u{p{0), 0) - $(0O) | < € for 0o - V < 0 < 0o + 8', 

so that, for any 0O where $(0) is continuous, ^(p, 0) tends 
towards $(0o) when p, 0 approaches 2?, 0O by any continuous 
path entirely inside the circle of radius R, 

The case of a point of discontinuity 0o, such that $(0O + 0) 
and $(0O — 0) both exist, may be reduced to the continuity 
case, according to H. A. Schwarz, by replacing u(p, 0) by 

, m $(0o + 0) - $(0o - 0) ^ p sin 0 - R sin 0O u(p, 0) arctg 5 - , 
^ 7T p COS 0 — i t COS 0o 

and from the preceding results, all of Villat's theorems are 
easily deduced. 

4. Passing to three-dimensional space referred to polar 
coordinates, consider the harmonic function u(p, 0, <p), uni­
form and regular for r < p < R, and with the boundary 
conditions 

u(R, 0, <p) = $(0, *>), u(r, 0, p) = *(0, <p), 

where $ and ^ are integrable on the unit sphere. 
We then have the formal developments in spherical har­

monics 

(15) $(0, <p) ~ £ Fn '(0, <p), ¥(0, cp) ~ f ) 7n"(0, ^ ) , 

and assuming a development 

(16) u(p, 0, «>) = 7o + E F»(ö, ^)p n + £ F(0, *>)p-», 

we make p = R and p = r and identify (16) term by term 
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with the developments of <£ and ^ respectively, obtaining 

^o = YQ' = l'o' (condition of uniformity), 

•R * n "j" it Ï n ==: * n i 

r"Yn + r-"Yn= Yn" {n = 1, 2, 3, • • • ) , 
whence 

T>-n 

y __ —tl (n~nY ' — Y ") 

(17) _ ( « = 1 , 2 , 3 , - . . ) . 
In q~n __ qn W 2 " 2™ /> 

By expressing Yn
r and y n " by finite trigonometric sums in 

the usual way and slightly modifying Fejer's argument for 
showing the boundedness of anjn, • • -, bn'/n in (8), it is readily 
seen that Yn'/n* and Yn"/n4 are bounded, and the convergence 
of (16) and its partial derivatives term by term is then es­
tablished exactly as that of (6). The expression (16) is there­
fore harmonic, uniform, and regular for r < p < R; to prove 
that the boundary conditions are satisfied, we may proceed 
in the same way as before, only substituting Cesàro's means of 
the second order for those of the first order previously used.* 

Introducing the well-known integral expressions for I V 
and Yn", we may write (16) in the form 

»c.^)=èrX%(«'»l1+S^[(ê)" 
— ( ~R I \ n (C0S ^ I s*n a dadfi 

-47Ü *<«'»5r^LU) 
~~ I ft ) \^n ( c o s ^ ) S H 1 a dwdfi, 

00 

* In the general case of summability of 2 un(6) by Cesàro's means of 
n=0 

the rth order, the lemma was proved by Hardy, 1. c. The summability 
of the second order of the development of a function ƒ(0, <p) in spherical 
harmonics was proved by Fejér, "Ueber die Laplacesche Reihe," Math. 
Annalen, vol. 67 (1909), pp. 76-109, when f(0, <p) is absolutely integrable, 
and by the present writer (in a paper with the same title which will appear 
presently in the Math^ Annalen), when (/(0, <p) is any integrable fnnction. 
In the same paper, it is shown that for an absolutely integrable function, 
already the means of the first order are summable. 
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7 being the angle between the directions 6, <p and a, 13. By 
using the Mehler formulée for Legendre's polynomials Pn, (18) 
may be transformed so as to contain elliptic sigma functions 
under a triple integral sign, giving a formula somewhat 
similar to (3). 

CHICAGO, I I I . , 
November 9, 1912. 

NOTE ON FERMATES LAST THEOREM. 

BY PKOFESSOR R. D . CARMICHAEL. 

(Read before the American Mathematical Society, December 31, 1912.) 

T H E object of this note is to prove the following 
THEOREM. If p is an odd prime and the equation 

(1) xv + yp + zp = 0 

has a solution in integers x, y, z each of which is prime to p, then 
there exists a positive integer s, less than | ( p — 1); such that 

(s + iy s ^ 2 + 1 mod p\ 

The proof is elementary. If there exists a set of integers 
x, y, z satisfying (1), there exists such a set having the further 
property that they are prime each to each. Consequently, 
for the purpose of argument we may assume that x, y, z have 
this property. 

Then from elementary considerations it is known* that 
integers a, /3, y exist such that 

# + y = yp> y + z = ap, z + x = (3p. 
Therefore 

(2) (x + y)*-1 s i , (y + z)*-1 = 1, (a + x)^1 s 1 mod p\ 

since ap(p_1) = 1 mod p2 when a is prime to p. 
From (1) it follows that 

x + y + ^ = 0 mod p, 

* See, for instance, Bachmann's Niedere Zahlentheorie, Zweiter Teil, 
p. 467. 


