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Moreover, for all values of z within a region T which does not 
cut or touch the positive half of the real axis we shall have 
— TT < <£ + TT < TT, provided we agree to choose <f> at every 
£oint so that — 2TT < </> < 0. I t follows, upon introducing (6), 
that when the above agreements are made we may always 
choose e so small that the improper integral in (7) will con­
verge uniformly for all values of % in T. Whence, the same 
integral and hence also the second member of (7) will have the 
analytic properties indicated above.* 

Thus we reach in summary the theorem stated at the 
beginning. 

I t may be observed that in case the function g(w) satisfies the 
conditions demanded except that it has a finite number of 
singularities in the region of the w plane lying to the right of 
the line w = a — \ + iy the theorem continues true provided we 
subtract from the second member of (3) the sum of the residues 
of the function 

irg{w){-%y 
sin irw 

corresponding to such singularities. 
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EXTENSIONS OF TWO THEOREMS DUE 
TO CAUCHY 

BY PROFESSOR G. A. MILLER. 

(Kead before the Chicago Section of the American Mathematical Society, 
April 9, 1910.) 

T H E last one of the noted series of papers on substitution 
groups published by Cauchy during 1845-6 in the Paris Comptes 
Bendus is devoted to a simplification of his earlier proof of an 
important theorem which may be stated as follows : If the sym­
metric group G of degree n involves at least one substitution 
which transforms one of its subgroups HY into a group having 
only identity in common with the subgroup JbT2, the total 
number of such substitutions in G is divisible by the product 
of the orders of JE^ and iJ2. The proof given by Cauchy is 

*Cf. Osgood, Encyklopâdie, II, p. 21. 
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very simple and applies equally when G in any group involving 
Hx and H2, as has been observed by Jordan * and others. 

The object of the present note is to extend this theorem by 
modifying only very slightly the method of proof employed by 
Cauchy and to indicate how easily Sylow's theorem may be 
obtained from this extension. By doing this we hope to give 
one of the simplest proofs of Sylow's theorem and to exhibit, at 
the same time, how close Cauchy, Jordan, and others were to 
this fundamental theorem a number of years before it was 
announced by Sylow. While the historical setting is a prominent 
element of the present note, the subject matter appears sufficiently 
fundamental to justify various forms of presentation and em­
phasis on slight extensions. 

Let Hx == 1, s2, s3, • • -, shl and H2 = 1, t2y tz, . . . , thz be two 
subgroups of any group G and suppose that H2 and s'1!!^, 
s being any operator of G, have exactly p operators in common. 
These p common operators form a common subgroup of Hx and 
H2. In the following rectangular array of hxh2 operators 

s st2 st3 • • • stj^ 

S28 S2St2 ^2^3 * * * 828^hi 

9 S S Sl2 $3^3 • • • 8s8^h2 

the operators of the same column transform Hx into the same 
group, and each of the operators of this array transforms Hx 

into a group which has exactly p operators in common with H2, 
The supposition that two operators of the array are equal 
implies an equation of the form 

SaSt(S = 8y8t8> 0 r S""1 ' *y\ ' S = M?1-

If we suppose a and yS fixed, 7 can be chosen in exactly p ways 
so as to satisfy the latter equation. That is, there are exactly 
p operators in the given array which are equal to any given 
operator of the array. In other words, this array involves 
exactly AXA2 -— p distinct operators. 

If s' is any operator of G which transforms Hx into a group 
having exactly p operators in common with H2 but is not in-

* Traité des substitutions, 1870, p. 26. 
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eluded in the given array, we may form another array which 
can be obtained by replacing s by s in the one given above. 
This new array must again involve exactly hji2lp distinct oper­
ators and none of these can be equal to one of the preceding 
array since the equation 

implies that s is in the former array. As this process may be 
repeated until all the operators of G which transform Hx into a 
group having exactly p operators in common with H2 have been 
exhausted, we have proved the following theorem : 

In any group G the number of distinct operators which trans­
form any subgroup Hx into a group having exactly p operators in 
common with a subgroup H2 is a multiple of hfi2jp, hx and h2 

being the orders of Hx and H2 respectively.* 
For the special case p = 1 this theorem was proved by 

Cauchy in the article noted above ; since Cauchy used almost 
the same method as we employed, the present theorem should 
be regarded as merely a slight extension of the one given by 
him. Suppose now that G contains a Sylow subgroup Kx of 
order pa and that K2 is any other subgroup of G, the order of 
K2 being divisible by p& but not by p^+ 1 . We proceed to prove 
that it follows from the given theorem that K2 must involve a 
Sylow subgroup of order p&. If K2 did not contain a subgroup 
of order p1*, it would involve a subgroup of order p 3 ' , /3'<y&, but 
no subgroup of order p^'*1, /3' being properly chosen. In this 
case the number of operators of G which transform Kx into a 
group having no more than p&' operators in common with K2 

would be divisible by _pa+^~0/. In other words, the order 
of G would be divisible by pa+P-P'. As this is contrary to the 
hypothesis that üf, is a Sylow subgroup of G} the given theorem 
implies the corollary : 

If a group G involves a Sylow subgroup of order pm, each of 
the subgroups of G whose order is divisible by p contains at least 
one Sylow subgroup whose order is a power of p. 

From the preceding paragraph it results that the given theo­
rem implies that if a group G involves at least one Sylow sub-

* This theorem evidently remains true when Hj coincides with H2 as well 
as when either one of these subgroups coincides with the entire group G. In 
the latter case it reduces to the theorem that the order of every subgroup 
divides the order of the group. This special case is sometimes called La­
grange's theorem. 
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group for every prime divisor of its order every subgroup of G 
has the same property. In particular, if the symmetric group 
of degree n involves Sylow subgroups for every prime which 
divides its order, then every substitution group of degree n (and 
hence every group of finite order) must involve at least one 
Sylow subgroup for every prime which divides its order. I t is 
very easy to prove, as Cauchy observed, that every symmetric 
group of degree n has the given property, and hence the theo­
rem which was proved above as a slight extension of one due 
to Cauchy implies that every group of finite order involves at 
least one Sylow subgroup for every prime divisor of its order. 
As this is the main element in Sylow's theorem it is clear that 
Cauchy used a method which required only slight changes 
to yield an easy proof of the fundamental theorem known as 
Sylow's theorem. I t would evidently be necessary only to 
prove that every symmetric group whose degree is a power of p 
involves Sylow subgroups of order pm in order to establish the 
existence of Sylow subgroups in every group of finite order by 
means of the theorem proved above. 

The preceding remarks may also serve to exhibit additional 
reasons for regarding Sylow's theorem as merely an extension 
of Cauchy's fundamental theorem, which established the fact 
that every group whose order is divisible by the prime p in­
volves operators of order p. In fact, if Cauchy had used a 
general value of p instead of p = 1 in the theorem proved 
above, he would have arrived at Sylow's theorem by the same 
steps as those which led him to his fundamental theorem. The 
oversight of this slight increase in generality retarded Sylow's 
theorem nearly thirty years and made Jordan's Traité des 
Substitutions much more difficult reading. 

E X I S T E N C E T H E O R E M S FOR CERTAIN UNSYM­
M E T R I C K E R N E L S . 

BY MBS. ANNA J . PELL. 

I N this paper is given a brief account of the existence and 
expansion theorems for certain integral equations with unsym-
metric kernels. Full details of the method involved and a dis­
cussion of a less general integral equation are contained in 
an article, " Biorthogonal systems of functions with applica-


