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NOTE ON THE THEOREM OF GENERALIZED
FOURIER’S CONSTANTS.

BY PROFESSOR W. D. A. WESTFALL.

Ix the theory of the development of arbitrary functions f (x)
in series of normalized orthogonal functions v, (x),
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sufficient conditions that this equality exists, and that the series
converges uniformly, are in general that f(x) and its first m — 1
derivatives are continuous in (a, b) and satisfy homogeneous
boundary conditions for 2 =a and @ = b.* Then there fol-
lows immediately the fundamental theorem of ¢ generalized”
Fourier’s constants

) [ teyan=3a.

This note will give a simple proof that, in case (1) holds true
for every function satisfying the above conditions, it holds true
for every integrable function f(x), such that {f(x)}* is in-
tegrable.t

Since f(x) and { f(x)}” are integrable in (a, b) there exists,
for every e> 0, a division of (@, b) in a finite number of sub-
intervals (x,, w,), (%, @), -+ (®,_, @,), 2, =a, ®, = b, such
that a function ¢(x) can be defined, having the following prop-
erties :

| $(x) | = lower bound of f{z) in (z, z,,)) for v,=x <w,_,
©) o @ f@=0,
[ tt@r- @y <,

*D. Hilbert, ‘‘ Zweite Mitteilung iiber Integralgleichungen,’’ Gittinger
Nachrichten, 1904.

E. Schmidt, Dissertation, Gottingen, 1905.

+ The theorem has been proven essentially by W. Stekloff with the restrio-
tion that f(2) be bounded, Mémoires de I Académie de St. Pétersbourg, 1904.
The above proof is simpler and does away with this restriction.
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Consider now a function F(z) defined as follows: in the d-neigh-
borhood of z,,

f (x — a)"(x — & — a,)"du
. y (@ Se=w+9),

it &
f (v — )" (@ — & — ) dx
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) = d(z,—9)

, (x,—0=x=u),

where 0 < & < minimum }(x, —w,_), (4, k=1,2,..,, n). For
other values of w®, Flx) = ¢(x). F(x) and its first m — 1
derivatives are continuous and vanish for # = a =2, and
x=>b=uw,. Moreover,

Hence
ey = eyl = [T eerer [ e

Since ¢(x) is bounded, & can be chosen so small that
(4 [ 1oy — (Peyyan=1e
From (2), (3), (4)
| F(@) |=|f=)], Fa)f=)=0,
Q) [ ey — eyl <
(/@) = F @)} = {f(@)}* — {F=)}~

From a known theorem there exists the following inequality
for any set of continuous normalized orthogonal functions yr(x
and any integrable function f(x) such that |f(x)|is also
integrable :
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(6) f " flw)) e ;ia;, 0= f ') v () e

Hence the identity exists
@ [ (eyra—3or = [ e — (7@
+ f " (Fla))de — :Z A7 4 2';: (4, —a)(4,+ a).
o= f F@) (o), A,— f ’ Pl v ().

Moreover
E (‘Ai - ai)(Ai + “i)
1

or from (6)
=[ #0) — syo- [ (7o) + sy

< \/ei‘b{Qﬂm)Vdm =2 \/e tf{:b{f(oc)}zdoc,

since | F(x) | =| f(z)| and F(x) f(x) = 0.
Applying this inequality with (5) in (7),

© | [ toyae— S a;

= \Ii: (4; —a)". i;: (‘:11 + a,)?

=e+ j;b{F(w)}zdac — i Alrdx

+2 e [ ()

This inequality holds for any €> 0 and the corresponding
function F(x). Hence the theorem :

If for a set of normalized orthogonal functions \r(x) and every
Junction f(x), which with its first m — 1 derivatives is continu~
ous in (a, b) and satisfies for x = a, x = b a set of homogeneous
boundary conditions, there exists the equality

lb{f(w)}zdm= 5; {I}(m)¢z(w)dx}

2
>
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then this equality holds true for every integrable function f (x) such
that {f(x) }? is integrable.

GOTTINGEN,
July 17, 1908.

ON THE LOGICAL BASIS OF GRASSMANN’S
EXTENSIVE ALGEBRA.

BY MR. A, R. SCHWEITZER.

§ 1.

IN studying the algebra of Grassmann fundamentally, we
must carefully distinguish between the Ausdehnungslehre
proper and the Ausdehnungslehre in a broad sense. Grass-
mann himself makes no rigid separation of the two viewpoints ;
generally, however, the former is found in the edition of 1844
and the latterisin the edition of 1862 and in various memoirs.*
Briefly, we may say that the Ausdehnungslehre proper for =
dimensions (n = 1, 2, 3, -.-) isa development of n-dimensional
euclidean geometry by means of the outer product of n + 1
points, which fundamentally is reducible to sameness of sense of
two (n + 1)-hedra. It consists of descriptive axioms and cer-
tain axioms which relate exclusively to n-spatial congruence.
On the basis of these axioms and their consequences, we arrive
at the broader conception of the Ausdehnungslehre by means of
suitable abstraction, the introduction of parameters, ¢ formaliza-
tion,” ete.t

§ 2.

If we take three dimensions, the fundamental properties of
the Ausdehnungslehre are as follows. Concretely expressed,
the basal relation is sameness of sense of two tetrahedra (iden-
tical or not) which is implied by what Grassmann has called
¢ Gleichbezeichnung.” §  This relation is fundamentally non-
metrical, and solely in terms of it we may construct a system of
postulates for three-dimensional descriptive geometry which is

* Cf. the Collected Works of Grassmann. For references to the Ausdeh-
nungslehre and related subjects we may refer to Macfarlane’s admirable
bibliography, Dublin, 1904.

1 For instance, see Crelle, vol. 49, p. 123 ; Math. Annalen, vol. 12, p. 376 ;
Ausdehnungslehre, 1862, 33 151-215 ; Study, Wiener Berichte, vol. 91, p. 111.

I Coll. Works, I, p. 303, 304.



