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NOTE ON THE THEOREM OF GENERALIZED 
FOURIER'S CONSTANTS. 

BY PROFESSOR W. D. A. WESTFALL. 

I N the theory of the development of arbitrary functions f(x) 
in series of normalized orthogonal functions yfr. (x), 

QO 

f(x)^£x)dxy J fi{M)ylrk(x)dx\^ . ^ ' 

sufficient conditions that this equality exists, and that the series 
converges uniformly, are in general that ƒ (x) and its first m — 1 
derivatives are continuous in (a, 6) and satisfy homogeneous 
boundary conditions for x = a and x = 6.* Then there fol­
lows immediately the fundamental theorem of "generalized" 
Fourier's constants 

(1) Ç {f{x)Ydx~±a\. 

This note will give a simple proof that, in case (1) holds true 
for every function satisfying the above conditions, it holds true 
for every integrable function f(x), such that {ƒ (x)}2 is in­
tegrable. f 

Since ƒ (x) and {f(x)}2 are integrable in (a, b) there exists, 
for every € > 0, a division of (a, 6) in a finite number of sub-
intervals (xv x2), (x2, x3), •. -, (xn_v » J , x, = a,xn== b, such 
that a function <j>(x) can be defined, having the following prop­
erties : 

| (j>(x) | = lower bound off(x) in (x., xi+l) for x^x < x.+ v 

(2) <K*)A*)=o> 

[{/(»')}2-{^)}2]^|<|. 

* D . Hubert, " Zweite Mitteilung über Integralgleichungen," Göttinger 
Nachrichten, 1904. 

E. Schmidt, Dissertation, Göttingen, 1905. 
t The theorem has been proven essentially by W. Stekloff with the restric­

tion that ƒ (x) be bounded, Mémoires de VAcadémie de St. Pêtersbourg, 1904. 
The above proof is simpler and does away with this restriction. 
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Consider now a function F(x) defined as follows : in the S-neigh-
borhood of x., 

\ (x — xt)
m(x — S — x.)mdx 

F(x) = <t>(xi + S ) ^ ! : , (x*xSxi+S), 
j (# — ^«(a- _ S _ agmd» 

I (x - œ.)m(œ + S - œ.)mc?cc 
F(x)^<t>(x^S)^ , (xt-S^xSxù 

I (x — a5.)w(aj + 3 — ».)md« 

where 0 < S < minimum J(a^ — xk_^), (i, h = 1, 2, • • -, n). For 
other values of x, F(x) = <£(œ). i^(tr) and its first m — 1 
derivatives are continuous and vanish for x = a = ccx and 
œ = & = œw. Moreover, 

(3) 1^)1^1^)1, %)^)S0. 
Hence 

I {<f>(x)}2- {F(x)}2dx\^ I <f>\x)dx + I 4>2(x)cfo 

n—1 f*Xi+8 

+ Z **(*)<** • 
Since <£(cc) is bounded, S can be chosen so small that 

(4) f {<l>{x)y-{F{x)ydx^e. 

From (2), (3), (4) 

\F(x)\^\f{x)\, F(x)f(x)^0, 

(5) I Ç{f{x)Y - {F{x)Ydx 
i 

{f{x)-F(x)Y^{f{x)Y-{F{x)Y. 

From a known theorem there exists the following inequality 
for any set of continuous normalized orthogonal functions ^{(x) 
and any integrable function f(x) such that | ƒ (as) | is also 
integrable : 



7 8 GENERALIZED F O U K I E K ' S CONSTANTS. [ N o v . , 

(6) Ç{fWfdx >±a?, ai= f'f(x) ^{{x)dx. 
*Ja 1 ft/a 

Hence the identity exists 

(7) f { / H } 2 ^ - f > / = (\{f{*)Y- {F(x)Y]dx 
*Ja 1 %)a 

+ f{F(x)Ydx-±A^ + ±{Ai-ai)(Ai + at). 
Ja 1 1 

f > nib 

f(x)flx)dx, At = I F(x)f.{x)dx. 
«/a Moreover 

J 1 i ^ i i 

or from (6) 

= J f{F(x) -f(x)fdx • f{F(x) + f(x)}*dx 
' t / a »/a 

< ^ J T M » ) } ^ Si 2 ^|e jf{/(x)}2cfe, 

since | -F(:B) | ^ | jfjse) | and F(x)f(x) S 0. 
Applying this inequality with (5) in (7), 

(8) I Ç{f^)Ydx - £ a,2 I == e + f V ^ ) } 2 ^ - Z -̂ A** 
I ft/a 1 I « /a 1 

+ 2 ^ e j f {/(x)}2cfe. 

This inequality holds for any e > 0 and the corresponding 
function F(x). Hence the theorem : 

If for a set of normalized orthogonal functions y{r(x) and every 
function f (x), which with its first m — 1 derivatives is continu­
ous in (a, b) and satisfies for x = a> x = b a set of homogeneous 
boundary conditions, there exists the equality 

£{f(x)Ydx= ± { jj(x)flx)dx^, 
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then this equality holds true for every integrable function J (x) such 
that {ƒ(») }2 is integrable. 

GÖTTINGEN, 
July 17, 1908. 

ON T H E LOGICAL BASIS O F GRASSMANN'S 
E X T E N S I V E ALGEBRA. 

BY ME. A, R. SCHWEITZER. 

§ 1 . 
I N studying the algebra of Grassmann fundamentally, we 

must carefully distinguish between the Ausdehnungslehre 
proper and the Ausdehnungslehre in a broad sense. Grass­
mann himself makes no rigid separation of the two viewpoints ; 
generally, however, the former is found in the edition of 1844 
and the latter is in the edition of 1862 and in various memoirs.* 
Briefly, we may say that the Ausdehnungslehre proper for n 
dimensions (n = 1, 2, 3, • • •) is a development of ^-dimensional 
euclidean geometry by means of the outer product of n + 1 
points, which fundamentally is reducible to sameness of sense of 
two (n + l)-hedra. I t consists of descriptive axioms and cer­
tain axioms which relate exclusively to n-spatial congruence. 
On the basis of these axioms and their consequences, we arrive 
at the broader conception of the Ausdehnungslehre by means of 
suitable abstraction, the introduction of parameters, " formaliza­
tion," etc.f 

§ 2 . 

If we take three dimensions, the fundamental properties of 
the Ausdehnungslehre are as follows. Concretely expressed, 
the basal relation is sameness of sense of two tetrahedra (iden­
tical or not) which is implied by what Grassmann has called 
" Gleichbezeichnung." J This relation is fundamentally non-
metrical, and solely in terms of it we may construct a system of 
postulates for three-dimensional descriptive geometry which is 

* Cf. the Collected Works of Grassmann. For references to the Ausdeh­
nungslehre and related subjects we may refer to Macfarlane's admirable 
bibliography, Dublin, 1904. 

t For instance, see Crelle, vol. 49, p. 123 ; Math. Annalen, vol. 12, p. 376 ; 
Ausdehnungslehre, 1862, \\ 151-215 ; Study, Wiener Berichte, vol. 91, p. 111. 

J Coll. Works, I, p. 303, 304. 


