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normal to a point (x, y, z) on the surface is given by an expres­
sion of the form 

d2 + Ax2 + Btf + -.-> 

in which A and B are constants and the omitted terms are of 
the third order at least, and that when the given point is not a 
principal center of curvature the coefficients A and B do not 
vanish. If, however, the given point be a principal center of 
curvature, A or B will vanish and an examination of the sign 
of the non-vanishing coefficient will easily yield the first three 
theorems. 
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ON T H E SOLUTION O F ALGEBEAIC EQUATIONS 
I N I N F I N I T E SERIES. 

BY PROFESSOR P. A. LAMBERT. 

(Read before the American Mathematical Society, April 25, 1908.) 

I . Introduction. 

The purpose of this paper is to present a general method for 
determining all the roots of any algebraic equation by means of 
infinite series. The method consists in forming three algebraic 
functions of x from the given equation 

(i) /(y) = o, 
(a) by introducing a factor x into all the terms of (1) except 

the first and last ; 
(6) by introducing a factor x into all the terms of (1) except 

the first and second ; 
(c) by introducing a factor x into all the terms of (1) except 

the second and last. 
These algebraic functions are expanded into power series in 

x by Laplace's series. If in these power series x is made unity, 
the resulting series, if convergent, determine the roots of the 
given equation. I t will be shown that all the roots of the 
given equation can be expressed in infinite series derived either 
from the algebraic function formed in accordance with (a), or 
from the two algebraic functions formed in accordance with (6) 
and (c). The method presupposes the solution of the two-term 
equation 
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(2) ayn + e=:0. 

In a paper entitled "New applications of Maclaurin's series 
in the solution of equations" read before the American Philo­
sophical Society, April 3,1903, the author applied this method 
to numerical equations. After completing that paper, the 
author found in an extract of a letter from Cauchy to Coriolis, 
of January 29, 1837, published in the Comptes Rendus of the 
Paris Academy, an announcement of important results to be 
obtained by breaking up an equation into two parts and intro­
ducing as a factor into one part a parameter which is ulti­
mately to be made unity. In a postscript Cauchy states that 
he discovered the advantage of making one part a binomial. 
The author has not been able to find the method sketched in 
this letter developed. 

I I . The Three-Term Equation. 

From the three-term equation 

(3) ayn+byk + e=Q, 

in accordance with (a), (6), (c) of Article I , are formed the three 
algebraic functions of x 

(4) ayn + bykx + 6 = 0, 

(5) ayn + byk + ex = 0, 

(6) aynx + byh + e = 0. 

I f equations (4), (5), (6) are written in the form 

(8) ^[-È.^y/Jsb 
Ye a "II 

(9) y[-i-xb^\k' 
the algebraic functions y can be expanded into power series in 
x by means of Laplace's series,* which asserts that if 

Mémoires de VAcadémie de Sciences de Paris, 1777. 
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(io) y - ƒ [ * + **&)], 

F{y) = F{f(z)} + x${f(z)} ~F{f{z)} 

+ ̂ !^K ( 2 ) }^ i i T { / ( z ) }] + --
If the algebraic function y of equation (7) is expanded into 

a power series in x by Laplace's series and x is made unity in 
this series, and if y0 denotes any one of the n roots of the two-
term equation 

ayn + e = 0, 
there results * 

b 1 + 2É — W b2 _ _ 

y-y0 + -yl+* + a r " ÜW»i+ 

(1 +3ifc — w ) ( l + 3 i - 2 n ) 63 , Q, 

( l + g t - n ) ( l + 8 t - 2 n ) . - - [ l + 8 i - ( ^ l > ] i l ^ + a , 

If the first n terms of series (12) are placed in a row in reg­
ular order, and the following n terms are placed under the 
terms of this row in regular order, and so on indefinitely, the 
terms of series (12) will be arranged in n partial infinite series 
composed respectively of the terms standing in each of the n 
columns. 

This rearrangement of terms is permissible inasmuch as it 
will appear subsequently that this series is used only when it is 
absolutely convergent. 

The terms of the left-hand partial series are 

Vo 
1+n& bn (1+wife—w)(l+nft—2w)...[l+w*—(w—l)w] 

* Laplace's series is used only as a matter of convenience. The same ex­
pansion can be found by using Lagrange's series, Maclaurin's series, or the 
multinomial theorem by assuming y =•• a0 + «i^ + «a»2 + * * * + atx* + • • • 
in equation (7). 
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(1 + 2nk — n)(l + 2nk — n) 

. v i+«JÜ .-.[l + 2n*-(2n-.l)n] 
TVO n2ne2n (^u) ! 

(13)+ 

(1 + tnk — n) (1 + tó — 2w) 

, „ ! + « i l ••-[l+fat-(fci-l)n] 

[l+(t+l)n*-n] [l + («+l)w*—2w] 

l l f i ^ i ^ ^ •••[l + (<+l)nft-{(f+l)n-l}n] 

+ 
Cauchy's ratio test for convergency is applied to series (13). 

The ratio of the general term of (13) to the preceding term is 

[1 + tnk + {k - 1>] • • • [1 + tnk] [1 - t(n - lc)ri\ 

nto^lL . - . [ l - f ( n - * > - ( n - t - l ) n ] 
K ' *° nnen yn + j ) (j.n + 2) . . . ( « + 1)W 

In each of the two groups of factors in the numerator of the 
last fraction in this ratio the successive factors differ by — n. 
The first group contains k factors, the second group contains 
n — k factors. 

I f the limiting value of this ratio (14) when t becomes infin­
itely large is numerically less than unity, series (13) is abso­
lutely convergent. This condition gives the inequality between 
absolute values 

(15) £^*»(n-*)—<1, 
whence 

(16) 
bn 

In like manner it is proved that the inequality (16) is the 
condition for the absolute convergence of each one of the re­
maining n — 1 partial series into which the infinite series (12) 
has been broken up. 

I t follows that when condition (16) is satisfied the infinite 
series (12) is absolutely convergent. 
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From equation (7), by means of Laplace's series (11), power 
series in x can be found for yn and yk. I f in these power series 
x is made unity, the resulting series for yn and yk are found to 
be absolutely convergent when condition (16) is satisfied. The 
values of yn and yk make equation (3) an identity. Therefore 
the value of y in (12) is not only convergent when (16) is satis­
fied, but it actually represents a root of equation (3). In fact 
this expression for y determines the n roots of equation (3). 

In like manner the series which express the roots of the 
three-term equation (3) derived from the power series obtained 
from equations (8) and (9) by Laplace's series are found to be 
absolutely convergent provided 

nn 

Jc\n — Ic)n-k' 

When condition (17) is satisfied the series obtained from (8) 
determines n — Jc, the series obtained from (9) determines h 
roots of equation (3). 

Raabe's convergency test* shows that the series which 
express the roots of equation (3) derived from equations (7), 
(8), (9) are all convergent for the limiting condition 

__ nn 

^ h\n — k)n-k' 

I t follows that all the roots of the three-term equation (3) 
can always be expressed in infinite series derived either from 
equation (4) or from the two equations (5) and (6). 

Infinite series for determining all the roots of the three-term 
equation, differing from series (12) only in form, are obtained 
by Nekrasoff, Mathematische Annalen, volume 29, by means of 
evaluating a definite integral, and by McClintoek, in volume 17 
of the American Journal of Mathematics, by means of his calculus 
of enlargement. Nekrasoff and McClintoek both recognize 
that their series can be obtained by applying Lagrange's series. 

Both investigators found convergency conditions correspond­
ing to (16) and (17) by the methods used in this article. Con­
dition (18) seems to be new. 

*The infinite series 2*=]°Wn is convergent if 

Hm J » ( _ * _ ! ) } > ! , 
w=« I \ Un+1 ) J 

Zeitschrift filr Mathematik und Physik, vol. 10 (1832). 

(17) 
b" 

are' 

(18) 
6" 

a V " 
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The results obtained by applying the method of Article I for 
finding infinite series determining the roots of equations of more 
than three terms in the following articles, so far as the author 
knows, are new. 

I I I . The Four-Term Equation. 

From the four-term equation 

(19) ayn + by" + cyl + e = 0 

in accordance with (a), (6), (c) of Article I are formed the three 
equations 
(20) ayn + byhx + cylx + e = 0, 

(21) ayn + byh + cylx + ex = 0, 

(22) aynx + byh + cylx + e = 0, 

defining y as algebraic functions of x. 
The equations (20), (21), (22) may be written in the form 

(23) y = [-ea-*(^ay
k + Cayl)Y' 

[ b / c e \-|i/0-fc) 

—a-x\rJ-" + ar')\ • 

(25) y _ [ - î _ * ( | / + °/)]'*. 
If the y of equation (23) is expanded into a power series in 

x by Laplace's series, and after x is made unity the terms of 
the resulting series are arranged in groups according to the 
ascending powers of 

(26) ±(-'-T. 
v J ne\ a ) 
it will be found that the terms of the first group constitute the 
series which expresses the roots of the three-term equation (3) 
provided condition (16) is satisfied, and that all the successive 
groups are convergent when condition (16) is satisfied. 

I t follows that the series which expresses the roots of equa­
tion (19) derived from equation (23) can be written 
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(27) y^X^X^-^ + X^-lJ 

473 

+ X 3 ^ 3 e 3 

/ e yiin 

where X0, Xv X29 Xv Xv 

series. 
The series (27) is convergent provided 

represent convergent infinite 

(28) 
C 

\ne ( - ; ) " 
< 1 . 

Condition (28), when both members of the inequality are 
affected by the exponent n, becomes 

(29) 

The conditions 

- bn 

(30) 

we 
^ < ^ n . 

n1* < n n 

~-k\n-k)n-ky 

are therefore sufficient for the absolute convergence of the infi­
nite series expressing the roots of the four-term equation (19) 
derived from equation (23). 

In like manner it is found that the conditions sufficient for 
the absolute convergence of the infinite series expressing the 
roots of the four-term equation (19) derived from equations 
(24) and (25) are 

(31) 

(32) 

bn 
nr 

zk\n — k)n-

bn-

> 

zkXn — k)n-k' blek 

(n - k)n 

<k\ 

Either the first condition of (30) or the first condition of (31) 
and (32) must be satisfied. If it is possible to show that when 
the first condition of (30) or of (31) and (32) is satisfied the 
second inequalities can always be satisfied, the possibility of 
determining the roots of the four-term equation by means of 
infinite series is established. 

The substitution 
(33) y = z% 
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where s is a positive integer, transforms the four-term equation 
(19) into the four-term equation 

(34) ayns + byks + cyls + e = 0. 

The convergency conditions for equation (34) corresponding 
to conditions (30), (31), (32) are 

< snnn, (35) 
bn 

l e " 

(37) 
bn 

nn 

= **(» —As)—*' 

==jfc*(n _-&)»-*> 

— Jck(n — k)n-k' 

alen~l *̂ . 

bn-l 

ak~lc^h 

ck 

bleTc-l <Ü 

> 
s"-*(n _ h)n 

< skkk. 

The value of s can always be taken so large that the second 
inequality of (35) is satisfied, or that the second inequalities of 
(36) and (37) are satisfied simultaneously. 

When conditions (35) are satisfied, all the roots of equa­
tion (34) are expressed by the infinite series derived from the 
equation 
(38) ayns + byksx + cylsx + e = 0 ; 

when conditions (36) and (37) are satisfied, all the roots of 
equation (34) are expressed by the infinite series derived from 
the equations 
(39) ayns + by7es + cyux + ex = 0, 

(40) aynsx -f byks + cylsx + e = 0. 

I t is therefore always possible to express all the roots of 
equation (34) in infinite series. The roots of equation (19) are 
found from the roots of equation (34) by substituting in (33). 

I V . The Five-Term Equation. 

From the five-term equation 

(41 ) ayn + byk + cyl + dym + e = 0, 

in accordance with (a), (6), (c) of Article I , are formed the three 
equations 
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(42) ayn + b^x + cylx + dymx + e = 0, 

(43) ayn 4 byk + cylx + dymx + ex = 0, 

(44) aynx + fo/* + cylx + cfa/m# + 6 = 0, 

defining y as algebraic functions of x. 
The equations (42), (43), (44) may be written in the form 

(45) y-[-i-xfo+y+??>)}, 

(46) '-[-l-'il^+i"--*-^}^' 
(47) ? = [ - £ - * ( ^ + ^ + £rJj'-

I f the y of equation (45) is expanded into a power series in 
x by Laplace's series and after x is made unity in this power 
series the terms of the resulting series are arranged in groups 
according to the ascending powers of 

<«> s(-s)?. 
it will be found that the terms of the first group constitute the 
series which expresses the roots of the four-term equation (19) 
provided the conditions (30) are satisfied, and that all the 
successive groups are convergent when the conditions (30) are 
satisfied. 

I t follows that the series which expresses the roots of equa­
tion (41) derived from equation (42) can be written 

y^Y.+ Y.— - - Y + Y2-2~2( - ) n 

* ° 1ne\ a J 2n2e2\ a J 

^ 9 ' T3r e?3 / e V™ 

>w ê 

where Y0, Y19 F 2 , Y"3, • • -, represent convergent infinite series. 
The series (49) is convergent provided 

I â / e \ m\ 

P°) s ( - s ) ? < 1 -
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Condition (50), when both members of the inequality are 
affected by the exponent n, becomes 

(51) 
dn 

The conditions 

(52) 
aken~k 

nn 1 
<: 1 — Jck(n — ht 

,n—k ' 1 

< n " 

alen~l <n\ 
dn 

amen-m <nn 

are therefore sufficient for the absolute convergence of the series 
expressing the roots of the five-term equation (41) derived 
from equation (42). 

In like manner it is found that the conditions sufficient for 
the absolute convergence of the infinite series expressing the 
roots of the five-term equation (41) derived from equations (43) 
and (44) are 

(53) 

(54) 

bn 

: k*(n — kf-k ' 

bn~ 

bn-! | 
k—lrfi-k I - > (n — kf 

bn 

nd" > (n — k)n 

: ^{n—ky bl& 
<k\ 

d" 
6 V .<** • 

Either the first condition of (52), or the first conditions of 
(53) and (54) must be satisfied. 

The substitution 
(55) y = z* 

transforms the five-term equation (41) into the five-term 
equation 
(56) ay™ + byh8 + cyu + dyms + e = 0. 

I t is always possible to determine s so that either the con-
vergency conditions for equation (56) corresponding to (52), 
or those corresponding to (53) and (54) are satisfied. I t is 
therefore always possible to determine the roots of equation 
(56) by infinite series. The roots of the five-term equation 
(41) are found from the roots of (56) by substituting in (55). 
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V . Conclusion. 

The method used to set up the convergency conditions for 
the infinite series expressing the roots of the four-term equation 
derived from the equations formed in accordance with (a), (6) 
(c) of Article I when the convergency conditions of the three-
term equation are known, and to set up the convergency condi­
tions for the five-term equation when the convergency conditions 
for the four-term equation are known, can be used to set up the 
convergency conditions for the £-term equation when the con­
vergency conditions for the (t — l)-term equation are known. 

In fact, the convergency conditions for an equation of any 
number of terms can be written mechanically. 

For the t-term equation 
(57) f(y) = 0 

it is always possible to determine the s of the substitution 

(58) y = *• 

so that the convergency conditions of the infinite series express­
ing the roots of the t-tevm equation 

(59) ƒ ( * • ) - 0 

derived from the equation formed from (59) in accordance with 
(a) of Article I , or derived from the two equations formed from 
(59) by (b) and (c) of Article I are satisfied. The roots of the 
£-term equation (57) are found from the roots of the equation 
(59) by substituting in (58). 

I t is therefore always possible to find all the roots of an alge­
braic equation by means of infinite series. 

LEHIGH UNIVERSITY, 
April, 1908. 

THE DEDUCTION OF THE ELECTROSTATIC 
EQUATIONS BY THE CALCULUS OF 

VARIATIONS. 
BY DR. ARTHUR C. LUNN. 

(Read before the Chicago Section of the American Mathematical Society, 
April 17, 1908.) 

T H E construction of a mathematical theory of classes of phys­
ical phenomena for which no detailed mechanical explanation 


