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CERTAIN CLASSES OF POINT TRANSFORMA­
TIONS IN THE PLANE. 

BY DR. EDGAR ODELL LOVETT. 

( Read before the American Mathematical Society at the Meeting of May 
29, 1897.) 

A POINT transformation is an operation by which a point 
is carried into the position of some point. As far as the gen­
eral definition is concerned the path described by the point 
and the time consumed in the change of position are im­
material, accordingly the coordinates of the final position of 
the point are functions only of the coordinates of its initial 
position, and a point transformation of the ^-plane into 
itself is represented analytically by two equations of the 
form. 

x1 = X(x,y)9 yi=Y(x,y), (1) 

where the functions X and Y are independent analytic 
functions in the Weierstrassian sense. 

By such a transformation point is transformed into point, 
lineal element* into lineal element, curve into curve, inter­
secting curves into intersecting curves, curves in contact 
into curves in contact. By imposing geometrical conditions 
on the transformation, there result corresponding analytical 
conditions for the determination of the forms of the func­
tions X and Y and thus particular categories of point trans­
formations arise. 

For example, if the transformation (1) is to change 
straight line into straight line, or in other words, to leave 
the ordinary differential equation of the second order 

y" = o 

invariant, the functions Xand F a r e found to have the forms 

x _ a,x + \y + c, Y_a2x + b2y + e2 

v + hv + es v + hv + cs' 
which define the general projective transformation of the 
#2/-plane. If, further, the point transformation is to trans­
form parabola into parabola, or what amounts to the same 

*The term lineal element is here used in the sense introduced by 
Lie, namely, to designate the ensemble of a point and a straight line 
through the point. 
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thing, to leave invariant the ordinary differential equation 
of the fourth order 

% ' " 2 - 3 / ^ = 0 , 

the functions X and F have the forms 

XEÏ axx + bYy + ev Y= a.2x + b2y + c2, (3) 

which define the so-called general linear transformation which 
leaves the line at infinity invariant. If the point trans­
formation is to leave the areas of all figures in the plane in­
variant, X and Y have the forms (3) with the additional 
condition that the determinant 

J = a1&2-a261= 1. (4) 

If the circular points at infinity are to be invariant by the 
transformation, X a n d F a r e of the form 

X~ p (œcosa—2/sina+a), Y=p (a; sin a+i/cos a+6) ; (5) 

arbitrary p gives a so-called similitudinous transformation 
which preserves the forms of figures ; p equal to unity gives 
a Euclidian motion in the plane. If the product of the radii 
vectores of the original point and the transformed point is 
to be constant, say unity, we have the transformation by in­
version whose X a n d F a r e defined by the equations 

Examples might be multiplied further, but it is not to the 
purpose here. I t may be added, however, that some of the 
most interesting cases are those where X and F are tran­
scendental functions, notably the logarithmic and exponential 
transformations. 

I t is proposed in this note to determine the forms of X 
and F and present a few of the properties of the point trans­
formations of the #2/-plane respectively defined by the follow­
ing characteristic properties : 1° Cartesian subtangent of the 

transformed curve is to be — times the Cartesian subtangent 
n 

of the original curve ; 2 ° Cartesian subnormal — times Car-
n 

tesian subnormal ; 3° Cartesian subtangent — Cartesian 
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subnormal ; 4° Cartesian subnormal - Cartesian subtang-

ent ; 5° polar subtangent — polar subtangent ; 6° polar 

subnormal — polar subnormal; 7° polar subtangent — 

polar subnormal ; 8° polar subnormal — polar subtangent. 

1°. The point transformations of this category are to be 
of such a nature that point is changed into point and curve 
transformed into curve in such a manner that the Cartesian 

subtangent of the transformed curve is equal to — times the 

Cartesian subtangent of the original curve. 
The Cartesian subtangent of a curve f(x,y) = 0 at a 

point (x,y) is 
dx y rtmt s 

yap ov/' (7) 

then the defining property of the point transformation 
sought gives the analytical condition 

dx1_m dx . 
^dy^n y~dy' ^ ' 

This condition (8) is now to be turned to account to find 
the forms of X and Y in equation (1). Substituting in 
(8) the values of xx and yl from (1) there results 

X Yx+Yyy>~ ny» 
or 

nXjf2 + O YXx - my Yy) yf -myY^O. (9) 

This last equation must be identically true for all values 
of y', hence equating to zero the coefficients of the several 
powers of y' 

Xy=0, Yx=0, nYXx-myYy=0 (10) 
hence 

y n x=X(«o, r-r(y), x.-m, -Y = Y (ii) 
*The last identity (10) breaks up into these two parts since X a n d Y 

are independent functions by hypothesis. 
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and finally 
X=mx + a, Y*=by\ (12) 

Then the transformation 

x1~mx + a, y1 = byn (13) 

is the most general point transformation which changes a 
curve e into a curve y in such a manner that the subtangent 

of the point (x, y) of c is the - th part of the subtangent of 
Tïh 

the corresponding point (xvyx) of the transformed curve y. 
2°. The point transformation is to be found which 

changes curve into curve in such a manner that the Car-
tesian subnormal of the transformed curve is — times the 

n 
Cartesian subnormal of the original curve. The value of 
the Cartesian subnormal is 

By virtue of the transformation there exists an identity 
of the form 

ViVi =-nyy' (16) 

Whence 

myXyy'* + (nYYy - myXx)y' -nYYx~ 0. (16) 

This identity must obtain for all values of y', hence as in 
the preceding case 

X = X ( a O , Y=Y(y), Xx=n, YYy = my, (17) 

therefore 
x1 = X=nx + a, y1 = Y = ^my2 + b (18) 

is the most general point transformation of the characteristic 
property 2°. 

3°. By this third class of point transformations the Car­
tesian subtangent of the transformed curve is to be equal 
to the Cartesian subnormal of the original curve multiplied 

by the ratio —. This geometrical property expressed ana-

lytically becomes 
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Whence 

my Yyy>* + (my Yx-n YXy)y' -nYXx=0; (20) 
hence 

X=X(y), Y=Y(x), Xy = my, Yx=nY; (21) 

accordingly 

x ^ - ^ + a, yi=be™ (22) 

are the equations of the most general point transformation 
possessing the assigned property. 

4°. The defining property of this category of point trans­
formation is that the Cartesian subnormal of the trans­
formed curve shall be to the Cartesian subtangent of the 
original curve in the ratio m to n ; hence the condition 

? "v y 

which gives 

nYYyy<* + (nYYx - myXy)y' - myXx = 0. 

Therefore 

X=X(x), Y=Y(y), yXy=n, YYx=m; 

and finally 

(23) 

(24) 

(25) 

xx = nlogy + a, y1= V2mx + b (26) 

are the equations of the transformation sought. 
5°. The next four transformations are more readily 

studied in polar coordinates. Let the general point trans­
formation of the (r0) plane into itself be 

r^B^O), e^B{r}e) (27) 

The transformation 5° is subject to the limitation that the 
polar subtangent of the transformed curve be to the polar 
subtangent of the original curve in the ratio m to n ; this 
geometrical condition gives the following analytical condi­
tion for determining the forms of the functions R and 0, 
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a d ^ i _ m 2d0 
1 drx~~~ n dr' 

or 
mr2Re6

f2 + (mr2Rr — nR2 0e) 6' - nR10r = 0 ; (29) 

hence 

R = R(r), 0=0(6), r2Rr = nR2, 06 = m; (30) 

therefore 

r, i ^ ~ — ^ — 0 = d=mO + P (31) 

are the equations of the most general point transformation 
possessing the above-named property. 

Similarly for the other cases we find: 

6° Polar subnormal — times polar subnormal, 
n 

if nRed
n + (nRr — m0e) 0! — m0r= 0; (32) 

whence rx = mr + a, 01== nd + /?. (33) 

7°. Polar subtangent — polar subnormal, 

if nR20ed'2 + (nR20r - mRe)d' - mJRr = 0; (34) 

whence r, = -, 0. = mr + /5. (35) 

8°. Polar subnormal - solar subtangent, 

if mr20ed'2 + (mr20r - ni?0)0' - nRr=0; (36) 

whence rx = mO + a, 01 = ft . 

9. A family of transformations is said to form a Lie 
group of transformations when the product of any two 
transformations of the family is equivalent to a transforma­
tion belonging to the family. By the product of any num­
ber of transformations is meant the transformation equiva­
lent to their successive application. I t is to be observed 
that these transformation products do not obey exactly the 
same laws as ordinary algebraic products ; they always 
follow the associative law but do not of necessity obey the 
commutative law. 



1 8 9 7 . ] TRANSFORMATIONS IN THE PLANE. 103 

Consider the family of transformations 1°. Let S be the 
transformation of the family which changes the point (#, y) 
into the point (xv yj given by, 

x± = mx + a, yx = byn ; 8 (37) 

let T be the transformation of the same family which trans­
forms the point (xv yx) into the point x2, y2) given by the 
equations, say 

x2 = m1 xx + av y2 = \ yY
ni ; T (38) 

the product ST, that is, the transformation which changes 
the original point (x,y) directly into the point (x2, y2) is ob­
tained by eliminating x1 and yx from the equations (37) and 
(38); this elimination yields 

y2 = bnib1f
ni=b2y

n2. y 

the equations (39) are of the same form as the equations 
(37) and (38) i. e., the transformation F equivalent to the 
successive application of the transformations S and T of the 
family 1° has the same form as 8 and T and hence belongs 
to the family 1° ; this remarkable property is compressed 
into the statement that the family of point transformations 
1° constitutes a continuous group of transformations. 

Similarly it may be shown that the transformations 2° 
form a continuous group of transformations. 

On the contrary, the transformations 3° do not constitute 
a group, as the following consideration shows. Let P be 
the transformation of the family 3° which changes the 
point (#, y) into the point (xv yx) given by 

*i = fsf + «, » i = ^ 5 P (±°) 

the point (xv yx) is changed by a transformation Q of this 
same family into the point (x2l y2) for which, say 

the transformation W equivalent to the successive applica­
tion of P and Q is found by eliminating xx and yx from the 
equations (40) and (41). This elimination gives the trans-
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formation which changes (x, y) directly into (x2, y2) and 
yields as the equations of the transformation 

x2 = ~±- l2e2nx + av y2 = b^?*9***' ;PQ =W (42) 
-J 

but the equations (42) are not of the form (40), hence W, the 
product of P and Q, does not belong to the family contain­
ing P and Q, and the family of transformations 3° does not 
form a continuous group of transformations. 

In the same manner it appears that the transformations 
4° do not form a group. 

I t may also be verified readily that the families 5° and 6° 
possess the group property ; and that the families 7° and 8° 
are not continuous groups. 

10. An infinitesimal point transformation is one by which a 
point suffers an infinitesimal change of position. I t differs 
from the identical transformation by an infinitesimal. If, 
by virtue of an infinitesimal point transformation, x and y 
receive the increments respectively 

ôx=Ç(x,y)ôt, ây = 7j(xiy)ôt, 

the infinitesimal transformation is represented symbolically 
by 

The equations of the group 1° give the identical trans­
formation 

xi = x> 2/i = 2/ 

for the system of values 

a = 0, 6 = 1, m = 1, 7i = l ; 

hence the system 

a=da, 6 = 1 + £ 6 , m = 1 + dm, n=l + dn 

yields a transformation of the form 1° differing from the 
identical transformation by an infinitesimal, and the trans­
formation corresponding to this system is an infinitesimal 
transformation of the group 1°; accordingly 

xx = (1 + àm)x + àa, 

Mogy . 
yx = (1 + db)y^ = 2/(1 + » ) ( 1 + 

* For these details consult any one of Lie's published works. 
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are the equations of the infinitesimal transformation of the 
group 1°. Whence 

xx — x = Sx = xdm + Sa, yx — y = Sy=z y(Sb + Sn log y) 

to terms of the second order ; therefore, if we make an ob­
vious change in the designation of the infinitesimal con­
stants Sa, Sb, •••, we have 

Sx=Ç(x, y)St= (ax + p)dt, Sy = ^(x, y) = y(k + filog y) St 

and the symbol of the infinitesimal transformation of our 
group 1° is 

Vf=(ax + ?)% + y(X + i»logy)-^. 

The system of values 

a = 0, & = 0 , m = l , n = l 

makes 2° an identical transformation, hence the system 
of values 

a = Sa, b = Sb, m = 1 + Sm, n = 1 + Sn 

determines an infinitesimal transformation of the group 2°, 
namely 

xx = (1 + Sn)x + Sa, yx = V ( l + Sm)f + Sb ; 

whence 
Sm Sb 

x1 — x = Sx = xSn + Sa, yx--y = Sy = —y + — 
* y 

by expanding yx by the binomial formula and by neglecting 
terms of higher order. Then putting 

Sn = XSt, Sa = [xSt, Sm = pSt, Sb = <rSt, 

the infinitesimal transformation of the group 2° has the 
symbolic form 

Vf=(Xx+^+(Py + *y-^ 

Since the families 3° and 4° do not possess the identical 
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transformation they have no infinitesimal transformations.* 
11. We have already found that the family of transfor­

mations 5° is a group, hence we shall find an infinitesimal 
transformation belonging to the family. In fact the follow­
ing values of the arbitrary constants 

a = 0, /3 = 0, m = l , n = l 

reduce the transformation 5° to the identical transformation 
rx = r, 01 = 0. 

Then the system of values 
a = da, P=*dt3, m = 1 + dm, n = 1 + an 

determines the transformation of the group which differs 
from the identical transformation by an infinitesimal, that 
is, the infinitesimal transformation of the group, namely, 

* - * / » + ! + *»' ' . - ( l + M ' + a-
or to terms of the second order 

rx = r (1 — an — rdfi), 0, = (1 + dm)6 + da ; 
whence 

or = rx —• r — —r(xdfi+dn)} àO = 01 — d=* 0dm + da; 

or putting 
dfi = Xdt, dn = pM, dm = vdt, da = pdt, 

the symbol of the infinitesimal transformation of the group 
5° is 

7 / = f ( r , * ) g [ + *(r, O g = (v* + , ) | £ - r(Ar + , ) | { . 

In the same manner we find the infinitesimal transforma­
tion of the group 6° to have the symbol 

The families 7° and 8° do not contain the identical trans­
formation, hence they do not have infinitesimal transforma­
tions.* 

* It is to be observed that it is not for the reason that these families are 
not groups that they do not contain infinitesimal transformations. For 
example, the family of oo* transformations xx = xt, yx = y -f-t — 1, obvi­
ously does not form a group, and yet the family contains the identical 
transformation, as is seen by putting t equal to unity, and the infinites-

3 / 3 ƒ 
imal transformation XTT + ^r found by putting l-\-St for the parameter. 

ox ay 
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12. Apart from their properties as transformations, the 
above transformations are of interest because of certain 
applications to plane curves, notably to spirals which it 
is hoped to bring out in a subsequent note. 

Since finishing this note the writer finds that the finite 
forms of the transformations discussed were given by Lais-
ant in the Nouvelles Annales de Mathématiques, 2d series, vol. 
7 (1868), p. 318, in the solution of a problem proposed by 
Haton de la Goupillière, Nouvelles Annales, vol. 6 (1867), 
problem No. 803. The wide divergence between the proper­
ties and the points of view of the present note and the solu­
tion referred to seem to warrant its presentation to the 
Society. The above-mentioned volumes of the Nouvelles 
Annales are to be had in the Library of Congress. 

BALTIMORE, 
14 April, 1897. 

CONTINUOUS GROUPS OF CIRCULAR TRANS­
FORMATIONS.* 

BY PROFESSOR H. B. NEWSON. 

(Read before the American Mathematical Society, at the Meeting of 
April 24, 1897.) 

T H E object of this paper is to present the outlines of a 
fairly complete theory of the continuous groups of linear 
fractional transformations of one variable. The method 
employed is quite different from the methods of Lie. Lie's 
classic theory is based upon the infinitesimal transforma­
tion ; I shall make but little use of the infinitesimal trans­
formation, but shall develop the subject from the considera­
tion of the essential parameters of the transformation. 
The complex plane is chosen because it beautifully illus­
trates the methods. I have put together some old and 
some new facts and have sought to build up a general the­
ory. 

* Several terms have been proposed to designate the linear fractional 
transformations of the complex plane. Möbius introduced the term 
" Kreisverwandtschaf t. " Mathews' Theory of Numbers, page 107, 
translates this as u Möbius' Circular Relation." Professor Cole, in An­
nals of Mathematics, vol. 5, page 137, refers to " Orthomorphic Trans­
formation," following Cayley ; this seems too general for the special case 
here considered, since it is applicable to all conformai transformations. 
Darboux, in his Theorie des Surfaces, vol. 1, page 162, uses " transforma­
tion circulaire." It seems to me that "Circular Transformation " is the 
best yet proposed, for the fundamental property is expressed in the name. 


