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A TWO-FOLD GENERALIZATION OF FERMAT’S
THEOREM.

Presented to the American Mathematical Society, February 29, 1896.

BY PROFESSOR ELIAKIM HASTINGS MOORE.

Formulation of the generalized Fermat theorem I1T[k+1, n; p].
§§1-4
33 .

1. In Gauss’s congruence notation Fermat’s theorem is :
I, a’—a=0 (mod p)

where p is any prime and a is any integer :
or, otherwise expressed,

I, The two rational integral functions of the indeterminate X
with integral coefficients

X—X, "':fI:I(XJF a)
are identically congruent (=) (;;Iod p):
X—X= “ZIj:I(XM) (mod p).
‘We write I, thus: "

I, The two forms in the two indeterminates X, X,
D[2,1;p] (X, X) =X, Xr— XX,

ag=p—1
P[2,150) (X, X)=X,."TL (¢, %,+ X)),
are identically congruent (mod p):

D[2,1; p](X,, X)EP[2,1;p] (X, X;) (modp).

2. We proceed in two steps to a two-fold generalization
of Fermat’s theorem I,.

II. The two forms in the k+1 indeterminates X, X, -+, X,
(1) D[k+1, 1;p] (X, X, -, X=X | 6 5 =0, 1,70,
(@) PlE+1,1;p) (X, X, oy X)=TT* S0, X, =070,
—awhere the product TI* embraces the (p*T'—1)/(p —1) linear

=k

JSorms iéo a, X, whose coefficients a, (9=0, 1, -, k) are integers

selected from the series 0,1, -, p— 1, @n all possible ways, only
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so that for every particular form, first, the coefficients a are not all
0, and, second, of the coefficients a, not 0 the one with largest index
gis 1 are identically congruent (mod p):
Dlk+1,n;p] (X, X,; -, X) =P [k+1,2; p] (X, X, -, X)),
‘When we collect into a class the totality of integers con-
gruent to one another (mod p), and denote the p incon-
gruent classes by p marks, we have in this system of p marks
a field F'[ p] of order p and rank 1. The marks of the field
F[p] may be combined by the four fundamental operations
of algebra—addition, subtraction, multiplication, division,
—the operations being subject to the ordinary abstract
operational laws of algebra, the results of these operations
being in every case uniquely determined and belonging to
the field. Congruences (=) (mod p) are in the field equal-
ities (=), and identical congruencies (=) are identities (=).
The restatement of II in the terminology of the field F'[p]
is given by setting n=1 in its generalization IIT (§3).

3. The second step of generalization of I, rests upon
Galots’s generalization of the field F'[p] to the Galois-field
GF [p*] of order p*, modulus p, and rank n. This field of p"
marks « is uniquely defined for every p=prime, n=positive
integer. (I have elsewhere proved that every field of finite
order s is a Galois-field of order s=p".)

A form, that is, a rational integral function of certain in-
determinates, X, X ,-,X,, is said to belong to the GIF'[p"] if
its coefficients belong to (are marks « of) the GF[p"]. A

g=k
linear homogeneous form qz «,X, belonging to the GF[p"] is
g=0
called primitive if not all its coeflicients « are 9, and if of
the coefficients « not 0 the one with largest index g is 1.

We have then:

III. The two forms in the k+1 indeterminates, X,, X, -, X,,
(3) D[h+1,mp] (X, X, ~, X)=X"] (5,70, 1,7 1),
(4) P[k'i‘la n; P] (IYUv Xn " XJE H* Eag ‘ng 9=0,1,", k),

9
—where the product T1* embraces the (p"*tV—1) / (p"—1) dis-
9=k
tinct primitive linear homogeneous forms J}_‘, a, X, belonging to the
=0
GF[p"] — are identical : /
D41, n; p](X,, X}, , X,)=P[k+1,n; p] (X, X, -, X).
The forms D, P whose identity theorem III affirms have

the three characteristic positive integers or characters k + 1,
n, p. It is convenient to attach these characters to the no-
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tation III for the theorem, and thus to speak of the theorem
III[k + 1, n; p]. Thls theorem requires proof onlyfork21,
since for lc_O D= X, P=X,

4. For the proof of III [Ic+1 n; p] we need Galois’s one-
fold generalizations of the Fermat theorems I:

II/ Every mark a of the GF[p*] satisfies the equation

P

o —a=0,
whence,
II, The two forms in the indeterminate X
X" —X, T (X + «)
alp”

belonging to the GF [p*] are identical :
X" —X=T11 (X + ),

o pv)L

(where, as always, the subscript-remark o | p" means that
the mark « is to run over the p” marks of the GF[p"]),
and further,

II, The two forms in the two indeterminates X, X,,

D[2,n; p](X,, X)= X, Xt — Xy X,
P[2,n; Pl (X XD=11% (o, X +a, X)),

— where the product TT* embraces the p"+1 distinct primitive
linear homogeneous forms o, X,+ «, X, belonging to the GF [ p"]—
are identical :

D [2,n; p] (X, X)) = P [2,n;p] (X, X))

A (known) corollary to II, is also needed. We denote
by A, the substitution on the p" marks ¢ of the GF[ p"]
which replaces every mark « by «"; obviously A, A=/ .+
while by II/, A\, = A,=1. We denote by F, (X, X,,, X,
the result obtained by applying the substitution 4, to
the mark-coefficients of a form F (X, X, -, X)) belong-
ing to the GF[ p], sothat F (X, X,,--, X,)= F( y Xy, X))
=F (X, X,,,X,). Since in the involution of a multi-
nomial to the p™ power the say intermediate multinomial
coefficients are all divisible by p, we have in the GF[p*]
of modulus p,

'F'IL(X07 Xu ,,,’Xk)p_ k1 (XO)AX:)y ‘ng)7
whence
II’ Cor. F( N X)P —F<AX?; 7)(]l’n7 : )(Zn))

where F(X, X ) is omy form of the GF[p"].
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The theorem ITI[k+1, n; p] bears the same relation to
Galois’s Fermat’s theorem 11’ : IT =ITI[2, n ; p] : that the
theorem IT= III[k+1, 1; p] bears to Fermat’s theorem I :

,=1II[2,1;p]. Iam communicating then one-fold genera-
lizations I1I, IIT of the known theorems I, IT’; of these II
may be looked at as a theorem in the ordinary Gauss-con-
gruence theory, while its generalization III is a theorem in
the Galois-field theory.

I give three proofs A4, B, C of the general theorem
ITI[k41, n; p]. The proof A depends upon considerations
involving the GF[p”] of rank n alone, and accordingly for
n=1 this proof 4 of III[k+1, 1; p]= II may be exhibited
in the terminology of the ordinary Gauss-congruence
theory. The proofs B and C however depend upon consid-
erations involving the wider GI' [p™] of rank mn
(m2 2 k"); they throw a sharper light upon the essential
meaning of the theorem III[k+1, n; p] for every n.

Proof A of the theorem I1I [k-+1, n; p]. § 5.

Proof by two-based induction. We know that III[1, n; p]
and III[2, n; p] = II, are true. On the supposition that
III[i—1, n; p] and III[I, n; p] (1> 1) are true we prove
that III[I+1, n; p] is true.

5. In the determinant U=|u;| (¢, j=0, 1----,1) we de-
note by Uj; the minor complementary to u, and have*

®) (=nm| g

We set now

=U. | uy | =™

’lLU == AX'}”M (4, §=0, 1, 1),
so that we have
D[I+1, n; p](Xyy X, XD)=4+T,
D[i—1, n; p] ()Q,’", Xg“;‘"]pﬂ) = | uy ‘ (;:.}?, ),

o DI p] (X, T, X = (—1) T
© D[, w5 p] (X, Xayy XK= (—1)' Uy,

DL, m5 p] (X" Xf'r, XYY = — U,
DL, m; p) (XY X{'y, X7") = + U,
Then by substituting the values (6) in the identity (5) and

remembering IT’ Cor. and the definition (3) of D[2, n; p]
(Y, Y,), we have the fundamental identity

w

* See, for instance, Scott’s Determinants, p. 57, No. 6.
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(1) DI, 5] (D[l p] (X, X, X), D[ p] (X, Ko X,)

=D[I+1,m; p] (X, Xy, X)) « DI —1,m5 p] (X, X X))
Now, using always the JI* in the sense defined in the
enunciation of IIT, we have by hypothesis :
(8) III[2,n; p]: D[2,n; p](Y,, Y)=P[2, n; p](Y,, ¥Y))=

IT*(8,Y,+ 5 Y1) = Yy« TIB Y+ Y1),
Bl2"

(8,) III[l—1,m;5 p]: DI—1,m;p] (Y, ¥, Yin) =
h=1—2
Pll—1,n;p](Yy, Y, -, Yip) =1TF ]Lgoﬁ’bK”
(83) IIIU)”??]: D[l; ”;P](Ym Y17 ] Yt—-l)—:—

h=l—1

P[l,n; p]( Y, Yy, -, Y )= IT* 20/31; Y,.

h=

By (8,) the left side of the identity (7) is
(9) D[L,n p] (X, X,y -, XD+ 11 (ﬁ DL, n; p](X,, X,, -+, X))
B]I’n
+ D[, n p] (X, X,, -, ‘XL))7

which, using IT/ and II/ Cor. in the addition of the determi-
nants, is

(10) D[l n; p] (X X,y =y X))«
ﬂl—lI DU? “:P] (ﬁ ‘X:)_{'Xv )(zf Ty X)J
p'ﬂ

which by (8,) is
(11) TI%(3, Xy 0, Koot 3, X0 « T1TE* (7, (P X420

+ 7, X, 4 -+ 1K),

‘We compare the product (11) with the product (12),

(12) PlI+1, n; p] (X, Xy, X)) =
TI*(ay Xo4o, X +a, X440, X).

The factors of (12) are the primitive linear homogeneous
formsg;:l a, X, with no omissions and no repetitions. Every
factor of (11) is likewise such a form. And in (11) every

o=

o=t
such formggoag X, occurs at least once; any such form ang X,
= =



194 GENERALIZATION OF FERMAT’S THEOREM. [April

with ¢, <= 0 occurs (since I > 1) once and only once, viz.,

under that JT* of the second set in (11) whose forms have

B =ay/a ; any such formy}? a, X, with o, = 0, ¢,<=0, occurs

once and only once, viz., urﬁoer the single TT * of the first set

in (11); any such formygjay X, with «, = 0, ¢, = 0, occurs in
=

all 1 4 p* times, viz., once and of course only once under
every [ * of (11). Thus the product (11) is:

- - 9=t > "
(13) P41, 5 p)(X, Xy - X- (1150, 1) 7"
2

‘When we substitute (13) for the left side of the identity
(7) and divide out* the second factors, which are identical
by the hypothesis (8,), we have the desired identity

(14) III[i41, n; p]:
P+1,n; p] (X, X,y X)) = D[+1,0; p] (X, X, -, X)),

Proof B of the theorem II1[k+41,n; p]. §§ 6-11.

Direct proof of the identity TXX B[k+1, n; p]
1112 D [k+1,n; p](X,, X,,+, X,) =

r=k~1

Dlkmn; p] (X X,y 5 X)) » 11 ( 20 @ X+ X, )
a p'n r==
(r=0,-+2,lt—1)

6. From the identity XXT A[l+1, n; p] for I=1, 2, k, and
in view of the definition (3) D[1,n; p](X,) = X,, we have

1=k r=I—1

(15) DL+1,m; p) (X X, X)=X, 1T 11 (S0X,4X),
=1 47 ]’)’"‘ r=
(r==0, ,*, I—1)

viz., the identity called for by the theorem II1[k+1,n; p].

7. We introduce the GF[p™] of modulus p and rank mn
where m s any integer m22k2k+1. The GF[p™] con-
tains the GF[p”]. The forms entering the theorems
II1(k+1, n; p], IIT 8[k+1,n; p] belong to the GF[ p"], and
the theorems then to the GUF[p”]-theory, but the forms
belong also to the wider GF[p™], and the proofs B, C' of
II15 and IIT make use of this Tact.

*As to the fact that the quotient-forms so obtained areidentical, see, for
instance, the theorem (3) ¢ 3 of the memoir by WEBER : Die allgemeinen
Grundlagen der Qaloisschen Gleichungstheorie ( Mathematische Annalen, vol.
43, pp. 521-549, 1893.)
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8. The small Greek letters «, 6, 7,-+, as heretofore desig-
nate marks of the GF[p"], and the large Greek letters 4, 5,
Iy -, marks of the GF[p™].

Any ¢ marks 4, (r=1, 2, -, t) of the GF[p™] determine
in the GF[p™] an additive-group [4,, 4,, -, 4,1 GF[p]1]
with the basis-system 4, 4,, -, A,and field of reference GF[ p"]
containing all possible marks 4 expressible in the form

<

(16) A=S ad

rr

-

r=

where the «.(r=1, 2, ..., ¢) are marks of the field of refer-
ence GIF[ p*].

The p™ marks 4(16) are distinct if the particular mark
4 = 0 occurs only once, viz., with the coefficients «, all 0.
In this case, when of course ¢ < m, the additive-group has
the order p™ and rank t, and the ¢ marks 4_are linearly inde-
pendent with respect to* the GF [ p*], and obviously any ¢ of
the ¢ marks arelikewise linearly independent. If ¢<m, not
all the marks of the GI' [ p™] are in this additive-group of
rank ¢, and any external mark 4,,, forms with the ¢ marks
4, a system of ¢ + 1 linearly independent marks, and thus
extends the additive-group of rank ¢ to one of rank ¢ 4+ 1. We
take as a start any mark 4,=4=0, and by the preceding re-
marks may affirm: (a) There exist systems of ! marks
4, 4,,, 4,0f the GF[p™] linearly independent with respect
to the GT[ p*] for every[,l=1, 2, -, m; (b) every additive-
group [4,, 4+, 4,1 GF [ p"]] may be exhibited as an ad-
ditive-group of some rank < ¢ based upon such a system
of [ linearly independent marks chosen from amongst the
original ¢ basal marks 4,.

9. We take now any system of k 4+ 1 (not necessarily

distinct) marks B, (¢=0, 1, ..., k) of the GF[p™™] and con-
sider the two marks

7) A=Dk+1,n; p] (By By B =B
(4,j=0, -, 1, k),
(18) 1= Plk+ 1, n; p]l(By, By, oy B) = T1*3e, B,
g
9=0,1,., k)

Clearly JT=0 if and only if the marks 7, are linearly de-
pendent. And further, since from an equation,
=k
JE a; B;=0,
=0

*In the sequel the GF[ p*] is always the field of reference.
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we have, by II/ Cor., the k+1 equations,

=k P =k i
(2 a; Bj) = Za] I)’;’ =0 (1=0, 1., k),
J=0 J=0

we see that if the marks /5 are linearly dependent, then
N =0.

(In passing we notice that the remark just made concern-
ing IT and the theorem III[k+1, n ; p] yield the theorem :

A necessary and sufficient condition that k41 marks B,
(9=0,1,--, k) of a GF [ p™*] (m any integer) shall be linearly de*
pendent with respect to the GE'[ p*] is the vanishing of the determi-
nant A =|B"| (4, j=0, 1, k). (If m < k+1, then A
vanishes for every system of k41 marks B,). This yields
its still more important corollary :

The rank of the additive-group [li,,, By B GF[ p"1] s the

same as the rank of the matriz (B!") (¢, =0, 1, k), where
a matrix (u,) (iZov77) issaid to have the rank v i its every
sub-determinant of order /> vanishes while at least one
sub-determinant of order »'=r does not vanish.

It would not be difficult to establish this theorem and its
corollary independently of the theorem ITI[k+1, n; p].)

10. Next we consider a system of k(k+12m) linearly

independent marks 4, (r=0, 1,--, k—1), and select from
the p™ marks 4 of the additive-group [4,, 4,--, 4, | GF[p']]
any k41 marks B, (9=0, 1, -+, k). These marks B are
linearly dependent, for otherwise the additive-group based
on them would have the order p**>*, whereas it is con-
tained in the additive-group of order p™ based on the k
marks 4,. For these marks B then (§9)A=0, =0,
and so

(19) D[k+1,n ]7] (Boy Byyo,B)=P[k+1,n; p](Po, By, B

11. We take now any system of 2%*(2%°< m) linearly
independent marks %, (;= 357" and split it up at once
into k systems of 2 linearly independent (§8) marks.

The system (s-—-l 2,-2 k) determines the addi-

tive-group [E,, E,, -, E,, | GF[p"]] contammg besides
the mark 0 p*"—1 marks 4, of the form 4, —2 e, E,, where

the ¢,, are marks of the G'F[p”] not all 0. We select from
each additive-group any mark 4, (4,-=0) (r=0,1,--,k—1).
These & marks 4, are linearly 1ndependent and determine
the additive-group (40 4,y 4, | GF[p"]] containing
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r=k—1

p™ marks 4 of the form 4=3 «, 4. By §10 we have for

r=0
every such mark 4
(20) D[k+1, n; p] (Ao, 4,y =, 4, 4)=0.
Hence the equation for X,
(21) D[k"']! n; p] (Ao, Ay oy 4, Xk)=0

which is of degree p™ in the unknown X, with the leading
coeflicient D[k, n; p](4,, 4,, -+, 4,,) has as roots the p*

r=k-1

marks 4 of the form A=Y «, 4,. Since the marks 4 are
r=0

-1

Il

given equally well in the form A=—' a, 4,, we have the

0

i

identity in the indeterminate X, :

(22) Dlk+1, n; p](4y, 4, -y 4, XD=
r=k—1
D[k, n; p](4Aod,, A, ) o I_II],n (;0 @ 4,+X,).
=0, 1, b ke,

Now consider the two forms in the k-1 indeterminates
Xy Xy oy X
(23) D[k+1, n; p](Xy, X, -, X,y X,
i r=k—1
D[k) "y p] (Xo’ Xn Ty Xk—1>° IT > o X+Xk)’
aq‘ p‘ﬂ =
=0, ..., k—1)

We affirm their identity: this is the theorem III 3 [k+1,
n; p]. Denoting by C(X,, X, X, ), C'(X,, X,,, X,_,) the
coefficients of any certain same power of X, in the respective
forms (23), we prove the identity in the & indeterminates
Koy Xy Xyt
(24) 0(‘)(0? ‘er Y Xk—l) = C/(‘Xo’ Xl’ Y Xk-—l)'

In the first place these forms are of degree < p™ in each
indeterminate. Further by (22)

(25) Cdy, 4,y -y 4, _)=C (4,4, -, 4,

where for r=0,1,...,k—1 4, isany of the p*"—1(p*"—1>p™)
marks 4,40 of the additive-group[ £, £, £, | GF[p"]].
The desired identity (24) follows then by the identity-theorem
(which is proved in the Galois-field theory just as is the cor-
responding theorem in the theory of the ordinary general
algebraic field):

Identity-theorem. If the two forms of the GF[p™]

C(Kw Y27"'7 YD), CV(K’ Yy oy X))
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contain the lindeterminates Y, Y, ---, Y, to degrees respectively less

than the numbers y,, 95, -, Y, andif to each indeterminate Y,

(h=1, 2, -, 1) a certain system of vy, distinct marks A, may be as-
soctated in such a way that the two marks obtained from the two
forms by substituting for each indeterminate Y, any mark A, of its
assoctated set are equal :

C(Av ‘42» "y Al) = (Av sz Ty At):
then the two forms are identical :
oY, Yy oy Y)= C(Y, Y, o, 1),
Proof C of the theorem III [k+1,n; p]. §§ 12-14.
Proof by one-based induction. We know that ITI[2n; p]=I1

is true. On the supposition that III [I, n; p] (I>1) is true
we prove that III[{+1, n; p] is true.

12. By interchanging two adjacent columns of the deter-
minant | X" | (4,j=0,1,,1) we have‘
(26) D[i+1,n; p] (- ,,+1, “)=
"'D[l+1 ny p]( h+1" ' )
13. To prove the correspondmg property for the product

Pli+1,n; p] (X, -,X,) we need the Galois-field general-
ization of Wzlson 8 theorem
I1, Cor. 1 Il a=—1 (a==0),
a | p”
whence !
11, Cor. 2 W «"=—1 (2==0) (hany integer),
a l "

even for p=2, since in a Galois-field of modulus p=2 the
marks + 1, — 1 are equal.
In view of the definition (4) the two products

(27} P[l+1 ny p]( h,? h+1’ )7
Pll+1,n; p] (-~ XH,X )

=l
obviously differ only in the factors 2 X, gz #, X, contain-

ing both X, and X
the products

=h—1
(28> H/ 1—_[ (g E ag ‘Xy+a XIL+X-/L>’-1 )

a| P ag l P g=9
(a=£0) (g=0. ..., k—1)

g=h—1
H' H ( E ﬁf/Xy"' /th-H_l- Xh).
ﬁ | ol B!l n g=0

BF0) (g=0,..., h—1)

o+ and no X with ¢>h+1, that is, in
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Setting, for any «==0, f=1/4, 8,=«,/a (9=0,1, -+, h—1), we
find easily that the first product (28) is the second product
(28) multiplied by ]’ «""(a= 0), i. e., (IL, Cor. 2) by — 1.

a|ph

Hence indeed :
(29) P+, 05 p] (o, Xy Xy, ) =
—P[+1,n 3]y Xy Xy o)
‘We have from (26) (29):

(30) D[Z + 1, n ’p](—X:)y Ty )(h—-la ‘(Yln ‘Xh‘l‘l‘ ) )(t) =

(_ 1)l_h 'D [l+]? n ;P] (Xoﬂ ) )(h*h A/VIL+17 Tty )([7 XVIL);
(31) P[l +17 n ;]0] (XO’ tty Xh —19 A’Yha Xz 41y 7Ty ‘Xfl) =

(— 1= P[l+17 n ;P] ()(o’"' y Xoiy X, +1y 7y X, X0

14. Now the two forms
(32) D[l+1,n; p] (X Xy, ‘sz) y P[IH1, m, pl (Xo*)(w =5 X)
are of degree p™ in each of the !+ 1 indeterminates X,
(h=0,1,+,1); the respective coefficients of X" are ob-
viously
(33) D[ln; p] (X, X, X, ), PlLm;p] (X Xy, X)) ’a'ndl
hence by (30, 31, 33) the respective coefficients of X3
(h=0,1,---,1) are
(34) (=" D[ln; p] (X Xmyy Xy -, X))y

(=D Pln; p] (X, ) Xmyy Xy oy X)),
From (34) and our hypothesis that III [k + 1, n; p] is

true for &+ 1=1 it follows that the form
(35) D[1+1,n; p] (AYm Xy oy ‘XL)_P[Z +1,m; p] (AXM‘XU"" X)
is of degree less than p™ in each of the [+ 1 indeterminates
X, (h=0,1,--,1). We take in the GIF[p™] (m2kZ1) any
system of ! marks 4 (r=0,1--,i—1) linearly independ-
ent with respect to the GF[p”], and associate with each
indeterminate X, (h=0, 1, -, ) the p" marks A=25, of
the additive-group based on the marks 4. Then, since by
§ 10 (19) for every such system of [+ 1 (linearly depend-
ent) marks B, (h=0,1,-,1) we have
(36) D[I+1, 05 p](By, By, B) — P11, ;5 p] (B, By B) =0,
by the identity-theorem (§ 11) we have the desired iden-
tity III[I+1, n; p]:
D[i+1,n; p] (X, Xy, X)—P[L+1, m5 p] (X, X, -, X)=0.
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