
1 8 9 6 ] GENERALIZATION OF FERMATES THEOREM. 189 

A T W O - F O L D G E N E R A L I Z A T I O N O F F E R M A T ' S 
T H E O R E M . 

Presented to the American Mathematical Society, February 29, 1896. 

BY PROFESSOR E L I A K I M H A S T I N G S MOORE. 

Formulation of the generalized Fermât theorem I I I [k+1, n; p~] . 
§ § 1-4. 

1. I n Gauss's congruence nota t ion Fermâtes theorem is : 

11 ap—a^0 ( m o d p ) 

where p is any prime and a is any integer : 
or, otherwise expressed, 

12 The huo rational integral functions of the indeterminate X 
with integral coefficients 

X'-X, Tf(I+a) 
are identically congruent ( = ) (mod p): 

X p - X = "jï\x+a) (modp). 

W e wri te I2 t h u s : 

13 The two forms in the two indeterminates X0, Xv 

D[2,1 ; p] (X0, X,) = X0 X>- X / X „ 

P [ 2 , 1 ;p] (X0, X,) = JT0 .""if1 ( a ^ + X J , 

are identically congruent (modp): 

D [ 2 , 1 ; p ] (X0 , Xx) = P [ 2 , 1 51)] (X0, X j (mod p ) . 

2. W e proceed in two steps to a two-fold general izat ion 
of F e r m a t ' s theorem I3 . 

I I . The two forms in the &+1 indeterminates X0, Xv •••, Xft, 

( l ) D [ f c + l , l ; j > ] ( X 0 , X 1 , - , X l t ) = | X / | ( i^ -o , i , - ,* ) , 

(2) P{k+l,i;p]i^^";^)=n* X%Xg to-ci,-,*), 

—w/iere £/ie product YÏ* embraces the (pk+1— 1 ) / G p — 1) linear 

forms X a
gX whose coefficients a (g—O, 1, •••,&) are integers 

g = 0 9 

selected from the series 0, 1, ~-,p— 1, in all possible ways, only 
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so that for every particular form, first, the coefficients a are not all 
0, and, second, of the coefficients a not 0 the one with largest index 
g is 1 are identically congruent (mod p): 

J D [ * + l , n ; i > ] ( ^ . X 1 , - , X i ) = P [ * + l , » ; 1 > ] ( 2 ; , 2 r i , - , X t ) . 

W h e n we collect into a class the total i ty of integers con­
gruent to one another (mod p), and denote the p incon­
gruent classes by p marks, we have in this system of p m a r k s 
Si field F [ p] of order p and rank 1. The marks of the field 
F [p~\ may be combined by the four fundamental operations 
of a lgebra—addit ion, subtract ion, mult ipl ication, division, 
— t h e operations being subject to the ordinary abst ract 
operational laws of algebra, t he resul ts of these operations 
being in every case uniquely determined and belonging to 
the field. Congruences (=) (mod p) a re in the field equal­
ities ( = ) , and identical congruencies (=) a re identities ( = ) . 
The res ta tement of I I in the terminology of the field F [ p ] 
is given by set t ing n=l in i ts generalization I I I ( § 3 ) . 

3. T h e second step of generalization of I3 rests upon 
Galois's generalization of the field F [p] to the Galois-field 
GF\jpn~\ of order pn, modulus p, and rank n. This field of pn 

m a r k s a is uniquely defined for every p—prime, n=positive 
integer. ( I have elsewhere proved t h a t every field of finite 
order s is a Galois-field of order s—pn.) 

A form, t h a t is, a rat ional integral function of certain in-
determinates , X0,Xv~-,Xk, is said to belong to t h e GF[pn~\ if 
i ts coefficients belong to (a re m a r k s « of) the GF\_pn~]. A 

linear homogeneous form 2 a
gXg belonging to t he GF[pn~\ is 

9=0 

called primitive if not all i ts coefficients ag a re 0, and if of 
the coefficients a not 0 the one with largest index g is 1. 

W e have then : 
I I I . The two forms in the k-\-l indeterminates, X0, X1? •••, Xk, 

(3) Dlk+l^pjdXvXv-^JmlXfl (U-0,1,-,*), 

(4 ) P[k+1, n; p] (X0, X„ - , Xk)= n * 2 % Xf <•"=«> ̂ -, *), 
9 

—where the product J J * embraces the (pn{k+l)—1) / (pn—1) dis-
g~k 

tinct primitive linear homogeneous forms ^ a
gXg belonging to the 

0=0 
GF[pn~\ — are identical : 
D[k + l)n;p](X0,Xv--,Xk)=P[k+L,n;p](X,X1,...,Xk). 

T h e forms D, F whose ident i ty theorem I I I affirms have 
the th ree characterist ic positive integers or characters k + 1, 
n, p. I t is convenient to a t t ach these characters to the no-
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tation I I I for the theorem, and thus to speak of the theorem 
I I I [k + 1, n : p]. This theorem requires proof only for k > 1, 
since for k = 0, D = X07 P = X0. 

4. For the proof of I I I \k+1, n; p] we need Galois1 s one­
fold generalizations of the Fermât theorems I: 

11/ Every mark a of the GF[pn~] satisfies the equation 
%>n 

a —«=0. 
whence, 

11/ The two forms in the indeterminate X 

x^-x, n(x+«) 
belonging to the GF \j)n~\ are identical : 

x»n _x=n(^+«), 
„ i n 

a | p 

(where, as always, the subscript-rem ark a | pn means that 
the mark a is to run over t h e ^ marks of the GF[pn~]), 
and further, 

11/ The two forms in the two indeterminatesX^ Xx, 

D[2,n; p] (X0, X,)= X0X*n - Xf Xv 

P [2, n; p] (X0, X , )= n * («. ^ , + S X,), 

— where the product YL* embraces the pn+l distinct primitive 
linear homogeneous forms «0 X0 + ax Xx belonging to the GF \jpn~\ — 
are identical : 

D[2,n; p\ (X0, X J = P [2, n;p\ (X0, Xf). 

A (known) corollary to 11/ is also needed. We denote 
by /\h the substitution on the pn marks a of the GF[pn~\ 
which replaces every mark a byap ; obviously /\c/\d= /\c+d 
while by 11/ , A n = A o ^ 1 - We denote by Fh (X01 Xv-•, Xk) 
the result obtained by applying the substitution Ab to 
the mark-coefficients of a form F (X01 Xv •••, Xk) belong­
ing to the GF[p], so that Fn(X0, X , , - , Xk)= i^0(X0, X i r - , X,) 
= F(X0,Xv-~,Xk). Since in the involution of a multi­
nomial to the pth power the say intermediate multinomial 
coefficients are all divisible by p, we have in the GF[pn~\ 
of modulus p, 

F,XX0, Xv - , XkY= Fk+l (Xg, Xf, -,Xf), 
whence 

11/ Cor. F(X0, Xv - , Xky
n=F(Xf, Xf, - , Xf), 

where F(X0, Xv---7 Xk) is any form of the GF[yf]. 
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The theorem I I I [&+1, n; p] bears the same relation to 
Galois's Fermat's theorem I I ' : 11/ =111 [2, n ; p~] : that the 
theorem 11= I I I [&+1, 1 ; p~] bears to Fermat's theorem I : 
I3 =. I l l [2,1 ; p~\. I am communicating then one-fold genera­
lizations I I , I I I of the known theorems I, I I '; of these I I 
may be looked at as a theorem in the ordinary Gauss-con­
gruence theory, while its generalization I I I is a theorem in 
the Galois-field theory. 

I give three proofs A, B, C of the general theorem 
I I I [ / c+ l , n; p~]. The proof A depends upon considerations 
involving the GF[pn~\ of rank n alone, and accordingly for 
w = l this proof A of I I I [&+1, 1; p~]=II may be exhibited 
in the terminology of the ordinary Gauss-congruence 
theory. The proofs B and G however depend upon consid­
erations involving the wider GF \_pmn'] of rank mn 
( m ^ 2 F ) ; they throw a sharper light upon the essential 
meaning of the theorem I I I [&+1, n ; p] for every n. 

Proof A of the theorem I I I [&+1, n; p] . § 5. 

Proof by two-based induction. We know that I I I [ 1 , n ; p~] 
and I I I [2 , n; p] = 11/ are true. On the supposition that 
I I I | 7 - - 1 , n,p~\ and III |7 , n; p~\ (I> 1) are true we prove 
that I I I [7+1 ? 7i; p~] is true. 

5. In the determinant U=\ t% | (i, j>=0, 1 ,1) we de­
note by Uij the minor complementary to %, and have * 

(5) ( - I ) * * 

We set now 

so that we have 

Un, Ul0 

^ 0 1 J ^ 0 0 =u. \j=2, 3 , - , I J 

u,= Xf aj=o,i,-,i), 

(6) 

D[l+1, n; p] (X0, Xv-, X , ) = + U, 
D[l-1, n; p-] (Xf, Xf,-Xf) = | % | ( £ ; J;."; « ) , 
D p , n; p] (X0, X2,-, X,) = ( - 1 ) * 1 C7(1, 
DP , n; p] (Xv X»-f X) = ( - 1 y Um 

D\l, n; p] (Xf, Xf,-, Xf) = - Um, 

D p , n; pi (Xf, Xf,-, Xf) = + Di,. 

Then by substituting the values (6) in the identity (5) and 
remembering 11/ Cor. and the definition (3) of D[2, n; p~] 
(Y0, Fj), we have the fundamental identity 

* See, for instance, Scott's Determinants, p. 57, No. 6. 
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(7) i>[2,M;_p](i)p)W; l>](X0,X2,-,X j),Dp,W; i,](X1.X2,-Xj) 

s D P + l . i i r i r t . I i . - ^ - D P - l , » ; p](X2,X3,-X()*". 
Now, using always the n* in the sense defined in the 

enunciation of III, we have by hypothesis : 

(80 m[2,n; p]: D[2, n; p] (F0, YX)=P\_2, n; p\{Y„ Y,) = 

n*(/î0r„+ A ri) = F0 . no?F0+ FO, 
P I / ' 

(SOIUP- l .n j i ) ] : DP-1,» ; 1)](F0 , Fx ,- , F(_2) = 

PP—l,n;j»](F0, F„ - , F,_2) = n * JA.F,,, 

(8.) mp ,n 5 J > ] : D[l,n;p-](Y0, F u - , ^ - ? i " 

PP, n; p] ( F0, Fx, - , F M )= n * "~£ À. F4. 
7t = 0 

By (82) the left side of the identity (7) is 

(9) i ) [^ ; i ) ] (X 0 ,X 2 , - ,XO.n fa D[l, n; p](X0, Xv -,X,) 
p\pn\ 

+ DP,M;P](X1,X2,-,Xi)), 

which, using 11/ and 11/ Cor. in the addition of the determi­
nants, is 
(10) P,p,M;p](X0,X2,-,X(). 

ni>P,n;rf(/îX0 + X1,X2.-,X„), 

which by (83) is 

(ii) n^0x0+^2x2+-+ « . n n*( r ^+x , ) 

+ r2x2 + ..- + nx^. 
We compare the product (11) with the product (12), 

(12) P p + l ^ / r i C X , , ^ , . . . , ^ ) ^ 

n*(«0x0+«1x1+«2x2+...+«,xo. 
The factors of (12) are the primitive linear homogeneous 

g=l 

forms 2 ag Xg with no omissions and no repetitions. Every 
0=0 

factor of (11) is likewise such a form. And in (11) every 
g=l g=l 

such form 2 a
g X occurs at least once; any such form 2 a

g Xa 
g=0 g=0 
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with «! =)== 0 occurs (since I > 1) once and only once, viz., 
under that n * of the second set in (11) whose forms have 

[i = «0 / aY ; any such form V « X^ with a = 0, a 4= 0, occurs 

once and only once, viz., under the single n * of the first set 
9=1 

in (11); any such form £ ag Xg with ax = 0, a = 0, occurs in 
all 1 + pn times, viz., once and of course only once under 
every n * of (11). Thus the product (11) is : 

(13) P p + 1 , n ; !>](X0, Xl9 ..., X,)- ( n * ] | « , ^ \ 

When we substitute (13) for the left side of the identity 
(7) and divide out* the second factors, which are identical 
by the hypothesis (82), we have the desired identity 

(14) I I I p - f 1, n ; p]\ 

Proof B of the theorem I I I \k + 1 , n ; p] . §§ 6-11. 

Direct proof of the identity I I I N [k+1, n ; p~] 
I l lbl Dlk+l,n;p](X0,Xir.;Xk) = 

D[k,n; p] (X0, Xv •-., I H ) . n ( T - A +X t \ . 
(r=0f—,ft—1) 

6. From the identity!!! ^ p + 1 , n; p~\ for 1=1, 2,•••,&, and 
in view of the definition (3) D[l,n; p~\ (X0) = X0, we ^ave 

(15) 2 ) [ f c+ l , n ;p ] (X 0 ,X 1 , - ,X t )=X 0 . i f n (l^X.+x), 
1=1 ay | pn \r=0 f 
(r=0, ,••', 1—1) 

viz., £/ie identity called for by the theorem I I I p o + 1 , n; p~\. 
7. TFe introduce the GF\_pmn~] of modulus p and rank mn 

where m is any integer m^2k2=k+l. The GF\_pmn~] con­
tains the GF[pn~]. The forms entering the theorems 
I I I [k+1, n; p~\, I I I N \k+i, n ; p] belong to the GF\_pn~], and 
the theorems then to the GF[pn~\ -theory, but the forms 
belong also to the wider GF\_pmrf\, and the proofs J5, C of 
IIlN and I I I make use of this fact. 

*As to the fact that the quotient-forms so obtained are identical, see, for 
instance, the theorem ( 3 ) f 3 of the memoir by W E B E B : Die allgemeinen 
Grundlagen der Galoisschen Gleichungstheorie {Mathematische Annalen, vol. 
43, pp. 521-549, 1893.) 



1 8 9 6 ] GENERALIZATION OF FERMATES THEOREM. 195 

8. The small Greek letters a, tf, ? y , as heretofore desig­
nate marks of the GF[pn~], and the large Greek letters A, By 
i\ •••, marks of the GF[pmn~\. 

Any t marks Ar ( r = l , 2, - , 0 of the GJ^jp™] determine 
in the GF[pm7r\ an additive-group [Av A2J -, At \ GF[pn~}~] 
with the basis-system Av A2J •••, J^and jtóc? of reference GF\_pn] 
containing all possible marks A expressible in the form 

(16) A = r v arAr 
r= l 

where the « r ( r = l , 2, ..., 0 are marks of the field of refer­
ence GF[pn~]. 

The ptn marks ^(16) are distinct if the particular mark 
A = 0 occurs only once, viz., with the coefficients ar all 0. 
In this case, when of course tS m, the additive-group has 
the order ptn and rank t, and the t marks Ar are linearly inde­
pendent with respect to * the GF [ pn~], and obviously any t' of 
the t marks are likewise linearly independent. If £<m, not 
all the marks of the GF [_pmnr\ are in this additive-group of 
rank t, and any external mark At^ forms with the t marks 
Ar a system of t + 1 linearly independent marks, and thus 
extends the additive-group of rank t to one of rank t + 1. We 
take as a start any mark A1 =|=0 , and by the preceding re­
marks may affirm : (a) There exist systems of I marks 
Av A2, •••, Ah of the GF[pmn'] linearly independent with respect 
to the 6rF[_pn] for every 1,1= 1, 2, •••, m ; (b) every additive-
group \_AY, A2—, At | GF [_pn]] may be exhibited as an ad­
ditive-group of some rank I =11 based upon such a system 
of I linearly independent marks chosen from amongst the 
original t basal marks Ar. 

9. We take now any system of h + 1 (not necessarily 
distinct) marks Bg (</=0, 1, • ••, h) of the GF[pmn~\ and con­
sider the two marks 

(17) A = D\h + 1, n; p] (7*0, Bly ...lik) = \Bf\ 
(ij=0, ..-, 1,AJ), 

(18) n = i>[* + 1, n; p] (/>;, 7>\, ..., Bk) = n * 2 « , ", 

(flr=0,l , . . . , ft). 

Clearly n = 0 if and only if the marks /^ are linearly de­
pendent. And further, since from an equation, 

*In the sequel the GF[pn~\ is always the field of reference. 
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we have, by 11/ Cor., the k+1 equations, 

j=0 1 j=0 

we see that if the marks Bg are linearly dependent, then 
A = 0 . 

( I n passing we notice that the remark just made concern­
ing n and the theorem I I I [&+1, n ; p~] yield the theorem : 

A necessary and sufficient condition that k-\-l marks B 
(g=0, l,--, k) of a GF[_pmn'] (many integer) shall be linearly de­

pendent with respect to the GF[pn~] is the vanishing of the determi­
nant A = \Bjni\ (i, j=0, 1 - , k). (If m < k+l, then A 
vanishes for every system of k+1 marks B^). This yields 
its still more important corollary : 

The rank of the additive-group [#0, 7>\---, Bk\ GF[pn~]l[ is the 
same as the rank of the matrix (Bfl) (i, j=0, 1, ••, k), where 
a matrix (w ) ( j=J;};;;;; f ) is said to have the rank r if its every 
sub-determinant of order r'^>r vanishes while at least one 
sub-determinant of order r'=r does not vanish. 

I t would not be difficult to establish this theorem and its 
corollary independently of the theorem I I I [&+1, n; p~\ .^ 

10. Next we consider a system of k(k+ 15 m) linearly 
independent marks Ar ( r = 0 , l,--, Jc—1), and select from 
the plm marks A of the additive-group [Jx, A2~', Ak | 6rijr[jpw]] 
any k+1 marks Bg (g=0, 1, •••, k). These marks Bg are 
linearly dependent, for otherwise the additive-group based 
on them would have the order p{k+1)n, whereas it is con­
tained in the additive-group of order pnn based on the k 
marks Ar. For these marks Bg then (§ 9)A = 0, n = 0 , 
and so 

(19) D [ H - 1 , n; p] (7/0, V " , ^ ) = P [ * + 1 , n; p](/>'0, V " , "*) • 

11. We take now any system of 2k2(2k2< m) linearly 
independent marks ^(I^?;^:::;*"»1) and split it up at once 
into k systems of 2 k linearly independent (§8) marks. 

The system Er8(s=l, 2,-2 k) determines the addi­
tive-group \ErV Er2, —, Er2k | GF\_pn~\\ containing besides 

s=2k 

the mark 0 p2kn—l marks Ar of the form Ar = 2 er8 ^ where 
the ers are marks of the GF[pn~] not all 0. We select from 
each additive-group any mark Ar (̂ 4r=j==0) ( r = 0 , l,---,&—1). 
These k marks Ar are linearly independent, and determine 
the additive-group [_A0, Av—, Ak_x | 6r_F[pn]] containing 
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r=z ft—1 

pkn markg A of the form A = V ar Ar. By §10 we have for 

every such mark A 

(20) D[k + l,n;p](A0, Av - , ^ , ^) = 0. 
Hence th^ equation for Xk 

(21) D[k+1, **;*>] (4>, ^ - , 4 „ , X,) = 0. 
which is of degree pkn in the unknown Xft with the leading 
coefficient D[k, n;p](A0, Av ••-, J ^ ) has as roots the pkH 

r=ft-l 

marks A of the form A=^ ar Ar. Since the marks A are 
r=k-l 

given equally well in the form A—— v ar ArJ we have the 
r=0 

identity in the indeterminate Xk : 
(22) D[k+1, n;p](A0, Av .», ^ , X,)= 

D[4, n;p-\{A0Air-Ak^. Jf (^"V^+XJ. 
«y I 7 r=0 

(r=0, 1, ..., ft—1. 

Now consider the two forms in the Jc + 1 indeterminates 
X0, Xv •••, XA: 
(23) D[fc+1, w ; i >] (X0, X„ - , X,_,, X J , 

Z)[*, »; j>] (X0, Xlt - , I „ ) . n TX »•>• Xr+Xk). 
r=0 

(r=0, ..., ft—1) 

We affirm their identity: this is the theorem I I I ^ [&+1, 
n;p]. Denoting by O(X 0 j X i r - ,X„) , ( ? ( I 0 , I i r . , I J the 
coefficients of any certain same power of Xk in the respective 
forms (23), we prove the identity in the k indeterminates 
X0, Xv-, Xk_1 : 
(24) C(X0, Xv ..., X „ ) = C'(X0, X17 ..., X ^ ) . 

In the first place these forms are of degree £ j / n in each 
indeterminate. Further by (22) 
(25) C(A0,Av...1Ak_1)=C'(A0,Av:.,Ak„l) 
where for r=0,l,...,&—1 ^r is any of the j92/m—l(|)2/m—l>/m) 
marks ,̂=j=0 of the additive-group[£rl, - /w- , ^ I 6^Tpw]]-
The desired identity (24) follows then by the identity-theorem 
(which is proved in the Galois-field theory just as is the cor­
responding theorem in the theory of the ordinary general 
algebraic field): 

Identity-theorem. If the two forms of the GF[pmn] 
C(YV F „ - , Yd, G'(YV F„ ..., Y) 
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contain the I indeterminates Yv Y2, •••, Y% to degrees respectively less 
than the numbers yv y2, •••, yi, and if to each indeterminate Yn 
(A=l , 2, -",1) a certain system of yh distinct marks An may be as­
sociated in such a way that the two marks obtained from the two 
forms by substituting for each indeterminate Yh any mark A h of its 
associated set are equal : 

C{AvA„...,AJ=C'(A„Ai,...,Afr 
then the two forms are identical : 

Proof C of the theorem I I I [&+1, n; p]. §§ 12-14. 
Proof by one-based induction. We know that I I I [2,n;p~] = I I 3 ' 

is true. On the supposition that I I I [I, n; p~\ (£>1) is true 
we prove that I I I [7+1, n ; p~\ is true. 

12. By interchanging two adjacent columns of the deter­
minant | Xfm | (i,j=0,1, -,0 we have : 

(26) ' I ) p + l , n ; | ) ] ( - , I A i r . ) = 
- D P + l , n ; j i ] ( - , X 4 + 1 , 2 r 4 , . » ) . 

13. To prove the corresponding property for the product 
P[Z+1, n; p] (X^X^'-jX^ we need the Galois-field general­
ization of Wilson1 s theorem : 

11/Cor. 1 n ' « = - 1 («4=0), 
a \ pn 

whence 
II2 ' Cor. 2 n ' apin= ~ 1 (« =j= 0) (A any integer), 

even for j?=2, since in a Galois-field of modulus p==2 the 
marks + 1 , - 1 are equal. 

In view of the definition (4) the two products 

(27) P[l + l,n;pl(-,Xh,Xh+v-), 
P[l+l,n;p](-,Xh+1,Xh,-) 

9=1 9=1 

obviously differ only in the factors ^ a X , v 3 X contain-
g=o g J 0=0 y g 

ing both Xh and X/rfl and no X^ with #>/Vf1, that is, in 
the products 

(28) ir n ("Is"1
 « , I , + « I » + I H . I ) 

(a4=0) (0=0. ..., 7*—1) 

n' n f =i~x /*, xg + p x,H, + x \ . 
(j8+0) (0=O,...,A-I) 
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Setting, for any a =4=0, /3=l/«, l3g=ag/a (g=0,1, •••, h—1), we 
find easily that the first product (28) is the second product 
(28) multiplied by n ' «"**(«+ 0), i. e., (11/ Cor. 2) by — 1. 

a ] p11 

Hence indeed : 
(29) P[l+l,n;p-](-,Xh,Xll+ „•••) = 

-P[l+l,n;p](-,Xh+uXh,-). 
We have from (26) (29): 

(30) D\l + 1, n ;p]{X„ - , Xft_„ X,„ X,i+1. - , X,) = 
(—iy-i>D[l+l,n;p](X0,-,X^,Xh+i,-,Xt, X„), 

(31) P[l + 1, » ;i>] ,<X0, - , X ; i_„ X„, X,l+1, - , X() = 
C—l)-» p p + l , « ; ^ ] (X 0 , - , X„_„ X„+„ - , X„ X,J. 

14. Now the two forms 

(32) D p + 1 , »;.p] (X 0 ,X„- , X,), P p + l , », j>] (X0,X„ - ,X ( ) 
are of degree pln in each of the Z + l indeterminates Xft 
(^=0, 1,••-,£) ; the respective coefficients of Xf are ob­
viously 
(33) D[l,n;p] (X^X^^X^),P\_ln;p\ ( X 0 , X i r - , X ^ , a n d 
hence by (30, 31, 33) the respective coefficients of Xf 
(h=0, 1, •••, I) are 
(34) (-iy-»D[l,n;p-] (X0, - X ^ , X,+1, - , X ( ) , 

( -1)«-»PP, n; p] (X0, - , X„, X„+„ - , Xf). 
From (34) and our hypothesis that I I I [& + 1, n; p~] is 

true for h + 1 = Z it follows that the form 
(35)i)[Z + l ,^; i>](X0 ,X1 , . . - ,X,)-P[Z + l,^p](A-0,X1,...,X,) 
is of degree less than pln in each of the I + 1 indeterminates 
Xh (h = 0, 1, •••, I). We take in the GF[pmn~} {m>kIV) any 
system of I marks Ar(r = 0 ,1-- , I—1) linearly independ­
ent with respect to the GF[pnr\, and associate with each 
indeterminate Xh (/i=0, 1, •••,!) the pln marks A = Bh of 
the additive-group based on the marks Ar. Then, since by 
§ 10 (19) for every such system of I + 1 (linearly depend­
ent) marks Bn (h=0,1, •••, I) we have 

by the id entity-theorem (§11) we have the desired iden­
tity I I I [I +-1, n; p]: 
i)[Z+l,n; i>](X0 ,X1 , . . . ,XO-~Pp + l,^; i>](X0 ,X1 ,-. . ,A^)=0. 
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