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Abstract

We continue our program initiated in [1] to consider supersymmetric
surface operators in a topologically twisted N = 2 pure SU(2) gauge the-
ory, and apply them to the study of four-manifolds and related invariants.
Elegant physical proofs of various seminal theorems in four-manifold
theory obtained by Ozsváth and Szabó [2, 3] and Taubes [4], will be
furnished. In particular, we will show that Taubes’ groundbreaking
and difficult result — that the ordinary SW invariants are in fact the
Gromov invariants which count pseudo-holomorphic curves embedded
in a symplectic four-manifold X — nonetheless lends itself to a sim-
ple and concrete physical derivation in the presence of “ordinary” sur-
face operators. As an offshoot, we will be led to several interesting and
mathematically novel identities among the Gromov and “ramified” SW
invariants of X, which in certain cases, also involve the instanton and
monopole Floer homologies of its three-submanifold. Via these iden-
tities, and a physical formulation of the “ramified” Donaldson invari-
ants of four-manifolds with boundaries, we will uncover completely new
and economical ways of deriving and understanding various important
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mathematical results concerning (i) knot homology groups from “rami-
fied” instantons by Kronheimer and Mrowka [5]; and (ii) monopole Floer
homology and SW theory on symplectic four-manifolds by Kutluhan–
Taubes [4,6]. Supersymmetry, as well as other physical concepts such as
R-invariance, electric–magnetic duality, spontaneous gauge symmetry-
breaking and localization onto supersymmetric configurations in topo-
logically twisted quantum field theories, play a pivotal role in our story.
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1 Introduction and summary

Supersymmetric surface operators in a topologically twisted N = 2 pure
SO(3) or SU(2) gauge theory have recently been analyzed in detail in [1],
where, among other things, concrete physical proofs of various seminal the-
orems in four-dimensional geometric topology obtained by Kronheimer and
Mrowka in [7–9], were also furnished. For example, it was shown in [1]
that the Kronheimer–Mrowka result of [7] — which identifies the “ramified”
Donaldson invariants as the ordinary Donaldson invariants of an “admissi-
ble” four-manifold X with b+2 > 1 — is a direct consequence of a required
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modular invariance over the u-plane in the presence of nontrivially embedded
surface operators. It was also shown in [1] that a generalization of the Thom
conjecture proved by Kronheimer and Mrowka in [7] — which leads to a min-
imal genus formula for embedded surfaces of non-negative self-intersection in
X — is a direct result of the R-invariance of the correlation functions in the
microscopic non-abelian gauge theory which correspond to the (“ramified”)
Donaldson invariants of X.

In this paper, we continue the program initiated in [1]; we consider arbi-
trarily embedded surface operators in a topologically twisted N = 2 pure
SU(2) gauge theory, and apply them to the study of four-manifolds and
invariants in two, three and four dimensions. The plan and results of our
work can be summarized as follows.

In Section 2, we will review various aspects of the topologically twisted
N = 2 pure SU(2) gauge theory on X with arbitrarily embedded surface
operators, and the corresponding physical interpretations of the “ramified”
Donaldson and Seiberg–Witten (SW) invariants and their associated mod-
uli spaces, all of which will be useful and relevant to our arguments and
computations in the later sections.

In Section 3, with the aid of key results computed in [1], we will furnish
physical proofs of various seminal theorems in four-dimensional geometric
topology obtained by Ozsváth–Szabó in [2, 3]; in particular, we will physi-
cally demonstrate a minimal genus formula obtained earlier in [2] for embed-
ded surfaces of negative self-intersection. R-invariance and electric–magnetic
duality underlie our proofs in this section.

In Section 4, we will present an elegant physical derivation of Taubes’
stunning result in [4], which identifies the SW invariants as the Gromov
invariants on a symplectic four-manifold with b+2 > 1. The crucial ingredi-
ents in this derivation are supersymmetry, R-invariance, electric–magnetic
duality, spontaneous gauge symmetry-breaking and localization onto super-
symmetric configurations in topologically twisted quantum field theories. In
essence, one can understand Taubes’ result to be a consequence of the scale
invariance of a particular instanton sector of the topologically twisted gauge
theory in the presence of “ordinary” curved surface operators which wrap
pseudo-holomorphic curves embedded in the symplectic four-manifold.

In Section 5, we will explore the mathematical implications of the underly-
ing physics. We will compute — using certain intermediate results obtained
in Section 3 and Section 4 — various mathematically novel identities involv-
ing the Gromov and (“ramified”) SW invariants of a symplectic four-
manifold with b+2 > 1. These identities, which one can understand to exist
because of R-invariance, are also found to be consistent with more general
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theorems established in the mathematical literature. In addition, for sym-
plectic X = M × S1, where M is a closed, oriented three-submanifold, we
will show — via a supersymmetric quantum mechanical interpretation of the
topological gauge theory with surface operators — that a knot homology
conjecture proposed by Kronheimer and Mrowka in [5] ought to hold on
purely physical grounds, and that the Gromov invariant of X is given by
the Euler characteristic of the instanton Floer homology of M . In turn,
because the Euler characteristic of the instanton Floer homology of M is
given by the Casson–Walker–Lescop invariant of M , the Gromov invariant
of X is zero if b+2 (X) > 3. We will also derive, amidst other things, an
interesting relation between the instanton and monopole Floer homologies
of M , and a novel identity between the SW invariants of M . Last but
not least, we will formulate “ramified” generalizations of various formulas
presented by Donaldson and Atiyah in [10, 11] relating ordinary Donaldson
and Floer theory on four-manifolds with boundaries, in terms of “three-one
branes”.

In Section 6, we will generalize our computations in Section 4 to involve
multiple surface operators which are disjoint. This will allow us to physically
derive Taubes’ result in all generality.

In Section 7, the final section, by further applying our physical insights
and results obtained hitherto, we will first provide — via the topological
gauge theory with nontrivially embedded surface operators on a general
four-manifold with boundaries — a physical derivation of certain key proper-
ties of knot homology groups from “ramified” instantons defined and proved
by Kronheimer and Mrowka in [5]. Then, via the identities obtained in
Section 5, and certain key relations computed in Section 3 and Section 4,
we will re-derive various important mathematical results concerning the
monopole Floer homology of three-manifolds and SW theory on symplec-
tic four-manifolds.

This paper is dedicated to See–Hong, whose strength, courage and opti-
mism in the face of grave adversity have made this otherwise impossible
endeavor, possible.

2 Surface operators and the “ramified” Donaldson and
SW invariants

In this section, we will present some background material that will be nec-
essary for a coherent, self-contained understanding of the main discussions
in this paper. We will be brief in our exposition, although concepts deemed
to play a crucial role will be reviewed in greater detail.
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2.1 Embedded surfaces and the “ramified” Donaldson invariants

Let us first review the mathematical definition of embedded surfaces and the
“ramified” Donaldson invariants by Kronheimer and Mrowka (henceforth
denoted as KM) in [7]. To this end, let X be a smooth, compact, simply
connected, oriented four-manifold with Riemannian metric ḡ, and let E → X
be an SO(3)-bundle over X (i.e., a rank-three real vector bundle with a
metric).

Embedded surfaces

An embedded surface D is characterized by a two-submanifold of X that is
a complex curve of genus g and self-intersection number D2. Consider the
case where the second SW class w2(E) = 0; the structure group of E can
then be lifted to its SU(2) double-cover. In the neighborhood of D, one can
choose a decomposition of E as

E = L⊕ L−1, (2.1)

where L is a complex line bundle over X. In the presence of D, the con-
nection matrix of E restricted to X\D (in the real Lie algebra) will look
like

A = αdθ + · · · , (2.2)

where α is a real number valued in the generator

[
1 0
0 −1

]
(2.3)

of the Cartan subalgebra t, θ is the angular variable of the coordinate z =
r eiθ of the plane normal to D, and the ellipses refer to the ordinary terms
that are regular near D. Notice that since dθ = idz/z, the connection is
singular as z → 0, i.e., as one approaches D. In any case, the singularity in
the connection induces the following gauge-invariant holonomy:

exp(2πα) (2.4)

around any small circle that links D. Hence, if the holonomy is trivial, we
are back to considering ordinary connections on E. Therefore, α actually
takes values in T, the maximal torus of the gauge group with Lie algebra t.
As we shall see shortly, this mathematical definition of embedded surfaces
will coincide with our (more general) physical definition of surface operators.
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The “ramified” Donaldson invariants

In analogy with the original formulation of Donaldson theory [12], KM
introduced the notion of “ramified” Donaldson invariants — i.e., Donald-
son invariants of X with an embedded surface D. According to KM [7, 9],
the “ramified” Donaldson polynomials D′

E can be defined as polynomials on
the homology of X\D with real coefficients:1

D′
E : H0(X\D,R) ⊕H2(X\D,R) → R. (2.5)

Assigning degree 4 to p ∈ H0(X\D,R) and 2 to S ∈ H2(X\D,R), the
degree s polynomial may be expanded as

D′
E(p, S) =

∑
2m+4t=s

Smptdk
′
m,t, (2.6)

where s is the dimension of the moduli space M′ of gauge-inequivalent
classes of anti-self-dual connections on E restricted to X\D with first
Pontrjagin number p1(E) and instanton number k′ = − ∫

X\D p1(E)/4. The

numbers dk
′
m,t — in other words, the “ramified” Donaldson invariants of

X — can be defined as in Donaldson theory in terms of intersection theory
on the moduli space M′; for maps

p ∈ H0(X\D,R) → Ω0(p) ∈ H4(M′),

S ∈ H2(X\D,R) → Ω2(S) ∈ H2(M′), (2.7)

the “ramified” Donaldson invariants can be written as

dk
′
m,t =

∫
M′

[Ω0(p)]t ∧ Ω2(Si1) ∧ · · · ∧ Ω2(Sim). (2.8)

Moreover, one can also package the “ramified” Donaldson polynomials
into a generating function: by summing over all topological types of bundle
E with fixed ξ = w2(E) (where ξ may be non-vanishing in general) but

1To be precise, KM actually defines the “ramified” Donaldson polynomials to be the
map D′

E : Sym[H0(X\D,R) ⊕H2(X\D,R)] ⊗ ∧ ∗H1(X\D,R) → R. However, their def-
inition can be truncated as shown, in accordance with Donaldson’s original formulation
in [12].



78 MENG-CHWAN TAN

varying k′, the generating function can be defined as

Z′
ξ,ḡ(p, S) =

∑
k′

∑
m≥0,t≥0

Sm

m!
pt

t!
dk

′
m,t. (2.9)

Clearly, Z′
ξ,ḡ depends on the class w2(E) but not on the instanton number

k′ (as this has been summed over). In analogy with the ordinary case, one
can also define the “ramified” Donaldson series as

D ′
ξ(S) =

(
1 +

1
2
∂

∂p

)
· Z′

ξ,ḡ(p, S)|p=0. (2.10)

About the moduli space of “ramified” instantons

Another relevant result by KM is the following. Assuming that there are no
reducible connections on E restricted to X\D, M′ — which we will hereon
refer to as the moduli space of “ramified” instantons — will be a smooth
manifold of finite dimension

s = 8k − 3
2(χ+ σ) + 4l − 2(g − 1) (2.11)

for any nontrivial value of α. Here, χ and σ are the Euler characteristic and
signature of X, and for ξ = 0, the integer k is given by

k = − 1
8π2

∫
X

Tr F ∧ F, (2.12)

where F is the curvature of the bundle E over X, and Tr is the trace in
the two-dimensional representation of SU(2). The integer l — called the
monopole number by KM — is given by

l = −
∫
D
c1(L). (2.13)

Here, c1(L) = −FL/2π, where FL is the curvature of L; thus, l measures the
degree of the reduction of E near D.

As shown in [1], l will depend explicitly on α because the singular term
in the connection A will result in a singularity proportional to α along D in
the field strength (extended over D). Likewise, k will also depend explicitly
on α. Thus, the invariance of s must mean that both l and k will vary with
α in such a way as to keep it fixed for any nontrivial value of α.



SUPERSYMMETRIC SURFACE OPERATORS 79

Topological invariance of Z′
ξ,ḡ

Let b+2 denote the self-dual part of the second Betti number of X. According
to KM (see Section 7 of [9]), if b+2 > 1, Z′

ξ,ḡ is independent of the metric ḡ and
hence, just like the generating function of the ordinary Donaldson invariants,
defines invariants of the smooth structure of X. This is consistent with
the fact that for b+2 ≥ 3 (and b1 = 0), the “ramified” Donaldson invariants
can be expressed solely in terms of the ordinary Donaldson invariants (see
Theorem 5.10 of [7], and its physical proof in Section 8 of [1]).

However, if b+2 = 1, we run into the phenomenon of chambers; Z′
ξ,ḡ will

jump as we move across a “wall” in the space of metrics on X. (This
phenomenon was demonstrated via a purely physical approach in Section 6
of [1].)

2.2 Surface operators in pure SU(2) theory with N = 2
supersymmetry

Supersymmetric surface operators

We would like to define surface operators along D which are compatible
with N = 2 supersymmetry. In other words, they should be characterized
by solutions to the supersymmetric field configurations of the underlying
gauge theory on X that are singular along D.

In order to ascertain what these solutions are, first note that any super-
symmetric field configuration of a theory must obey the conditions implied
by setting the supersymmetric variations of the fermions to zero. In the
original (untwisted) theory without surface operators, this implies that any
supersymmetric field configuration must obey F = 0 and ∇μa = 0, where
a is a scalar field in the N = 2 vector multiplet [13]. Let us assume for
simplicity the trivial solution a = 0 to the condition ∇μa = 0 (so that the
relevant moduli space is non-singular); this means that any supersymmetric
field configuration must be consistent with irreducible flat connections on
X that obey F = 0. Consequently, any surface operator along D that is
supposed to be supersymmetric and compatible with the underlying N = 2
supersymmetry, ought to correspond to a flat irreducible connection on E
restricted to X\D which has the required singularity along D.2 Let us for
convenience choose the singularity of the connection along an oriented D

2This prescription of considering connections on the bundle E restricted to X\D when-
ever one inserts a surface operator that introduces a field singularity along D, is just a
two-dimensional analog of the prescription one adopts when inserting an ’t Hooft loop
operator in the theory. See Section 10.1 of [14] for a detailed explanation of the latter.
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to be of the form shown in (2.2). Then, since d(αdθ) = 2παδD, where δD
is a delta two-form Poincaré dual to D with support in a tubular neigh-
borhood of D [15], our surface operator will equivalently correspond to a
flat irreducible connection on a bundle E′ over X whose field strength is
F ′ = F − 2παδD, where F is the field strength of the bundle E over X.3 In
other words, a supersymmetric surface operator will correspond to a gauge
field solution over X that satisfies

F = 2παδD (2.14)

along D. Indeed, the singular term in A of (2.2) that is associated with the
inclusion of an embedded surface, is such a solution. Thus, our physical defi-
nition of supersymmetric surface operators coincides with the mathematical
definition of embedded surfaces.

Some comments on (2.14) are in order. Note that even though α is for-
mally defined in (2.2) to be t-valued, we saw that it actually takes values in
the maximal torus T. Since T = t/Λcochar, where Λcochar is the cocharacter
lattice of the underlying gauge group, (2.14) appears to be unnatural, since
one is free to subject F to a shift by an element of Λcochar. This can be
remedied by lifting α in (2.14) from t/Λcochar to t. Equivalently, this cor-
responds to a choice of an extension of the bundle E over D — something
that was implicit in our preceding discussion.

The “quantum” parameter η

With an extension of the bundle E over D, the restriction of the field
strength F to D will be t-valued. Hence, we roughly have an abelian gauge
theory in two dimensions along D. As such, one can generalize the physical
definition of the surface operator, and introduce a two-dimensional theta-like
angle η as an additional “quantum” parameter which enters in the Euclidean
path-integral via the phase

exp (2πiTr ηm) , (2.15)

3To justify this statement, note that the instanton number k̃ of the bundle E over
X\D is (in the mathematical convention) given by k̃ = k + 2αl − α2D ∩D, where k is
the instanton number of the bundle E over X with curvature F , and l is the monopole
number (cf. equation (1.7) of [8]). On the other hand, the instanton number k′ of the
bundle E′ over X with curvature F ′ = F − 2παδD is (in the physical convention) given by
k′ = −(1/8π2)

∫
X

TrF ′ ∧ F ′ = k + 2αl − α2D ∩D. Hence, we find that the expressions for

k̃ and k′ coincide, reinforcing the notion that the bundle E over X\D can be equivalently
interpreted as the bundle E′ over X. Of course, for F ′ to qualify as a nontrivial field
strength, D must be a homology cycle of X, so that δD (like F ) is in an appropriate
cohomology class of X.



SUPERSYMMETRIC SURFACE OPERATORS 81

where m =
∫
D F/2π. Since F restricted to D is t-valued, and since the

monopole number l =
∫
D FL/2π is an integer, it will mean that m must

take values in the subset of diagonal, traceless 2 × 2 matrices — which gen-
erate the maximal torus T — that have integer entries only; i.e., m ∈ Λcochar.
Also, values of η that correspond to a nontrivial phase must be such that
Tr ηm is non-integral. Because Tr m′m is an integer if m′ ∈ Λcochar, it will
mean that η must takes values in t/Λcochar = T. Just like α, one can shift
η by an element of Λcochar whilst leaving the theory invariant.4 Note that
modular invariance requires that η be set to zero if the surface operator
is nontrivially-embedded ; this condition is a crucial ingredient in the physi-
cal proof of KM’s relation between the “ramified” and ordinary Donaldson
invariants in [1].

A point on nontrivially embedded surface operators

More can also be said about the “classical” parameter α as follows. In
the case when the surface operator is trivially embedded in X — i.e., X =
D′ ×D and the normal bundle to D is hence trivial — the self-intersection
number

D ∩D =
∫
X
δD ∧ δD (2.16)

vanishes. On the other hand, for a non-trivially embedded surface operator
supported on D ⊂ X, the normal bundle is nontrivial, and the intersection
number is non-zero. The surface operator is then defined by the gauge field
with singularity in (2.2) in each normal plane.

When the surface operators are non-trivially embedded, there is a con-
dition on the allowed gauge transformations that one can invoke in the
physical theory [17]. Let us explain this for when the underlying gauge
group is U(1) with gauge bundle L. Since there is a singularity of 2παδD
in the abelian field strength FL restricted to D, we find, using (2.16), that∫
D FL/2π = αD ∩D mod Z. Since

∫
D FL/2π = l is always an integer, we

must have

αD ∩D ∈ Z. (2.17)

In fact, underlying the integrality of l is actually the condition c1(L) ∈
H2(X,Z). This implies that for any integral homology two-cycle U ⊂
X (assuming, for simplicity, that H2(X,Z) is torsion-free), −c1(L)[U ] =

4This characteristic of η is consistent with an S-duality in the corresponding, low-energy
effective abelian theory, which maps (α, η) → (η,−α) [16].
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∫
U FL/2π = α(U ∩D) mod Z is always an integer; in other words, we

must have
α(U ∩D) ∈ Z. (2.18)

Now consider a gauge transformation — in the normal plane — by the
following U(1)-valued function

(r, θ) → exp(θu), (2.19)

where u ∈ u(1); its effect is to shift α→ α+ u whilst leaving the holonomy
exp(2πα) of the abelian gauge connection around a small circle linking
D which underlies the effective “ramification” of the theory, unchanged.
Clearly, the only gauge transformations of this kind that can be globally-
defined alongD, are those whereby the corresponding shifts in α are compat-
ible with (2.18). For effectively nontrivial α, since U ∩D ∈ Z, the relevant
gauge transformations are such that u /∈ Z; in other words, exp(2πu) �= 1,
and the gauge transformations are not single-valued under θ → θ + 2π. Such
twisted gauge transformations can certainly be defined for a non-simply-
connected gauge group like U(1).

The effective field strength in the presence of surface operators

In any gauge theory, supersymmetric or not, the kinetic term of the gauge
field has a positive-definite real part. As such, the Euclidean path-integral
(which is what we will eventually be interested in) will be non-zero if and
only if the contributions to the kinetic term are strictly non-singular. There-
fore, as a result of the singularity (2.14) when one includes a surface operator
in the theory, the effective field strength in the Lagrangian that will con-
tribute non-vanishingly to the path-integral must be a shifted version of
the field strength F . In other words, whenever we have a surface operator
along D, one ought to study the action with field strength F ′ = F − 2παδD
instead of F . This means that the various fields of the theory are necessarily
coupled to the gauge field A′ with field strength F ′. This important fact was
first pointed out in [17], and further exploited in [16] to prove an S-duality
in a general, abelian N = 2 theory without matter in the presence of surface
operators.

2.3 A physical interpretation of the “ramified” Donaldson
invariants

Correlation functions of Q-invariant observables

Consider a topologically twisted version of a pure SU(2) or SO(3) theory
with N = 2 supersymmetry — also known as Donaldson–Witten theory —
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in the presence of surface operators. This theory has a nilpotent scalar
supercharge Q, and its action can be written as [1]

SE =
{Q, V }
e2

+
iΘ
8π2

∫
X

Tr F ′ ∧ F ′ − i
∫
X

Tr ηδD ∧ F ′ (2.20)

for some fermionic operator V of R-charge -1 and scaling dimension 0, and
complexified gauge coupling τ = 4πi/e2 + Θ/2π. The action is thus Q-exact
up to purely topological terms.

Now consider the set of Q-invariant observables Oi and their correlation
function

〈O1 · · ·On〉 =
∫

DΦ O1 · · ·One
−SE , (2.21)

where DΦ denotes the total path-integral measure in all fields. Note that
one of the central features of the twisted theory is that its stress tensor Tμν
is Q-exact, i.e., Tμν = {Q, Gμν} for some fermionic operator Gμν . Conse-
quently, a variation of the correlation function with respect to the metric
yields δḡ〈O1 · · ·On〉 = −〈O1 · · ·On · δSE/δḡμν〉 = −〈O1 · · ·On · Tμν〉 =
−〈O1 · · ·On · {Q, Gμν}〉 = −〈{Q,O1 · · ·OnGμν}〉 = 0, where we have made
use of the fact that 〈{Q, · · · }〉 = 0 since Q generates a (super)symmetry
of the theory. Notice also that a differentiation of the correlation function
with respect to the gauge coupling e yields ∂/∂e〈O1 · · ·On〉 = 2/e3〈O1 · · ·
On{Q, V }〉 = 2/e3〈{Q,O1 · · ·On V }〉 = 0. In other words, the correlation
function of Q-invariant observables is independent of the gauge coupling
e; as such, the semiclassical approximation to its computation will be exact.
In this approximation, one can freely send e to a very small value in the
correlation function. Consequently, from (2.20) and (2.21), we see that the
non-zero contributions to the correlation function will be centered around
classical field configurations — or the zero-modes of the fields — which mini-
mize {Q, V } and therefore the action. Thus, it suffices to consider quadratic
fluctuations around these zero-modes.

Let us first consider the fluctuations. Assuming that the operators Oi

can be expressed purely in terms of zero-modes, the path-integral over the
fluctuations of the fields in the kinetic terms of the action give rise to deter-
minants of the corresponding kinetic operators. Due to supersymmetry, the
determinants resulting from the bose and fermi fields cancel up to a sign.
(This point will be important when we physically derive Taubes’ result in a
later section).

Let us now consider the zero-modes. The bosonic zero-modes obey the
constraints obtained by setting the supersymmetric variation of the fermi
fields in the twisted theory to zero. We find that these constraints are
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F ′
+ = 0, ∇′φ = 0 and [φ, φ†] = 0, where ∇′ is the gauge-covariant derivative

and φ is a complex bose field [1]. If we assume the trivial solution φ = 0
to the constraints ∇′φ = 0 and [φ, φ†] = 0, it will mean that the zero-modes
of A′ do not correspond to reducible connections, and that there are no
zero-modes of φ. Altogether, this means that the only bosonic zero-modes
come from the gauge field A′, and that they correspond to irreducible, anti-
self-dual connections which are characterized by the relation

F+ = 2παδ+D. (2.22)

Again, recall that the bundle E′ over X with curvature F ′ = F − 2παδD can
be equivalently viewed as the bundle E with curvature F restricted to X\D.
Hence, the constraint (2.22) just defines anti-self-dual connections on the
bundle E restricted to X\D, whose holonomies around small circles linking
D are as given in (2.4). In other words, modulo gauge transformations that
leave (2.22) invariant, the expansion coefficients of the zero-modes of A′
that appear in the path-integral measure will correspond to the collective
coordinates on M′ - the moduli space of “ramified” instantons.

The rest of the fields in the theory are given by the fermions (ζ, χ+
μν , ψμ).

Since we have restricted ourselves to connections A′ that are irreducible, and
moreover, if we assume that they are also regular, it can be argued that ζ and
self-dual χ+ do not have any zero-modes [1]. Thus, the only fermionic zero-
modes whose expansion coefficients contribute to the path-integral measure
come from ψ.

The number of bosonic zero-modes is, according to our analysis above,
given by the dimension s of M′. What about the number of zero-modes
of ψ? Well, since there are no zero-modes for ζ and χ+, the dimension of
the kernel of the kinetic operator ΔF which acts on ψ in the (“ramified”)
Lagrangian is equal to the index of ΔF ; in other word, the number of zero-
modes of ψ is given by dim(Ker(ΔF )) = ind(ΔF ). This index also counts the
number of infinitesimal connections δA′ where gauge-inequivalent classes of
A′ + δA′ satisfy F ′

+ = 0, i.e., (2.22). Therefore, the number of zero-modes of
ψ will also be given by the dimension s of M′. Altogether, this means that
after integrating out the non-zero modes, we can write the remaining part
of the measure in the expansion coefficients a′i and ψi of the zero-modes of
A′ and ψ as

s∏
i=1

da′idψi. (2.23)

Notice that the s distinct dψi’s anti-commute. Hence, (2.23) can be inter-
preted as a natural measure for the integration of a differential form
in M′.
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Correlation functions corresponding to the “ramified” Donaldson invariants

In the relevant case that b1(X) = 0, one has the following Q-invariant observ-
ables

I ′0(p) =
1

8π2
Tr〈φ(p)〉2, (2.24)

I ′2(S) = − 1√
32π2

∫
S

Tr (〈φ〉F )0 (2.25)

for any p ∈ H0(X\D) and S ∈ H2(X\D); up to lowest order in e in the
semiclassical approximation,

〈φ(x)〉 = − i√
2

∫
X
d4y G(x− y)[ψ(x), ψ(y)]0, (2.26)

where G(x− y) is the unique solution to the relation ∇′2G(x− y) = δ4(x−
y); the subscript “0” in (2.25) and (2.26) just denotes their restriction to
zero-modes.

Like the assumption made of the operators Oi in (2.21), I ′0(p) and I ′2(S)
are express purely in terms of zero-modes. Moreover, based on our above
discussion about (2.23) being a natural measure for the integration of dif-
ferential forms in M′, we see that I ′0(p) and I ′2(S) (which contain 4 and 2
zero-modes of ψ, respectively) can be interpreted as 4-forms and 2-forms
in M′.

Let us compute an arbitrary correlation function in the Q-invariant
observables I ′0(p) and I ′2(S). For the correlation function to be non-
vanishing, the dψi’s in the remaining measure (2.23) have to be “soaked
up” by the zero-modes of ψ that appear in the combined operator whose
correlation function we wish to consider, exactly . This just reflects the fact
that a non-vanishing correlation function is necessarily R-invariant: the field
ψ carries a non-zero R-charge of 1, and under an R-transformation, the inte-
gration measure and an appropriately chosen combined operator will trans-
form with weights −ΔR and ΔR, respectively, where ΔR is the number Nψ

of zero-modes of ψ. In turn, this means that the combined operator ought to
correspond to a top-form (of degree s) in M′. Therefore, if such a combined
operator is given by [I ′0(p)]tI ′2(Si1) . . . I ′2(Sim),5 its topological correlation

5Notice that we are considering a combined operator in which there are t operators
I ′0(pi1), . . . , I

′
0(pit) that coincide at one particular point p in X. Such a combined operator

can be consistently defined in any physical correlation function; this is because the I ′0(pik )’s
consist only of non-interacting zero-modes and moreover, any correlation function of the
topological theory is itself independent of the insertion points of the operators.
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function — for “ramified” instanton number k′ = − ∫
X p1(E′)/4 — can be

written as

〈[I ′0(p)]tI ′2(Si1) . . . I ′2(Sim)〉k′ =
∫
M′

[I ′0(p)]
t ∧ I ′2(Si1) ∧ · · · ∧ I ′2(Sim), (2.27)

where 2m+ 4t = s. This coincides with the definition of the “ramified” Don-
aldson invariants dk

′
m,t in (2.8). Thus, we have found, in (2.27), a physical

interpretation of the “ramified” Donaldson invariants in terms of the cor-
relation functions of Q-invariants observables I ′0(p) and I ′2(S). As a result,
the generating function Z′

ξ,ḡ(p, S) in (2.9) can also be interpreted in terms
of I ′0 and I ′2 as

Z′
ξ,ḡ(p, S) =

∑
k′

〈epI′0+I′2(S)〉k′ . (2.28)

The “ramified” Donaldson series in (2.10) is then given by

D ′
ξ(S) =

∑
k′

(
1 + 1

2

∂

∂p

)
· 〈epI′0+I′2(S)〉k′ |p=0. (2.29)

2.4 The “ramified” SW equations and invariants

In the topologically twisted version of the corresponding low-energy SW the-
ory with surface operators, the supersymmetric configurations correspond
to solutions of the equations [1]

(F dL)+ = (M̄M)+ + 2παdδ+D (2.30)

and
D/M = 0, (2.31)

where D/ is the Dirac operator coupled to the effective U(1) photon with
field strength F dL

′ = F dL − 2παdδD; the label “d” indicates that the field or
parameter is that which is defined in the preferred dual “magnetic” frame;
and M is a section of the complex vector bundle S+ ⊗ L′

d, where S+ and L′
d

are a positive spinor bundle and a U(1)-bundle with curvature field strength
F dL

′, respectively. (2.30) and (2.31) together define the “ramified” SW equa-
tions, whence the relevant topological correlation functions in the case where
b1(X) = 0 are

〈[Jd0 (p)]q〉λ′ =
∫
Mλ′

sw

[Jd0 (p)]q = SWλ′ . (2.32)

Here, q = dλ
′

sw/2, where dλ
′

sw — the even dimension of the moduli space
Mλ′

sw of the “ramified” SW equations determined by the “ramified” first
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Chern class λ′ = 1
2c1(L

′
d
⊗2) of the determinant line bundle L′

d
⊗2 of the

Spinc-structure associated with a choice of the complex vector bundle S+ ⊗
L′
d — is given by [18]

dλ
′

sw = −2χ+ 3σ
4

+ (λ′)2. (2.33)

Also

Jd0 (p) = 〈ϕd(p)〉 = ad, (2.34)

where p ∈ H0(X),6 and ϕd is a complex scalar in the “magnetic” N = 2
vector multiplet of the SW theory. As required, Jd0 (p) is expressed purely
in terms of non-fluctuating zero-modes; it has R-charge 2 (associated with
an accidental U(1)R symmetry at low-energy) and consequently, it can be
interpreted as a 2-form in Mλ′

sw. Following [1], let us call SWλ′ the “ramified”
SW invariant for the basic class λ′.

When X is of (“ramified”) SW simple-type

If X is of “ramified” SW simple-type, i.e., dim(Mλ′
sw) = 0, we have q = 0

in (2.32), and as explained in [18], we have

SWλ′ = SW(λ′) =
∑
xi

(−1)ni , (2.35)

where the xi’s are the points that span the zero-dimensional space Mλ′
sw,

and the ni’s are integers which are determined by the corresponding sign
of the determinant of an elliptic operator associated with a linearization of
the “ramified” SW equations. In other words, SW(λ′) counts (with signs)
the number of solutions of the “ramified” SW equations determined by λ′;
in particular, it is an integer, just like its ordinary counterpart.

Recall that the ordinary limit whence there is effectively no “ramifica-
tion” along D is achieved when the effective value of αd approaches an
integer. Since the foregoing discussion holds for arbitrary values of αd, a
four-manifold of “ramified” SW simple-type is necessarily of ordinary SW
simple-type, too.

6Note that in contrast to the physical definition of the correlation functions that corre-
spond to the “ramified” Donaldson invariants, here, we need not restricted the zero-cycles
p to X\D. This is because the operator ad — unlike F , FL or F dL — does not contain a
singularity along D.
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3 Physical proofs of seminal theorems by Ozsváth and Szabó

In this section, physical proofs of various seminal theorems in four-
dimensional geometric topology obtained by Ozsváth and Szabó in [2,3], will
be furnished. Our computations in this section will soon prove to be useful
when we physically derive Taubes’ spectacular result in the next section.

3.1 Adjunction inequality for embedded surfaces of negative
self-intersection

In Corollary 1.7 of their seminal paper [2], Ozsváth and Szabó demonstrated
that embedded surfaces of negative self-intersection in four-manifolds actu-
ally obey an adjunction inequality which involves the first Chern class of the
Spinc-structure. We will now present a physical proof of this mathematical
corollary.

A minimal genus formula from R-invariance

Firstly, a relevant result from [1] is the following. Consider X with b1 = 0
and odd b+2 > 1; assume that g ≥ 1, where g is the genus of the surface
operatorD ⊂ X; then, for any D ∩D �= 0, R-invariance of the non-vanishing
correlation functions in (2.27) will imply that

2D ∩D − (2g − 2) ≤ 4l ≤ (2g − 2), (3.1)

where l =
∫
D FL/2π.

Secondly, since g ≥ 1 and therefore (2g − 2) ≥ 0, we can infer from (3.1)
that

(2g − 2) ≥ D ∩D − 2l. (3.2)

Moreover, note that due to electric–magnetic duality, FL is physically equiv-
alent to the field strength F dL of the low-energy U(1) theory; in turn, F dL cor-
responds to −πc1(L2

d). In other words, we can identify −2l with c1(L2
d)[D].

Consequently, we can write (3.2) as

(2g − 2) ≥ D ∩D + c1(L2
d)[D]. (3.3)

The above formula coincides with Theorem 1.7(b) of [7].
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And the proof

Now, let us consider a surface operator D = Σ with Σ ∩ Σ ≤ 0 and genus
g ≥ 1. Since (3.1) is valid for any value of D ∩D, we can write

2Σ ∩ Σ − (2g − 2) ≤ 4l ≤ (2g − 2). (3.4)

Since (2g − 2) ≥ 0 and Σ ∩ Σ ≤ 0, we obtain from (3.4) the following inequ-
ality:

(2g − 2) ≥ Σ ∩ Σ − c1(L2
d)[Σ], (3.5)

after identifying −2l with c1(L2
d)[Σ].

As (3.3) is also valid for arbitrary values of D ∩D, it will mean that

(2g − 2) ≥ Σ ∩ Σ + c1(L2
d)[Σ]. (3.6)

Thus, if (3.5) and (3.6) are to hold simultaneously, it will mean that

|c1(L2
d)[Σ]| + Σ ∩ Σ ≤ (2g − 2). (3.7)

This is just Corollary 1.7 of [2]. In fact, our physical proof asserts that (3.7)
should also hold for Σ with Σ ∩ Σ = 0, and not just for Σ with Σ ∩ Σ < 0 (as
stipulated in Corollary 1.7 of [2]); this physical assertion is indeed consistent
with Theorem 1.1 of [3] for X of SW simple-type (for which (3.7) is also
valid).

3.2 A relation among the ordinary SW invariants

Ozsváth and Szabó also showed in Theorem 1.3 of [2] and Theorem 1.6 of [3],
that there exists relations among the ordinary SW invariants which arise
from the above embedded surfaces with negative self-intersection in X with
b+2 (X) > 1. We will now present the physical proofs of these mathematical
theorems.

The “magic” formula

First, note that for X with b1 = 0 and b+2 > 1, the “magic” formula which
expresses the generating function Z ′

D of the “ramified” Donaldson invariants
in terms of the (“ramified”) SW invariants when Σ ∩ Σ �= 0, is (via (7.20)
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and (7.15) of [1])

Z ′
D =

∑
λ̄

SWλ̄

16
· e2iπ(λ0·λ̄+λ2

0) · e2λ̄[Σ̃]

· ResqM=0

[
dqM
qM

q
−λ̄2/2
M

ϑ8+σ
2

adhM

(
2i
ad
h2
M

)(χ+σ)/4

× exp
[
2puM − i(λ̄, S)/hM + S2TMS

]]

+ i{(χ+σ)/4−w2(E)2} ∑
λ′

SWλ′

16
· e2iπ(λ0·λ+λ2

0+α2Σ2/2) · e2λ[Σ̃]

· ResqM=0

[
dqM
qM

q
−(λ′)2/2
M

ϑ8+σ
2

adhM

(
2i
ad
h2
M

)(χ+σ)/4

× exp
[
−2puM + i(λ, iS)/hM − S2TMS − 4Σ̃2TM

Σ̃

] ]
, (3.8)

where λ′ = λ− αδΣ is a “ramified” (first Chern class of the) Spinc-structure
for effectively nontrivial values of α; ϑ8+σ

2 (τ) is a certain Jacobi theta func-
tion in qM = e2πiτ , while ad, uM , hM , TMS and TM

Σ̃
are polynomial functions

in qM (see appendix A and Section 4.2 of [1] for their explicit expansions);
Σ̃ = iπαΣ/2; 2λ0 is an integral lift of w2(E); and λ̄ is an ordinary (first
Chern class of the) Spinc-structure.

Second, let us specialize to the case where the microscopic gauge group
is SU(2); i.e., ξ = w2(E) = 0. In this case, λ0 can be set to zero in the
“ramified” and ordinary theories [1, 19]. Moreover, if we assume X to be
such that the values of λ̄2/2 and (λ′)2/2 of the first and second residues
in (3.8), respectively, are both given by (χ+ σ)/4 + σ/8, the computation of
(3.8) will simplify considerably; only the leading terms in the qM -expansion
contribute non-vanishingly. Using uM = 1 + · · · , TMS = 1/2 + · · · , TM

Σ̃
=

1/4 + · · · , hM = 1/(2i) + · · · and ad = 16iqM + · · · , one will compute (3.8)
to be

Z ′
D = 21+ 7χ

4
+ 11σ

4

⎧⎨
⎩

∑
λ̄

SWλ̄ e2p+S2/2 e2(S+Σ̃,λ̄) + i(χ+σ)/4

×
∑
λ′

SWλ′ (−1)α
2Σ2

e−2p−S2/2−Σ̃2
e−2i(S+iΣ̃,λ)

}
. (3.9)
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On to the proofs

Before we proceed further, note that since our objective is to provide a
physical proof of a mathematical result, one needs to express (3.9) in the
mathematical convention. One can do so by replacing α with iα and the
relevant U(1) field strengths F with iF , throughout; the gauge fields are then
valued in the complex Lie algebra, as desired.

Coming back to our main discussion, let us send the effective value of α
to ±1. Then, the condition (λ− iαδΣ)2/2 = (χ+ σ)/4 + σ/8 at the dyon
point (i.e., the second contribution in Z ′

D) implies that we have dL2
d

= λ2 −
(2χ+ 3σ)/4 = ∓c1(L2

d)[Σ] + Σ ∩ Σ. As there is effectively no “ramification”
in the U(1) theory at the dyon point when α = ±1, we can, via (2.32) and
(2.34), write SWλ′ in (3.9) as

SWλ′ =
∫
Mλ′

sw

(ad)
d
L2
d
/2
, (3.10)

where Mλ′
sw is the moduli space of the ordinary SW equations whose even

dimension is therefore dL2
d
. As explained in footnote 6, ad can be defined at

any point in X; thus, let us, for later convenience, define ad at some point
z ∈ Σ.

When α = ±1, there is also no “ramification” in the microscopic SU(2)
theory associated with Z ′

D on the left-hand side (LHS) of (3.9); moreover,
recall from Section 2.2 that modular-invariance requires that the phase
term (2.15) be equal to 1 whenever the surface operators are nontrivially-
embedded; as such, one can express Z ′

D on the LHS of (3.9) as equation (7.25)
of [1] via Witten’s ordinary magic formula. Furthermore, since the condi-
tion λ̄2/2 = (χ+ σ)/4 + σ/8 implies that X is of SW simple-type, one can
denote SWλ̄ as SW(λ̄) on the right-hand side (RHS) of (3.9). Last but not
least, note that one can appeal to a regular gauge transformation of the kind
in (2.19) with u = ∓1 — which leaves the gauge-invariant λ′ unchanged —
to shift α and therefore Σ̃ to zero on the RHS of (3.9). Altogether, this
means that one can also express (3.9) as

∑
λ̂

{
SW (λ̂) e2p+S2/2 e2(S,λ̂) + i(χ+σ)/4 SW (λ̂) e−2p−S2/2 e−2i(S,λ̂)

}

=
∑
λ

{
SW (λ) e2p+S2/2 e2(S,λ) + i(χ+σ)/4 SWλ′ e−2p−S2/2 e−2i(S,λ)

}
.

(3.11)
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In (3.11), λ̂ is an ordinary Spinc-structure; λ′ = λ∓ iδΣ; and λ = −F dL/2π,
where F dL is an ordinary U(1) field strength, i.e., the holonomy of its gauge
field around a small circle that links Σ is trivial. Via a term-by-term com-
parison of (3.11), we conclude that we have an equivalence

SWs′ = SW (s) (3.12)

of ordinary SW invariants, where s′ = −iλ′ and s = −iλ are the respective
(first Chern class of the) Spinc-structures expressed in the mathematical
convention.

A few observations are in order. First, notice that if dL2
d

= |c1(L2
d)[Σ]| +

Σ ∩ Σ, then s′ = s + εδΣ, where ε = ±1 is the sign of c1(L2
d)[Σ]. Second, since

the scalar variable ad has R-charge 2, it will represent a class in H2(Ms′
sw).

Third, because we have assumed that b1(X) = 0, it will mean that H1(X,Z)
is empty. Fourth, as dL2

d
≥ 0, it will mean that |c1(L2

d)[Σ]| + Σ ∩ Σ ≥ 0;
together with (3.7), this implies that g > 0. With these four points in mind,
it is thus clear that (3.10) and (3.12) are precisely Theorem 1.3 of [2]; here,
ad and dL2

d
/2 can be identified with U and (m+ g) in Theorem 1.3 of [2],

respectively, while a in Theorem 1.3 of [2] can be set to 1 since X is of SW
simple-type.

When X is not of SW simple-type

What if X is not of SW simple-type? The analysis is similar: one just
substitutes λ2/2 and (λ′)2/2 as (χ+ σ)/4 + σ/8 + p — where p is some fixed
positive integer — in the first and second residues of (3.8), respectively, and
proceed as above. The only difference now is that the effective value of dL2

d

will be shifted by 2p, and instead of (3.12), we will have

SWs′ = SWs, (3.13)

where

SWs′ =
∫
Ms′

sw

(ad)
d
L2
d
/2

(ad)p and SWs =
∫
Ms

sw

(ad)p. (3.14)

In this case, a of [2] is no longer equal to 1 but rather, it is Up ∈ A(X),
where A(X) is the polynomial algebra Z[U ]. It is also clear from (3.14) that
2p must be equal to the dimension of the moduli space Ms

sw of the SW
equations with Spinc-structure s.
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When b+2 (X) = 1

And what if b+2 = 1? In this case, as explained in Section 6.3 of [1], the
monopole and dyon point contributions to Z ′

D — which depend on SWλ and
SWλ′ , respectively — will jump as we cross certain “walls” in the forward
light cone V+ = {ω+ ∈ H2,+(X; R) : (ω+)2 > 0}. In particular, SWλ will
jump if we cross the “wall” defined by

(ω+, λ) =
iαM
2

(ω+,Σ), (3.15)

where αM = −η, while SWλ′ will jump if we cross the “wall” defined by

(ω+, λ) =
iαD
2

(ω+,Σ), (3.16)

where αD = 2α.

Notice that when α = ±1, we can rewrite (3.16) as

(ω+, s + εδΣ) = 0, (3.17)

where ε = ∓.

Recall also that since modular-invariance requires η to vanish whenever
we have a nontrivially embedded surface operator such as Σ, the RHS of
(3.15) is identically zero. This is tantamount to setting

(ω+,Σ) = 0. (3.18)

Consequently, one can rewrite (3.15) as

(ω+, s) = 0. (3.19)

Therefore, for (3.12) or (3.13) to continue to hold unambiguously when
b+2 = 1, ω+ must not lie anywhere along the “walls” defined by (3.17) and
(3.19) where the values of the LHS and RHS of (3.12) or (3.13), respectively,
will jump; in addition, ω+ must also satisfy (3.18). This observation matches
exactly the claim in Theorem 1.3 of [2] for four-manifolds with b+2 = 1. This
completes our physical proof of Theorem 1.3 of [2].

When Σ has arbitrary self-intersection number

Finally, note that (3.12) and its generalization (3.13) also hold for Σ with
arbitrary (as opposed to just negative) self-intersection number; this has
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been proved mathematically as Theorem 1.6 of [3] by Ozsváth and Szabó.
Once more, one can furnish a physical proof of this theorem.

To this end, let us consider the case where α = −ε = 1. Then, dL2
d

=
−c1(L2

d)[Σ] + Σ ∩ Σ. Since dL2
d
≥ 0, we have

−c1(L2
d)[Σ] + Σ ∩ Σ ≥ 0. (3.20)

On the other hand, since dL2
d

can be identified with 2(m+ g) in [2] (and
therefore [3]), as 2m ≥ 0, it will mean that dL2

d
− 2g ≥ 0. In turn, this

implies that

−c1(L2
d)[Σ] + Σ ∩ Σ + 2p > 2g − 2, (3.21)

since p is a positive integer.

As we have not appealed to (3.7) in deducing the above inequalities, the
self-intersection number of Σ is allowed to be arbitrary in (3.20) and (3.21).
Consequently, after noting that s′ = s − δΣ because ε = −1, we find that
(3.20) and (3.21), with (3.13) and (3.14), is nothing but Theorem 1.6 of [3];
here, ad, p and (dL2

d
/2 + p) can be consistently identified as U , d and d′

in Theorem 1.6 of [3], respectively. When b+2 (X) = 1, these relations will
continue to hold as long as the above-stated conditions on ω+ are satisfied.

4 A physical derivation of Taubes’ groundbreaking result

In a series of four long papers collected in [4], Taubes showed that on
any compact, oriented symplectic four-manifold X with b+2 > 1, the ordi-
nary SW invariants are (up to a sign) equal to what is now known as the
Gromov–Taubes invariants which count (with signs) the number of pseudo-
holomorphic (complex) curves which can be embedded in X. This aston-
ishing result, as formidable as its mathematical proof may be, nonetheless
lends itself to a simple and concrete physical derivation, as we shall now
demonstrate.

Pseudo-holomorphic curves in a symplectic four-manifold

Let ωsp be a self-dual symplectic two-form on X that is compatible with an
almost-complex structure J . Let K be the canonical line bundle on X. If
a surface operator Σ is a pseudo-holomorphic curve embedded in X (in the
sense of Gromov [20]), J will map the tangent space of Σ to itself. Moreover,
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we will have
∫
Σ ωsp > 0; in other words, Σ will be homologically nontrivial

so that the Poincaré dual δΣ of its fundamental class lies in H2(X,Z).

A connected Σ is also known to satisfy the adjunction formula

2 − 2g + Σ ∩ Σ = −c1(K)[Σ]. (4.1)

This implies that a flat torus with zero self-intersection number can poten-
tially have multiplicity greater than 1; consequently, counting of such curves
can be a delicate issue [4]. Therefore, for simplicity, let us choose Σ to be
curved with a non-zero self-intersection number. Such a choice is guar-
anteed by the fact that one can always find a basis of homology two-cycles
{Ui}i=1,...,b2 inX that has a purely diagonal, unimodular intersection matrix,
whence Σ can a priori be selected from the b2 number of Ui’s with Σ ∩ Σ �= 0.

However, since being compatible with J implies that ωsp ∈ H2,+(X,R),
together with (ωsp,Σ) > 0, it will mean that there can be at most b+2 choices
of Σ among the Ui’s such that

δΣ = δ+Σ (4.2)

for some connected, non-multiply-covered, pseudo-holomorphic curve
Σ ⊂ X which obeys Σ ∩ Σ > 0. (Exceptional spheres which may be multiply
covered are also being automatically excluded here since they have negative
self-intersections [21].)

A particular instanton sector

As in the previous section, let us now consider the case where E can be lifted
to an SU(2)-bundle, i.e., w2(E) = ξ = 0. At low energies, the SU(2) gauge
symmetry is spontaneously-broken to a U(1) gauge symmetry in the under-
lying physical theory. Mathematically, this means that E can be expressed
over all of X as

E = L⊕ L−1 (4.3)
at macroscopic scales, where L is the complex line bundle corresponding to
the unbroken U(1) gauge symmetry. This implies that

c2(E) = −c1(L)2. (4.4)

However, since we have an equivalence of characteristic classes which are
themselves topological invariants, it will mean that (4.4) will also hold in the
microscopic SU(2) theory; in particular, since k and l are given by

∫
X c2(E)

and − ∫
Σ c1(L), respectively, the values of k and l will be correlated for any

particular choice of X and surface operator Σ.
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Now consider the sector of the SU(2) theory where Nψ is zero; this is the
sector where7

k′ = 3
16(χ+ σ). (4.5)

If Zp
′

0,ḡ(p, S) is the p′-instanton sector of the generating function (2.28) of
the “ramified” SU(2) Donaldson invariants of X, then

Zk
′

0,ḡ(p, S) = Zk
′

0,ḡ(0, 0) = 〈1〉k′ . (4.6)

Let Dp′
0 (S) be the p′-instanton sector of the “ramified” SU(2) Donaldson

series D ′
0(S) in (2.29); then, from (4.6) and (2.29), we have

Dk′
0 (S) = Dk′

0 (0) = 〈1〉k′ . (4.7)

At any rate, note that if X is of (“ramified”) SW simple-type, from (3.9),
we have ∑

p′
Dp′

0 (S) =
∑
λ̄

SW (λ̄) e2(S+Σ̃,λ̄)+S2/2+f(χ+σ), (4.8)

where f(χ+ σ) is a real-valued function in χ and σ. Two conclusions can
be drawn from (4.8) at this point. First, since there is, as explained in
Section 3.1, a one-to-one correspondence between l and − ∫

Σ F
d
L/2π due to

electric–magnetic duality in the low-energy U(1) theory, it will mean — via
the relation k′ = k + 2αl − α2Σ ∩ Σ,8 and the correlation between k and l
for any particular choice of X, Σ ∩ Σ and α — that there is also a one-to-one
correspondence between k′ and a certain basic class λ.9 Hence, Dk′

0 (0) on
the LHS of (4.8) will correspond to the λ-term on the RHS (4.8). Second, as
our notation indicates, Dk′

0 (0) is independent of S; also, in a supersymmetric
topological quantum field theory whence the semiclassical approximation is
exact, (4.7) will mean that the topological invariant Dk′

0 (0) — like SW(λ)
of the λ-term on the RHS of (4.8) — is necessarily an integer (a fact that
will be elucidated shortly). Consequently, the exponential factor in (4.8)

7Based on our discussions in Section 2.2, the expression for the index of the kinetic
operator ΔF of ψ that counts the number Nψ of ψ zero-modes, is the expression for the
index in the ordinary case but with gauge bundle E′. In other words, Nψ = 8k′ − 3

2
(χ+ σ),

where the “ramified” instanton number k′ = −1/8π2
∫
X

TrF ′ ∧ F ′.
8Recall here that k′ = −1/8π2

∫
X

TrF ′ ∧ F ′ = k + Trαm − (1/2) Trα2Σ ∩ Σ, and since

t is generated by (2.3), it will mean that k′ = k + 2αl − α2Σ ∩ Σ.
9Recall here that λ = −F dL/2π. In fact, there is a one-to-one correspondence between

all values of p′ and λ̄ in (4.8), although the RHS of (4.8) is known to consist of a finite
number of terms only because some of the SW(λ̄)’s are zero: cancellations can occur in
the SW(λ̄)’s since they take the form given in (2.35).
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will imply that 2(S, λ) + S2/2 + f(χ+ σ) = 0 and (Σ̃, 2λ) = iπZ; the for-
mer condition will hold as long as the operator I ′2(S) in (2.25) is normalized
correctly10 (a physical requirement that was implicit in our discussions hith-
erto), and the latter condition just reflects the fact that one is free to appeal
to a “ramification”-preserving, twisted U(1)-valued gauge transformation
(2.19) which shifts α in a way compatible with (2.18).11 Altogether, it will
mean that

SW(s) = 〈1〉k′ (4.9)

up to a sign, where s = −iλ is the corresponding ordinary Spinc-structure.

The SW invariants are the Gromov–Taubes invariants

What we would like to do now is to determine 〈1〉k′ of (4.9) explicitly. To
this end, first note that the parameter η in SE of (2.20) must be set to
zero since we are considering non-trivially embedded surface operators Σ;
then, via a chiral rotation of the massless fermions in the theory which
inconsequentially shifts Θ in (2.20) to a convenient value, we can write

SE =
1
e2

∫
X
d4x

√
ḡTr

[
1
4
F ′
μνF

μν′ +
1
2
φ∇′

μ∇μ′φ† − iζ∇′
μψ

μ − iχμν+ ∇′
μψν

− i
8
φ[χ+

μν , χ
μν
+ ] − i

2
φ†[ψμ, ψμ] − i

2
φ[ζ, ζ] − 1

8 [φ, φ†]2
]
. (4.10)

Second, let Φ = (A′, φ, φ†) and Ψ = (ζ, χ+, ψ) represent the bosonic and
fermionic fields of the theory, respectively. Since the semiclassical approxi-
mation is exact, one can expand SE to lowest order in e when terms beyond
quadratic order in the non-zero modes Φ̃ and Ψ̃ need not be considered; as
such, because there are, for Nψ = 0, no zero-modes of ψ and (φ, φ†, ζ, χ+)
(as explained in Section 2.3), one can ignore the non-kinetic terms in (4.10)

10For any S̄ ∈ H2(X\Σ,R), let r be the correct normalization factor (of the classical
zero-mode wavefunction) of the operator I ′2(S̄); from (2.25), it will mean that I ′2(S) —
where S = r · S̄ — is a correctly normalized version of I ′2(S̄); the condition 2(S, λ) +
S2/2 + f(χ+ σ) = 0 can then be written as ar2 + br + c = 0, where a = S̄2, b = 4(S̄, λ)
and c = 2f(χ+ σ) are real constants for any particular choice of X and S̄ such that a
solution of r can always be found — in other words, the condition 2(S, λ) + S2/2 + f(χ+
σ) = 0 will hold if the operator I ′2(S) is normalized correctly, and vice-versa.

11Since 2λ ∈ H2(X,Z), we can write α(Σ, 2λ) = α
∑
i(Σ, Ui), where Ui ∈ H2(X,Z) and

(Σ, Ui) ∈ Z. Via (2.19), one can shift α to satisfy (2.18); in particular, one can regard

α(Σ, 2λ) as an even integer so that (Σ̃, 2λ) = iπα(Σ, 2λ)/2 = iπZ under such a gauge
symmetry.
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which are beyond quadratic order in Φ̃ and Ψ̃; thus, we can write

SE =
∫
X
d4x

√
ḡ

(
Φ̃ΔBΦ̃ + Ψ̃ΔF Ψ̃

)
, (4.11)

where ΔB and ΔF are certain second and first-order elliptic operators,
respectively. Hence, the Gaussian integrals over Φ̃ and Ψ̃ will be given by

det(ΔF )√
det(ΔB)

. (4.12)

Note at this point that due to supersymmetry, there is a pairing of the
excitations of the fields Φ and Ψ at every non-zero energy level. Moreover,
it is a fact that det(ΔF ) = det(Δ1/2

B ) (after one fixes a sign ambiguity by
specifying an orientation of the underlying moduli space M′ of “ramified”
instantons). Consequently, we have

ΔF Ψ̃n = ξnΨ̃n (4.13)

and

ΔBΦ̃n = ξ2nΦ̃n, (4.14)

where the subscript “n” refers to the nth energy level with corresponding
real eigenvalue ξn �= 0. Therefore, one can compute (4.12) to be

∏
n

ξn√|ξn|2
= ±1 = sign(det ΔF ). (4.15)

Third, recall from our discussions in Section 2.3 that the non-vanishing
contributions (4.15) to 〈1〉k′ localize around “ramified” instantons which sat-
isfy (2.22). Moreover, according to our discussions in Section 2.3, since there
are no ζ and χ+ zero-modes, we have ind(ΔF ) = dim(M′) and ker(ΔF ) =
TM′.

Let us now send the effective value of α to +1; i.e., we now have an
“ordinary” surface operator along Σ whence the relation (4.9) is exact.12

Then, from the above three points, the fact that Nψ = dim(M′) = 0, and

12When α = +1, one can (as was done earlier in computing (3.11)) set Σ̃ = iπαΣ/2 to

zero in the sign e(Σ̃,2λ) of (4.9) via the gauge transformation (2.19) where u = −1.



SUPERSYMMETRIC SURFACE OPERATORS 99

the relations (4.15), (2.22) and (4.2), one can conclude that in this case,

〈1〉k′ =
∑
x

sign(detD), (4.16)

where D is a certain first-order elliptic operator whose kernel is the tangent
space to the space H of solutions to the relation

c1(E) = δΣ. (4.17)

In (4.16), the x’s are just the points which span the space H of dimension
zero; in (4.17), E is some nontrivial complex line bundle with a self-dual
u(1)-valued connection AE and curvature c1(E): recall from our discussion
in Section 2.2 that a choice of an extension of E over Σ results in α being
t-valued, and since the maximal torus T of SU(2) is actually U(1), α and
therefore F+ (i.e., 2πc1(E)) are actually u(1)-valued in (2.22). Such a com-
plex line bundle E — where c1(E) · c1(E) > 0 — can always be found, as
b+2 > 1. Since sign(detD) = ±1, (4.16) will imply that 〈1〉k′ is an integer,
consistent with (4.9).

Notice that the relation (4.17) means that one can interpretH as the space
of pseudo-holomorphic curves inX whose Poincaré dual is c1(E); hence, with
the above description of the kernel of the first-order elliptic operator D, one
can further conclude that

∑
x

sign(detD) = Gr(c1(E)), (4.18)

where Gr(c1(E)) is the Gromov–Taubes invariant defined in [22] for a con-
nected, non-multiply-covered, pseudo-holomorphic curve in X whose funda-
mental class is Poincaré dual to c1(E). Since Gr(c1(E)) depends only on the
homology class of Σ, it will be invariant under smooth deformations of the
metric and complex structure on Σ; i.e., Gr(c1(E)) is also a two-dimensional
topological invariant of Σ.

On the other hand, because (4.9) is valid for X of SW simple-type,
i.e., λ2 − (2χ+ 3σ)/4 = dL2

d
= −c1(L2

d)[Σ] + Σ ∩ Σ = 0, we find that (3.12),
(3.10) and s′ = s − δΣ will imply that the LHS of (4.9) is SW(s − δΣ). In
fact, since the non-vanishing contributions to the RHS of (4.9) localize
around supersymmetric field configurations which obey (4.17), the LHS of
(4.9) can actually be written as SW(s − c1(E)); as a result, by (4.18), (4.16)
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and (4.9), we have
SW(s − c1(E)) = Gr(c1(E)). (4.19)

In any case, because Σ is such that Σ ∩ Σ > 0, it must satisfy (cf. (3.3))

2 − 2g + Σ ∩ Σ ≤ −c1(L2
d)[Σ], (4.20)

in addition to (4.1); consequently, we necessarily have s = 1
2c1(L

2
d) =

1
2c1(K). By noting that as b+2 > 1, the ordinary SW invariants satisfy
SW(s̄) = ±SW(−s̄) for any ordinary Spinc-structure s̄ [23], we can also write
(4.19) as

SW(ŝ) = ±Gr(c1(E)), (4.21)

where
ŝ = 1

2c1(L ), (4.22)

and
L = K−1 ⊗ E2. (4.23)

Moreover, since c1(L2
d) = c1(K), the condition dL2

d
= 0 can also be exp-

ressed as
−c1(K) · c1(E) + c1(E) · c1(E) = 0. (4.24)

Because the LHS of (4.24) is the dimension of H as defined mathematically
in [22], we see that (4.24) is indeed consistent with the fact that H is zero-
dimensional as implied by Nψ = 0. Moreover, (4.24) and (4.1) together
imply that the genus of the pseudo-holomorphic curve represented by c1(E)
will be given by

g = 1 + c1(E) · c1(E). (4.25)

Finally, note that (4.21)–(4.25) are precisely Theorem 4.1 and Proposi-
tions 4.2–4.3 of [24] which summarizes the results collected in [4]! This
completes our physical derivation of Taubes’ groundbreaking result that the
ordinary SW invariants are (up to a sign) equal to the Gromov–Taubes
invariants on any compact, oriented symplectic four-manifold with b+2 > 1.

5 Mathematical implications of the underlying physics

Now that we have physically re-derived the above mathematically estab-
lished theorems by Ozsváth–Szabó and Taubes, one might wonder if the
physics can, in turn, offer any new and interesting mathematical insights.
Indeed it can, as we shall now elucidate.
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5.1 The Gromov–Taubes and “ramified” SW invariants

Assume that X is a compact, oriented, symplectic four-manifold which con-
tains at least one trivially embedded curve that is connected; assume also
that b1(X) = 0 and b+2 (X) > 1. Then, from (4.21), and (9.9) of [1], we find
that

SW (ŝr + αrδD) = ±Gr(c1(E)). (5.1)

Here, SW(ŝr + αrδD) is a “ramified” SW invariant; in addition, the gauge
field underlying ŝr picks up a non-trivial holonomy — parameterized by a
non-integer αr — as one traverses a closed loop linking a connected curve
D that is trivially-embedded in X. In other words, the Gromov–Taubes
invariants — which count the connected, non-multiply covered, pseudo-
holomorphic curves with positive self-intersection and fundamental class
Poincare dual to c1(E) — are (up to a sign) equal to the “ramified” SW
invariants of X!

A rigorous mathematical proof?

Let us now attempt to explain why (5.1) ought to be amenable to a rigorous
mathematical proof. First, note that the presence of a bona-fide “ramifica-
tion” along D implies that the LHS of (5.1) counts (with signs) the number
of solutions to the “ramified” SW equations which are defined (in the math-
ematical convention) by

F+ = (M̄M)+ − μ (5.2)

and
D/M = 0. (5.3)

Here, F is an imaginary-valued, curvature two-form given by F = −iπc1
(LF ), where LF = L ⊗ L 2αr

D ; the complex line bundle LD is such that
c1(LD) is the Poincaré dual [D] of D; μ = iεδ+D, where ε is a positive real
constant, is a fixed, imaginary-valued, self-dual two-form on X that cannot
be set to zero; and M is a section of the complex vector bundle S+ ⊗ L 1/2,
where L is as given in (4.23).

Second, notice that (5.2) is the same as

F+ = (M̄ ′M ′)+ − μ, (5.4)

where M̄ ′ = M̄ eiαrθ and M ′ = e−iαrθM are gauge-transformed versions of
M̄ and M , respectively. Notice also that (5.3) is the same as

D/ ′M ′ = 0, (5.5)
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where (assuming a small but non-zero αr)D/ ′M ′ = e−iαrθD/M such thatM ′ is
a section of the complex vector bundle S+ ⊗ L

1/2
F . Altogether, this means

that one can interpret the “ramified” SW equations of (5.2)–(5.3) as the
ordinary, perturbed SW equations of (5.4)–(5.5) with perturbation two-form
μ and Spinc-structure so = 1

2c1(LF ). Moreover, via (4.23), one can also
write LF = K−1 ⊗ E2

F , where EF = E ⊗ L αr
D .

Third, note that since D ∩ D = 0, it will mean that D �= Σ, where Σ ⊂ X
is the connected, psuedo-holomorphic curve introduced at the start of Sec-
tion 4 with positive self-intersection. In particular, [D] and [Σ] are neces-
sarily distinct. Consequently, since c1(E) = [Σ], it must be that LD �= E .

Fourth, notice that for a fixed D and αr, the map Σ → [Σ] is potentially
many-to-one while the map D → [D] is necessarily one-to-one. As such,
there is a one-to-one correspondence between (pseudo-holomorphic) curves
in X whose Poincaré duals are c1(EF ) = [Σ] + αr[D] and c1(E) = [Σ].

Last but not least, note that μ = iεδ+D in (5.4) is singular: this is because
δD is actually a delta two-form. Hence, according to Taubes’ analysis in [4],
each solution to (5.4)–(5.5) ought to determine a pseudo-holomorphic curve
in X that is Poincaré dual to c1(EF ). Consequently, the above-observed
one-to-one correspondence between pseudo-holomorphic curves in X whose
Poincaré duals are c1(EF ) and c1(E), will imply that each solution to (5.4)–
(5.5) ought to correspond to a pseudo-holomorphic curve in X that is
Poincaré dual to c1(E). This conclusion is indeed consistent with (5.1).

5.2 Certain identities among the Gromov–Taubes invariants

Assume that X is a compact, oriented, symplectic four-manifold with b1 = 0
and b+2 > 1. Then, from (4.9), (4.16) and (4.18), we have

SW(s) = Gr(c1(E)), (5.6)

where as explained in Section 4, we necessarily have

s = 1
2c1(K

−1 ⊗K2) (5.7)

if c1(E) is the Poincaré dual of the pseudo-holomorphic curve Σ.

Via (5.6), (5.7) and (4.21)–(4.24), we find that

Gr(c1(K)) = ±Gr(c1(E)). (5.8)



SUPERSYMMETRIC SURFACE OPERATORS 103

Note that the dimension of the space of pseudo-holomorphic curves asso-
ciated with the LHS of (5.8) is given by (4.24), albeit with E replaced by
K; in particular, it is zero, just like the dimension of the space of pseudo-
holomorphic curves associated with the RHS of (5.8). In this sense, (5.8) can
be viewed as a consistent relation. But can we say more? Most certainly.

First, it is clear that (5.8) implies that there exists pseudo-holomorphic
curves in X which are Poincaré dual to c1(K). Since pseudo-holomorphic
curves (in a symplectic four-manifold) are automatically symplectic [4], it
will mean that the Poincaré dual of c1(K) can be represented by a funda-
mental class of an embedded symplectic curve in X; this conclusion is just
Theorem 0.2 in article 1 of [4]. Moreover, this conclusion also implies via
(4.25) that if there are no embedded spheres in X with self-intersection −1,
then c1(K) · c1(K) ≥ 0; this observation agrees with Proposition 4.2 of [24].

Second, (5.8) also implies that c1(E) is represented by at least one pseudo-
holomorphic curve inX — a fact that is well-established in the mathematical
literature [25].

In any event, the above mathematical assertions depend squarely on the
non-vanishing of Gr(c1(E)); thus, one can understand them to be a conse-
quence of R-invariance: R-invariance of the topological partition function
〈1〉k′ of the k′-instanton sector asserts that it will not vanish, and from (4.16)
and (4.18), we see that Gr(c1(E)) will not vanish either.

Notice also that since Gr(0) = 1 by definition [4], we have SW(s) = 1 from
(4.19). Consequently, (5.6) will mean that

Gr(c1(E)) = +1. (5.9)

In other words, the number of points in the zero-dimensional space H of
pseudo-holomorphic curves Σ ⊂ X which are positively oriented is greater
than the number which are negatively-oriented by one. In fact, (5.9) is
consistent with the relation Gr0(A) = ±1 proved in Proposition 3.18 of [21],
while (5.8) — in light of (5.9) — is consistent with the relation |Gr(K)| = 1
proved in Theorem 3.10 of [21].

Last but not least, since SW(s̄) = ±SW (−s̄) for any ordinary Spinc-
structure s̄, from (4.21)–(4.23) and (5.8), we find that

Gr(c1(K)) = ±Gr(c1(K) − c1(E)). (5.10)

Note that (5.10) is distinct from the widely-known result of Serre–Taubes
duality for pseudo-holomorphic curves in X [25] (which one can nevertheless
obtain from (5.10) by making the substitution (5.8)).
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In summary, for connected, non-multiply covered, pseudo-holomorphic
curves in X that have positive self-intersection and fundamental class
Poincaré dual to c1(E), the underlying physics suggests that the relations
(5.8), (5.9) and (5.10) ought to hold in addition to those which have already
been established in the mathematical literature.

5.3 Affirming a knot homology conjecture by Kronheimer and
Mrowka

Assume that general X = M × S1, where M is a compact, oriented three-
manifold, and b1(M) = b+2 (X) > 1. Recall that the effective Lagrangian of
the topological N = 2 pure SU(2) gauge theory with an arbitrarily embed-
ded surface operator Σ, is just the Lagrangian of the ordinary Donaldson–
Witten theory with gauge field A′ and field strength F ′ = F − 2πiαδΣ. As
such, one can conclude from the analysis in [26] that up to Q-exact terms
which are thus irrelevant, SE in (4.10) is the action13 for a supersymmetric
quantum mechanical sigma model with target manifold A′/G′ — the space of
all gauge-inequivalent classes of “ramified” SU(2)-connections A ′ onM , and
potential h = 1

2

∫
M Tr (A ′ ∧ dA ′ + 2

3A ′ ∧ A ′ ∧ A ′) — the Chern–Simons
functional of A ′. Specifically, A ′ can be regarded a gauge connection of
an SU(2)-bundle over M\ΣM — where ΣM ⊂ Σ is the component of Σ
embedded in M — whose holonomy around a small circle linking ΣM in
M is exp(2πiα). Moroever, we now have in the supersymmetry algebra a
Hamiltonian operatorH which generates translations in the “time” direction
along S1, and a second nilpotent supercharge Q̄. In particular, they obey
[H,Q] = [H, Q̄] = 0 and {Q, Q̄} = 2H; consequently, one can easily show
that the ground states of the theory are supersymmetric, i.e., they must be
annihilated by both Q and Q̄, and that they are in the Q-cohomology. (See
Chapter 10 of [27] for an excellent review of this and other assertions to be
made momentarily.)

What we would like to do now is to compute the partition function 〈1〉k′
of the theory via the supersymmetric quantum mechanical sigma model on
A′/G′. Since the presence of S1 in X enforces a periodic boundary condition
on the (fermi) fields of the theory, the path-integral of the sigma model
without operator insertions, i.e., 〈1〉k′ , will be given by the Witten index
Tr(−1)F , where F is the fermion number. In turn, Tr(−1)F is given by

13Recall from Section 2.2 that unless the surface operator is nontrivially embedded,
there is no restriction on the effective values that its η-parameter can take in order to
preserve modular invariance in the corresponding low-energy SW theory. As such, let us
for simplicity, take η to be zero in our following analysis; then, SE in (4.10) will be the
relevant action regardless of the embedding of the surface operator in X.
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the Euler characteristic of the Q-complex generated by the Q-cohomology
groups, i.e., the supersymmetric ground states.

As first pointed out by Atiyah in [11], in the case that one has an ordinary
SU(2) connection A on (a homology three-sphere) Y , the ground states of
the corresponding Hamiltonian are, purely formally, the instanton Floer
homology groups HF∗(Y ) of Y defined by Floer [28]. Analogously, as first
suggested in [29], one can formally identify the ground states of H as the
“ramified” instanton Floer homology groups HF∗(M ; ΣM ;α) of M ; 〈1〉k′
will then be given by the Euler characteristic of the “ramified” instanton
Floer homology of M . In other words, we have

〈1〉k′ = χ(HF∗(M ; ΣM ;α)). (5.11)

Moreover, it was also verified in [1] that the R-symmetry under which Q
has charge 1 is only conserved mod 8; as a result, the “ramified” instanton
Floer complex, like its ordinary counterpart, has a mod 8 grading under
this R-symmetry. Nevertheless, unlike its ordinary counterpart, its relative
grading is defined mod 4 instead of mod 8.14

That (5.11) is a consistent relation can be seen as follows. First, note that
χ(M × S1) = χ(M)χ(S1) = 0; similarly, as b+2 (X) = b−2 (X), we have σ(M ×
S1) = 0; as such, from (4.5), it will mean that 〈1〉k′ is the partition function
of the topologically trivial sector where k′ = 0. Second, note that for k′ = 0,
the dimension of the moduli space of flat “ramified” SU(2)-connections onX
is given by −3χ(M × S1) = 0; in other words, there are a discrete number of
flat solutions of A′; consequently, as X = M × S1 is a trivial product of two
spaces, each such flat solution of A′ on X will correspond to a flat solution
of A ′ on M ; hence, the dimension dim(M′

f ) of the moduli space M′
f of

flat “ramified” SU(2)-connections A ′
f on M , is zero. Third, note that it

is well established that the number of supersymmetric ground states of the
sigma model is invariant under rescalings of the potential h; therefore, one
can rescale h→ γh, where γ � 1, and the Witten index Tr(−1)F — which
counts the difference in the number of bosonic and fermionic ground states —
will not change; this means that one can compute χ(HF∗(M ; ΣM ;α)) after
such a rescaling of h, and still get the correct result. Last but not least,
note that when γ � 1, the contributions to χ(HF∗(M ; ΣM ;α)) will localize

14The relative grading, as defined mathematically for the ordinary instanton Floer
complex, depends on the index which computes the dimension of the moduli space M of
SU(2)-instantons; in particular, since dim(M) = 8k − 3

2
(χ+ σ), where k takes different

integer values in different topological sectors, the relative grading is defined mod 8. In this
sense, since dim(M′) = 4(2k + l) − 3

2
(χ+ σ) − 2(g − 1), where k and l take different inte-

ger values in different topological sectors, the relative grading of the “ramified” instanton
Floer complex will be defined mod 4.
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onto the critical point set of h, i.e., M′
f . Thus, since dim(M′

f ) = 0, i.e., M′
f

consists of zero-dimensional points only, we have

χ(HF∗(M ; ΣM ;α)) =
∑
x

sign(h′′(x)) =
∑
x

±1, (5.12)

where h′′(x) is the Hessian of h at the point x ∈ M′
f .

15 In particular, the
topological invariant χ(HF∗(M ; ΣM ;α)) is — like 〈1〉k′ computed using
(4.15) — a sum of signed points; an integer. It is in this sense that (5.11) is
deemed to be a consistent relation.

Implications for a knot homology group from “ramified” instantons

In fact, one can say more if ΣM is a knot K ⊂M . In this case, χ(HF∗(M ;
K;α)) in (5.12) counts (with signs) the number of flat SU(2)-connections A ′

f

on M\K with holonomy exp(2πiα) around a circle linkingK in M . Also, A ′
f

only picks up nontrivial contributions to the holonomy along a path that lies
in the plane normal to (the singularity along) K, i.e., along the θ-direction;
therefore, if K is a non-trivial knot — i.e., if there are crossings that cannot
be undone by any orientation-preserving homeomorphism of M to itself —
the holonomy of A ′

f along the longitude of K will always be nontrivial (for
some judicious choice of the α-parameter of the surface operator). Therefore,
one can also interpret χ(HF∗(M ;K;α)) as an algebraic count of the number
of conjugacy classes of homomorphisms

ρ : π1(M\K) → SU(2) (5.13)

which satisfy the constraint that ρ maps — via the holonomy of A ′
f —

the longitude of K to a non-identity element of SU(2). In turn, this
implies that the groupsHF∗(M ;K;α) are in one-to-one correspondence with
the conjugacy classes ρ with the stated constraint. Thus, we can identify
HF∗(M ;K;α) with the knot homology groups LI∗(M,K) from “ramified”
SU(2)-instantons defined by Kronheimer and Mrowka in Section 4.4 of [5];
in particular, we have χ(HF∗(M ;K;α)) = χ(LI∗(M,K)) �= 0.

Note at this point that since the partition function 〈1〉k′ is invariant
under deformations of the metric on X, the relation (5.11) would imply that

15Since b1(M) 	= 0, one might encounter a situation whereby some of the points in
M′

f are degenerate. Nevertheless, for an appropriate nontrivial restriction of the SU(2)-

bundle to M , one can — without altering the Witten index Tr(−1)F and therefore,
χ(HF∗(M ; ΣM ;α)) — perturb h so that its critical point set will consist of a finite number
of isolated, non-degenerate and irreducible points which we can then interpret as the x’s
in (5.12) (cf. Prop. 3.12 of [5]).
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χ(HF∗(M ;K;α)) and hence χ(LI∗(M,K)) are invariant under homeomor-
phisms of M to itself. Consequently, if K0 is an unknot which thus bounds a
(twisted) disk in M , one can always — via a suitable orientation-preserving
homeomorphism of M to itself — deform K0 to a trivial unknot K̃0 (i.e., a
geometrically round circle) such that χ(LI∗(M ;K0)) = χ(LI∗(M ; K̃0)). As
the holonomy of A ′

f along the longitude of the trivial unknot K̃0 can only
be the identity element of SU(2) (according to our explanations in the last
paragraph), the set of constrained maps ρ in question will be empty for K̃0;
i.e., LI∗(M, K̃0) and therefore χ(LI∗(M ;K0)) are zero.

In summary, we find that χ(LI∗(M,K)) is zero only if K is an unknot.
Therefore, our above analysis physically affirms a mathematical conjecture
proposed by Kronheimer and Mrowka in Section 4.4 of [5], which asserts
that χ(LI∗(M,K)) vanishes if the symmetrized Alexander polynomial of
the knot K is trivial, i.e., if K is an unknot.

5.4 The Gromov–Taubes invariant, instanton floer homology, and
the Casson–Walker–Lescop Invariant

The Gromov–Taubes invariant of M × S1 and the instanton floer homology
of M

Assume that symplectic X = M × S1, where M is a compact, oriented
three-manifold, and b1(M) = b+2 (X) > 1. Now, let us consider the surface
operator Σ to be a pseudo-holomorphic curve in X whose characteristics
are as described at the beginning of Section 4. Let us also send the effective
value of α to +1. Then, according to our analysis in Section 4, the LHS of
(5.11) will be given by the Gromov–Taubes invariant Gr(c1(E)), where c1(E)
is Poincaré dual to Σ with positive self-intersection, and E is a complex line
bundle with self-dual connection AE .

On the other hand, when α = +1, the holonomy exp(2πiα) of the SU(2)
gauge connection A ′ around a small circle which links ΣM in M , is trivial;
in other words, A ′ can, in this case, be regarded as an ordinary SU(2)
connection on M . In turn, this means that one can, in such a situation,
replace HF∗(M ; ΣM ;α) on the RHS of (5.11) with the ordinary instanton
Floer homology groups HF∗(M) of M .

From the preceding two points, one can therefore conclude that

Gr(c1(E)) = χ(HF∗(M)). (5.14)
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In other words, the Gromov–Taubes invariant which algebraically counts
connected, non-multiply covered, pseudo-holomorphic curves in M × S1 with
positive self-intersection, is equal to the Euler characteristic of the instanton
Floer homology of M with b1(M) > 1!

One can immediately validate (5.14) forM = T3, since the relevant math-
ematical results exist. In this case, X = T3 × S1 is symplectic Kähler with
b+2 (X) = b1(M) = 3, and according to [30], χ(HF∗(T3)) = +1.16 What
about Gr(c1(E))? Well, although b+2 (X) > 1, because b1(X) > 0, one can-
not read off from our result in (5.9) (which is defined for b1(X) = 0 and
b+2 (X) > 1). However, from the relation Gr0(A) = ±1 proved in Proposi-
tion 3.18 of [21], and the fact that on any Kähler manifold, the almost
complex structure J is necessarily integrable and thus, all points in the
space of pseudo-holomorphic curves have positive orientation, i.e., all points
contribute as +1 in the computation of Gr(c1(E)) [21], we can conclude that
Gr(c1(E)) = +1 on X, too. Therefore, we have χ(HF∗(T3)) = Gr(c1(E)) =
+1, which certainly agrees with (5.14).

In fact, one can validate (5.14) for any M = Σg × S1, where Σg is a
compact Riemann surface of genus g > 1. To this end, first note that
X is, in this case, a minimal symplectic manifold with b+2 (X) = b1(M) =
1 + 2g. Other than the g = 1 example above, its canonical bundle K is
nontrivial; however, since g > 1, X is an elliptic surface of Kodaira dimen-
sion 1 — i.e., K2 = 0 [31]. Consequently, because c1(E)2 > 0, Theorem
3.10 (iv) of [21] will imply that Gr(c1(E)) = 0. At the same time, we have
χ(HF∗(M)) = 0 for g > 1 [30]. In summary, for the elliptic surfaces X =
Σg × T2 where g ≥ 1, (5.14) is found to be consistent with all known math-
ematical results.

Another nontrivial check on the validity of (5.14) is as follows. Let Σ =
K0 × S1, where K0 ⊂M is an unknot whence Σ is homeomorphic to a genus
one curve in X. Recall from our discussion at the beginning of Section 4
that in our case, the topological invariant Gr(c1(E)) does not count curves
of genus one in X; in other words, Gr(c1(E)) = 0 for such a Σ. At the
same time, for such a Σ, we have χ(HF∗(M)) = χ(HF∗(M ;K0; 1)) = 0 from
our discussion in the previous subsection. Again, this observation agrees
with (5.14).

16Note that this mathematical result of [30] is actually valid for G = SO(3). However,
α continues to take values in u(1) when G = SO(3) instead of SU(2); consequently, when
G = SO(3), our computations will still lead us to (5.14) — i.e., (5.14) also holds for
G = SO(3). Hence, we can still check against this mathematical result.
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The Gromov–Taubes and the Casson–Walker–Lescop invariants

Let us also mention that it was argued in [32] that χ(HF∗(M)) =
λCWL(M), where λCWL(M) is the Casson–Walker–Lescop invariant of
M [33]; for example, one has χ(HF∗(T3)) = λCWL(T3) = +1. Hence, (5.14)
will imply that for symplectic X = M × S1,

Gr(c1(E)) = λCWL(M). (5.15)

Consequently, since λCWL(M) = 0 if b1(M) > 3, it will mean that

Gr(c1(E)) = 0, if b+2 (X) > 3. (5.16)

Notice that (5.15) and (5.16) indeed agree with our analysis of X = Σg × T2

above.

5.5 The monopole Floer homology and SW invariants of
three-manifolds

A relation between the instanton and monopole Floer homologies of M

Again, let us consider X = M × S1 to be symplectic, where M is a com-
pact, oriented, three-manifold with b1(M) = b+2 (X) > 1. In this case, the
relation (5.14) also leads to an important implication for a SW or monopole
Floer homology groupHM∗(Y, sY ) of a general three-manifold Y with Spinc-
structure sY described by Kronheimer in [34].17 This can be understood as
follows.

First, let us denote SW(X, s) as the SW invariant of X determined by a
Spinc-structure s on X; let us also denote SW(M, sM ) as the SW invariant
of M (which “counts” the number of solutions of the three-dimensional SW
equations on M obtained by dimensional reduction along S1 of the original
four-dimensional SW equations on X) determined by a Spinc-structure sM
on M ; then, one can prove that SW(X,π−1(sM )) = SW(M, sM ), where π :
M × S1 →M [34]. Second, note that χ(HM∗(M, sM )) = SW(M, sM ) [36].
Third, recall that as explained in footnote 16, (5.14) is also valid for when
the gauge group underlying HF∗(M) is SO(3). Altogether, this means that

17Other variants of this monopole homology group were subsequently defined and con-
structed by Kronheimer–Mrowka in [35]; they were also studied in detail by Kutluhan–
Taubes in [6] for when Y = M , b1(M) > 1 and X = M × S1 is symplectic — in other
words, our case at hand.
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(5.14), in light of (4.21), will imply that up to a sign, we have an equivalence

χ(HM∗(M,π(ŝ))) = χ(HFw∗ (M)) (5.17)

between the Euler characteristics of the monopole and instanton Floer
homologies of M ! Here, w = w2(EM ) is the second SW class of the SO(3)
gauge bundle EM over M , and according to the Main Theorem of [6] and
Section 40.1 of [35], the first Chern class of the projection π(ŝ) to M of
the Spinc-structure ŝ on X is necessarily non-torsion. (Recall that c1(ŝ) =
c1(E) − 1

2c1(K), where K is the canonical line bundle of X, and c1(E) is
the Poincaré-dual of the fundamental class of the connected, non-multiply
covered pseudo-holomorphic curve Σ with positive self-intersection.)

From (5.17), it is also clear that if the monopole Floer homology HM∗(M,
ŝM ) is nontrivial for some Spinc-structure ŝM whose first Chern class is non-
torsion, then the instanton Floer homology HFw∗ (M) is nontrivial too. In
the case that M = Σg × S1 with g ≥ 1, this result is just a generalization of
Conjecture 6.3 in [34] proposed by Kronheimer for g = 0.

In fact, for M = Σg × S1 with g ≥ 1, it was proved in [37] that HFw∗ (M)
is isomorphic to the quantum cohomology QH∗(MΣg) of the moduli space
MΣg of flat SO(3)-connections on Σg with nontrivial second SW class w;
it was also proved in [38] that HM∗(M,π(ŝ)) is isomorphic to the quan-
tum cohomology QH∗(sr(Σg)) of the r-symmetric product sr(Σg) of the
Riemann surface Σg, where the integer r is related to the choice of the Spinc-
structure π(ŝ); since it is shown in [39] that the space MΣg can be smoothly
linked to the space sr(Σg), one ought to be able to identify HFw∗ (M) with
HM∗(M,π(ŝ)) such that (5.17) will hold. In short, for M = Σg × S1 with
g ≥ 1, (5.17) is found to be consistent with expectations from existing math-
ematical results.

Topology of the moduli space of flat SU(2)-connections on M

Another implication of (5.17) can be understood as follows. First, note that
SW(X4, ŝ) vanishes identically if the four-manifold X4 has positive scalar
curvature and b+2 (X4) > 1 [23]; in our case, this will mean that SW(X,
ŝ) = SW(M,π(ŝ)) = χ(HM∗(M,π(ŝ))) = 0 identically if M has positive
scalar curvature. Second, note that χ(HF∗(M ; ΣM ;α)) = χ(HFw=0∗ (M))
if we send the effective value of α to +1; hence, from (5.12), we have
χ(HFw=0∗ (M)) =

∑
x ±1, where the x’s are the isolated points that span

the zero-dimensional space Mf of flat (ordinary) SU(2)-connections on M ;
this just reflects the established fact that χ(HFw=0∗ (M)) can also be inter-
preted as the Euler number χ(Mf ) [40]. By these two points, (5.17) will
then mean that χ(Mf ) is zero if M has positive scalar curvature — in other
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words, if M has positive scalar curvature, Mf is either empty or spanned
by an equal number of positively and negatively oriented points.

Implications for the SW invariants of M

Another useful thing to note is that it was pointed out in [32] that λCWL(M)
in (5.15) can be expressed as a sum of all coefficients of the Reidemeister–
Milnor torsion; in turn, by the work of Meng–Taubes in [41], this sum is
given by a certain combination of SW invariants of M called the SW series
SW(ti), where the ti’s are variables whose details will not be important.
Consequently, by (5.15) and (4.21), we have

SW(M,π(ŝ)) =
∑
x∈H

∑
sM |c̄1(sM )=x

SW(M, sM ) (5.18)

up to a sign, where H = H2(M,Z)/Tor(H2(M,Z)) is the torsion-free part
of the second integral cohomology of M , c̄1(sM ) is the projection of c1(sM )
to H, and c1(π(ŝ)) ∈ H.

Once again, we can validate (5.18) for M = Σg × S1 (or X = Σg × T2)
with g ≥ 1. As we saw in Section 5.4, the magnitude of Gr(c1(E)) and
thus that of SW(X, ŝ) = SW (M,π(ŝ)) on the LHS of (5.18) is equal to 1
and 0 for g = 1 and g > 1, respectively. At the same time, it is known
that the SW series and hence the RHS of (5.18) is given by SW(1), where
SW(t) = (t1/2 − t−1/2)2g−2; in other words, the magnitude of the RHS of
(5.18) is 1 and 0 for g = 1 and g > 1, too. Therefore, for M = Σg × S1 with
g ≥ 1, (5.18) is found to be consistent with all known mathematical results.

A Non-vanishing theorem for the monopole Floer homology of M

Now consider X = M × S1 to be general with b+2 (X) = b1(M) > 1,
where M is a compact, oriented three-manifold. Let Σ be an oriented two-
surface of genus g > 0 that is smoothly embedded in M ; then, the normal
bundle of Σ inX is trivial,18 i.e., Σ ∩ Σ = 0. As such, by SW(X,π−1(sM )) =
SW(M, sM ), and by Theorem 1.3 of [3] — which generalizes (3.7) to X with

18Consider the restriction TM |Σ to Σ of the tangent bundle TM of M ; it splits as
TM |Σ = TΣ ⊕ TN , where TΣ and TN are the tangent and normal bundles of Σ in M ,
respectively. Note that TM is oriented and so is TΣ; hence, TN is also orientable.
However, an orientable real line bundle such as TN must be trivial; therefore, the normal
bundle of Σ in X is also trivial, and it is given by Σ × R2.
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b1 �= 0 — we have

|〈c1(sM ), [Σ]〉| ≤ (2g − 2) (5.19)

if SW(M, sM ) �= 0. Hence, since χ(HM∗(M, sM )) = SW (M, sM ), it will
mean that

HM∗(M, sM ) �= 0 (5.20)

as long as (5.19) holds. For c1(sM ) non-torsion, this claim is just Corollary
40.1.2 of [35].

5.6 “Ramified” generalizations of various relations between
Donaldson and Floer theory

We shall now formulate, purely physically, “ramified” generalizations of var-
ious formulas presented by Donaldson and Atiyah in [10, 11] that relate
ordinary Donaldson and Floer theory on four-manifolds with boundaries.

“Ramified” Donaldson invariants with values in knot homology groups from
“ramified” instantons

To this end, let general X = B × R≥0, where B can be interpreted as the
boundary of X, and the half real-line R≥0 can be interpreted as the “time”
direction. Let the surface operator Σ = KB × R≥0, where KB is an arbi-
trary knot embedded in B. In such a case, there exists in the supersymmetry
algebra a Hamiltonian H which generates translations along R≥0, and by
replacing S1 with R≥0 in our earlier explanation, we find that the “ramified”
Donaldson–Witten theory can be interpreted as a supersymmetric quantum
mechanical sigma-model with worldline R≥0, target manifold A ′

B/G′
B —

the space of all gauge-inequivalent classes of “ramified” SU(2)-connections
A ′
B on B, and potential hB = 1

2

∫
B Tr (A ′

B ∧ dA ′
B + 2

3A ′
B ∧ A ′

B ∧ A ′
B) —

the Chern–Simons functional of A ′
B. In particular, A ′

B can be regarded
a gauge connection of an SU(2)-bundle over B\KB whose holonomy around
the meridian of KB is given by exp(2πiα), while the Q-cohomology of the
sigma-model — which is furnished by the supersymmetric ground states that
correspond to the critical points of hB — can, in fact, be identified with the
“ramified” instanton Floer homology HF∗(B;KB;α).

According to the general ideas of quantum field theory, when the the-
ory is formulated on such an X, one must specify the boundary values
of the path-integral fields along B. Let us denote ΦB to be the restric-
tion of these fields to B; then, in the space H of functionals of the ΦB,
specifying a set of boundary values for the fields on B is tantamount to
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selecting a functional Ψ(ΦB) ∈ H . Since the Q-cohomology of the sigma-
model is annihilated by H, i.e., it is time-invariant, one can take an arbitrary
time-slice in X and study the quantum theory formulated on B instead; in
this way, Ψ(ΦB) ∈ H can be interpreted as a state in the Hilbert space H
of the quantum theory on B. As a result, via a state-operator mapping of
the topological field theory, the correlation function “with boundary values
of the fields determined by Ψ” will be given by

〈O1 . . .On〉Ψ(ΦB) =
∫

DΦ e−SE O1 . . .On · Ψ(ΦB). (5.21)

Since the theory ought to remain topological in the presence of a boundary
B, according to our discussion in Section 2.3, it must be that {Q,Oi] = 0 =
{Q,Ψ]. Moreover, if Ψ = {Q, . . . ], the fact that {Q,Oi] = 0 implies that
(5.21) will also be zero. Thus, (5.21) depends on Ψ via its interpretation
as a Q-cohomology class only, and since Ψ is associated with the quantum
theory on B, we can identify Ψ as a class in the “ramified” instanton Floer
homology HF∗(B;KB;α). Altogether, since the Oi’s represent either the
operators I ′0(p) or I ′2(S) in (2.24)-(2.25), by (2.27), we find that (5.21) will
represent a “ramified” Donaldson invariant with values in HF∗(B;KB;α) —
a knot homology group from “ramified” instantons. This is just a “ramified”
generalization of the ordinary relation between Donaldson and Floer theory
on X described by Donaldson in [10].

Interpretation as a scattering amplitude of “three-one branes”

Now, let us assume that the total boundary ∂X of X consists not of a single
boundary B, but a disjoint union of boundaries Bj , j = 1, . . . , r; i.e.,

∂X =
r⊔
j=1

Bj . (5.22)

Let the surface operator Σ = K∂X × (X\∂X). If one is to choose the
Ψ(ΦBj )’s appropriately such that one can replace all the Oi’s with the iden-
tity operator 1 and yet have a non-vanishing path-integral, the resulting
correlation function

〈1〉Ψ(ΦB1
);...;Ψ(ΦBr )

=
∫

DΦ e−SE Ψ(ΦB1) · · ·Ψ(ΦBr) (5.23)

can be interpreted as a scattering amplitude of incoming and outgoing
“three-one branes” (the knot KBj being the one-brane with “magnetic”
charge α that is embedded in the three-brane Bj).
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At any rate, according to the general ideas of quantum field theory, one
can also write

〈1〉Ψ(ΦB1
);...;Ψ(ΦBr )

=
∫

DΦ e−SE Ψ(Φ∂X). (5.24)

As such, (5.23) can be expressed as

∫
DΦ e−SE Ψ(Φ∂X) =

∫
DΦ e−SE Ψ(ΦB1) · · ·Ψ(ΦBr). (5.25)

In turn, this implies the relation

HF∗(∂X;K∂X ;α) = HF∗(B1;KB1 ;α) ⊗HF∗(B2;KB2 ;α)

⊗ · · · ⊗HF∗(Br;KBr ;α) (5.26)

for knot homology groups from “ramified” instantons — which can be inter-
preted as a “ramified” generalization of equation (6.5) of [10] — that
describes a scattering amplitude of “three-one branes”.

A Poincaré duality map of knot homology groups from “ramified” instantons

Note that it is known [42] that one can always decompose a general X
along a homology three-sphere Y into two parts X+ and X−, as shown in
figure 1 below. Let Σ± be the parts of the surface operator Σ which are
embedded in X±, and let Σ+

K = KY and Σ−
K = KȲ be their corresponding

knot components embedded in Y and Ȳ , respectively, where Ȳ and KȲ are
oppositely oriented copies of Y and KY .

Now, consider the sector of the theory with “ramified” instanton number
k′ given in (4.5), i.e., the Nψ = 0 sector. The relevant non-vanishing observ-
able is then the partition function 〈1〉k′ . Since X = X+ ∪Y X−, according

Figure 1: X = X+ ∪Y X−.
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to the general ideas of quantum field theory, one can evaluate 〈1〉k′ as a
path-integral overX+ towards Y followed by a second path-integral overX−
away from Ȳ . Specifically, an independent path-integral over X+ towards Y
will determine a state 〈+| in the Hilbert space HY of the quantum theory on
Y , while an independent path-integral over X− away from Ȳ will determine
a state |−〉 in the Hilbert space HȲ of the quantum theory on Ȳ . As HȲ is
canonically the dual of HY , we have

〈+|−〉 = 〈1〉k′ . (5.27)

According to our above discussions, the independent path-integral over
X+ will be given by

〈+| =
∫

DΦ e−SE Ψ(ΦY ), (5.28)

while the independent path-integral over X− will be given by

|−〉 =
∫

DΦ e−SE Ψ(ΦȲ ), (5.29)

where Ψ(ΦY ) and Ψ(ΦȲ ) can be interpreted as classes inHF∗(Y ;KY ;α) and
HF∗(Ȳ ;KȲ ;α), respectively. At the same time, as explained in Section 4,
we have 〈1〉k′ ∈ Z. Altogether, via (5.28) and (5.29), one can interpret (5.27)
as a Poincaré duality map

HF∗(Y ;KY ;α) ⊗HF∗(Ȳ ;KȲ ;α) → Z (5.30)

of knot homology groups from “ramified” instantons. Note that (5.30) can
be interpreted as a “ramified” generalization of a Poincare duality map of
ordinary instanton Floer homology groups described by Atiyah in [11].

6 Generalization involving multiple surface operators

Notice that our physical derivation of Taubes’ result in Section 4 involved
only a single, connected surface operator Σ that is nontrivially embedded
in X with Σ ∩ Σ > 0. Let us now revisit that section and consider the case
where one has multiple surface operators, which are nevertheless similar
to Σ.
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A disconnected pseudo-holomorphic curve

Let us start by considering the “total” surface operator

e =
∑
m

Σm, (6.1)

where Σm — like Σ characterized earlier by (4.1) and (4.2) — is selected
from the b+2 number of homology cycles in the basis {Ui}i=1,...,b2 which has
a purely diagonal, unimodular intersection matrix. In particular, we have

Σi ∩ Σj = 0, when i �= j, (6.2)

and therefore, the “total” surface operator e consists of disjoint, non-multiply
covered components furnished by the “member” surface operators Σm, which
are themselves connected pseudo-holomorphic curves in X. Consequently, e
is also a pseudo-holomorphic curve, albeit a disconnected one, and since the
Poincaré duals of the Σm’s are such that

δΣm = δ+Σm (6.3)

for all m, it will mean that
e ∩ e > 0. (6.4)

The corresponding moduli space of “ramified” SU(2)-instantons

With the insertion of multiple disjoint surface operators as represented
by the “total” surface operator e, the path-integral of the topological SU(2)
gauge theory localizes onto supersymmetric configurations which satisfy
(cf. (6.3))

F+
e = 2πi

∑
m

αmδΣm , (6.5)

where αm is the “classical” parameter of the corresponding “member” sur-
face operator Σm, and F+

e can be interpreted as an imaginary-valued cur-
vature two-form of some complex line bundle with a self-dual u(1)-valued
connection Ae.

Since the surface operators are disjoint, the holonomies of the gauge
field around small circles linking the various Σm’s will not “mix” with one
another. As such, one can rewrite (6.5) as a set of relations

F+
m = 2πiαmδΣm , for m = 1, 2, . . . , (6.6)

where F+
m can be interpreted as an imaginary-valued curvature two-form of

some complex line bundle with a self-dual u(1)-valued connection Am.
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In other words, the path-integral localizes onto the moduli space M′ of
“ramified” SU(2)-instantons spanned by field configurations which satisfy
the relation (6.5); the equivalent relations in (6.6) then imply that M′ can
actually be expressed as

M′ =
⊗
m

M′
m, (6.7)

where M′
m is the moduli space spanned by field configurations which satisfy

the mth relation in (6.6).

Similar to the case of a single surface operator, Nψ is given by the
expression

Nψ = 8k′ − 3
2(χ+ σ), (6.8)

although now, the “ramified” instanton number k′ is given by

k′ = k + 2
∑
m

αmlm −
∑
m

α2
m(Σm ∩ Σm). (6.9)

In particular, k =
∫
X c2(E) and lm = − ∫

Σm
c1(L), and according to our dis-

cussion surrounding (4.4), the value of k — for any particular choice ofX and
set of surface operators with parameters {αm} and positive self-intersection
numbers {Σm ∩ Σm} — determines the values of all the lm’s, and vice versa.
Thus, from (6.9), we find that the value of k′ is in one-to-one correspondence
with the set {lm}.

The Nψ = 0 sector

Let us now consider the sector of the SU(2) theory where k′ is as given
in (4.5); i.e., the sector where Nψ = dim(M′) = 0. Since electric–magnetic
duality in the low-energy U(1) theory implies that there is a one-to-one
correspondence between c1(L) and λ, there is, according to our preceding
discussion, a one-to-one correspondence between k′ and s = −iλ for any
particular choice of X and set of surface operators. Then, by sending the
effective value of αm to +1 for every m whence all the surface operators
become “ordinary”, and by repeating the arguments behind (4.6)–(4.17)
whilst noting the fact that if M′ of (6.7) is zero-dimensional, so are the
spaces M′

m, we get

SW (s) =
∑
x

q(x), (6.10)

where

q(x) =
∏
m

sign (detDm). (6.11)
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Here, the x’s are the points which span the zero-dimensional space He of
solutions to the relation

c1(Ee) = δe, (6.12)

where Ee is a non-trivial complex line bundle with a self-dual u(1)-valued
connection Ae whence c1(Ee) · c1(Ee) > 0; Dm for all m is a first-order elliptic
operator whose kernel is the tangent space to the space Hm of solutions to
the relation

c1(Em) = δΣm , (6.13)

where Em is a non-trivial complex line bundle with a self-dual u(1)-valued
connection Am whence c1(Em) · c1(Em) > 0; and

Ee = ⊗mEm. (6.14)

Note that (6.11)–(6.14) mean that one can rewrite (6.10) as

SW(s) = Gr(c1(Ee)), (6.15)

where Gr(c1(Ee)) is the Gromov–Taubes invariant defined in [4] for a dis-
connected, non-multiply covered, pseudo-holomorphic curve e whose funda-
mental class is Poincaré dual to c1(Ee).

Arriving at Taubes’ result

Before we proceed further, note that the analysis carried out in Section 3.2
can be generalized to the present case with multiple disjoint surface opera-
tors: one simply replaces “αδΣ” in the relevant analysis therein with
“
∑

m αmδΣm”. With this in mind, note that since (6.15) is valid for X
of SW simple-type, i.e., λ2 − (2χ+ 3σ)/4 = de = −c1(L2

d)[e] + e ∩ e = 0, we
find that the generalizations of (3.12), (3.10) and s′ = s − δe will imply that
the LHS of (6.15) is SW(s − δe). In fact, since the non-vanishing contri-
butions to the RHS of (6.15) localize around supersymmetric field config-
urations which obey (6.12), the LHS of (6.15) can actually be written as
SW(s − c1(Ee)); as a result, we have

SW (s − c1(Ee)) = Gr(c1(Ee)). (6.16)

As each Σm is a connected pseudo-holomorphic curve with positive self-
intersection, it must satisfy (4.20) and (4.1) simultaneously. This implies
that we necessarily have s = 1

2c1(L
2
d) = 1

2c1(K), as in the case of a single
surface operator. By noting that as b+2 > 1, the ordinary SW invariants
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satisfy SW(s̄) = ±SW (−s̄) for any ordinary Spinc-structure s̄ [23], we can
also write (6.16) as

SW (ŝe) = ±Gr(c1(Ee)), (6.17)

where
ŝe = 1

2c1(Le), (6.18)

and
Le = K−1 ⊗ E2

e . (6.19)

Moreover, since c1(L2
d) = c1(K), by (6.2) and (6.14), we find that the con-

dition de = 0 can also be expressed as

de =
∑
m

dm = 0, (6.20)

where
de = −c1(K) · c1(Ee) + c1(Ee) · c1(Ee), (6.21)

and
dm = −c1(K) · c1(Em) + c1(Em) · c1(Em). (6.22)

Because (6.21) and (6.22) are the non-negative dimensions of He and Hm as
defined mathematically in [22], we see that (6.20) is indeed consistent with
the fact that He and therefore all the Hm’s are zero-dimensional as implied
by Nψ = 0. In turn, the fact that dm = 0 implies, via (6.22) and (4.1), that
the genus gm of the “member” pseudo-holomorphic curve represented by
c1(Em) will be given by

gm = 1 + c1(Em) · c1(Em). (6.23)

Finally, note that (6.17)–(6.23) are precisely Taubes’ theorem [4] equat-
ing the ordinary SW invariants to the Gromov–Taubes invariants for dis-
connected curves in X! This implies that the novel mathematical identities
obtained in the previous section can be generalized to hold for disconnected,
non-multiply-covered, pseudo-holomorphic curves in X with positive self-
intersection, too. Nevertheless, in favor of brevity, we will not verify this
explicitly.

7 Further application of our physical insights and results

Let us now, in this final section, apply some of our physical insights and
results obtained hitherto to 1). elucidate certain key properties of the knot
homology groups from “ramified” instantons discussed in Section 5.3 and
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Section 5.6; 2). tell us more about the monopole Floer homology groups
discussed in Section 5.5; 3). tell us more about the ordinary SW invariants
of a compact, oriented, symplectic four-manifold with b1 = 0 and b+2 > 1.

7.1 Properties of knot homology groups from “ramified”
instantons

Metric-independence

Let us consider a decomposition of a general X along two disjoint, compact,
connected, oriented three-manifolds Y0 and Y1 into three parts X+, X−
and X ′, as shown in figure 2 below. Let Σ± and Σ′ be the parts of the
surface operator Σ which are embedded in X± and X ′, and let Σ+

K = KY0 ,
Σ−
K = KȲ0

∪KY1 and Σ′
K = KY1 be their corresponding knot components

embedded in Y0, Ȳ0 and Y1, respectively, where KB indicates the oriented
knot embedded in the oriented three-manifold B such that the holonomy of
the gauge field around its meridian is exp(2πiα), and KB̄ and B̄ are just
oppositely oriented copies of KB and B.

Let us now, as was done for a similar case in Section 5.6, compute the
path-integral over the middle segment labeled by X−. In this case, there
will be two sets of boundary values of the fields: one at Ȳ0, and the other
at Y1. As such, according to the general ideas in quantum field theory, the
path-integral will be given by

Ψ(Φ′) =
∫

ΦY1
=Φ′

DΦ e−SE Ψ(ΦȲ0
). (7.1)

An explanation of the above formula is in order. First, ΦB indicates the
restriction of the path-integral fields to B; correspondingly, Ψ(ΦB) is a
functional of ΦB which determines the boundary values of the fields on B.
Second, the path-integral is computed over all fields Φ which when restricted

Figure 2: X = X+ ∪Y0 X
− ∪Y1 X

′.
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to Y1, have values Φ′; this takes care of the boundary values on Y1; according
to our discussions in Section 5.6, the insertion of the operator Ψ(ΦȲ0

) will
then take care of the boundary values on Ȳ0. Third, we have assumed the
boundary values of the fields on Ȳ0 and therefore Ψ(ΦȲ0

), to be a priori
determined, while on the other hand, we have assumed the boundary values
of the fields on Y1 and therefore Φ′, to be a priori undetermined. As such,
the path-integral will depend on Φ′, and therefore, it can also be interpreted
as a functional Ψ(Φ′) of Φ′, as written in (7.1).

Note at this point that the integration measure DΦ is invariant under
supersymmetry; in other words, it is Q-closed. Recall also from (2.20) that
SE = {Q, . . . } (since, as explained in footnote 13, we are considering sur-
face operators with η = 0, while the Θ-angle can always be set to zero via
an irrelevant chiral rotation of the massless fermions). Altogether, since
Q2 = 0, it will mean that if {Q,Ψ(ΦȲ0

)] = 0, then {Q,Ψ(Φ′)] = 0, and if
Ψ(ΦȲ0

) = {Q, . . . ], then Ψ(Φ′) = {Q, . . . ], too. Therefore, (7.1) represents a
map H : Ψ(ΦȲ0

) → Ψ(Φ′) of Q-cohomology classes. In addition, as explained
in Section 2.3, due to the stress-tensor Tμν of the underlying physical theory
being Q-exact, H is necessarily invariant under metric deformations of X.

Now, let us decompose X along three disjoint, compact, connected, ori-
ented three-manifolds Y0, Y1 and Y2 into four parts X+, X−, X ′ and X ′′,
as shown in figure 3 below. Let Σ±, Σ′ and Σ′′ be the components of
the surface operator Σ which are embedded in X±, X ′ and X ′′, and let
Σ+
K = KY0 , Σ−

K = KȲ0
∪KY1 , Σ′

K = KȲ1
∪KY2 and Σ′′

K = KȲ2
be their cor-

responding knot components embedded in Y0, Y1, Y2 and their oppositely
oriented copies, respectively. What we would like to do next is to compute
the path-integral over the region X− ∪Y1 X

′. If we assume the boundary
values of the fields on Y2 — like those on Ȳ0 — to be a priori determined,
the path-integral will be given by

Z(X− ∪Y1 X
′) =

∫
ΦY1

=Φ′
DΦ e−SE Ψ(ΦY2) · Ψ(ΦȲ0

). (7.2)

Figure 3: X = X+ ∪Y0 X
− ∪Y1 X

′ ∪Y2 X
′′.
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That being said, according to the general ideas of quantum field theory, one
can also compute Z(X− ∪Y1 X

′) as a path-integral over X− — away from
Ȳ0 and towards Y1 — followed by a second path-integral over X ′ — away
from Ȳ1 and towards Y2. Thus, from our above discussion leading to (7.1),
and (7.2), we can write

∫
ΦY1

=Φ′
DΦ e−SE Ψ(ΦY2) ·

∫
ΦY1

=Φ′
DΦ e−SE Ψ(ΦȲ0

)

=
∫

ΦY1
=Φ′

DΦ e−SE Ψ(ΦY2) · Ψ(ΦȲ0
), (7.3)

where we have made use of the fact that specifying the a priori undetermined
boundary values of the fields on Ȳ1 is equivalent to specifying those on its
mirror Y1. Notice that (7.3) means that

H(Ψ(ΦY2)) · H(Ψ(ΦȲ0
)) = H(Ψ(ΦY2) · Ψ(ΦȲ0

)), (7.4)

i.e., the map H is a homomorphism.

As per our discussions in Section 5.6, we find that Ψ(ΦȲ0
), Ψ(ΦY1) and

Ψ(ΦY2) will correspond to classes in HF∗(Ȳ0;KȲ0
;α), HF∗(Y1;KY1 ;α) and

HF∗(Y2;KY2 ;α), respectively. Also, according to our discussions in Sec-
tion 5.6, the state Ψ(ΦȲ0

) ∈ HȲ0
is in fact dual to the state Ψ(ΦY0) ∈ HY0

(where HB refers to the Hilbert space of the quantum theory on B), i.e., we
can identify HF∗(Ȳ0;KȲ0

;α) with HF∗(Y0;KY0 ;α). Hence, the map (7.1)
can also be interpreted as the following homomorphism

H : HF∗(Y0;KY0 ;α) → HF∗(Y1;KY1 ;α) (7.5)

on knot homology groups from “ramified” instantons. Moreover, X− is
a connected, oriented manifold-with-boundary, and it contains a properly
embedded oriented surface-with-boundary Σ−, whence we have an
orientation-preserving diffeomorphism of pairs

r : (Ȳ0,KȲ0
) ∪ (Y1,KY1) → (∂X−, ∂Σ−). (7.6)

In other words, we have a cobordism from (Y0,KY0) to (Y1,KY1) — that
underlies the definition of the path-integral over X− — which gives rise to
the homomorphism H of (7.5); since H is invariant under metric deforma-
tions of X, it will depend only on the diffeomorphism class of the cobordism,
albeit up to a sign; this sign is determined by a choice of the zero-modes
of (A′

μ, ψμ, χ
+
μν) in the integration measure of (7.1), i.e., a choice of ori-

entation for the line ΛmaxH1(X−; R) ⊗ ΛmaxH2,+(X−; R) ⊗ ΛmaxH1(Y1; R).
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This result has also been proved via a distinct mathematical approach by
Kronheimer and Mrowka as Proposition 3.27 in [5]. In turn, this means
that HF∗(M ;K;α) for some compact, connected, oriented three-manifold
M with an oriented knot K embedded in it, will be independent of the
metric on M .

The identity map

Let us consider the setup in figure 2 again. If Y1 = Y0 and KY1 = KY0 , the
path-integral over X−, that is (7.1), will, in this case, be given by

Ψ(ΦY0) =
∫

ΦY0

DΦ e−SE Ψ(ΦȲ0
) =

∫
ΦY0

DΦ e−SE (7.7)

(since as mentioned above, specifying the boundary values of the fields on
Ȳ0 is equivalent to specifying those on its mirror Y0). Because (7.7) is a
path-integral without operator insertions that, as explained earlier, is also
invariant under metric deformations of X, we can compute it as e−Ht [27] in
the limit t→ ∞, where t is the (stretched) interval of X−. However, since
H acts as zero on the Q-cohomology classes, (7.7) is always equal to 1 in
our context; in other words, if we label H in (7.5) as H(Y1;KY1 , Y0;KY0),
we have from (7.7)

H(Y0;KY0 , Y0;KY0) = 1; (7.8)

a relation which can be thought to arise from a trivial cobordism from
(Y0,KY0) to (Y0,KY0) furnished by (X−,Σ−). This result is also part of
Proposition 3.27 in [5].

Composition of cobordisms and maps

Let us consider the setup in figure 3 again, but now, with the boundary
values of the fields on Y1 determined. What we would like to do next is to
compute the path integral over the segments spanned by X− and X ′. Note
that from the general ideas of quantum field theory, one can either compute
this as a single path-integral starting from Ȳ0 and ending at Y2, or as a path-
integral over X− — starting at Ȳ0 and ending at Y1 — followed by another
path-integral over X ′ — starting at Ȳ1 and ending at Y2. Consequently, we
can write

∫
ΦY2

DΦ e−SE Ψ(ΦȲ1
) ·

∫
ΦY1

DΦ e−SE Ψ(ΦȲ0
) =

∫
ΦY2

DΦ e−SE Ψ(ΦȲ0
).

(7.9)
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By the fact that the Hilbert spaces HB̄ and HB are canonically dual to each
other whence one can identify Ψ(ΦB̄) with Ψ(ΦB), (7.9) will then mean that

H(Y2;KY2 , Y1;KY1) · H(Y1;KY1 , Y0;KY0) = H(Y2;KY2 , Y0;KY0); (7.10)

a relation that can be thought to arise from a composite cobordism from
(Y0,KY0) to (Y1,KY1) to (Y2,KY2) furnished by (X−,Σ−) and (X ′,Σ′),
respectively. This result is also part of Proposition 3.27 in [5].

If we let (Y2,KY2) = (Y0,KY0), then (7.8) and (7.10) will imply that

H(Y1;KY1 , Y0;KY0) = H−1(Y0;KY0 , Y1;KY1), (7.11)

i.e., H is invertible and therefore, it is also an isomorphism.

7.2 A vanishing theorem for the monopole Floer homology of
three-manifolds

Consider X = M × S1 to be symplectic with b+2 (X) = b1(M) > 1, where
M is a compact, oriented three-manifold. Recall from our discussions in
Section 4 that in our case, Gr(c1(E)) only counts (with signs) pseudo-
holomorphic curves Σ — with Poincaré-dual c1(E) — which are nontrivially
embedded inX such that c1(E) · [ωsp] > 0, where [ωsp] is the Poincaré-dual of
the symplectic two-form ωsp on X. Consequently, Gr(c1(E)) = 0 identically
if c1(E) · [ωsp] ≤ 0, and by (5.14) and (5.17), it will mean that the monopole
Floer homology groups HM∗(M,π(ŝ)) ought to vanish if c1(E) · [ωsp] ≤ 0;
here, π : M × S1 →M , and the first Chern class of the Spinc-structure ŝ on
X is given by 2c1(ŝ) = 2c1(E) − c1(K), where K is the canonical line bundle
on X. Note that this easy-to-reach but nevertheless important conclusion
aboutHM∗(M,π(ŝ)) has also been derived via a distinct and highly-involved
mathematical approach in the Main Theorem of [6], where “e” and “se”
therein correspond to π(c1(E)) and π(ŝ) herein.

Mathematical versus physical computation

In the mathematical proof of the Main Theorem in [6] by Kutluhan and
Taubes, the above conclusion about the vanishing of HM∗(M,π(ŝ)) was
obtained via a head-on analysis of the three-dimensional SW equations on
M . In particular, the equations were checked for the presence or absence
of sensible solutions (which directly generate HM∗(M,π(ŝ))) under various
conditions; no reference to other related invariants of M or X were made
at all.
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On the other hand, in our computation leading to the above conclusion,
we relied solely on the physically derived relations (5.14) and (5.17) — which
connect the topological invariants in various dimensions to one another —
without appealing to the three-dimensional SW equations on M . Thus,
our physical computation provides, in this manner, a completely new way
of deriving and understanding the vanishing of HM∗(M,π(ŝ)) when c1(E) ·
[ωsp] ≤ 0.

7.3 SW invariants determined by the canonical basic class

Let X be a compact, oriented, symplectic four-manifold with b1 = 0 and
b+2 > 1. Recall from (3.12) and (3.10) that for s = 1

2c1(K), we have

SW(s − δC) = SW(s) (7.12)

if and only if dK = −c1(K)[C] + C ∩ C = 0, and according to (4.24), C can
be a pseudo-holomorphic curve in X.

As explained earlier, (5.8) implies that c1(K) is the Poincaré dual of some
pseudo-holomorphic curve in X. Let C be such a curve, i.e., δC = 1

2c1(K
2);

as required, dK = 0. Substituting this in (7.12), we find that

SW(sc) = SW(s), (7.13)

where sc = 1
2c1(K

−1) is the canonical Spinc-structure.

Hence, from (5.6), (5.9) and (7.13), we conclude that

SW(sc) = +1 (7.14)

on X. This easy-to-reach but nevertheless important conclusion about
SW(sc) has also been proved via a highly involved and distinct mathematical
approach in Proposition 2.1 of article 4 in [4].

Mathematical versus physical computation

In the mathematical computation of (7.14) in Proposition 2.1 of article
4 in [4], the magnitude of SW(sc) is determined to be unity because the
SW equations are shown to have a unique solution; the positive sign arises
because the kernel of an elliptic operator associated with the linearization
of the equations, is trivial.

On the other hand, our physical computation of (7.14) depends on the
following: first, (7.13), which leads to (7.14), is a consequence of (5.8), which
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implies that there is a pseudo-holomorphic curve in X that is Poincar’e dual
to c1(K); second, the positive sign in (7.14) can be seen to originate from
(5.9), i.e., the fact that the number of connected, non-multiply covered,
pseudo-holomorphic curves Σ ⊂ X of positive self-intersection which are
“positively oriented” is greater than the number which are “negatively ori-
ented” by one. Thus, our physical computation provides, in this manner, a
completely new way of deriving and understanding (7.14).

7.4 About the SW invariants of Kähler manifolds

What if X in Section 7.3 is Kähler? Then, one can say the following.
First, since every compact, oriented, Kähler manifold is necessarily sym-
plectic, (7.14) will apply to X as well. This observation is just Theorem
3.3.2 of [43]. Second, on any Kähler manifold such as X where the almost
complex structure J is necessarily integrable, all points in the space H of
pseudo-holomorphic curves have positive orientation; i.e., all points in H
contribute as +1 in the computation of Gr(c1(E)) [21]. In light of (5.9) —
i.e., Gr(c1(E)) = +1 — this means that H consists of a single point only.
Third, note that via (7.13) and (5.6), we have SW(sc) = Gr(c1(E)). There-
fore, this means that from each solution of the ordinary SW equations on X
determined by sc, one can derive a pseudo-holomorphic curve in X whose
fundamental class is Poincaré dual to c1(E). In other words, the number
of points in the moduli space Msc of solutions of the ordinary SW equa-
tions determined by sc equals the number of points in H. Thus, according
to the second statement above, Msc consists of a single point only. This
easy-to-reach but nevertheless important conclusion about Msc has also
been proved via a highly-involved and distinct mathematical approach in
Proposition 3.3.1 of [43].

Mathematical versus physical computation

In the mathematical computation of (7.14) for Kähler manifolds in Theo-
rem 3.3.2 of [43], the magnitude of SW(sc) is again determined to be unity
because the SW equations are shown in Proposition 3.3.1 of [43] to have
a unique solution; the positive sign arises because a relevant map between
vector spaces defined by a certain “resonance operator” is orientation-
preserving.

On the other hand, the basis of our physical computation of (7.14) for
symplectic and thus Kähler manifolds, is as described at the end of the
previous subsection. Moreover, in the case where X is Kähler, one can,
from our physical computation, understand the uniqueness of the solution
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of the SW equations to be a consequence of the fact that there is just
one, connected, non-multiply covered pseudo-holomorphic curve of positive
self-intersection in X that is nontrivial in homology. Thus, our physical
computation provides, in this manner, a completely new way of deriving and
understanding the SW invariants of “admissible” Kähler four-manifolds.
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