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Abstract

The problem of quantizing a symplectic manifold (M, ω) can be for-
mulated in terms of the A-model of a complexification of M . This leads
to an interesting new perspective on quantization. From this point of
view, the Hilbert space obtained by quantization of (M, ω) is the space
of (Bcc,B′) strings, where Bcc and B′ are two A-branes; B′ is an ordinary
Lagrangian A-brane, and Bcc is a space-filling coisotropic A-brane. B′ is
supported on M , and the choice of ω is encoded in the choice of Bcc. As
an example, we describe from this point of view the representations of the
group SL(2, R). Another application is to Chern–Simons gauge theory.
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1 Introduction

1.1 The Problem

According to textbooks, the passage from classical mechanics to quantum
mechanics is made by replacing Poisson brackets with commutators. How-
ever, this is an unrealistically simple description of the situation, even for
a basic example such as the classical phase space R

2, with canonically con-
jugate variables x and p. One can associate a quantum operator Of to a
classical function f(x, p), but not in a completely unique way, because of
what textbooks call the operator ordering problem. Regardless of how one
defines Of , the map from classical functions f to quantum operators Of

does not map Poisson brackets to commutators. Only if one restricts one-
self to functions that are at most quadratic in x and p does one have the
simple relation

[Of ,Og] = −i�O{f,g}. (1.1)

The notion of a function being at most quadratic in x and p is not invari-
ant under canonical transformations. Quantizations of R

2 with different
choices of what one means by linear or quadratic functions are not the
same. One cannot conjugate one such quantization to another by a uni-
tary map between the two Hilbert spaces that transforms the operators Of

constructed in one quantization to their counterparts Õf in another quan-
tization. The order �

2 corrections to (1.1) are simply different in the two
quantizations.

The fact that quantization is ambiguous locally also means that it is
not clear how to carry out quantization globally. Suppose that M is a
2n-dimensional classical phase space that we wish to quantize. (And sup-
pose that we are given on M an additional structure known as a pre-
quantum line bundle [1, 2]; this will enter our story shortly.) Even if one
can locally identify M with R

2n, this does not automatically tell us how
to quantize M , even locally, since the quantization of R

2n is not unique,
as we have just explained. If we make random local choices in quantiz-
ing M , we cannot expect them to fit together to a sensible global quan-
tization. There is also no good framework for trying to fit the pieces
together, because there is no general notion of restricting a quantization
of M to a quantization of an open subset of M , which would be a prereq-
uisite for trying to quantize M by gluing together quantizations of open
subsets.
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One cannot expect to be able to quantize M without some additional
structure beyond its classical symplectic structure (and prequantum line
bundle). There is no known general recipe for what this additional structure
should be. As a result, there is no general theory of quantization of classical
phase spaces.

In practice, quantization is a somewhat informal notion, which refers to
a collection of loosely related procedures. The most important example in
which we know what quantization should mean is R

2n with a given choice of
affine structure, that is, a choice of what one means by linear functions. This
can be quantized in a way that requires no further choices. (In the usual pro-
cedure, one splits the linear functions into coordinates and momenta, which
are then taken to act by multiplication and differentiation, respectively.
The resulting Hilbert space admits a natural action of the symplectic group
Sp(2n, R) or rather its double cover, and thus does not really depend on the
splitting between coordinates and momenta.) Another important example
is a cotangent bundle M = T ∗U (with the standard symplectic structure),
which can be quantized in a natural way in terms of half-densities on U ;
similarly, there is a natural procedure for quantization of Kahler manifolds
by taking holomorphic sections of the appropriate line bundle. Finally, if
one knows how to quantize M , and G is a group that acts on M , then (under
some mild restrictions) one can define a quantization of the symplectic quo-
tient M//G by taking the G-invariant part of the quantization of M . There
are various ways to combine the procedures just mentioned.

There is no guarantee that the different procedures are equivalent. If
M is a cotangent bundle or a Kahler manifold in more than one way or a
symplectic quotient of one of these in more than one way, or can be realized
by more than one of these constructions, there is no assurance that the
different procedures lead to equivalent quantizations.

1.2 Quantization via branes

In this paper, we offer a new perspective on quantization, based on two-
dimensional sigma models. The goal is to get closer to a systematic theory
of quantization. However, it is not clear to what extent our perspective
helps in computing new formulas.

Our procedure is as follows. We start with a symplectic manifold M , with
symplectic form ω, that we wish to quantize. As in geometric quantization
[1,2], we assume that M is endowed with a prequantum line bundle L; this
is a complex line bundle L → M with a unitary connection of curvature ω.
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For our purposes, saying that Y is a complexification of M simply means
that (1) Y is a complex manifold with an antiholomorphic involution1

τ : Y → Y , such that M is a component of the fixed point set of τ ; (2)
the symplectic form ω of M is the restriction to M of a nondegenerate holo-
morphic two-form Ω on Y , such that τ∗Ω = Ω̄; (3) the unitary line bundle
L → M can be extended to a unitary line bundle L → Y with a connection
of curvature Re Ω, and moreover the action of τ on Y lifts to an action on
L, restricting to the identity on M . These data are regarded as part of the
definition of Y .

The case of most interest in the present paper is the case that Y is an
affine variety, which roughly means that it admits plenty of holomorphic
functions. More precisely, an affine variety is defined by a finite set of poly-
nomial equations for a finite set of complex variables x1, . . . , xs, as opposed
to a more general algebraic variety which is obtained by gluing together
pieces that are each affine varieties. Our approach to quantization will be
based on the A-model associated with the real symplectic form ωY = Im Ω.
So we need a further condition on Y , which ensures that this theory has
a good A-model. A good A-model is one in which the relevant correlation
functions and other observables are complex-valued, rather than being func-
tions of a formal deformation parameter. (For example, the most familiar
A-model observables are obtained from sums over worldsheet instantons of
different degrees. Having a good A-model means that such sums are not just
formal power series but converge to complex-valued functions.) Y will have a
good A-model if the supersymmetric sigma-model with target Y , which can
be twisted to give the A-model, is well-behaved quantum mechanically; this
in turn should be true if Y admits a complete hyper-Kahler metric, com-
patible with its complex symplectic structure. For instance, the example
considered below and in more detail in Section 3 corresponds to the Eguchi–
Hansen manifold, which is a complete hyper-Kahler manifold. Having a
good A-model should imply that deformation quantization of Y (which is
part of the A-model, as we discuss below) gives an actual deformation of the
ring of holomorphic functions on Y , with a complex deformation parameter;
a bad A-model merely leads to a formal deformation over a ring of formal
power series.

We require an actual deformation of the ring of functions, not just a
formal one, for our approach to quantization to make sense. Interestingly,
the conditions [3] under which deformation quantization of an affine variety
gives an actual deformation of the ring of functions on Y are very similar
to the conditions for Y to admit a complete hyper-Kahler metric along the
lines of the complete Calabi–Yau metrics constructed in [4].

1An involution is simply a symmetry whose square is the identity.
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The most familiar A-branes are Lagrangian A-branes, supported on a
Lagrangian submanifold of Y ; such a submanifold is of middle dimension.
In general [5], however, the A-model can also admit A-branes whose support
has a dimension greater than one-half the dimension of Y . The support
of such a brane is a coisotropic submanifold of Y with certain somewhat
special properties. In particular, the choice of the line bundle L → M with
curvature Re Ω determines, in the language of [6], a canonical coisotropic
brane in the A-model of Y . Its support is all of Y and it will be one of the
main ingredients in the present paper.

Suggestions that the A-model is related to deformation quantization
(whose relation to quantization is discussed in Section 1.4) go back to [7]
and [8] and have been extended and made more precise in [9, 10], partly
in the framework of generalized complex geometry [11, 12]. The canonical
coisotropic A-brane was used in [6] to elucidate some of these matters. For
a related approach to the A-model, see [13].

We will also make use of ordinary Lagrangian A-branes. M itself is a
Lagrangian submanifold, so (if M obeys a mild topological condition) we
can define a rank 1 A-brane supported on M . Let us pick such a brane
(there are inequivalent choices if M is not simply connected) and call it B′.
In this paper, we write Bcc for the canonical coisotropic A-brane, B′ for a
Lagrangian A-brane, and B for an A-brane of unspecified type.

Quantization of M is now achieved by declaring that the Hilbert space
associated to M is the space H of (Bcc,B′) strings. This definition certainly
gives a vector space associated to the choice of A-brane B′. That the explicit
construction of this vector space is similar to quantization was originally
shown by Aldi and Zaslow in examples [14], and will be further discussed in
Section 2.

To justify calling this process quantization, we need more structure. For
one thing, we want to associate to B′ not just a vector space but a Hilbert
space. It is unusual to get a Hilbert space structure in the topological
A-model, but in the present context, as explained in Section 2.4, H can be
given a hermitian metric by making use of the antiholomorphic involution
τ . The space H, with its hermitian metric, depends only on the choices of
Y , L, and B′, and not on any additional data (such as a metric on Y ) that is
used in defining the A-model. We do not have a general proof that the her-
mitian metric on H is positive definite, though this is true near the classical
limit. (A generalization of the construction, involving an antiholomorphic
involution that maps M to itself but does not leave M fixed pointwise, leads
to a hermitian metric on H that is not positive-definite near the classical
limit.)
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If our procedure is reasonably to be called quantization, we also want
to have a natural way to quantize a large class of functions on M , that
is to realize them as operators on H. The functions on M that can be
naturally quantized, in our approach, are the functions that are restrictions
of holomorphic functions on Y that have a suitable behavior at infinity. The
details of what is suitable behavior at infinity are tied to the question of
what spaces have good A-models. However, for Y an affine variety (defined
by a finite set of polynomial equations for a finite set of complex variables
x1, . . . , xs), a reasonable condition is to allow only functions of polynomial
growth (that is, polynomials in the xi). This gives a very large class of
holomorphic functions on such a variety, and it is for this class of functions
that (under certain restrictions on Y ) deformation quantization gives an
actual rather than formal deformation. So this is the right class of functions
to consider. For reasonable M ⊂ Y , the restrictions of these functions are
dense in the space of smooth functions on M , and our procedure leads to
quantization in the sense of constructing a Hilbert space H with a map from
a large class of functions on M to operators on H. At the opposite extreme,
if Y is compact, the definition of the Hilbert space H still makes sense, but
we get no operators acting on this Hilbert space; one might not want to call
this quantization.

To make this discussion a little more concrete, we will consider an example
(which will be explored more fully in Section 3). Let M = S2 be a two-
sphere, and let ω be a symplectic form on M with

∫

M ω = 2πn, n ∈ Z. We
expect quantization to give a Hilbert space H of dimension n. The infinite-
dimensional group Adiff S2 of area-preserving diffeomorphisms of S2 acts on
the classical phase space (M, ω). The group that acts on H is U(n). There
is no natural way to map Adiff S2 to U(n), so any approach to quantization
will involve some arbitrary choices.

One standard approach in this problem (which in geometric quantiza-
tion [1, 2] is known as picking a complex polarization) is to pick a complex
structure J on S2, such that ω is of type (1, 1). The subgroup of Adiff S2

that preserves J is at most SO(3), and it is convenient to pick J so that
this subgroup is actually SO(3). If so, with some choice of coordinates, the
Kahler metric on S2 is a multiple of the round metric on the two-sphere
x2 + y2 + z2 = 1. Quantization is now straightforward: one defines H to be
H0(S2,L), the space of holomorphic sections of L in complex structure J .
Since the procedure of quantization was SO(3)-invariant, the group SU(2)
(the universal cover of SO(3)) acts naturally on H, as does its Lie alge-
bra. The functions x, y, and z generate via Poisson brackets the action
of this Lie algebra, so in this approach to quantization, these functions
naturally map to quantum operators. One can then in a fairly natural
way take polynomial functions in x, y, and z to act on H by mapping a
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monomial xaybzc to the corresponding symmetrized polynomial in the so(3)
generators.

Clearly, we could have embedded SO(3) in Adiff S2 in many (conjugate)
ways, so this approach to quantization depends on an arbitrary choice. Now
let us discuss how one would quantize the same example in our approach.
We are supposed to pick a suitable complexification Y of S2. We do this by
again picking coordinates in which S2 is defined by the equation

x2 + y2 + z2 = 1, (1.2)

and we introduce Y by simply regarding x, y, and z as complex variables.
Thus Y is an affine variety; it admits a complete hyper-Kahler metric (the
Eguchi–Hansen metric), so we expect it to have a good A-model (the relevant
deformation of the ring of functions on Y is explicitly described in Section
3.1, and involves a complex parameter, not a formal variable). The allowed
holomorphic functions are polynomials in x, y, and z subject to the relation
(1.2). On Y , there is a holomorphic two-form Ω which restricts on M to the
properly normalized symplectic form ω; it is simply Ω = n dx ∧ dy/2z. The
holomorphic functions on Y with polynomial growth at infinity are simply
the polynomials in x, y, and z, so the functions that we can quantize are
those polynomials, just as in the previous and more standard approach. In
the standard approach, the special role of x, y, and z is that they generate
via Poisson brackets symmetries of the complex structure that is used in
quantization. In our approach, what is special about x, y, and z is that they
generate the ring of holomorphic functions on Y with polynomial growth at
infinity.

It is illuminating to consider an alternative complexification of S2 that
does not work well. We can define the two sphere by the equation2 x̃4 + ỹ4 +
z̃4 = 1, for real variables x̃, ỹ, z̃, so one can define a complexification Ỹ of S2

by letting x̃, ỹ, and z̃ be complex variables obeying the same equation. But
deformation quantization of Ỹ is only a formal procedure according to [3],
and the construction of [4] does not endow Ỹ with a complete Calabi–Yau
metric. Rather, Ỹ admits an incomplete Calabi–Yau metric, which can be
compactified to give a K3 surface. We expect that to give Ỹ a good A-model,
one must compactify it and consider the A-model of the K3-surface; then
there are no holomorphic functions and no natural interpretation in terms
of quantization.

2To show that this equation defines a two sphere, observe that if x̃, ỹ, and z̃ are real num-
bers obeying x̃4 + ỹ4 + z̃4 = 1, there is a unique positive t such that (x, y, z) = t(x̃, ỹ, z̃)
obey x2 + y2 + z2 = 1. This map gives an isomorphism between the space of solutions of
x2 + y2 + z2 = 1 and the space of solutions of x̃4 + ỹ4 + z̃4 = 1.
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1.3 Comparison to geometric quantization

Here and in Section 1.4, we will compare our approach to some standard
approaches to quantization.

In geometric quantization [1, 2], the first step, given (M, ω), is to pick
a prequantum line bundle L → M , that is, a unitary line bundle with a
connection of curvature ω. This is also an initial step in our approach, as
explained above, and probably (explicitly or implicitly) in any approach
to quantization. The second step is then to pick a polarization (typical
examples being a realization of M as a cotangent bundle T ∗U for some U ,
or a choice of Kahler structure on M), after which quantization is carried
out via half-densities on U or holomorphic sections of L ⊗ K1/2 → M (K1/2

is a square root of the canonical bundle of M).

This second step has some drawbacks. A global polarization may not
exist, even for phase spaces that should be quantizable. Moreover, if a
polarization exists, there are many possible polarizations. It is not clear
when quantization carried out with two different polarizations gives equiv-
alent results.

Our approach has analogous drawbacks. Given (M, ω), it is not clear
whether a suitable Y exists, or whether different choices of Y will give
equivalent results. (We do not know of any examples in which this is the
case.) Our approach is therefore particularly useful if there is a natural
Y (or at least a natural class of Y ’s with some special relationship), while
geometric quantization is particularly useful if there is a natural polarization.

The problem of when geometric quantization with two different polar-
izations gives equivalent results is vexing. The most important example is
quantization of R

2n. Once one picks an affine structure on R
2n (a notion of

what one means by linear functions), a polarization can be picked by choos-
ing a maximal Poisson-commuting set of linear functions q1, . . . , qn, which
we declare to be the coordinates (as opposed to the momenta). Quantiza-
tion is then carried out by introducing a Hilbert space of functions (actually
half-densities) Ψ(q1, . . . , qn). We may call a choice of this kind a linear polar-
ization. It is a classic result that quantizations with different linear polar-
izations (compatible with the same affine structure) are equivalent. The
usual proof uses the action of the symplectic group Sp(2n, R) (or rather
its double cover), generated by quadratic functions of the coordinates and
momenta.

This fundamental example has others as corollaries. For G a subgroup
of the symplectic group, consider the quantization of the symplectic quotient
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M = R
2n//G. Any G-invariant polarization of R

2n descends to a polarization
of M , and geometric quantization of M with two polarizations that descend
from G-invariant linear polarizations of R

2n will be equivalent. This state-
ment, which follows from the equivalence of linear polarizations of R

2n, also
has an analog for n = ∞ in the case of Chern–Simons gauge theory [15].

An example of a well-motivated procedure of quantization that is awkward
to describe in geometric quantization is the case that M = R

2n//G is the
symplectic quotient of R

2n (or some other space that can be quantized by
geometric quantization) by a subgroup G ⊂ Sp(2n, R) such that there is no
G-invariant polarization of R

2n. It is natural to define quantization of M by
taking the G-invariant part of the quantization of R

2n, but this definition
is not related in any obvious way to what one can get from a polarization
of M .

In our approach to quantization via branes, near the semiclassical limit,
one may define the A-model of Y by picking a suitable metric on Y . This is
the analog of a polarization in our approach. One illuminating and impor-
tant case is that the metric on Y is a complete hyper-Kahler metric and M
is a complex submanifold in one of the complex structures, which we will call
J . We will say that a metric of this kind gives a hyper-Kahler polarization
of the pair (Y, M). In this case, J defines a complex polarization of M in the
sense of geometric quantization, and the vector space H that is defined in
our procedure (but not in general its hermitian inner product) agrees with
what one would naturally define in geometric quantization, as we explain in
Section 2.3.

The main advantage of our approach may be that the question of what
can be varied without changing the quantization is perhaps clearer than it is
in geometric quantization. As we have stressed, our answer to the question
“Upon what additional data does a quantization of (M, ω) depends?” is
“It depends on the choice of the complexification Y with antiholomorphic
involution τ , holomorphic two-form Ω and line bundle L.”

The fact that different linear polarizations of R
2n lead to equivalent quan-

tizations is a special case of our statement. Given R
2n with real-valued lin-

ear coordinates x1, . . . , x2n and symplectic structure ω =
∑

i<j ωijdxi ∧ dxj ,
we define Y,Ω without breaking the Sp(2n, R) symmetry by complexifying
the xi and setting Ω =

∑

i<j ωijdxi ∧ dxj . We define τ to act by xi → x̄i.
Since Y is contractible, L exists and is unique up to isomorphism, so in
our approach, quantization of R

2n endowed with an affine structure is nat-
ural. The group Sp(2n, R) of symmetries of the structure (and in fact, its
inhomogeneous extension to include additive shifts of the coordinates) must
therefore act, at least projectively.
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1.4 Comparison to deformation quantization

Deformation quantization [16] is another matter. Unlike quantization, defor-
mation quantization is a systematic procedure. Starting with a symplectic
manifold M — or more generally, any Poisson manifold — deformation
quantization produces a deformation of the ring of functions on M , depend-
ing on a formal parameter �. This can be done in a way that, up to a
natural automorphism, does not depend on any auxiliary choice (such as
the choices that are needed in quantization). The theory of deformation
quantization has led to beautiful results [17] that can be expressed in terms
of two-dimensional quantum field theory [18], somewhat like our approach
to quantization.

Since deformation quantization is a formal procedure, it makes sense for
complex manifolds. In other words, if Y is a complex symplectic manifold
(such as an affine variety) that admits many holomorphic functions, one
can apply deformation quantization to deform the ring of holomorphic func-
tions on Y to an associative but noncommutative algebra [3]. Deformation
quantization of the ring of holomorphic functions on Y requires no arbitrary
choices (beyond the structure of Y as a complex symplectic manifold) but
quantization does.

However, deformation quantization is not quantization. Generically, it
leads to a deformation over a ring of formal power series (in the formal
variable �), not a deformation with a complex parameter. It does not lead
to a natural Hilbert space H on which the deformed algebra acts. In our
earlier example of quantizing a two-sphere whose area is 2πn, quantum
mechanics requires that n (which becomes the dimension of H) should be
an integer, while in deformation quantization, � = 1/n is treated as a formal
variable and there is no special behavior when �

−1 is an integer.

Generally speaking, physics is based on quantization, rather than defor-
mation quantization, although conventional quantization sometimes leads to
problems that can be treated by deformation quantization. For a well-known
example, see [19]. Our approach to quantization does have a relationship
to deformation quantization. The relation is that deformation quantiza-
tion of Y produces an algebra that then acts in the quantization of a real
symplectic submanifold M ⊂ Y . (See [20–22] for a similar perspective in
the context of representation theory.) This will be explained in the next
subsection.

As already noted, in our framework, the existence of a good A-model for
Y is supposed to ensure that deformation quantization of Y produces an
actual deformation of the algebra of holomorphic functions, depending on a
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complex parameter � (or 1/n), not just a formal deformation depending on
a formal parameter �.

1.5 The inverse problem

In describing our approach to quantization, we followed tradition and began
with a symplectic manifold (M, ω) that one wishes to quantize. The solution
to the problem involves picking a suitable complexification (Y,Ω).

There is an alternative approach in which the starting point is a complex
symplectic manifold (Y,Ω), together with a unitary line bundle L → Y of
curvature Re Ω. The following discussion is most interesting if Y has plenty
of holomorphic functions. This is so if Y is an affine variety, such as the
variety x2 + y2 + z2 = 1 that featured in the example that we discussed
previously.

Then one considers the A-model of Y in symplectic structure ωY = Im Ω.
The choice of L enables us, following [5] and [6], to define a coisotropic
A-brane Bcc, whose support is all of Y . For any A-brane B, the space
of (B,B) strings is a Z-graded associative algebra. In the present case,
additively, the space of (Bcc,Bcc) strings is just the space of holomorphic
functions on the complex manifold Y . However, in the A-model, the com-
mutative ring of holomorphic functions is deformed. The first-order defor-
mation is by the Poisson bracket, and the higher order corrections (which
can be computed in sigma-model perturbation theory, somewhat as in [18])
are controlled by associativity. Thus the space of (Bcc,Bcc) strings is an
associative but noncommutative algebra A that we can think of as aris-
ing from deformation quantization of Y . As we have stressed, if Y has
a good A-model, this deformation involves an actual complex parameter,
not a formal one. Moreover, if Y admits a good A-model, its symmetries
that preserve a coisotropic A-brane Bcc will act on A as automorphisms.
In our approach, these are precisely the symplectomorphisms of the com-
plex symplectic manifold (Y,Ω). This is closely related to what one finds in
deformation quantization of Y when it produces an actual deformation of
the algebra of holomorphic functions, not just a formal deformation (see [23]
for a detailed discussion of the affine space).

If we are interested in quantization, as opposed to deformation quantiza-
tion, we need something smaller that A acts on. For this, we note first that
if B is any other A-brane, then by general principles A acts on the space
of (Bcc,B) strings. Now, pick B to be a conventional Lagrangian A-brane,
supported on a Lagrangian submanifold M ⊂ Y . We denote this brane as
B′. Then the space H of (Bcc,B′) strings admits a natural action of the
algebra A.
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Now suppose further that M has been chosen so that Re Ω remains non-
degenerate when restricted to M . Analysis of the (Bcc,B′) strings, as first
considered in examples in [14], relates H to quantization of M with symplec-
tic structure Re Ω. But how can we get in this framework a hermitian inner
product — usually understood as one of the main points of quantization?
For this, we need one more piece of data: an antiholomorphic involution
τ : Y → Y that obeys τ∗Ω = Ω̄, maps M to itself, and lifts to an action on
L. With the help of τ (and more standard ingredients, such as CPT sym-
metry), one can define a hermitian inner product on H, with the property
that holomorphic functions on Y that obey τ(f̄) = f act on H as hermitian
operators. Near the classical limit, the hermitian inner product is positive
definite if and only if τ leaves M fixed pointwise.

A noteworthy point here is that the algebra A only depends on the input
data Y,Ω,L, and not on τ . If τ does not exist (or M is not a component of
the fixed point set of any τ), then everything that we have said goes through,
except that H is not endowed with a natural hermitian metric.

Alternatively, Y may admit several different antiholomorphic involutions,
say τ and τ ′. Let M and M ′ be components of the fixed points sets of τ and
τ ′ (and suppose that Re Ω is nondegenerate when restricted to either one).
Then we can quantize either M or M ′ by the above procedure, giving Hilbert
spaces H and H′. The same algebra A will act in either case. Functions
that are real when restricted to M will be hermitian as operators on H, and
functions that are real when restricted to M ′ will be hermitian as operators
on H′.

There are far more choices if we are not interested in a hermitian metric.
Then M can be the support of any rank 1 A-brane, and the same algebra
A acts on the space H that we obtain by quantizing M , regardless of what
M we pick.

The A-model

So far we have emphasized two points of view about this subject.

In the first approach, the starting point is the real symplectic manifold
(M, ω) that we wish to quantize. The problem is solved by complexifying
M to a complex symplectic manifold (Y,Ω) that has a good A-model for
symplectic structure ωY = Im Ω.

In the second approach, the starting point is the complex symplectic
manifold (Y,Ω). Picking a suitable coisotropic brane Bcc, assumed to be an
A-brane with respect to ωY = Im Ω, we deform the algebra of holomorphic
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functions on Y to a noncommutative algebra A. Then picking another
A-brane, we get a module for A.

A third approach, and the most natural one from the point of view of two-
dimensional topological quantum field theory, is to emphasize the A-model
of Y , regarded as a real symplectic manifold with symplectic structure ωY .
There may be many inequivalent choices of space-filling coisotropic A-brane
Bcc on Y — corresponding to different choices of a complex structure I on
Y for which there is a holomorphic two-form Ω with ωY = Im Ω. For each
choice of such a brane Bcc, we get a noncommutative algebra A that acts on
the space of (Bcc,B′) strings, for any other A-brane B′. If M is the support
of B′, the space of (Bcc,B′) strings gives a quantization of M whenever Re Ω
is nondegenerate when restricted to M . Thus, the same A-model can lead
to quantization of M in different symplectic structures.

1.6 Organization of this paper

In Section 2, we will describe in more detail our A-model approach to quan-
tization.

Section 3 is devoted primarily to analyzing in more depth the example
related to M = S2. This example is surprisingly rich and related to repre-
sentation theory of SL(2, R) as well as SU(2). In this paper, we consider
primarily the case of those groups, but actually, as we explain at the end of
Section 3, the example has a generalization in which M is a coadjoint orbit of
a semi-simple real Lie group of higher rank, and Y is the corresponding orbit
of its complexification. This leads to a perspective on the representations of
semi-simple real Lie groups, similar to that of Brylinski [20–22].

Finally, in Section 4, we discuss from the present point of view one
of the few known examples in which the subtleties of quantization are
actually important for quantum field theory. This is three-dimensional
Chern–Simons gauge theory.

2 Basic construction

2.1 The A-model and the canonical coisotropic brane

We begin with a complex symplectic manifold Y , that is, a complex manifold
endowed with a nondegenerate holomorphic two-form Ω. Though we will
not assume that Y has a hyper-Kahler structure, it is convenient to use a
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notation that is suggested by the hyper-Kahler case. We write I for the
complex structure of Y , and we denote the real and imaginary parts of Ω as
ωJ and ωK :

Ω = ωJ + iωK . (2.1)

Since Ω is of type (2, 0), we have ItΩ = iΩ, or

ItωJ = −ωK , ItωK = ωJ . (2.2)

(We regard I as a linear transformation of tangent vectors; It is the transpose
map acting on one-forms. Ω and ItΩ are maps from tangent vectors to one
forms.)

In this paper, we view Y as a real symplectic manifold with symplectic
structure ωY = ωK , and we study the associated A-model. The most familiar
branes of the A-model are Lagrangian branes, supported on a Lagrangian
submanifold that necessarily is of middle dimension. However [5], in general
it is also possible to have an A-brane supported on a coisotropic submanifold
Z ⊂ Y whose dimension exceeds half the dimension of Y . For our purposes,
we are interested in a rank 1 coisotropic A-brane whose support is simply
Z = Y . Like any rank 1 brane, such a brane is endowed with a unitary
line bundle L with a connection whose curvature we call F . The necessary
condition for such a brane to be an A-brane is that I = ω−1

Y F should square
to −1, in which case one can show that I is an integrable complex structure.

This is a rather special condition, but there is a simple way to obey it
that was important in [6] and will also be important in the present paper.
We simply set F = ωJ , in which case ω−1

Y F = ω−1
K ωJ , which coincides with

I according to equation (2.2).

Thus, starting with the complex symplectic manifold (Y,Ω), for any choice
of a unitary line bundle L with a connection of curvature ωJ = Re Ω, we get
an A-brane in the A-model of symplectic structure ωY . We call this A-brane
the canonical coisotropic brane and denote it as Bcc.

To make the A-model of symplectic form ωY concrete, it is usual to intro-
duce an almost complex structure with respect to which ωY is positive and
of type (1, 1). This enables one to develop a theory of pseudoholomorphic
curves in Y , leading to an A-model that depends only on ωY and not on
the chosen almost complex structure. There is no need for the almost com-
plex structure to be integrable. In the present case, since the symplectic
structure of the A-model is ωY = ωK , it is natural to write K for the almost
complex structure that is used to define the A-model.
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To write the sigma-model action, one also uses the associated metric
g = −ωKK. Furthermore, it is always possible to pick K so that IK = −KI,
implying that J = KI is also an almost complex structure. J will be useful
in the quantization.

We stress that we make no assumption that J and K are integrable. A
K with the stated properties (ωK is of type (1, 1), and IK = −KI) always
exists, and moreover the space of choices for K is contractible. To see
this, let Y be of real dimension 4n. Let Sp(2n) be the compact form
of the symplectic group acting on C

2n, and Sp(2n)C its complexification.
The choice of I,Ω reduces the structure group of Y from GL(4n, R) to
Sp(2n)C. The further choice of K reduces this group to Sp(2n). (We have
Sp(2n) = U(2n) ∩ Sp(2n)C, where U(2n) is the subgroup of GL(4n, R) that
commutes with K.) As the quotient space Sp(2n)C/Sp(2n) is contractible,
a global choice of K can be made, and there is no topology in the choice
of K.

Though J and K need not be integrable, certainly the nicest case is
that Y admits a complete hyper-Kahler metric in which the three com-
plex structures are I, J , and K and the metric is g = −ωKK. (We call
this a hyper-Kahler polarization.) In general, we cannot assume this, but
many standard facts about the hyper-Kahler case are true in greater gen-
erality. For instance, it follows from IK = −KI that ωJ is of type (2, 0) ⊕
(0, 2) with respect to K. Indeed, the fact that ωK is of type (1, 1) with
respect to K can be written KtωKK = ωK , which by (2.2) is the same
as −KtItωJKt = ωK , or ItKtωJK = ωK . With I2 = −1 and using (2.2)
again, this is KtωJK = −ωJ , which is equivalent to saying that ωJ is of
type (2, 0) ⊕ (0, 2) with respect to K. It now follows from J = KI that ωJ

is of type (1, 1) with respect to J . (We have J tωJJ = ItKtωJKI = ωJ , since
ωJ is of type (2, 0) ⊕ (0, 2) with respect to both I and K.)

The relation between J and K is completely symmetrical; instead of
beginning with K, and then defining J , we could have begun by introduc-
ing an almost complex structure J , constrained so that IJ = −JI and ωJ

is of type (1, 1) with respect to J . The same argument as above would
show existence of J , and then we could define K = IJ , arriving at the
same picture. As an example of this viewpoint, suppose we are given
a middle-dimensional submanifold M ⊂ Y such that ωJ is nondegenerate
along M , and such that the tangent space TY to Y , when restricted to
M , has a decomposition TY = TM ⊕ I(TM), where TM is the tangent
space to M . Then we can constrain J along M so as to preserve the
decomposition TY = TM ⊕ I(TM); we simply define J on TM by pick-
ing an almost complex structure on M such that ωJ is of type (1, 1), and
then define J on I(TM) to ensure IJ = −JI. Having defined J along M ,
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there is no topological obstruction to extending it over Y , again because
Sp(2n)C/Sp(2n) is contractible.

2.2 Space of (Bcc, Bcc) Strings

Our next problem is to identify the algebra A of (Bcc,Bcc) strings.

First we describe the space of (Bcc,Bcc) strings additively. The space of
(Bcc,Bcc) strings in the A-model is the same as the space of operators that
can be inserted in the A-model on a boundary of a string world-sheet Σ that
ends on the brane Bcc. So let us determine this.

We write X for the bosonic fields in the sigma-model with target Y , and
ψ−, ψ+ for left- and right-moving fermionic fields. A boundary operator
must be invariant under the supersymmetry (or BRST) symmetry of the
A-model. The general A-model transformation law of X is

δX = (1 − iK)ψ+ + (1 + iK)ψ−. (2.3)

Here we use an arbitrary almost complex structure K (relative to which
ωK is of type (1, 1) and positive) in defining the A-model of symplectic
structure ωK . A simple type of local operator is an operator f(X) derived
from a complex-valued function f : Y → C. For such an operator, inserted
at an interior point of Σ, to be invariant under (2.3), f must be constant.

However, we are interested in boundary operators, rather than bulk oper-
ators, and for this we must consider the boundary condition obeyed by the
fermions. For a general space-filling rank 1 brane, this boundary condition is

ψ+ = (g − F )−1(g + F )ψ−. (2.4)

In the present case, with F = ωJ , we have (g − F )−1(g + F ) = J . So
for boundary operators, (2.3) collapses to δX = ((1 − iK)J + (1 + iK))ψ−,
which is equivalent to

δX = (1 + iI)(1 + J)ψ−. (2.5)

If we decompose δX as δ1,0X + δ0,1X, where the two parts of the variation
are of type (1, 0) and type (0, 1) with respect to I, then

δ1,0X = 0

δ0,1X = ρ,
(2.6)
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where ρ = (1 + iI)(1 + J)ψ−. Clearly, since the square of the topological
symmetry of the A-model vanishes, (2.6) implies that

δρ = 0. (2.7)

From (2.6), we see that for a string ending on the canonical coisotropic
brane, a boundary operator f(X) preserves the topological symmetry of
the A-model if and only if the function f is holomorphic in complex struc-
ture I. More generally, all boundary observables of the A-model can be
constructed from X and ρ, which have dimension 0, since other fields have
strictly positive dimension or vanish at the boundary. If we pick local com-
plex coordinates on Y corresponding to fields Xi, then a general operator
of qth order in ρ takes the form ρī1ρī2 . . . ρīqfī1 ī2...̄iq(X, X̄) and has charge
q under the ghost number symmetry of the A-model. By interpreting ρī

as dX̄ ī, we can interpret such an operator as a (0, q)-form on Y . Then it
follows from (2.6) and (2.7) that the topological supercharge of the A-model
corresponds to the ∂̄ operator of Y .

So the observables of the A-model correspond additively to the graded
vector space H0,�

∂̄
(Y ) (where Y is viewed as a complex manifold with com-

plex structure I). For our purposes in this paper, we are mainly interested
in the ghost number zero part of the ring of observables. Additively, this
corresponds simply to the holomorphic functions on Y . However, the mul-
tiplicative structure is different. Classically, the holomorphic functions on
Y generate a commutative ring, but in the A-model, in the special case of a
brane of type Bcc, this ring is deformed to a noncommutative ring that we
call A. The deformation corresponds to deformation quantization using the
Poisson brackets derived from the holomorphic symplectic two-form Ω. One
explanation of how this deformation comes about is given in Section 11.1
of [6].

2.3 Lagrangian brane and quantization

So far, we have obtained an algebra A of (Bcc,Bcc) strings. Now we want to
find something (other than itself) that A can act on. The immediate answer
is to introduce a second A-brane B′. Then A acts naturally on the space of
(Bcc,B′) strings (Figure 1).

For this paper, we will consider B′ to be an A-brane of the simplest
possible kind: a Lagrangian A-brane of rank 1. Thus, B′ is supported on
a Lagrangian submanifold M and endowed with, roughly speaking, a flat
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Figure 1: An open string with (Bcc,B′) boundary conditions.

line bundle L′. The natural objects of study in what follows are branes, and
it is important to bear in mind some subtleties about the relation between
Lagrangian submanifolds and branes. First, because of disc instanton effects,
not every pair (M, L′) defines an A-brane. Second, in the absence of such
effects, if two pairs (M, L′) and (M ′,L′′) differ by Hamiltonian isotopy, then
the associated A-branes are equivalent. Finally, the interpretation of L′ as
a flat line bundle is oversimplified, because of the relation of branes to K-
theory and the role of the B-field. Each of these effects will play some role
later.

To relate branes to quantization, we will impose a condition on M that
has no analog in the usual theory of the A-model. We assume that ωJ is
nondegenerate when restricted to M . This is a mild condition in the sense
that, acting on the tangent space to a given point in Y , ωJ is nondegenerate
when restricted to a generic even-dimensional plane. Hence if the condition
is true for a submanifold M , it is true for any sufficiently nearby submanifold.
(The opposite case that ωJ is zero when restricted to M was investigated in
Section 11 of [6], and leads to D-modules. We return to this in Section 3.9.)

If ωJ is nondegenerate when restricted to M , then the pair (M, ωJ) is
a symplectic manifold, and this is the symplectic manifold that we will
quantize.

As explained in Section 2.1, to define the A-model, we pick an almost
complex structure K, with respect to which ωK is of type (1,1), and such
that I, K, and J = KI obey the algebra of quaternions. Once M is given,
it is convenient to further constrain K such that the tangent bundle TM is
J-invariant. (That one can do so was explained at the end of Section 2.1.)

We now want to show that quantization of (Bcc,B′) strings leads to quan-
tization of the symplectic manifold (M, ωJ). To see this, we describe the
sigma-model on a Riemann surface Σ, as in section 2.2, by bosonic fields X
that describe the sigma-model map Φ : Σ → Y , and left and right-moving
fermionic fields ψ− and ψ+. In general, the boundary conditions for fermions



1464 SERGEI GUKOV AND EDWARD WITTEN

at the end of an open string are ψ+ = Rψ−, for some matrix R. In the case
of a space-filling brane of rank 1, such as Bcc,

R = (g − F )−1(g + F ). (2.8)

Here g is the metric of Y and F is the curvature of the Chan–Paton line
bundle. For the brane Bcc, we have F = ωJ and R = J , so the boundary
condition is

ψ+ = Jψ−. (2.9)

For a Lagrangian brane, supported on a submanifold M , F = 0 but this
does not mean that R = 1. Rather, the boundary condition is

ψ+ = Rψ−, (2.10)

where R : TY |M → TY |M is a reflection that leaves fixed the tangent bundle
TM to M , and acts as −1 on the normal bundle to M (here TY |M is the
tangent bundle of Y restricted to M).

For our problem, we are principally interested in (Bcc,B′) strings, that is
strings that couple to Bcc on the left and to B′ on the right. The boundary
conditions are thus

ψ+(0) = Jψ−(0)

ψ+(π) = Rψ−(π),
(2.11)

where 0 and π are the endpoints of the string. These boundary conditions
do not allow ψ to be constant along the string. For example, if ψ is tangent
to M and also constant, the combination of the two boundary conditions
gives ψ+ = Jψ+, which since ψL is real and J2 = −1 implies that ψ+ = 0.
Similarly, if ψ is normal to M and constant, we get ψ+ = −Jψ+, again
implying that ψ+ = 0.

Now let us discuss the bosonic fields X(σ, τ), where σ and τ are the world-
sheet space and time coordinates. The bosonic fields do have zero modes,
because the boundary condition ∗dX = RdX is consistent with constant X;
likewise the classical equations of motion are obeyed if X is constant. The
usual zero mode structure of the bosonic string is X = x + pτ + . . ., where
x is the zero mode, p is its canonical momentum, and . . . are the nonzero
modes. Here, usually x is canonically conjugate to p. In the present case,
there is a constant x term, but there is no pτ term in the expansion, because
as soon as X becomes τ -dependent, the boundary condition ∗dX = RdX at
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σ = 0 does not permit X to be independent of σ. Usually, in sigma-model
perturbation theory, this effect can be treated perturbatively because R
is close to 1; but for a boundary associated with the brane Bcc, we have
R2 = −1, so there is no way to expand around R = 1. The result is that the
pτ term is missing in the expansion, which reads

X = x + . . . , (2.12)

where the omitted terms are nonzero modes. The nonzero modes are, of
course, related by worldsheet supersymmetry to the nonzero modes of ψ.
For a detailed explanation of this expansion in an example, see [14].

In the context of quantizing the (Bcc,B′) strings, in addition to the bound-
ary condition at σ = 0, there is also a boundary condition X(π) ∈ M at the
other end. Because of this boundary condition, the zero modes in (2.12)
take values in M .

So it must be that the components of x are canonically conjugate to
each other. The reason that this happens is that the action of a string
ending on a brane with Chan–Paton connection A contains a boundary
term

∫

∂Σ Aμ dXμ. In the case of (Bcc,B′) strings, the Chan–Paton bundle
L′ of the brane B′ is flat, while the Chan–Paton bundle of Bcc is the unitary
line bundle L of curvature ωJ . We write A and A′ for the connections
on these two line bundles. Classically, the action for the zero modes is
∫

dτ(Aμ − A′
μ)dxμ/dτ , where the two terms come from the left and right

endpoints of the string. We define a line bundle N = L ⊗ (L′)−1 over M .
N is a unitary line bundle with a connection B = A − A′ of curvature ωJ .
The action for the zero modes is, in this approximation,

∫

Bμ
dxμ

dτ
dτ. (2.13)

Formally speaking, to quantize the zero modes with this action (which
actually has an important “quantum” correction that we will describe
shortly) amounts to quantizing M with prequantum line bundle N . Just
knowing this does not give any general solution to the problem of quan-
tization. All we learn is that, if the A-model of Y exists, then the space
of (Bcc,B′) strings can be understood as the result of quantizing M with
prequantum line bundle N . If the A-model exists, and the two boundary
conditions associated with branes Bcc and B′ also exist, then the space of
(Bcc,B′) strings exists even if it is hard to describe this space explicitly.

Usually, given two A-branes or B-branes B1 and B2, one can go to a large
volume limit and describe the space of (B1,B2) strings in terms of classical
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geometry. The delicate structure of the coisotropic brane Bcc prevents us
from doing this successfully for the (Bcc,B′) strings, in general.

But we can use general properties of the A-model to learn general prop-
erties of quantization. One can also get some information from classical
geometry, as we explain next.

Branes of type (A, B, A)

There is an important special case in which we can describe explicitly the
space of (Bcc,B′) strings. This is the case that we are given a hyper-Kahler
polarization of (Y, M). This is a hyper-Kahler structure on Y , extending its
complex symplectic structure (I,Ω), such that M is a complex submanifold
in complex structure J .

Under these conditions, the branes (Bcc,B′) are both branes of type
(A, B, A), that is, A-branes for the A-models with symplectic forms ωI or
ωK , and B-branes for the B-model of complex structure J . For example,
Bcc is a B-brane of type J because the curvature form ωJ of its Chan–
Paton line bundle is of type (1, 1) in complex structure J . Similarly, B′ is a
B-brane because M is a complex submanifold and the Chan–Paton bundle
of B′ is flat.

We can now look at the space of (Bcc,B′) strings in two different ways.
We defined H to be the space of (Bcc,B′) strings in the A-model of ωY = ωK .
Similarly, we can define H̃ to be the space of (Bcc,B′) strings in the B-model
of complex structure J . As long as M is compact or wavefunctions are
required to vanish sufficiently rapidly at infinity, the two spaces are the
same, since they both can be described as the space of zero energy states of
the sigma-model with target Y (compactified on an interval with boundary
conditions at the two ends determined by Bcc and B′).

One qualification is that the equivalence of H and H̃ does not respect their
grading. H and H̃ are both Z-graded, because the A-model of type ωK and
the B-model of type J are both Z-graded by “ghost number.” The gradings
are different, but conjugate. In fact, the sigma-model of target Y , with
boundary conditions set by two branes of type (A, B, A), has an SU(2) group
of R-symmetries that we call SU(2)R; the two ghost number symmetries are
conjugate but different U(1) subgroups of SU(2)R. In practice, however, one
usually studies quantization in a situation in which the grading is trivial;
this is so if N is very ample as a line bundle in complex structure J .

To use the equivalence between H and H̃, we need to have a way to
determine H̃. For this, we simply observe that in the B-model, the choice
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of Kahler metric is irrelevant. So we can rescale the metric of Y by a factor
t � 1, reducing to a situation in which sigma-model perturbation theory is
valid. In this limit, by a standard argument, we describe H̃ by ∂̄ cohomology:

H̃ = ⊕dimCM
i=0 H i(M, K1/2 ⊗ N ). (2.14)

Since H ∼= H̃, we can express this as a statement about H:

H = ⊕dimCM
i=0 H i(M, K1/2 ⊗ N ). (2.15)

Here, roughly speaking, K1/2 is the square root of the canonical line bun-
dle K of M . (A more precise explanation is given presently.) For very ample
N , the cohomology vanishes except for i = 0 and its Z-grading is trivial.

The description (2.15) of H has an important limitation, beyond the prob-
lem with the grading. It describes H as a vector space, but it does not lead
to a natural description of the Hilbert space structure of H, when there is
one. In Section 2.4, we will describe the conditions under which H has a
hermitian inner product that can be defined in the A-model. Analogous
but different conditions3 lead to a natural hermitian inner product on H̃ in
the B-model. The two hermitian structures are different (when they both
exist) and the equivalence between H and H̃ does not map a natural hermit-
ian structure of the A-model to a natural structure of the B-model. (This
identification does preserve a third hermitian product, the one that H and
H̃ get from their interpretation as the space of physical ground states in
the sigma-model with hyper-Kahler metric. This one is not natural in the
A-model or the B-model and is not visible in the large volume limit that
leads to (2.14).) Hence, when applicable, (2.15) describes H as a vector
space, not as a vector space with a hermitian inner product.

The description of H that we have just given has an obvious resemblance
to a standard statement in geometric quantization. In that context, the
choice of an integrable complex structure J on M , such that the symplectic
form of M becomes a Kahler form, is known as a complex polarization.
Equation (2.15) then defines quantization with a complex polarization.

A hyper-Kahler polarization of the pair (Y, M), which we used in the
above derivation, plays an analogous role in our approach. Our statement
is that for any choice of hyper-Kahler polarization, the space of (Bcc,B′)
strings can be described as in (2.15).

3To define a hermitian metric in the B-model, one uses an involution τ of Y that maps
M to itself and reverses the sign of J , while in the A-model, τ reverses the sign of ωY , as
explained in Section 2.4.
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There are two primary differences between our statement and the analo-
gous statement in geometric quantization:

(1) In our framework, the space of (Bcc,B′) strings is an A-model invariant
and therefore is independent of the choice of a hyper-Kahler polariza-
tion. In geometric quantization, there is no general statement about
when the right-hand side of (2.14) is independent of the choice of
complex polarization J .

(2) In our framework, (2.14) is a statement about vector spaces, while
in geometric quantization, one usually endows the right-hand side of
(2.14) with a hermitian structure. For example, in the very ample
case, one defines a Hilbert space norm by |ψ|2 =

∫

M (ωn/n!)ψ̄ψ, where
ω is the symplectic form of M , 2n is the real dimension of M , and
ψ ∈ H0(M, K1/2 ⊗ N ). This is certainly a natural formula in Kahler
geometry (it describes the hermitian metric that arises in the sigma-
model after rescaling the metric of Y by a factor t � 1), but it is not
a natural A-model inner product. A somewhat related statement is
that in our framework, (2.14) does not describe the natural Z-grading
of H, but a conjugate one.

Relation to K-theory

A point that still remains to be clarified is the meaning of the symbol
K1/2 in the above analysis. In general, M may not be a spin manifold, so
a line bundle K1/2 may not exist, and M may not be simply connected, so
that if K1/2 exists, it may not be unique up to isomorphism.

The resolution of this point depends upon the relation of branes to K-
theory. The following are general statements about branes, independent of
any specialization to an A-model or a B-model. Consider a brane supported
on a submanifold N ⊂ Y and endowed with a rank 1 Chan–Paton bundle T .
Naively, T is a complex line bundle, but actually, because of an anomaly in
the sigma-model [24], T can be more precisely described as a Spinc structure
on the normal bundle to N in Y .

For the space-filling brane Bcc, N is equal to Y , so the normal bundle to N
is trivial. Hence the Chan–Paton bundle L of Bcc is an ordinary complex line
bundle. For the Lagrangian A-brane B′, N is the Lagrangian submanifold
M . The tangent bundle and normal bundle to a Lagrangian submanifold
are naturally isomorphic (under multiplication by ωY = ωK), so the Chan–
Paton “line bundle” L′ of B′ is really a choice of Spinc structure on M .
If L′ were actually a line bundle, there would be no natural line bundle
(L′)−1 ⊗ K1/2, since K1/2 may not exist and may not be unique. However,
for L′ a Spinc structure, there is a natural line bundle (L′)−1 ⊗ K1/2; the
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two factors in this tensor product are not naturally defined as complex line
bundles, but the tensor product is.

Now the meaning of (2.14) is clear. With N = L ⊗ (L′)−1, and L an
ordinary complex line bundle, there is no problem in defining N ⊗ K1/2 as
a complex line bundle, though the two factors separately do not have this
status.

In this discussion, we did not assume that the rank 1 brane supported
on N is supposed to be an A-brane or a B-brane. If this brane is supposed
to be an A-brane supported on a Lagrangian submanifold M , then L′ must
be a flat Spinc structure on M . There is a topological obstruction to hav-
ing a Spinc structure on M , and there is a further obstruction to having a
flat Spinc structure. In general, Spinc structures on M are classified topo-
logically by the choice of a way of lifting the second Stieffel–Whitney class
w2(M) ∈ H2(M, Z2) to an integral cohomology class ζ ∈ H2(M, Z). Flat
Spinc structures are classified by a choice of a lift ζ such that ζ is a torsion
element of H2(M, Z). In general, even if M is Spinc, it may not admit a
flat Spinc structure, since it may be impossible to pick the lift ζ to be a tor-
sion class. A symplectic manifold that does not admit a flat Spinc structure
cannot be quantized in our sense.

This obstruction to quantization has been encountered in the literature
on representations of a semi-simple noncompact real Lie group G. In that
context, M is a coadjoint orbit of G, and one aims to obtain a representation
of G by quantization of M . (See Section 3 for more on this.) This problem
has been approached from many different points of view. In [20], which is
perhaps the closest to the approach in the present paper, a preliminary step
to quantizing M is to, in effect, endow M with a flat Spinc structure. For
example, the minimal orbit of SO(p, q) with p + q odd and p, q ≥ 4 does not
admit such a structure and cannot be quantized by the methods of [20] or
of the present paper.

General shift by K1/2

Now let us return to the zero mode action (2.13),

∫

Bμ
dxμ

dτ
dτ, (2.16)

dropping the assumption of a hyper-Kahler polarization. In the original
derivation, B emerged as a connection on the “complex line bundle” N =
L ⊗ (L′)−1. However, as we have just explained, in general N does not make
sense as a complex line bundle.
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Simply to make sense of the formula, there must be a correction that
shifts N to N̂ = L ⊗ (L′)−1 ⊗ K1/2 (or something similar to this), where K
is the canonical line bundle4 of M . The connection that appears in the
action must be a connection on N̂ .

The way that this correction arises is as follows. As a step toward quan-
tizing the open strings with (Bcc,B′) boundary conditions, one quantizes
the worldsheet fermions, expanding around a map from the string world-
sheet to Y that consists of a constant map to a point p ∈ M . In expanding
around such a constant map, there are no fermion zero modes, since they are
all removed by the boundary condition (2.11). Hence, the space of ground
states in the fermion Fock space is a one-dimensional vector space Wp. As
p varies, Wp varies as the fiber of a complex “line bundle” W → M . W and
the induced connection on it must be included as an additional factor in
quantizing the bosonic zero modes.

In fact, W is isomorphic to K1/2 (and is not quite well-defined as a line
bundle because of an anomaly in the relevant family of fermion Fock spaces).
One can show that W ∼= K1/2 by using standard methods to determine the
quantum numbers of the Fock space ground state. This result is also needed
to match the B-model analysis in the case that one uses a hyper-Kahler
polarization.

2.4 Unitarity

So far, to an A-brane B′, we have associated a vector space H consisting
of (Bcc,B′) strings. Quantum mechanics usually involves Hilbert spaces,
however, and the question arises of how to define a hermitian inner product
on H.

For this, we want to make a general analysis of how a hermitian inner
product can appear in the topological A-model. In this general discussion,
we are only concerned with the topological A-model with symplectic struc-
ture ωK . (Additional structures such as I and ωJ are not relevant.)

If B1 and B2 are two branes in the topological A-model, there is always
a natural duality between the space of (B1,B2) strings and the space of

4The metric on Y that is used to define the A-model, even if it is not hyper-Kahler,
restricts to a metric on M . The metric on M , together with the symplectic structure,
determines an almost complex structure on M , and this almost complex structure is used
to define K.
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(B2,B1) strings. It is given by the two point function on the disc. Conse-
quently, defining a hermitian inner product on the space of (Bcc,B′) strings
is equivalent to finding a complex antilinear map from (Bcc,B′) strings to
(B′,Bcc) strings.

Let us start by assuming that our A-model is a twisted version of a phys-
ically sensible, unitary, supersymmetric field theory. In general, any such
field theory has an antilinear CPT symmetry, which we will denote Θ. For
any pair B1,B2, the transformation Θ maps (B1,B2) strings to (B2,B1)
strings. This gives an antilinear map from (Bcc,B′) strings to (B′,Bcc)
strings, but it cannot be the map we want, because it is not a symme-
try of the A-model. The definition of the A-model depends on a choice of
a differential Q, which is a complex linear combination of the supercharges.
CPT maps Q to Q† (its hermitian adjoint), which is the differential of a
complex conjugate A-model.

To get a symmetry of the A-model, we need to combine Θ with a trans-
formation that maps the conjugate A-model back to the original A-model.
We get such a transformation if Y admits an involution τ (that is a diffeo-
morphism obeying τ2 = 1) with the property that ωK is odd under τ :

τ∗ωK = −ωK . (2.17)

This property implies that τ maps the A-model to the conjugate A-model.
In fact, we can always pick a τ -invariant metric g, such that ωK is of type
(1, 1). Then the almost complex structure K = g−1ωK is odd under τ . So
τ maps pseudoholomorphic curves to pseudo-antiholomorphic curves, and
thus maps the A-model to the conjugate A-model.

So Θτ = τΘ is an antilinear map from the A-model to itself. This is a
general statement about the A-model and holds whether or not the A-model
can be obtained by twisting an underlying physical theory. (The latter is
possible if one can choose K to be integrable.)

Now if B1 and B2 are τ -invariant A-branes, we can use Θτ to define a
hermitian inner product on the space H of (B1,B2) strings. If ( , ) is the
pairing between (B1,B2) strings and (B2,B1) strings given by the two-point
function on the disc, then the inner product on H is given by

〈ψ, ψ′〉 = (Θτψ, ψ′). (2.18)

Now let us apply this to our problem. For the brane Bcc to be τ -invariant,
we first of all need that the curvature ωJ of the Chan–Paton bundle of this
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brane should be τ -invariant:

τ∗ωJ = ωJ . (2.19)

We also actually need a little more: the action of τ on M should lift to
an action on the Chan–Paton line bundle L, whose curvature is ωJ , and we
must pick such a lift. Since ωK is odd under τ while ωJ is even, it follows
that τ is antiholomorphic from the point of view of the complex structure
I = ω−1

J ωK :

τ∗I = −I. (2.20)

It follows from this that each component of the fixed point set of τ is
middle-dimensional. With Ω = ωJ + iωK , we also have

τ∗Ω = Ω̄. (2.21)

So more briefly, we can summarize the above conditions by saying that τ
is an antiholomorphic involution of the complex symplectic manifold defined
by the data (Y, I,Ω), with a lift to L.

For the Lagrangian A-brane B′ to be τ -invariant, its support M (and its
Chan–Paton line bundle L′) must be τ -invariant, and again, we need a lift
of τ to act on L′. In this case, we get, finally, a hermitian form on the space
H of (Bcc,B′) strings. Note that τ need not leave M fixed pointwise, but it
must map M to itself. If τ acts trivially on M , the lift to L′, if it exists, can
be uniquely specified by saying that τ acts trivially on the restriction of L′

to M . If τ acts nontrivially on M , its lift to L′ may involve a subtle choice.

The hermitian inner product 〈 , 〉 is not necessarily positive definite (which
means as usual that 〈ψ, ψ〉 > 0 for all nonzero ψ ∈ H), but it is always
nondegenerate. Nondegeneracy means that given ψ ∈ H, there is always χ ∈
H such that 〈χ, ψ〉 �= 0. This follows from nondegeneracy of the underlying
topological inner product ( , ) and the fact that Θ2

τ = 1. Picking χ0 such
that (χ0, ψ) �= 0 and setting χ = Θτχ0, we have 〈χ, ψ〉 �= 0.

Near the classical limit, the norm of a state ψ ∈ H is roughly 〈ψ, ψ〉 =
∫

M ψ̄(τx)ψ(x). Such a form can be positive definite only if τ acts trivially on
M . So for 〈 , 〉 to be positive near the classical limit, we require that τ should
act trivially on M . Since M (being Lagrangian) is middle-dimensional,
while the fixed point set of the antiholomorphic involution τ is also middle-
dimensional, this means that M , assuming it is connected, is a component of
the fixed point set. (In Section 3.8, we give an example far from the classical
limit in which 〈 , 〉 is positive even though τ acts nontrivially on M .)
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Conversely, if M is a component of the fixed point set of τ , then, as ωK

is odd under τ , M is automatically Lagrangian for ωK . Moreover, ωJ is
automatically nondegenerate when restricted to M . (To prove this, start
with the fact that, if M is held fixed by an antiholomorphic involution
τ , then the restriction to M of the tangent bundle to Y decomposes as
TY |M = TM ⊕ I(TM). τ acts as 1 and −1 on the two summands, and,
being τ -invariant, ωJ is the sum of a nondegenerate two-form on TM and
one on I(TM).)

Thus, the case of our construction that leads to unitarity near the classical
limit is much more specific. Introducing the space of (Bcc,Bcc) strings, we
carry out deformation quantization of the complex symplectic manifold Y ,
constructing an associative algebra A. Then, to get a Hilbert space H on
which A acts, we pick an antiholomorphic involution τ (with a lift to the
line bundle L → Y ) and a component M of the fixed point set supporting
a τ -invariant A-brane B′. H is defined as the space of (Bcc,B′) strings, and
A acts on H.

The operation Θτ acts on a function f on Y , defining a (Bcc,Bcc) string,
as the composition of τ with complex conjugation. So if Of : H → H is the
operator associated to f , then the hermitian adjoint of Of is associated with
the function τ(f̄). In particular, if τ leaves M fixed pointwise and f is real
when restricted to M , then τ(f̄) = f and Of is hermitian.

3 Branes and representations

3.1 An example

To make these ideas more concrete, we will consider in more depth an exam-
ple that was introduced in Section 1.2. This is the case that Y is an affine
algebraic variety defined by the equation x2 + y2 + z2 = μ2/4 in complex
variables x, y, z. Here μ2 is a complex constant. Y admits the action of a
group SO(3, C), rotating x, y, and z. In quantization, we will encounter the
double cover of SO(3, C), which is SL(2, C).

We make Y a complex symplectic manifold by introducing the holomor-
phic two-form

Ω = h−1 dy ∧ dz

x
, (3.1)

where h is another complex constant. h could be eliminated (at the cost of
changing μ) by rescaling x, y, and z, and we will eventually set h = 1.
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Ω is SO(3, C)-invariant. One way to show this is to observe that Y
is defined by the equation f = 0 in C

3, where f = x2 + y2 + z2 − μ2/4.
The meromorphic differential 2h−1 dx ∧ dy ∧ dz/f is manifestly SO(3, C)-
invariant, with a pole precisely at f = 0. The residue of this pole is Ω.

Consequently, the A-model of Y with symplectic structure ωY = Im Ω has
SO(3, C) symmetry. If we consider only the usual Lagrangian A-branes, we
do not get much from the SO(3, C) action. That action becomes interesting,
however, if we introduce coisotropic A-branes.

As a preliminary, we compute the cohomology class of Ω. We set x =
x̂
√

μ2/2, y = ŷ
√

μ2/2, z = ẑ
√

μ2/2. The two-dimensional homology of Y is
generated by the real two-cycle S defined by x̂2 + ŷ2 + ẑ2 = 1. We compute
that

∫

S

Ω
2π

= h−1μ, (3.2)

where μ = ±
√

μ2. The sign depends on the orientation of S.

Hence the cohomology class of Re Ω/2π is integral if n = Re (h−1μ) is an
integer. Under this condition, we can construct a unitary line bundle L with
a connection of curvature Re Ω. This determines a space-filling coisotropic
brane Bcc in the A-model with symplectic structure ωY = Im Ω. The first
Chern class of L, integrated over S, is equal to n:

∫

S
c1(L) = n. (3.3)

Now let us describe the ring A of (Bcc,Bcc) strings. Classically, as
explained in Section 1.2, it is the commutative ring of polynomial functions
in x, y, and z, modulo the commutativity relation

[x, y] = [y, z] = [z, x] = 0 (3.4)

and the geometrical relation

x2 + y2 + z2 = μ2/4. (3.5)

In the context of the coisotropic brane, we have to consider possible cor-
rections to those relations. Corrections involve the Poisson brackets, which
are proportional to Ω−1 = hz(dx ∧ dy)−1, and higher order terms involving
higher powers of Ω−1 and its derivatives.
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It is simple to determine the corrections to the classical relations, because
they are severely constrained by (i) SO(3, C) symmetry, (ii) holomorphy, and
(iii) an approximate scaling symmetry. Of these points, SO(3, C) symmetry
requires little explanation. By holomorphy, we mean holomorphy in h and μ2

near h = μ2 = 0. Holomorphy in h is manifest in sigma-model perturbation
theory. At μ2 = 0, Y develops a singularity at the origin, but the ring
A is nevertheless holomorphic in μ2 since the corrections to the classical
ring structure can be computed in a region of field space far away from
the singularity of Y . Finally, if μ2 = 0, then Y has a scaling symmetry
(x, y, z) → (tx, ty, tz), t ∈ C

∗.

For μ2 �= 0, this is only an asymptotic symmetry, valid for (x, y, z) →
∞. Even if μ2 = 0, the algebra A does not have the scaling symmetry,
because Ω does not possess this symmetry. Still, the scaling symmetry
heavily constrains the corrections to the classical algebra generated by x, y,
and z. Under the scaling symmetry, we have μ2 → t2μ2, h → th. The crucial
point is that μ2 and h both scale with positive powers of t.

The most general deformation of (3.4) that is allowed by holomorphy and
SO(3, C) symmetry is [x, y] = f(μ2, h)z (and cyclic permutations) for some
function f . Under scaling, f must be of degree 1, and holomorphy then
implies that it is linear in h and independent of μ2. But the term linear
in h can be computed simply from the classical Poisson bracket, giving
[x, y] = hz, and cyclic permutations.

As for the relation (3.5), holomorphy, SO(3, C) symmetry, and scaling
symmetry dictate that h-dependent corrections can only take the form of a
constant multiple of h2. Thus the relation must take the form x2 + y2 + z2 =
μ2/4 + ch2, for some complex constant c. This constant can be computed
by going to second order in sigma-model perturbation theory, but instead
we will use an indirect method to show in Section 3.2 that c = −1/4.

Because of the scaling symmetry, we lose nothing if we set h = 1. The
form of the algebra is then that x, y, and z obey the SO(3, C) commutation
relations

[x, y] = z, [y, z] = x, [z, x] = y, (3.6)

and that the quadratic Casimir operator J2 = x2 + y2 + z2 is

J2 =
μ2 − 1

4
. (3.7)

For an alternative way to compute this algebra, from a different starting
point, see [25].



1476 SERGEI GUKOV AND EDWARD WITTEN

The preceding statements imply that if B′ is any A-brane, then the space
of (Bcc,B′) strings has a natural action of the Lie algebra so(3, C) or sl(2, C)
(generated by x, y, z). The value of the quadratic Casimir is (μ2 − 1)/4,
independent of the choice of B′. We will see examples below; with different
choices of B′, we will get different sl(2, C)-modules, all with the same value
of the quadratic Casimir.

To get a natural group action (as opposed to an action of the Lie algebra)
requires more. The reason for this is that if G is a noncompact group, then a
representation of the Lie algebra g of G does not automatically exponentiate
to an action of G. The brane Bcc is SL(2, C)-invariant, since its Chan–
Paton curvature Re Ω is invariant under SL(2, C). A Lagrangian A-brane
B′ will not be SL(2, C)-invariant. If B′ is invariant under a subgroup G of
SL(2, C), then G acts naturally on the space of (Bcc,B′) strings. We use
this starting in Sections 3.2 and 3.3 to construct representations of SU(2)
and SL(2, R).

Actually, something less than G-invariance of B′ suffices to get an action
of G on the space of (Bcc,B′) strings. What we need is only that, for all
g ∈ G, the brane (B′)g obtained by transforming B′ by g should be equivalent
to B′ in the A-model. Hamiltonian isotopies of Y with compact support,
and more generally those that rapidly approach the identity at infinity, act
trivially in the A-model. So if the h action on B′ can be compensated by
a Hamiltonian isotopy that has compact support, or that approaches the
identity fast enough at infinity, then (B′)g is equivalent to B′ as an A-brane.
If this holds for all g ∈ G, then G acts on the space of (Bcc,B′) strings. For
examples, see Sections 3.7–8.

The functions x, y, and z transform in the adjoint representation of SO
(3, C). The polynomial functions in x, y, and z modulo the commutation
relations generate the universal enveloping algebra U of SO(3, C). The
ring A is a quotient U/I, where I is the ideal generated by x2 + y2 + z2 −
(μ2 − 1)/4.

Now let us discuss hermitian structures. As explained in Section 2.4, to
get a hermitian structure from branes, we need an antiholomorphic involu-
tion τ : Y → Y that maps Ω to Ω̄. There are essentially two choices. The
obvious choice

τ : (x, y, z) → (x̄, ȳ, z̄) (3.8)

has all the necessary properties and breaks SO(3, C) to the compact sub-
group SO(3). Quantization of a τ -invariant brane will therefore lead to uni-
tary representations of SO(3), or its double cover SU(2). The alternative,
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up to a change of coordinates, is

τ̃ : (x, y, z) → (−x̄,−ȳ, z̄). (3.9)

This breaks SO(3, C) to SO(1, 2), whose double cover is SL(2, R). Quan-
tization of τ̃ -invariant branes will lead to unitary representations of SL(2, R).

Parameters of the A-model

A nice property of this model is that Y actually admits a hyper-Kahler
metric, extending the complex symplectic structure (I,Ω). In fact, with
such a hyper-Kahler structure, Y is known as the Eguchi–Hansen manifold.
We write I, J, K for the three complex structures and ωI , ωJ , ωK for the
corresponding Kahler forms. The hyper-Kahler metric on Y is completely
determined by the three periods

∫

S

ωI

2π
= α

∫

S

ωJ

2π
= β

∫

S

ωK

2π
= γ,

(3.10)

where α, β, γ are arbitrary real parameters. These parameters are uniquely
determined up to an overall sign (α, β, γ) → (−α,−β,−γ), which is equiva-
lent to a reversal of orientation of S.

The holomorphic two-form in complex structure I is Ω = ωJ + iωK , so
looking back to (3.2), we see that the parameters are related by

μ = β + iγ. (3.11)

(As before, μ = ±
√

μ2; the sign depends on the orientation of S, which also
affects the sign of β and γ.)

At the fixed point α = β = γ = 0, Y develops an A1 singularity. In fact,
according to (3.11), at α = β = γ = 0, the equation for Y reduces to x2 +
y2 + z2 = 0, with a singularity at the origin. From the point of view of
complex structure I, turning on α resolves the singularity, and turning on
β + iγ deforms it.
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The supersymmetric sigma-model with target Y has a fourth parameter,
a mode of the sigma-model B-field. This parameter is

η =
∫

S

B

2π
(3.12)

and takes values in R/Z. A sign change of α, β, γ must be accompanied
by a sign change of η, since it involves a reversal of orientation of S. The
symmetry is therefore

(α, β, γ, η) → (−α,−β,−γ,−η). (3.13)

The parameter space of the model is therefore W = (R3 × S1)/Z2.

The present paper is really based on the A-model for symplectic structure
ωK . This A-model is independent of α and β (which control complex struc-
ture K rather than symplectic structure ωK) and depends holomorphically
on

λ = η + iγ. (3.14)

Indeed, γ is a period of ωK , according to equation (3.10). As usual,
the A-model parameters are obtained by complexifying the periods of the
symplectic form to include B-field periods.

Though the A-model is independent of α and β, some A-branes are
conveniently defined and studied for favorable values of those parameters.
A case in point is the problem of defining a space-filling A-brane Bcc of
rank 1. The Chan–Paton bundle of such a brane has a curvature two-form F
such that (ω−1

K (F + B))2 = −1. (In discussing this equation in Section 2.1,
we assumed that B = 0.) A convenient way to solve this equation is to pick
α and β, so as to determine a hyper-Kahler metric, and then require that

F + B = ωJ . (3.15)

Dividing by 2π and integrating over S, this implies that
∫

S
c1(L) + η = β. (3.16)

Thus, to define a coisotropic brane in this way, we must pick β so that
β − η is equal to the integer n =

∫

S c1(L), which was already introduced in
equation (3.3). For any given A-model parameter η, this construction can
be made for any n, with β adjusted accordingly. So the same A-model has
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a family of coisotropic branes depending on the integer n, though it is hard
to use a single hyper-Kahler metric to construct all of them.

Comparing (3.16) with (3.11) and (3.14), we see that for a convenient
choice of hyper-Kahler metric, the geometrical parameter μ2 is related to
the A-model parameter λ by

μ = λ + n. (3.17)

In most of our discussion, we will set η = 0, and we will pick a particular
coisotropic brane with n fixed. This means that we set β = n.

Now let us determine how the involutions τ and τ̃ , which are antiholo-
morphic in complex structure I, act on the parameters. Of course, neither
τ nor τ̃ is a symmetry unless μ2 is real. Thus, either γ = 0 and μ2 = β2 is
non-negative, or β = 0 and μ2 = −γ2 is nonpositive.

In general, an antiholomorphic symmetry in complex structure I reverses
the sign of the Kahler form ωI . Also, τ and τ̃ map Ω = ωJ + iωK to Ω̄, so
they leave fixed ωJ and reverse the sign of ωK . To be symmetries of the
sigma-model, τ and τ̃ (which are not supposed to be orientifold symmetries;
they should preserve the orientation of a string worldsheet) must preserve
the B-field. The action of τ or τ̃ on the parameters (α, β, γ, η) is therefore

(α, β, γ, η) → ±(−α, β,−γ, η). (3.18)

(The sign depends on whether τ or τ̃ preserve the orientation of S, which
as we see later can depend on the values of the parameters.) Thus, if β �= 0,
we may have η �= 0 without spoiling τ or τ̃ symmetry, but we must set
α = γ = 0. And if γ �= 0, we may have α �= 0, but we must set β = η = 0.

3.2 Representations of SU(2)

We begin by considering unitary representations. To extract from the
A-model a space of strings with a Hilbert space structure, we need to pick
a second A-brane B′ that is supported at the fixed point set of τ or τ̃ .

We first consider the case of a brane B′ supported at the fixed point
set of τ . This fixed point set, which we will call M , consists of real x, y, z,
obeying x2 + y2 + z2 = μ2/4. In particular, μ2 = (β + iγ)2 must be real and
positive (or M is empty or collapses to a point, which is not a Lagrangian
submanifold), so β �= 0, γ = 0. M is SU(2)-invariant, so quantization of
(Bcc,B′) strings will lead to unitary representations of SU(2).
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A Lagrangian brane supported on M exists only if η = 0. Indeed, if F ′

denotes the curvature of the Chan–Paton bundle of B′, then the Lagrangian
condition is (F ′ + B)|M = 0. Given (3.12) (and the fact that M coincides
with S in this example), this implies that

∫

M B/2π = 0 mod Z, or η = 0.
Since also γ = 0, (3.17) tells us that

μ = n, (3.19)

where

n =
∫

M
c1(L). (3.20)

As usual L is the Chan–Paton bundle of Bcc.

As M is simply connected, the Chan–Paton bundle of B′ is trivial, so the
space of (Bcc,B′) strings is related to quantization of M with prequantum
line bundle L|M .

An interpretation via quantization only exists if ωJ is nondegenerate when
restricted to M . This implies that n must be nonzero. We may as well orient
M so that n > 0.

Quantization of M with n units of flux gives a Hilbert space H of dimen-
sion n, furnishing an irreducible representation of SU(2) with j = (n − 1)/2.
The quadratic Casimir operator J2 = j(j + 1) thus equals (n2 − 1)/4. Since
n2 = μ2 according to equation (3.19), this is equivalent to J2 = (μ2 − 1)/4.
This result agrees with (3.7), and accounts for the choice of constant in this
formula.

The generators Jx, Jy, and Jz of SU(2) arise by quantizing the functions
x, y, and z. We diagonalize Jz, finding a basis of eigenstates of Jz, each
obeying Jzψs = sψs for some s. According to a standard analysis, in an
n-dimensional irreducible representation of SU(2), the values of s are

−n − 1
2

, 1 − n − 1
2

, 2 − n − 1
2

, . . . ,
n − 1

2
. (3.21)

The range of eigenvalues of Jz is in accord with the classical fact that
on the brane characterized by x2 + y2 + z2 = n2/4 (with real x, y, z) z is
bounded by −n/2 ≤ z ≤ n/2. Because of quantum mechanical fluctuations,
the maximal value of |Jz| in the quantum theory (namely (n − 1)/2) is
slightly less than the classical upper bound n/2.
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3.3 Discrete series of SL(2, R)

To construct unitary representations of SL(2, R), we proceed in a similar
way, but now we consider τ̃ -invariant branes. It is convenient to make
a change of coordinates x → ix, y → iy, so that the equation defining Y
becomes

−x2 − y2 + z2 =
μ2

4
, (3.22)

and τ̃ acts simply by

(x, y, z) → (x̄, ȳ, z̄). (3.23)

We continue to assume that η = 0, and to ensure that Y admits the
symmetry (3.23), we take μ2 real. We begin with the case μ2 > 0, which
means that γ = 0, β �= 0. Just as in the last subsection, existence of the
brane Bcc requires us to take β to be an integer. This integer is n =

∫

S c1(L),
where now S ⊂ Y is given by imaginary x and y and real z. As in Section
3.2, we may as well take n ≥ 0. However, in Section 3.2, we required n > 0
to ensure that ωJ remains nondegenerate when restricted to S. For our
present purposes, this is irrelevant (we will not consider a brane wrapped
on S), so we allow n = 0. For n = 0, the equation defining Y reduces to
−x2 − y2 + z2 = 0, with an A1 singularity at z = y = z = 0, so we should
expect that some unusual behavior may occur at that point.

The fixed point set of τ̃ consists of real x, y, z. The equation z2 = μ2/4 +
x2 + y2 shows that this fixed point set has two components M±, given by

z = ±
√

μ2/4 + x2 + y2. (3.24)

Each component is equivalent to the complex upper half-plane with the usual
action of SL(2, R). In particular, the components M± are simply connected,
and each supports a unique rank 1 A-brane B′

±.

We quantize M± by taking the space of (Bcc,B′
±) strings. This should give

a unitary representation D±
n of SL(2, R) with the same value of the quadratic

Casimir that we found in Section 3.2, namely J2 = (n2 − 1)/4. (The value
of the quadratic Casimir must be the same because it is determined entirely
by the choice of the space Y and the brane Bcc, independent of the choice of
a second A-brane B′.) On the classical phase space M±, the range of values
of z is n/2 ≤ z ≤ ∞ on M+ and −∞ ≤ z ≤ −n/2 on M−. Hence in the
representation D+

n , Jz should be unbounded above, but bounded below by
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approximately n/2; and in the representation D−
n , Jz should be unbounded

below, but bounded above by approximately −n/2.

Unitary representations of SL(2, R) with these properties do exist and
are known as the discrete series. The precise set of values of Jz is

n + 1
2

, 1 +
n + 1

2
, 2 +

n + 1
2

, . . . (3.25)

for D+
n and

−n + 1
2

, −1 − n + 1
2

, −2 − n + 1
2

, . . . (3.26)

for D−
n . We will explain these formulas in Section 3.5 after describing the

principal series.

3.4 Principal series of SL(2, R)

Now we consider the case μ2 < 0, that is β = 0, γ �= 0. The fixed point set
M of τ̃ is now given by the equation

x2 + y2 =
γ2

4
+ z2, (3.27)

with x, y, and z real. It is connected, with the topology of R × S1 (for
γ �= 0). z is unbounded above and below, so in a representation obtained by
quantizing M , Jz is similarly unbounded.

The first Betti number of M is 1, so there is a one-parameter family
B′

δ of rank 1 A-branes supported on M ; roughly speaking, the monodromy
of the Chan–Paton bundle of B′

δ around the circle in M is exp(2πiδ). To
be more precise, we recall that the Chan–Paton bundle of an A-brane is
actually a flat Spinc bundle (not a flat line bundle), so we actually need
to pick a spin structure in order to define δ as a number. To define δ
precisely, we declare that δ = 0 corresponds to the Ramond spin struc-
ture (the one that corresponds to a trivial real line bundle over a
circle).

Topologically, R × S1 is the same as the cotangent bundle T ∗S1. We
explain below how to make contact between the present problem and quanti-
zation of M = T ∗S1 with its standard symplectic structure. For now, we just
proceed informally. In quantizing M = T ∗S1 via functions (actually half-
densities) on S1, a wavefunction picks up a phase exp(2πiδ) in going around
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S1. As a result, the eigenvectors of Jz are exponentials exp(i(n + δ)θ), where
θ is an angular variable on S1, and n is any integer. The spectrum of Jz

is thus of the form {δ + n|n ∈ Z}, and is unbounded above and below, as
expected.

To get a representation of SL(2, R), the eigenvalues of Jz must be inte-
gers or half-integers, and so δ must be 0 or 1/2. For generic δ, we get a
representation not of SL(2, R), but of its universal cover, which we denote
˜SL(2, R).

The representations obtained from this construction are known as the
principal series representations Pγ,δ. These are representations of SL(2, R)
(or its universal cover) with quadratic Casimir

J2 = −γ2 + 1
4

, (3.28)

for real γ. The spectrum of Jz is {δ + n|n ∈ Z}, as we described above, and
we get a representation of SL(2, R) (as opposed to a cover) precisely if δ = 0
or 1/2. The central element diag(−1,−1) of SL(2, R), which corresponds to
a 2π rotation of the circle, acts by exp(2πiδ).

A standard algebraic analysis (which we will essentially explain in Section
3.5) shows that Pγ,δ is irreducible unless γ = 0 and δ = 1/2. In that case,
one gets

P0, 12
= D+

0 ⊕ D−
0 , (3.29)

where D±
0 is the n = 0 case of the discrete series representations D±

n of
Subsection 3.3. Let us try to understand this decomposition from the present
point of view.

If we set γ = 0, M reduces to the cone z2 = x2 + y2. It is a union of two
components with z ≥ 0 and z ≤ 0, respectively. These are the specialization
to n = 0 of the two symplectic manifolds M+ and M− whose quantization
led to the discrete series. Topologically, each of M+ and M− is a disc, with
a unique flat Spinc structure that actually is a spin structure (since M± are
simply connected). On a circle at infinity, this spin structure corresponds
to the bounding or Neveu–Schwarz spin structure, which we get at δ = 1/2.
So it is only at δ = 1/2 that a brane supported on M decomposes (when we
set γ to zero) as the sum of a brane supported on M+ and one supported
on M−. At any other value of δ, M+ and M− are linked by a monodromy
at the origin.
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The singularity at γ = 0

At γ = 0, Y is described by x2 + y2 − z2 = 0, with an A1 singularity at
the origin. To understand better this case, we exploit the fact that the
parameter α is trivial in the A-model. We can turn on α and remove the
singularity without changing the A-model. Moreover, since we here have
β = 0, this does not disturb τ̃ symmetry.

Turning on α has the effect of blowing up the singularity. A convenient
way to describe the blowup is as follows. Consider a space C

3, with coordi-
nates (a, b, p), subject to a scaling symmetry (a, b, p) → (ta, tb, t−2p), t ∈ C

∗.
The ring of C

∗-invariant functions is generated by

x + z = a2p

x − z = −b2p,

y = abp,

(3.30)

subject to one relation x2 + y2 − z2 = 0. Let Z be the locus in C
3 consisting

of points in which a and b are not both zero. The quotient Y ′ = Z/C
∗ has a

natural map to Y , given by (3.30). This map is one-to-one except that the
inverse image of the origin in Y is a copy of CP

1 given by p = 0. Thus, Y ′

is obtained (in complex structure I) by blowing up the singularity of Y at
the origin. The holomorphic two-form of Y ′, which corresponds to Ω under
the above map, is Ω′ = (a db − b da) ∧ dp − 2p da ∧ db.

The Lagrangian submanifold M ′ that corresponds to M is defined by
taking a, b, p real. To describe M ′ explicitly, we use the scaling symme-
try to set a2 + b2 = 1. This leaves a freedom of reversing the sign of a
and b, so we set a = cos(θ/2), b = sin(θ/2) for some angle θ. The sym-
plectic structure with which we need to quantize M ′ is ω′

J = Re Ω′ = dp ∧
dθ. This is the standard symplectic structure of T ∗S1. Moreover, the
action of SL(2, R) on T ∗S1 is the natural action coming from the usual
action of SL(2, R) on S1 ∼= RP

1. Quantization leads to half-densities on S1,
with the natural action of SL(2, R) on the space of half-densities. If we
take δ �= 0, we get half-densities twisted by a flat bundle of monodromy
exp(2πiδ). This leads to the spectrum of Jz described above. (In this
description, the reducibility of the SL(2, R) representation at δ = 1/2 is
not clear.)

When γ �= 0, M is smooth and the blowup via α is not necessary. In
this case, by setting (x, y, z) = 1

2γ(cosh p cos θ, cosh p sin θ, sinh p), we can
identify M with T ∗S1 with its usual symplectic structure. This identification
commutes with the group of rotations of the circle, so it can be used to
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determine the spectrum of Jz, but it does not commute with SL(2, R), so
it does not directly determine the SL(2, R) representation. It can be shown
that the representation Pγ,δ can be interpreted as the space of densities
of weight 1/2 + iγ twisted by a flat line bundle with monodromy exp(2πiδ),
with the natural action of ˜SL(2, R) on this space. One way to show this is to
use the fact that M has an SL(2, R)-invariant map to S1 with Lagrangian
fibers; in other words, M admits an SL(2, R)-invariant real polarization.
(In fact, M has two such polarizations.)

3.5 Algebraic description

To better understand some things that we have already encountered and in
preparation for what follows, we will summarize some standard facts about
representations of sl(2) from an algebraic point of view.

In our construction, quantization of the functions x, y, and z gives oper-
ators Jx, Jy, Jz that obey the usual sl(2) commutation relations such as
[Jx, Jy] = iJz. As usual, it is convenient to set J± = Jx ± iJy. For unitary
representations of su(2), Jz is hermitian and J+ is the hermitian adjoint of
J−. For unitary representations of sl(2, R), Jz is hermitian and J+ is minus
the adjoint of J−. We summarize the facts about J±:

J†
+ =

{

J− for su(2)
−J− for sl(2, R).

(3.31)

We will consider both unitary representations and representations that
are not required to be unitary. In the unitary case, since Jz is hermitian, it
can be diagonalized with real eigenvalues, but in any event, we only consider
representations in which Jz can be diagonalized. We also assume that the
quadratic Casimir operator can be diagonalized, and we often write simply
J2 for its eigenvalue.

Suppose that ψ is an eigenvector of Jz, with Jzψ = sψ for some s. Addi-
tional eigenvectors can be constructed by acting with J+ or J−. This process
may continue indefinitely in both directions, giving a representation in which
Jz (or more exactly the real part of its eigenvalue) is unbounded above and
below. Alternatively, it may terminate in either or both directions, if we
find a highest weight vector ψ obeying

Jzψ = s+ψ, J+ψ = 0, (3.32)
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or a lowest weight vector ψ̃ obeying

Jzψ̃ = s−ψ̃, J−ψ̃ = 0. (3.33)

In an irreducible representation, the quadratic Casimir operator J2 =
J2

x + J2
y + J2

z is a multiple of the identity. It can be written as

J2 = J2
z + Jz + J−J+

= J2
z − Jz + J+J−.

(3.34)

If (3.32) is obeyed, we use the first formula in (3.34) to deduce that

J2 = s+(s+ + 1), (3.35)

and if (3.33) is obeyed, we use the second formula to deduce that

J2 = s−(s− − 1). (3.36)

If (3.35) is obeyed for some value of s+, then (3.36) is obeyed with

s− = s+ + 1. (3.37)

Thus, it is possible to have a representation of highest weight s+ if and
only if it is possible for the same value of the quadratic Casimir to have a
representation of lowest weight s+ + 1. This explains the relation between
the bounds on Jz for finite-dimensional representations in (3.21) and the
corresponding bounds for discrete series representations in (3.25) and (3.26).

If we assume unitarity, we can learn a little more. A vector ψ obeying
Jzψ = s+ψ, where s+ obeys (3.35), must be annihilated by J+. Indeed,
we have J−J+ψ = (J2 − J2

z − Jz)ψ = 0. So 0 = (ψ, J−J+ψ). In the unitary
case, the right-hand side is ±(J+ψ, J+ψ), and its vanishing implies that
J+ψ = 0. Similarly, if Jzψ̃ = s−ψ̃, and s− obeys (3.36), then in the unitary
case, it follows that J−ψ̃ = 0.

If ψ is a highest weight vector with Jzψ = s+ψ, then s+ ≥ 0 for a unitary
representation of su(2), and s+ ≤ 0 for a unitary representation of sl(2, R).
The two statements can be combined to εs+ ≥ 0, where ε = 1 for su(2)
and ε = −1 for sl(2, R). To see this, we note that J+ψ = 0 implies that
2s+(ψ, ψ) = (ψ, 2Jzψ) = (ψ, [J+, J−]ψ) = (ψ, J+J−ψ) = ε(J−ψ, J−ψ), where
(3.31) was used in the last step. This indeed implies that εs+ ≥ 0, with
equality only if J−ψ = 0, which implies that ψ generates a one-dimensional
trivial representation. A similar argument shows that a lowest weight vector
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has s− ≤ 0 in the case of a unitary representation of su(2), and s− ≥ 0 in
the case of a unitary representation of sl(2, R).

A standard fact, which we will not review here, is that every irreducible
representation of SU(2) has both a highest weight vector ψ and a lowest
weight vector ψ̃. Moreover, we can assume that ψ̃ = Jn

−ψ for some integer
n. If Jzψ = s+ψ, then Jzψ̃ = (s+ − n)ψ̃. The quadratic Casimir is J2 =
s+(s+ + 1) = (s+ − n)(s+ − n − 1), implying that s+ = n/2 is an integer or
a half-integer.

For the case of a nontrivial irreducible unitary representation of sl(2, R),
it is impossible to have both a lowest weight vector and a highest weight
vector. The Jz eigenvalues would have to be negative for the highest weight
vector, and positive for the lowest weight vector; but a highest weight vector
has a higher weight than any other vector in an irreducible representation.
This being so, we cannot make an argument like the one in the last para-
graph, and there is no way to show algebraically that the eigenvalues of
Jz take values in Z/2. When the eigenvalues are valued in Z/2, we get a
representation of the group SL(2, R), while the more general case leads to
representations of its universal cover. In Sections 3.3–4, we have encountered
unitary representations of SL(2, R) with neither a highest weight vector nor
a lowest weight vector (the principal series), as well as unitary representa-
tions with a lowest weight vector (the discrete series D+

n ) or a highest weight
vector (D−

n ).

Relaxing unitarity

Now let us consider representations that are not necessarily unitary. The
quadratic Casimir can act as a complex number, which we simply call J2, and
likewise the eigenvalues of Jz can be complex. Consider a representation that
contains a vector ψ with Jzψ = sψ for some s. If s and J2 are generic, then
there does not exist an integer n such that J2 is equal to (s + n)(s + n + 1).
In this case, none of the states Jn

+ψ or Jm
− ψ have eigenvalues obeying (3.35)

or (3.36), so these states are all nonzero. So a representation with generic s
and J2 is infinite in both directions, like the principal series representations.

For special values of s and J2, something special can happen. If J2 =
s(s + 1), it is possible to have a representation R− spanned by vectors
ψn, n = 0,−1,−2, . . ., with Jzψn = (s + n)ψn. This representation has a
highest weight vector ψ0 with Jzψ0 = sψ0. It is also possible to have a repre-
sentation R+ spanned by vectors ψn, n = 1, 2, 3 . . . , again with
Jzψn = (s + n)ψn. This representation has a lowest weight vector ψ1 with
Jzψ1 = (s + 1)ψ1.
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Now let us consider a general representation R spanned by vectors ψn,
n ∈ Z, obeying Jzψn = (s + n)ψn. Suppose that J+ψn = anψn+1, J−ψn+1 =
bnψn, for some complex constants an, bn. Again, write J2 for the eigenvalue
of the quadratic Casimir operator. Using (3.34), we deduce that for all n,

anbn = J2 − (s + n)(s + n + 1). (3.38)

This is a necessary and sufficient condition to get a representation of the
Lie algebra sl(2, C) with the assumed value of the Casimir. For every n, we
are free to redefine ψn → λnψn, for λn ∈ C

∗, along with

an → λnλ−1
n+1an, bn → λn+1λ

−1
n bn. (3.39)

As long as J2 and s are such that J2 − (s + n)(s + n + 1) never vanishes,
an and bn are nonzero and are uniquely determined, modulo a transforma-
tion of the type (3.39), by the equations (3.38). This gives an irreducible
representation for the assumed values of J2 and s, generalizing the principal
series.

Suppose on the other hand that J2 − (s + n)(s + n + 1) = 0 for some
value of n. Then we have anbn = 0, leaving three choices:

(1) We may have an = bn = 0. This gives a representation R that decom-
poses as a direct sum R = R1 ⊕ R2, where R1 has a highest weight
vector ψn and R2 has a lowest weight vector ψn+1.

(2) We may have bn = 0, an �= 0. This gives a representation R that con-
tains a subrepresentation R2 spanned by vectors ψm, m ≥ n + 1. R2
has a lowest weight vector ψn+1. There is no complementary repre-
sentation R1, but rather R can be described as an extension:

0 → R2 → R → R1 → 0. (3.40)

Here R1 is spanned by ψm, m ≤ n, but is not a subrepresentation of
R, since an �= 0 and ψn is not a highest weight vector. However, R1
can be understood as a quotient representation R/R2.

(3) Finally, we may have an = 0, bn �= 0. This gives an extension in the
opposite direction:

0 → R1 → R → R2 → 0. (3.41)

Here R1 is the subrepresentation spanned by ψm, m ≤ n, and contain-
ing the highest weight vector ψn. R2 is the quotient representation
R/R1.
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The phenomenon just described involving nonsplit extensions does not
occur for representations of either real form of sl(2) that admit a nondegen-
erate hermitian form, since in that case bn = ±ān in view of (3.31). What
nonsplit extensions mean in terms of branes will be described in Section 3.7.

If we further specialize s and J2, the equation J2 = (s + n)(s + n + 1)
may have two integer solutions, say n1 and n2. In this case, we run into the
two equations an1bn1 = 0 and an2bn2 = 0, and we can independently choose,
in each of the two cases, which if either of a and b is nonzero.

Hermitian structure

Now let us specialize this to the case of a representation of sl(2, R) com-
patible with a hermitian structure ( , ). The relations J+ψn = anψn+1,
J−ψn+1 = bnψn imply (ψn+1, J+ψn) = an(ψn+1, ψn+1), (ψn, J−ψn+1) =
bn(ψn, ψn). If J− = −J†

+, then (ψn, J−ψn+1) is minus the complex conjugate
of (ψn+1, J+ψn), so we get

anbn = − |(ψn+1, J+ψn)|2
(ψn+1, ψn+1)(ψn, ψn)

. (3.42)

For a unitary representation, (ψn, ψn) > 0 for all n. In this case, (3.42)
implies that anbn < 0 (unless ψn is a highest weight vector). Let us apply this
to a unitary representation in which the set of Jz eigenvalues is {s + n|n ∈ Z}
for some real s. Together with the fact that anbn < 0, (3.38) implies that
(s + n)(s + n + 1) > J2 for all n, or

(s + n + 1/2)2 > J2 + 1/4. (3.43)

For example, let us consider representations of SL(2, R) in which s = 0
so that the central element diag(−1,−1) acts trivially. The condition that
(n + 1/2)2 > J2 + 1/4 for all integers n is equivalent to J2 < 0. We have
already encountered the relevant unitary representations with J2 ≤ −1/4.
These are the principal series representations with J2 = −(γ2 + 1)/4. The
unitary representations with 0 > J2 > −1/4 are known as the complemen-
tary series. Algebraically, the complementary series is simply the analytic
continuation of the principal series to J2 > −1/4 or imaginary γ. (Equa-
tion (3.38) with the equivalence relation (3.39) give a general description
for all J2 and s.) However, natural geometric realizations of the hermitian
structure undergo a sort of phase transition at J2 = −1/4. For an explana-
tion of how this happens (in a standard description of the representations
via densities of suitable weight on S1), see chapter 1.3 of [26]. In terms of
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branes, we described the principal series in Section 3.4, and we will describe
the complementary series in Section 3.8.

A representation of sl(2, R) with any real J2 and s can admit a nonde-
generate hermitian structure, though not necessarily a positive-definite one.
Let us see what happens for s = 0 and J2 > −1/4. If there is an integer n
such that J2 = n(n + 1), the representation has a lowest weight or highest
weight vector, as we have seen above. Let us suppose that this is not the
case. Equations (3.38) and (3.42) imply that

(ψn, ψn)(ψn+1, ψn+1) =
(

n(n + 1) − J2) |(ψn+1, J+ψn)|2 . (3.44)

Let n0 be the largest integer such that n0(n0 + 1) − J2 < 0. Then the con-
dition n(n + 1) − J2 < 0 is obeyed for 2n0 + 2 values of n, namely −n0 − 1 ≤
n ≤ n0. From (3.44), it follows that if n is in this range, then (ψn+1, ψn+1)
and (ψn, ψn) have opposite signs. The total number of sign changes is even,
so if (ψn, ψn) is positive for large positive n, then it is also positive for large
negative n. However, the n0 + 1 states ψn0−2k, 0 ≤ k ≤ n0, have negative
norm.

A similar analysis can be made for other values of s. For brevity, we con-
sider only the question of s = 1/2, which is associated to representations of
SL(2, R) in which the central element acts as −1. For s = 1/2, (3.43) tells us
that −1/4 ≥ J2, which is the range covered by the principal series. So there
are no new unitary representations to be had. There are, of course, represen-
tations with indefinite but nondegenerate hermitian forms. For J2 > −1/4
and s = 1/2, the number of sign changes is odd, so if (ψn, ψn) is positive for
large positive n, it is negative for large negative n. In the region near n = 0,
the signs alternate.

3.6 Discrete series of ˜SL(2, R)

It is now straightforward to complete the description of the discrete series.
For a unitary representation, μ2 = (β + iγ)2 must be real, so either β or γ
vanishes. We have already considered in Section 3.4 the case of β = 0 with
generic γ. So here we take γ = 0 with generic β.

From (3.16), we have β = η + n, where n =
∫

S c1(L) is an integer and η
is the world-sheet theta-angle. Thus, to get generic β, we must take η to be
nonzero. The quadratic Casimir is J2 = (β2 − 1)/4, just as in the case of
integer β. As in Section 3.2, we introduce a second A-brane B′

± supported
on the locus M± defined by z = ±

√

μ2 + x2 + y2. (The Chan–Paton bundle
of this brane is determined up to isomorphism by the requirement that
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F + B|M = 0.) Classically, on the support of this brane, z is bounded below
or above by μ.

Quantum mechanically, there must be a lowest weight or highest weight
vector. The Jz eigenvalue s− of a lowest weight vector is determined by
s−(s− − 1) = J2 = (β2 − 1)/4 or

s− =
β + 1

2
. (3.45)

The spectrum is exactly as in (3.25), with n replaced by β. For non-
integral n, Jz is no longer a half-integer. What we get this way is a unitary
representation of the universal cover ˜SL(2, R) of SL(2, R). It is the gener-
alization of the discrete series to ˜SL(2, R). See [27] for more.

3.7 Harish-Chandra modules from branes

Our next goal is to describe in terms of branes the not necessarily unitary
representations that were described algebraically in Section 3.5, for example
in equations (3.38) and (3.39). These are representations in which the spec-
trum of Jz is of the form s + n, for some complex constant s and for n ranging
over a sequence of consecutive integers that may be infinite, semi-infinite, or
finite. Such representations are known mathematically as Harish-Chandra
modules. (Sometimes one considers only the case 2s ∈ Z, corresponding to
representations of SL(2, R) rather than a cover, but we will not make this
restriction.)

In general, Harish-Chandra modules are not unitary, so we will have to
describe them via branes that are not τ̃ -invariant. Harish-Chandra modules
do admit an action of the group SL(2, R), though in general not a unitary
action. This suggests that we might describe them via SL(2, R)-invariant
branes, but in fact, the full list of SL(2, R)-invariant Lagrangian submani-
folds of Y is very short and we have exhausted it already. However, since
sufficiently well localized Hamiltonian isotopies act trivially in the A-model,
it suffices for our purposes to consider branes that are SL(2, R)-invariant
only asymptotically. It turns out that there is a sufficient supply of these.

Since Jz can be naturally diagonalized in these modules, it is reasonable
to guess that one can choose the brane B′ to be invariant under the subgroup
K ∼= U(1) = SO(2) generated by Jz. K is a maximal compact subgroup of
SL(2, R).
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As we will see, it is possible to describe all K-invariant Lagrangian sub-
manifolds of Y . It is convenient to use the fact that Y admits a family
of hyper-Kahler metrics with parameters (α, β, γ), as described in Section
3.1. The hyper-Kahler metric is not SL(2, C)-invariant, but it is invariant
under the maximal compact subgroup SU(2) ⊂ SL(2, C) and in particular
under the maximal compact subgroup K = U(1) ⊂ SL(2, R). The moment
map for the K action gives three natural functions on Y , which we denote
as �w. (Thus the components of �w are the moment maps for K with respect
to the three symplectic structures �ω = (ωI , ωJ , ωK).) Mapping a point in Y
to the corresponding value of �w gives a map π : Y → R

3, which away from
the fixed points of K is a fibration with S1 fibers. The hyper-Kahler metric
of Y takes the form

ds2 = Hd�w · d�w + H−1(dχ + �a)2 (3.46)

where χ ∼= χ + 2π is an angular parameter along the fibers of π. The group
K acts by translation of χ or in other words by rotation of the fibers. H is
the harmonic function

H =
1

2|�w − �w∗| +
1

2|�w + �w∗| . (3.47)

The moduli of the hyper-Kahler metric are contained in the choice of
point �w∗ ∈ R

3:

�w∗ =
1
2
(α, β, γ). (3.48)

This formula will be explained shortly. At the two points �w = ±�w∗, H−1

vanishes and the fibers of the map Y → R
3 collapse to points. Those points

are the fixed points of K. Away from those two points, the map Y → R
3 is

a circle fibration and �a is a connection on this fibration with curvature

�∇ × �a = ∇H. (3.49)

What we have just described is the Gibbons–Hawking form of the Eguchi–
Hansen metric.

The three Kahler forms on Y are

�ω = (dχ + �a · d�w) ∧ d�w − 1
2
Hd�w × d�w (3.50)

where (d�w × d�w)i = εijkdwj ∧ dwk. As a check, we note that with the
action of K corresponding to the vector field ∂/∂χ, the moment map for
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Figure 2: The space of �w ∈ R
3. The tri-holomorphic action of K � U(1)

has fixed points at the two “Taub-NUT centers,” �w = ±�w∗, where �w∗ =
1
2(α, β, γ). The inverse image in Y of a straight line connecting these points
is a two-sphere S.

K is indeed

�μ = �w, (3.51)

as promised. A convenient choice of a two-surface S that generates the
second homology of Y is (figure 2) the inverse image in Y of a straight line in
R

3 from �w = −�w∗ to �w = �w∗. A short calculation shows that
∫

S �ω/2π = 2�w∗,
justifying the formula (3.48) for the moduli.

Finally, we want to understand the action of τ and τ̃ . For τ or τ̃ to be a
symmetry, they must either (1) leave fixed the two points �w = ±�w∗, which
occurs if α = γ = 0, or (2) exchange them, which occurs if β = 0.

τ and τ̃ both commute with K, and transform the symplectic forms by
(ωI , ωJ , ωK) → (−ωI , ωJ ,−ωK). Since �w is the moment map, this means
that τ and τ̃ acts on the base of Y → R

3 by (w1, w2, w3) → (−w1, w2,−w3).
Consequently, any K-invariant A-brane that is pointwise τ or τ̃ -invariant
must project under π : Y → R

3 to the w2 axis, or a piece of it.

Given that τ and τ̃ commute with rotations of the fiber and square to
1, they can, roughly speaking, only act on χ by χ → χ or χ → χ + π. Let
us first discuss case (2), with β = 0. This is the case that is related to the
principal series, and we know from Section 3.4 that there is a (pointwise)
τ̃ -invariant A-brane with topology R × S1. This brane must project to the
full w2 axis. Hence, τ̃ must leave χ fixed in this case. On the other hand,
for β = 0, γ �= 0, there is no such τ -invariant A-brane, so τ must act by
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χ → χ + π. Thus, for β = 0, we have

τ : χ → χ + π

τ̃ : χ → χ.
(3.52)

On the other hand, consider the case α = γ = 0, β > 0. The two fixed
points are at (w1, w2, w3) = ±1

2(0, β, 0). From Section 3.2, we know that
there is an SU(2)-invariant brane with topology S2 on which τ acts trivially.
This brane must project to the part of the w2 axis connecting the two fixed
points. On the other hand, from Section 3.3, we know that there are two
τ̃ -invariant branes with topology R

2. These must correspond to the regions
w2 ≥ β/2 and w2 ≤ −β/2 of the w2 axis. The action on χ of τ and τ̃ is
therefore

τ : χ →
{

χ + π |w2| > β/2
χ |w2| < β/2

τ̃ : χ →
{

χ |w2| > β/2
χ + π |w2| < β/2.

(3.53)

For β → 0, (3.53) and (3.52) coincide, as expected. In (3.53), we have not
explained what happens for |w2| = β/2; these are the fixed point of K so the
value of χ is immaterial there.

Now let us consider Y as a symplectic manifold with symplectic form
ωY = ωK = (dχ + �a · �w) ∧ dw3 − H dw1 ∧ dw2, and try to describe the K-
invariant Lagrangian submanifolds M . K-invariance means that M is a
union of fibers of the projection Y → R

3. So in fact, M must be the inverse
image in Y of a one-dimensional curve � in R

3. The restriction of ωY to
such an M is the same as the restriction of dχ ∧ dw3, and vanishes if and
only if � is at a constant value of w3. So to find M , we specify a constant
value of w3, which we call b, and we let R

2
b ⊂ R

3 be the plane defined by
w3 = b. Then we pick any curve � ⊂ R

2
b , and take M to be its inverse

image in Y .

The plane R
2
b may contain zero, one, or two of the special points �w =

±�w∗. R
2
b contains one special point if β/2 = ±b, and both special points if

b = β = 0. In figure 3, we sketch a case in which both of the special points
are contained in R

2
b ; in this example, � extends to infinity in both directions.

Although a closed curve � will lead to a Lagrangian submanifold, it does
not generally lead to an A-brane. The reason is that a closed curve in R

2
b

is the boundary of a disc instanton (holomorphic in complex structure K),
so that such a Lagrangian submanifold is not likely to be the support of an
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Figure 3: A K-invariant Lagrangian submanifold M ⊂ Y is represented by
a planar curve � ∈ R

2
b . Plotted is the case that R

2
b contains both special

points, depicted here as solid dots.

Figure 4: If � is semi-infinite, running from a fixed point to infinity, then
the corresponding Lagrangian submanifold is a semi-infinite cigar, equivalent
topologically to R

2.

A-brane.5 On the other hand, it is definitely possible for � to terminate at
one or both ends at one of the special points �w = ±�w∗, where the fiber of
the map Y → R

3 collapses to a point.

There are thus three topologies for M :

(1) If � connects the two points �w = ±�w∗, the fiber collapses at both ends
and M is topologically a two-sphere.

(2) If � is infinite at one end, and ends at the other end at one of the two
special points, then the fiber collapses at one end and M is topologi-
cally R

2. (This is illustrated in figure 4.)
(3) If � is infinite at both ends, the fiber never collapses and M is topo-

logically R × S1.

5Also, the space of (Bcc, B′) strings cannot have an interpretation in terms of quantiza-
tion if � is a closed curve, because the condition for nondegeneracy of ωJ that we discuss
shortly cannot be satisfied for a closed curve.



1496 SERGEI GUKOV AND EDWARD WITTEN

We have already met A-branes of all three types. In Section 3.2, we
associated finite-dimensional representations of SU(2) with branes of type
(1). In Section 3.3, we associated the discrete series with branes of type
(2). And in Section 3.4, we associated the principal series with branes
of type (3). All of these branes have their support on the w2 axis, with
w1 = w3 = 0. Asymptotic SL(2, R) invariance means that at infinity, if �
does get to infinity, � must be sufficiently close to the w2 axis. We do not
know the right criterion for “sufficiently close,” and our results will not
depend on this very much. For simplicity, we will consider the case that w1
is bounded at infinity.

For the space of (Bcc,B′) strings to have an interpretation in terms of
quantization, ωJ must be nondegenerate when restricted to M . Since ωJ =
(dχ + �a · �w) ∧ dw2 − Hdw3 ∧ dw1, and dw3 = 0 along �, this is equivalent to
saying that dw2 is everywhere nonzero along �. In other words, w2 is every-
where a good coordinate along �, and � can be described by an equation
w1 = f(w2), for some function f . Hamiltonian transformations of Y that
commute with K can include, as a special case, area-preserving transforma-
tions of R

2
b that leave invariant the fixed points �w = ±�w∗ (if either of these

points lies in R
2
b). Modulo such a transformation, the only invariants of �

are whether it ends at a fixed point and whether it goes to the left or right
of such a point.

Let us consider an � that is infinite at both ends and asymptotically
parallel to the w2 axis. Thus, the Lagrangian submanifold M is topologically
R × S1. � may have complicated wiggles, but these are irrelevant in the
A-model. To find the parameters in the A-model, we simply observe that
as the first Betti number of M is 1, a rank 1 A-brane supported on M
depends on a single complex parameter or a pair of real parameters. One
real parameter is the Wilson line — the holonomy of the Chan–Paton line
bundle around S1. As in Section 3.4, we parametrize the holonomy of this
bundle as exp(2πiδ). Then δ is one real parameter characterizing a rank
1 A-brane supported on M . The second real parameter corresponds to
a displacement of M by the vector field V = ω−1

Y ζ, where ζ is a closed
but not exact one-form on M , and ωY = ωK is the symplectic form of the
A-model. In the case at hand, we can take ζ = dχ + �a · d�w (which is closed
when restricted to M), in which case V is the vector field ∂/∂w3, which
shifts b. Thus, the second modulus is simply b. Moreover, the A-model is
holomorphic in δ + ib.

It is not hard to understand the meaning of the moduli. In quantiz-
ing M with respect to symplectic structure ωJ , the moment map for the
K symmetry is w2, which thus plays the role of z in Sections 3.3–4. w2
is unbounded below along M , since � is asymptotically parallel to the w2
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axis. So the spectrum of Jz eigenvalues in quantization of M is of the form
{s + n|n ∈ Z}, for some complex number s that is defined modulo 1. As
in Section 3.4, the real part of s is determined by the monodromy around
S1 of the Chan–Paton bundle of M ∼= R × S1. Thus Re s = δ + constant, so
holomorphy of the A-model in δ + ib implies that

s = δ + ib + constant. (3.54)

Now let us discuss what sort of branes are associated with modules that
have a highest or lowest weight vector. For this, � should end on one of
the fixed points �w∗ = ±1

2(α, β, γ), and hence (taking the positive sign) we
must have

b = γ/2. (3.55)

According to (3.11),

μ = β + iγ = η + iγ + n, (3.56)

with n an integer. Comparing the last three formulas, the imaginary part
of μ is twice the imaginary part of s, so via holomorphy, we have μ/2 =
s + n + constant. The constant is 1/2, since, as we explained in Section 3.3,
a highest or lowest weight module with μ = β = γ = 0 has s = 1/2. So the
quadratic Casimir operator is

J2 = (μ2 − 1)/4 = (s + n + 1/2)2 − 1/4 = (s + n)(s + n + 1), (3.57)

which is the expected result for a module with a lowest or highest weight
vector.

It is inevitable that there is an undetermined integer n in this formula,
since s (which is defined by saying that the eigenvalues of Jz are congruent
to s mod Z) is only determined modulo an additive integer. Moreover, the
derivation involved no input that would distinguish a representation con-
taining a highest weight vector from one containing a lowest weight vector.
For a brane to have an interpretation in terms of quantization, w2 must be
a monotonic function along �, so either � runs from w2 = −∞ to the fixed
point or it runs from the fixed point to w2 = +∞. Since the value of w2 is a
classical approximation to Jz, the two types of brane correspond to highest
weight and lowest weight representations, respectively. In either case, to
determine the precise Jz value of the highest or lowest weight vector, we
must treat the quantization more precisely, or use an algebraic argument
such as that explained in Section 3.5.

If one end of � is at a fixed point (figure 4), the corresponding Lagrangian
submanifold M is topologically R

2. The first Betti number of M vanishes, so
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the corresponding brane B′ has no deformations as an A-brane. This is what
we expect for a brane associated to a highest or lowest weight representation.
The value of s for such a brane is constrained to obey (3.57) for some integer
n, so there is no possible deformation. (J2 is a property of the space Y , not
the brane B′, so J2 will remain fixed in deformations of B′ in the A-model
of Y .)

Now let us consider a pair of curves �1 and �2, both ending at the fixed
point. We suppose that �1 runs from −∞ to the fixed point and �2 from the
fixed point to +∞. �1 and �2 correspond to A-branes B1 and B2 that are
associated, respectively, to a highest weight representation R1 and a lowest
weight representation R2 of sl(2, R). B1 and B2 are supported on Lagrangian
submanifolds M1 and M2, each of which is topologically R

2. The two copies
of R

2 meet transversely. In terms of some local complex coordinates u and
v (which we can take to be holomorphic in complex structure J), M1 is
defined by v = 0 and M2 by u = 0.

Consider the reducible A-brane B′ = B1 ⊕ B2, which is associated to the
reducible representation R = R1 ⊕ R2, in which Jz is bounded neither above
nor below. It is supported on M = M1 ∪ M2, which is defined by the
equation

uv = 0. (3.58)

What are the deformations of B′ as an A-brane? The space of first-order
deformations is the space of (B′,B′) strings of ghost number 1, which for
B′ = B1 ⊕ B2 decomposes as ⊕2

i,j=1Hij , where Hij is the space of (Bi,Bj)
strings of ghost number 1. H11 and H22 are each trivial, since the first
Betti numbers of M1 and M2 are trivial. On the other hand, as M1 and M2
intersect transversely at a single point in Y , which is of codimension 4, the
spaces H12 and H21 are each of complex dimension 1. A general deformation
of B′ is thus given by a pair of complex parameters a ∈ H12 and b ∈ H21.

If a = b = 0, B′ remains as a direct sum. If a �= 0, b = 0, or a = 0, b �= 0,
then B′ is deformed to an extension in one direction or the other, containing
B1 or B2 as a sub-brane. This gives us three representations, with the same
value of s, exactly in parallel with the situation that was described in Section
3.5, for example in equations (3.40) and (3.41). In fact, the parameters a
and b in the present derivation with branes correspond to an and bn in the
previous purely algebraic analysis.

Finally, if a and b are both nonzero, the support of the brane B′ is
deformed from uv = 0 to uv = ε, where ε ∼ ab. The support of the deformed
brane is topologically R × S1, with first Betti number 1. So it is possible
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to turn on a monodromy parameter δ. Of the three real parameters δ,
Re ε, and Im ε, two (namely δ and, say, Im ε) represent a deformation in s
away from its initial value that obeyed equation (3.57). This deformation
forces the brane and the associated representation to become irreducible.
(Indeed, when ε �= 0, the brane no longer passes through the fixed point at
u = v = 0; when δ is varied, the different components are linked by a mon-
odromy.) The third real parameter, say Re ε, represents a displacement of
� = �1 ∪ �2 in the w1 direction. This type of displacement is irrelevant in
the topological A-model, though it is meaningful as a deformation in the
underlying sigma-model of Y .

One can go one step farther and consider a situation in which � terminates
on a fixed point at each end; in other words, � connects the two fixed points
at �w = ±�w∗. This leads to the same derivation with �w∗ replaced by −�w∗,
and s replaced by −s in (3.57). Requiring that (3.57) should hold for both
signs of s, we learn as usual that 2s ∈ Z. The associated representations
are finite-dimensional. We studied them from the viewpoint of SU(2) in
Section 3.2, and we will re-examine them in Section 3.8 from the viewpoint
of SL(2, R).

3.8 τ̃ -Invariant branes with only asymptotic SL(2, R) symmetry

Here we will study a more general class of τ̃ -invariant A-branes associated
to sl(2, R) representations that admit a hermitian structure that may or
may not be positive definite. Thus, we will re-examine in terms of branes
questions that were considered algebraically at the end of Section 3.5.

We continue to describe Y in a manifestly SL(2, R)-invariant way by the
equation

−x2 − y2 + z2 =
μ2

4
. (3.59)

In this description, τ and τ̃ act by

τ : (x, y, z) → (−x̄,−ȳ, z̄)

τ̃ : (x, y, z) → (x̄, ȳ, z̄).
(3.60)

We begin with the case μ2 > 0. For the compact cycle S that generates
the second homology of Y , we can take the fixed point set of τ . In the present
description, this fixed point set is characterized by (x, y, z) = (ix̂, iŷ, z),
where x̂, ŷ, and z are real and x̂2 + ŷ2 + z2 = μ2/4.
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Let B′ be a rank one A-brane supported on S. Since τ acts trivially on
S, the space H of (Bcc,B′) strings gives a unitary representation of SU(2),
a fact that we exploited in Section 3.2.

Here we will look at the same brane from the point of view of SL(2, C)
and eventually SL(2, R). First of all, the set S is not SL(2, C)-invariant.
Nevertheless, the A-brane B′ is SL(2, C)-invariant, simply because S is com-
pact. For v ∈ sl(2, C), let hv be the Hamiltonian function that generates the
vector field on Y corresponding to v. Let ĥv be any function on Y of com-
pact support that coincides with hv in a neighborhood of S. The action of
ĥv is trivial in the A-model (since Hamiltonian isotopies of compact support
are trivial in the A-model) and this action on B′ coincides with the action of
hv. (We could make a similar argument concerning the action of an element
of the group SL(2, C) that is close to the identity.) This argument still
goes through if S is not compact but is asymptotically SL(2, C)-invariant.
For example, we will presently consider a Lagrangian submanifold that is
SL(2, C)-invariant on the complement of a compact set. This is certainly
an adequate condition.

Since the brane B′ is SL(2, C)-invariant, the group SL(2, C) must act on
H. Indeed, in any finite-dimensional representation of SU(2), the represen-
tation matrices can be analytically continued to give an action of SL(2, C).
(By contrast, the group SL(2, C) will generally not act in a Hilbert space
that furnishes a representation of SL(2, R), even a unitary one; such rep-
resentations are generally associated to branes whose support is noncom-
pact in an essential way, and the above argument does not go
through.)

Though SL(2, C) acts on the Hilbert space H obtained in quantization
of S, it certainly does not preserve the positive-definite hermitian structure
of H that arises from τ symmetry. In fact, SL(2, C) does not preserve any
hermitian structure on H. However, H does admit an SL(2, R)-invariant
hermitian structure (though not a positive one).

The reason for this is simply that S is τ̃ -invariant, as well as τ -invariant.
τ̃ acts on S by

(x̂, ŷ, z) → (−x̂,−ŷ, z). (3.61)

τ̃ does not leave S fixed pointwise (as τ does), but it does map S to itself,
and therefore maps B′ to itself. So the construction of Section 2.4 can be
applied using τ̃ symmetry to get a manifestly SL(2, R)-invariant hermitian
structure on H.
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By following the logic of equation (2.18), we can make this explicit. If ( , )
is the natural pairing between (Bcc,B′) strings and (B′,Bcc) strings, then the
SU(2)-invariant hermitian pairing is 〈ψ, ψ′〉 = (Θτψ, ψ′) and the SL(2, R)-
invariant pairing is 〈〈ψ, ψ′〉〉 = (Θτ̃ ψ, ψ′). Here Θτ = τΘ and Θτ̃ = τ̃Θ.
Finally, τ̃ is the same as hτ , where h is the rotation in (3.61), which acts on
the Lie algebra sl(2, C) the same way that it does on the coordinates:

h(Jx, Jy, Jz)h−1 = (−Jx,−Jy, Jz). (3.62)

So the relation between 〈〈 , 〉〉 and 〈 , 〉 is

〈〈ψ1, ψ2〉〉 = 〈hψ1, ψ2〉. (3.63)

Explicitly, we can now verify that 〈〈 , 〉〉 is SL(2, R)-invariant. Since
Jx, Jy, and Jz are hermitian with respect to 〈 , 〉, (3.62) implies that Jz is
hermitian but Jx and Jy are antihermitian with respect to 〈〈 , 〉〉, which is
the condition for SL(2, R)-invariance.

The fact that the same representation admits hermitian forms invariant
under either SU(2) or SL(2, R) is related to the fact that these groups are
“inner real forms” of SL(2, C). This means the following. SL(2, R) is the
subgroup of SL(2, C) characterized by g = ḡ (where we regard g ∈ SL(2, C)
as a 2 × 2 complex unimodular matrix), while SU(2) is characterized by
g = hḡh−1. An “outer form” (there are none for SL(2, C)) would be char-
acterized by g = φ(ḡ), where g → φ(g) is an outer automorphism of order 2.

Let us describe the hermitian form 〈〈 , 〉〉 more explicitly in a basis of
eigenstates of Jz. First consider a representation of odd dimension n =
2k + 1. We diagonalize Jz with Jzψs = sψs, s = −k,−k + 1, . . . , k. Equa-
tion (3.62) determines h up to multiplication by a constant c, which for the
moment we will assume to be real:

hψs = c(−1)sψs. (3.64)

So the sign of 〈〈ψs, ψs〉〉 is c(−1)s. Thus the states ψs have alternating
positive and negative norms. We have actually seen this structure from an
algebraic point of view in Section 3.5, in a problem (see equation (3.44))
that is closely related, as will become clear.

The value of c depends upon how one lifts τ̃ from an automorphism of Y
to an automorphism of the relevant Chan–Paton line bundles. When one has
a hermitian form that is positive definite if the sign is chosen properly, that
gives a natural choice. Otherwise, what is natural may depend upon the
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problem. One fairly natural way to pick a lift of τ̃ is to pick a fixed point
p ∈ S of τ̃ , assuming that there is one (in the present case there are two
fixed points p± defined by (x̂, ŷ, z) = (0, 0,±μ/2)), and require that τ̃ acts
trivially on the fiber at p of the relevant Chan–Paton bundles. This gives a
definite recipe for defining the hermitian form, but in general it depends on
the choice of p.

A further subtlety arises for an even-dimensional representation of SU(2).
In this case, since s is half-integral, in order to make 〈〈ψ, ψ〉〉 real-valued,
we need to pick c imaginary (which will ensure that the eigenvalues of h are
real). Here it is fairly clear that there cannot be a preferred choice between
c = i and c = −i. Indeed, it can be shown that in the recipe mentioned in
the last paragraph, the sign depends on the choice of fixed point p±.

The complementary series

We return to the framework of Section 3.7 and we consider an A-brane
associated with a suitable curve �. However, here we will take � to be simply
the w2 axis, w1 = w3 = 0. For β = 0, γ �= 0, this gives the brane, studied in
Section 3.4, whose quantization leads to the principal series. Here we will
consider the opposite case α = γ = 0, β > 0. We take B′ to be a rank 1
A-brane supported on M = π−1(�).

In this case, the two fixed points of K lie on � at the points ±1
2(0, β, 0).

Hence, geometrically one can divide M into three pieces M+ ∼= R
2, M0 ∼=

S2, and M− ∼= R
2, respectively, corresponding to w2 ≥ β/2, β/2 ≥ w2 ≥

−β/2, and w2 ≤ −β/2. Corresponding to this, if the parameters are chosen
correctly, B′ may be the direct sum of three A-branes B+,B0, and B−.

For this, we need η = 0 and β equal to an integer n, so that an A-brane
with support M0 exists. (Recall from Section 3.2 that the space of (Bcc,B0)
strings has dimension β.) The decomposition B′ = B+ ⊕ B0 ⊕ B− further
needs a condition on the Chan–Paton bundle of B′. The monodromy around
the point of intersection of M+ and M0 (or of M0 and M−) must be trivial,
or else this monodromy will link the different components.

Though it is possible for B′ to have a decomposition as an A-brane, this
is not the main situation that we wish to discuss. We will primarily be
interested in parameters for which B′ is irreducible. Actually, for brevity
we will focus on the case of s = 0, leading to representations of SL(2, R)
in which the center acts trivially. One can achieve s = 0 for any β or J2

by suitably adjusting the monodromy of the Chan–Paton bundle. If s =
0, then the representation of SL(2, R) is irreducible unless J2 = n(n + 1)
for some integer n. When this occurs, quantization of M0 gives a Hilbert
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space of dimension 2n + 1. This happens for β = 2n + 1. (For s = 1/2, the
representation becomes reducible for J2 = n(n + 1) with n ∈ Z + 1/2; this
happens for even β. We leave this case to the reader.)

Let us discuss the space H of (Bcc,B′) strings. First of all, M+ and
M− are SL(2, R)-invariant, though M0 is not. But M0 is compact. So
we are in a situation similar to the one we encountered above: since M is
SL(2, R)-invariant away from a compact set, SL(2, R) acts naturally on H.
Furthermore, this action preserves a hermitian form (though not necessarily
a positive-definite one) since M is τ̃ -invariant. In fact, τ̃ acts trivially on the
components M±, while rotating the two-sphere M0 by an angle π around
its points of intersection with M±. These statements have essentially been
summarized in equation (3.53), according to which τ̃ acts on the fiber of
π : Y → R

3 by

τ̃ : χ →
{

χ |w2| > β/2
χ + π |w2| < β/2.

(3.65)

We consider first the case that β is large, to get a useful semiclassical
description. Also, we take s = 0, so as to get a representation of SL(2, R)
with integer eigenvalues of Jz. All integers will appear, since the moment
map of Jz, which is w2, is unbounded above and below on M . So H has
a basis ψn with Jzψn = nψn. Semiclassically, M+, M0, and M− support,
respectively, states with Jz (or its moment map w2) greater than β/2,
between β/2 and −β/2, and less than −β/2, respectively. Quantization
of M+ or M− gives a positive-definite hermitian form, since τ̃ acts trivially,
while quantization of M0 gives an oscillatory quadratic form, as described
above. So the norm of ψn is positive for |n| > β/2 and oscillates in sign
for |n| < β/2. Semiclassical reasoning justifies these statements except near
|n| = β/2, where the fact that B′ is actually irreducible becomes relevant.
But actually, the algebraic analysis of the hermitian form in Section 3.5
shows that the statements are precisely valid.

Now let us consider the opposite region in which β is small, still keeping
s = 0. At β = 0, M coincides with the brane used in Section 3.4 to describe
the γ = 0 case of the principal series. The hermitian form on H is certainly
positive definite in that case; in fact, τ̃ acts trivially on M at β = 0. When we
turn on β, J2 = (β2 − 1)/4 becomes greater than −1/4. The SL(2, R) action
on H remains irreducible until we reach β = 1. In this entire range, there
is no highest or lowest weight vector (equations (3.35) and (3.36) show that
for s = 0 and J2 < 0, there cannot be one), and the hermitian inner product
remains positive definite, according to equation (3.44). What we have found
is the complementary series of unitary representations of SL(2, R).
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At β = 1, the brane B′ is reducible. H splits up accordingly as H+ ⊕
H0 ⊕ H−, where H± are infinite-dimensional Hilbert spaces that realize
the discrete series representations D±

1 , and H0 is a one-dimensional triv-
ial representation of SL(2, R). The hermitian structure on H+ ⊕ H0 ⊕ H−
is not unique, as signs can be chosen independently on the three summands,
depending on the lift of τ̃ to act on the Chan–Paton bundles of the three
branes. Continuing past β = 1, the hermitian structure becomes unique
again (up to a multiplicative constant, which we choose to get an almost
positive-definite inner product), with a single state of negative norm. This
follows from the algebraic analysis of Section 3.5 (see equation (3.44)). This
result means that the hermitian structure at β = 1 that continues smoothly
to β > 1 corresponds to taking the hermitian form on H+, H0, and H− to
be respectively positive, negative, and positive.

If we continue to increase β, the brane B′ and the representation furnished
by H are irreducible, as noted above, except when β is an odd integer 2n + 1,
for some n. For β between 2n − 1 and 2n + 1, the number of negative
norm states is n, according to the algebraic analysis of Section 3.5. At β =
2n + 1, H decomposes as H+ ⊕ H0 ⊕ H−, where H± furnish discrete series
representations, and H0 is a representation of dimension 2n + 1. Taking a
basis of H0 with Jzψk = kψk, |k| ≤ n, the norm of ψk has sign c(−1)k, as
explained earlier, where depending on the choice of lift of τ̃ , c may be either
1 or −1. One lift gives n states of negative norm and one gives n + 1. The
lift that gives n states of negative norm continues smoothly to β < 2n + 1
and the one that gives n + 1 states of negative norm continues smoothly to
β > 2n + 1. The fact that one lift extends in one direction and one in the
other can be explained by a topological argument.

3.9 Relation to D-modules

In Section 3.7, we showed how to describe a Harish-Chandra module in terms
of a curve � in the plane R

2
b . We adopted as much as possible a topological

point of view, not attempting to make a distinguished choice of �. Instead
we required only that w2 is a good coordinate along �, so that the space of
(Bcc,B′) strings in the A-model can be related to quantization of M .

However, certain choices of � have particularly nice properties. One choice
that is particularly nice from the point of view of quantization is to take �
to be a vertical line (or part of a vertical line) in the plane R

2
b . In this

case (figure 5), M = π−1(�) is a complex manifold in complex structure J .
The associated A-brane B′ is then a brane of type (A, B, A) (that is, it is a
B-brane with respect to complex structure J and an A-brane for any linear
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Figure 5: A vertical line in the plane R
2
b , corresponding to a brane of type

(A, B, A).

combination of ωI and ωK). This can be convenient, for the following reason.
The canonical coisotropic brane Bcc associated with a choice of hyper-Kahler
metric on Y is also a brane of type (A, B, A). The space of (Bcc,B′) strings in
the A-model can be viewed as the space of string states of zero energy in the
underlying sigma-model of Y with N = 4 supersymmetry, or alternatively
as the (Bcc,B′) strings in the B-model of complex structure J . In other
words, quantization in our sense coincides in this situation with what in
geometric quantization is called quantization using the Kahler polarization
determined by J . We exploited this relationship in Section 2.3.

There is another type of choice for � (figure 6) that is not closely related
to quantization but is interesting from a different point of view. We take
� to run horizontally in R

2
b , parallel to the w1 axis. In this case, M is

holomorphic in complex structure I and B′ is a brane of type (B, A, A). This
choice of M is maximally unsuitable for an interpretation via quantization,
because ωJ vanishes when restricted to M , rather than being nondegenerate.
However, it has another virtue: it simplifies the relation between A-branes
and D-modules.

Y can be interpreted as T ∗
CP

1 if α �= 0, β = γ = 0; more generally if β
and γ are not zero, Y is an affine deformation of T ∗

CP
1. In any event, Y

admits an SL(2, C)-invariant holomorphic map Ψ : Y → CP
1 (in fact two

such maps, related in a sense by a Weyl transformation; explicit formulas
are given below). In this situation, as explained in Section 11 of [6], the
space of (Bcc,B′) strings can be sheafified over CP

1 and interpreted as the
sheaf of sections of a twisted D-module over CP

1. The D-module is twisted
by K1/2 ⊗ O(1)λ, where K is the canonical line bundle of CP

1, O(1) is the
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Figure 6: A horizontal line in the plane R
2
b , corresponding to a brane of type

(B, A, A).

usual line bundle of degree 1, and λ = η + iγ. (Such twisting is described
in [28], Section 4.4.)

The fact that an A-brane leads to a twisted D-module, as well as an
sl(2, C) module, enables us to make contact with the theory of Beilinson
and Bernstein [29] relating sl(2, C) modules to twisted D-modules on the
flag manifold CP

1. To compare to that theory, we would like to be able
to explicitly describe the D-module corresponding to a given A-brane. In
general, this is difficult, but for branes of type (B, A, A), there is a natural
framework for doing so, as described in Section 4.3 of [24]. In general, this
involves solving Hitchin’s equations, but for the branes considered in the
present paper, one can get an explicit answer as the relevant equations are
abelian.

If B′ is a brane of type (B, A, A) supported on M ⊂ Y (so in particular M
is holomorphic in complex structure I), then the support of the correspond-
ing D-module is simply the projection of M under the holomorphic map
Ψ : Y → CP

1. In order to describe Ψ explicitly, we recall that, in complex
structure I, the complex symplectic manifold Y is defined by the equation
x2 + y2 + z2 = μ2/4 in complex variables x, y, z. To an element of Y , we
associated a complex 2 × 2 traceless matrix

A =
(

x y − iz
y + iz −x

)

(3.66)

with determinant −μ2/4 or, equivalently, with eigenvalues ±μ/2. Because
μ/2 is an eigenvalue of A, there exists a nonzero column vector Υ, unique
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Figure 7: A brane B′ of type (B, A, A) is located at a fixed value of z =
w2 + iw3.

up to scaling, that obeys

AΥ =
μ

2
Υ. (3.67)

Up to scaling, Υ determines a point in CP
1, and Ψ is defined to map

A to this point. (A second such map can be defined by taking Υ to obey

AΥ = −(μ/2)Υ.) Setting Υ =
(

1
t

)

gives

t =
μ/2 − z

x − iy
=

x + iy
μ/2 + z

. (3.68)

This formula explicitly describes the map Ψ : Y → CP
1. In terms of new

variables x± = ±x + iy, we have

t =
z − μ/2

x−
=

x+

μ/2 + z
. (3.69)

In terms of these variables, the equation defining Y becomes

x+x− = z2 − μ2/4. (3.70)

The variable z here can be identified with the complex variable w2 + iw3
in the Gibbons–Hawking description of the hyper-Kahler metric on Y .

Now let us return to branes of type (B, A, A) (see figure 7). As we
explained in Section 3.7, in the Gibbons–Hawking description of the hyper-
Kahler metric on Y , a brane B′ of type (B, A, A) is represented by a curve
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� ⊂ R
3 with fixed values of w2 and w3. In other words, � is a line parallel

to the w1 axis, or a part of it. In particular, since the value of z = w2 + iw3
is fixed, the support of this brane is a complex subvariety of Y defined by a
constant value of x2 + y2 or equivalently of x+x−:

x+x− = ε. (3.71)

Here ε = −μ2/4 + z2 is a constant that vanishes precisely if z = ±μ/2.

Unbounded modules

We start with the general case ε �= 0. In this case, M is an irreducible
algebraic curve defined by equation (3.71). It has the topology of R × S1

and corresponds to a principal series representation of SL(2, R) or its uni-
versal cover, or, more generally, to a Harish-Chandra module that has Jz

eigenvalues unbounded above and below. From (3.69) it follows that a brane
B′ of this type corresponds to a D-module supported on

M ′ = CP
1 \ {0,∞}. (3.72)

Because the map from M to M ′ is 1 : 1, the D-module is of rank 1, and is
given by a flat bundle with structure group C

∗ = GL(1, C). As π1(M ′) = Z,
such flat bundles are classified by a single element of C

∗, which we can take
to be the monodromy around the origin (or the inverse of the monodromy at
infinity). The logarithm of this monodromy corresponds to the parameter
s = δ + ib of Section 3.7. If the projection of M to its image in CP

1 were k : 1,
we would have to solve rank k Hitchin equations to describe the D-module
explicitly.

M ′ is one of the KC orbits in CP
1. Indeed, the complex group KC = C

∗

acts on the flag variety CP
1, which is a union of three KC orbits: two compact

orbits {0} and {∞}, and one open orbit C
∗ � CP

1 \ {0,∞}.

Highest and lowest weight modules

As z approaches one of the points ±μ/2, say μ/2, we have ε → 0 in equa-
tion (3.71), and the brane B′ supported on the curve (3.71) degenerates into
a sum of two branes, one supported at x+ = 0, and the other supported at
x− = 0. We denote these branes as B′

+ and B′
−, respectively. (The imagi-

nary part of the condition z = μ/2 is b = γ/2, which is precisely the condi-
tion (3.55) for � to end at a special point.) From (3.69), it follows that the
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supports M ′
± of the branes B′

± are

M ′
+ = {0}

M ′
− = CP

1 \ {∞}.
(3.73)

At the second special point, z = −μ/2, the roles of B′
+ and B′

− are reversed
and the branes B′

+ and B′
− correspond to D-modules supported on

M ′
+ = CP

1 \ {0}
M ′

− = {∞}.
(3.74)

In both cases, the D-modules supported on M ′
+ and M ′

− correspond,
respectively, to Harish-Chandra modules with lowest and highest weight
vectors.

3.10 Groups of higher rank

We have concentrated on SL(2, C) in this section to keep the arguments ele-
mentary, but there is a fairly immediate analog for any complex Lie group
GC, with Y taken to be a coadjoint orbit of GC, and Ω the natural holo-
morphic symplectic form of the coadjoint orbit. The algebra A of (Bcc,Bcc)
strings in that case is U(gC)/I, where U(gC) is the universal enveloping
algebra of GC, and I is a deformation of the ideal that defines Y .

Suppose that GC is of rank r. Then the ring of invariant polynomials on
gC is a polynomial ring with r generators O1, . . . ,Or, which are known as
Casimir operators. A regular orbit in gC is obtained by setting the Oi to
complex constants ci. So if Y is such a regular orbit, then the ideal I is
generated by Oi − c′

i, with some constants c′
i, i = 1, . . . , r (which may differ

from the classical values ci, as we have seen for rank 1).

For any Lagrangian A-brane B′, the space H of (Bcc,B′) strings is a gC-
module in which the values of the Casimir operators are Oi = c′

i. Thus, just
as we saw for the rank 1 case, by making different choices of B′, we get
many different gC-modules with the same values of the Casimir operators.
Moreover, if B′ is invariant under an antiholomorphic involution of Y (which
leaves fixed the support of B′), then H furnishes a unitary representation of
the corresponding real form of GC.

With suitable choices of B′, one can construct unitary representations of
the compact form of GC and analogs of the discrete and principal series
for noncompact forms, as well as mixtures of these. The greatest novelty
in going to rank greater than 1 is, however, that there are also interesting
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representations associated with nonregular orbits. For SL(2, C), the only
nonregular coadjoint orbit is the orbit of the zero element of sl(2, C); this
orbit is a point, leading to the trivial representation. Groups of higher rank
have a greater variety of nonregular orbits, leading to nontrivial but in some
sense small representations.

4 Quantization of Chern–Simons gauge theory

Finally, we conclude by examining one of the few known examples of a
quantum field theory in which the subtleties of quantization actually play
an important role.

The relevant quantum field theory is three-dimensional Chern–Simons
gauge theory. It was analyzed in [30] and in more detail in [15, 31, 32]
from the viewpoint of geometric quantization, and has been studied from
numerous other points of view ranging from conformal field theory to alge-
braic geometry and deformation quantization (references include [33], [34],
and [35], respectively). See [36] for an introduction to the theory.

The aspect of interest to us is to construct the space of physical states
of Chern–Simons theory with compact gauge group G on an oriented two-
manifold without boundary that we call C. For brevity, we take G connected
and simply connected. We define M to be the moduli space of homomor-
phisms from π1(C) into G, up to conjugation, of a given topological type.
M (which is the classical phase space of the Chern–Simons theory) has a
natural symplectic form ω∗, inherited [37] from a symplectic structure on the
infinite-dimensional linear space A of all connections on a G-bundle E → C
of the appropriate topological type. In gauge theory, letting A denote a
connection on E, the symplectic form can be described explicitly by

ω∗ =
1
4π

∫

C
Tr δA ∧ δA. (4.1)

The symbol Tr represents an invariant quadratic form on the Lie algebra
g of G, which we normalize so that ω∗/2π is the image in de Rham coho-
mology of a generator of H2(M, Z) ∼= Z. (For G = SU(n), Tr is the trace
in the n-dimensional representation.) A line bundle L∗ with curvature ω∗
can be naturally constructed using gauge theory [38]. Then, picking a pos-
itive integer k̂, we seek to quantize M with symplectic form ω = k̂ω∗ and
prequantum line bundle L = Lk̂

∗.

To find a sigma-model that will do this, we need a natural complexification
Y of M , with certain properties. We simply take Y to be the moduli space
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of homomorphisms from π1(C) to GC, the complexification of G, again up to
conjugation. Y is naturally a complex manifold. Indeed, Y can be defined
by giving the holonomies Ui and Vj , i, j = 1, . . . , g around a complete set
of a-cycles and b-cycles in C. These are defined up to conjugation by an
element of GC, and obey a single relation

U1V1U
−1
1 V −1

1 . . . UgVgU
−1
g V −1

g = 1. (4.2)

This description makes it clear that Y is a complex manifold, and in fact
an affine variety, with a great deal of holomorphic functions. We can describe
these functions explicitly. Let R be a finite-dimensional representation of
GC. For S an oriented closed loop on C, let Hol(S) be the holonomy of
a flat connection around S. Then WR(S) = TrR Hol(S) is a holomorphic
function on Y . (We took R to be finite-dimensional to ensure that the trace
always converges; for suitable infinite-dimensional R, the same formula gives
a meromorphic function on Y .) In gauge theory, with A now understood as
a gC-valued connection, we can write

WR(S) = TrR P exp
(

−
∮

S
A

)

. (4.3)

Alternatively, if we write S as a word in the a-cycles and b-cycles (regarded
now as generators of π1(C)), then WR(S) is the trace of the corresponding
word in the Ui and Vj . The holomorphic functions WR(S) restrict on M
to holonomy functions that we define and denote in the same way (the
holonomies are now G-valued rather than GC-valued). Thus the restrictions
of holomorphic functions on Y give a dense set of functions on M .

Y has a nondegenerate holomorphic two-form Ω∗ that is defined by the
same formula as (4.1), with A now understood as a gC valued connection. We
consider Y as a complex symplectic manifold with holomorphic symplectic
form Ω = k̂Ω∗. Clearly, the restriction of Ω to M coincides with ω. The line
bundle L → M extends to a unitary line bundle L → Y with a connection
of curvature Re Ω.

As usual, we want to consider the A-model of Y with symplectic structure
ωY = Im Ω. (This is the same A-model that is studied in the gauge theory
approach to geometric Langlands [6], though the motivation there is a little
different.) Y is a space with a very good A-model, since in fact [39] it can
be endowed with a complete hyper-Kahler metric extending its structure as
a complex symplectic manifold. To find such a hyper-Kahler metric, one
picks a complex structure on C, which enables one to write down Hitchin’s
equations; one then endows Y with a complete hyper-Kahler metric by inter-
preting it as the moduli space of solutions of those equations. An important
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point here is that the structure of Y as a complex symplectic manifold is
completely natural (requiring no structure on C except an orientation). But
to endow Y with a hyper-Kahler structure, which is useful for making the
A-model concrete, we have to pick a complex structure on C. The choice
of such a hyper-Kahler metric is a hyper-Kahler polarization of (Y, M) in a
sense described in Sections 1.3 and 2.3.

GC has an antiholomorphic involution that keeps G fixed; we write it
as U → Ū and call it complex conjugation. We define an antiholomorphic
involution τ : Y → Y that acts by complex conjugating all monodromies.
M is a component of the fixed point set of τ , since by definition, M is the
locus in Y with G-valued monodromies. (The fixed point set of τ has other
components, as explained in [39].)

To place quantization of M in the framework of this paper, we must as
usual introduce two branes in the A-model of Y . One brane is the canonical
isotropic brane Bcc, whose support is all of Y and whose curvature form is
Re Ω. This brane exists and is unique up to isomorphism because we have
taken G to be simply connected and k̂ to be an integer. Restricted to M ,
Re Ω is the symplectic form ω = k̂ω∗ of M , which we wish to quantize. We
let B′ be a rank 1 A-brane supported on M ; it exists and is unique up to
isomorphism as M is a simply connected spin manifold.

The space H of (Bcc,B′) strings in the A-model gives a quantization of M
with symplectic structure ω. Diffeomorphisms of C that are continuously
connected to the identity act trivially on Y and on its A-model. (They
do not preserve a hyper-Kahler metric on Y that we may use to facilitate
computations in the A-model, but A-model observables do not depend on
this hyper-Kahler metric.) However, the mapping class group MC of C acts
on Y in a way that is nontrivial (and not isotopic to the identity) so it can
act nontrivially on H. It is useful to introduce the Teichmuller space T
of C. Any point t ∈ T determines a complex structure on C (unique up
to isotopy) and hence a hyper-Kahler polarization of (Y, M). We denote
as Ht the space of (Bcc,B′) strings constructed with this polarization. It
is locally independent of t, since the A-model is invariant under a local
change in the hyper-Kahler polarization, so the Ht fit together as fibers
of a flat vector bundle over T . Taking the monodromy of the flat con-
nection, we get an action of MC on Ht (for any choice of t). Actually,
to be more precise, as is known from other approaches cited at the begin-
ning of this section, what acts on H is a central extension of MC . Though
the occurrence of a central extension is not surprising in quantum mechan-
ics, to compute the central extension from the present point of view, we
would need a better understanding of how to explicitly construct the flat
connection.
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As explained in general in Section 2.3, after a choice of hyper-Kahler
polarization corresponding to a point t ∈ T , H can be computed explicitly as
a vector space by taking the space of holomorphic sections of the appropriate
line bundle,

H = H0(M, Lk̂
∗ ⊗ K1/2), (4.4)

but the proper Hilbert space structure of the A-model is not given by an
elementary formula in terms of the Kahler geometry of M . That is actually
the standard result in Chern–Simons gauge theory; H can be constructed
as a vector space by taking a suitable space of holomorphic sections, but
that does not lead to a simple expression for the Hilbert space structure.
Equation (4.4) can be slightly simplified using the fact that K1/2 ∼= L−h

∗ ,
where h is the dual Coxeter number of G. (This fact can be proved using
the index theorem for a family of Dirac operators.) The standard algebro-
geometric description of the physical Hilbert space of Chern–Simons theory
at level k is H = H0(M, Lk

∗). So k as conventionally defined in gauge theory
or two-dimensional current algebra is related to k̂ in the A-model by

k = k̂ − h, k̂ = k + h. (4.5)

Many formulas in Chern–Simons gauge theory are most simply written
not in terms of the underlying coupling k but in terms of k + h, which, as
we now see, is the natural A-model parameter k̂.

The holonomy functions WR(S) generate, classically, a commutative alge-
bra. In the A-model, this commutative algebra is deformed as usual to a
noncommutative algebra A, the space of (Bcc,Bcc) strings. This algebra will
act on H. In Chern–Simons gauge theory, what this means is simply that
Wilson loops on C, upon quantization, become operators that act on the
quantum Hilbert space. Some aspects of this were described in [30]; for
more from the point of view of deformation quantization, and additional
references, see [35].

The greatest novelty of the present approach to this much-studied subject
is probably that it is clear that the very same algebra A acts on the space
of (Bcc,B) strings for any other choice of A-brane B. Quite a few interesting
choices can be contemplated. We conclude by mentioning some illustrative
examples.

We have already considered one case, in which B is a rank 1 A-brane
supported on M , and the space H of (Bcc,B) strings can be interpreted as
a quantization of M .
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Alternatively, since the A-model we are considering here is the same one
that is considered in the gauge theory approach to geometric Langlands, we
can consider A-branes that are important in that context. These are rank 1
A-branes supported on a fiber of the Hitchin fibration. The Hitchin fibration
is a map π : Y → B, where B is an affine space of half the dimension of Y .
The map is holomorphic not in the natural complex structure of Y with
which we began the discussion but in another complex structure6 that
is found by solving Hitchin’s equations. A generic fiber F of the Hitchin
fibration is a torus that is a complex abelian variety from the point of view
of this other complex structure. More relevant for our present purposes, F

is a Lagrangian submanifold from the point of view of ωY = Im Ω, so it can
be the support of a rank 1 A-brane B∗. Moreover, Re Ω is nondegenerate
when restricted to F , so the space H∗ of (Bcc,B∗) strings can be regarded
as a quantization of F .

Since F is a torus, one would naively expect quantization of F to be
related to abelian current algebra, not nonabelian current algebra. However,
there should be a close relation between H and H∗, because a certain very
singular special fiber of the Hitchin fibration (the fiber at the “origin”) has
M , taken with multiplicity greater than 1, as one of its components. This
fact should lead to an embedding of H (or possibly of the direct sum of
several copies of H) in H∗, something that is very likely related to various
results in conformal field theory in which current algebra of the nonabelian
group G is expressed in terms of an abelian current algebra.

For a quite different kind of example, let GR be an arbitrary real form of
the complex Lie group GC. For any such real form, there is an antiholomor-
phic involution φ : GC → GC that leaves GR fixed. Mapping the holonomies
Ui, Vj to their transforms by φ gives an antiholomorphic involution of Y
that we call τφ. The fixed point set of τφ has a component that is the mod-
uli space Mφ of GR-valued flat connections on C. If GR is compact, then
Mφ simply coincides with the space M whose quantization we have already
discussed.

In general, Mφ is the phase space of three-dimensional Chern–Simons
theory with gauge group GR, compactified on a two-manifold C. It is a
Lagrangian submanifold of Y with respect to ωY = Im Ω and supports a
rank 1 A-brane B̃. The space H̃ of (Bcc, B̃) strings can be interpreted as the
space of physical states in quantization on C of Chern–Simons theory with
gauge group GR. One interesting consequence of the present point of view is

6This complex structure is called I in [39]. There is a difficult-to-avoid clash in notation
with Section 2, where the analogous complex structure was called J . The notation there
was motivated by compatibility with the gauge theory approach to geometric Langlands.
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that the same algebra A of quantized holonomies that acts in the compact
case also acts on the space of physical states for any noncompact real form.
This is almost clear perturbatively (except for a subtlety at the one-loop
level [40], which we explain shortly), but is less obvious nonperturbatively.

To describe H̃ explicitly, we pick again a point t ∈ T , giving a hyper-
Kahler polarization of (Y, Mφ). In other words, after picking t, we solve
Hitchin’s equations to get a hyper-Kahler metric on Y , which determines
a complex structure on Mφ. Then in this hyper-Kahler polarization, H̃t

is explicitly H0(Mφ,Lk̂
∗ ⊗ K1/2), where now K is the canonical bundle of

Mφ. However, it is not true that K1/2 ∼= L−h
∗ . Rather, K1/2 ∼= L−hφ

∗ , where
hφ is defined as follows. Decompose the Lie algebra of GR as g = k ⊕ p,
where k is the Lie algebra of a maximal compact subgroup of GR and p is
its orthocomplement. After expressing h in terms of the trace in g of the
square of a suitable element of g, write h = h+ + h−, where h+ and h− come
from traces in k and p, respectively. Then (as one can again prove using the
families index theorem) hφ = h+ − h−. We thus have

H̃t = H0(Mφ,Lk̂−hφ
∗ ). (4.6)

We would like to compare this result to Chern–Simons gauge theory,
but it is difficult to do so because Chern–Simons gauge theory of a non-
compact gauge group is not well-understood. However, it is a reasonable
conjecture that the space of physical states is H̃t = H0(Mφ,Lkφ

∗ ), where
kφ is the Chern–Simons coupling. If so, the relation between kφ and the
A-model parameter k̂ is

kφ = k̂ − hφ, k̂ = kφ + hφ. (4.7)

Equivalently, for the same algebra A to act in Chern–Simons theory with
compact gauge group and coupling k as in Chern–Simons gauge theory with
gauge group GR and coupling kφ, the relation between k and kφ must be

k + h = kφ + hφ. (4.8)

The couplings are here defined so that the spaces of physical states are
H0(M, Lk

∗) and H0(Mφ,Lkφ
∗ ), respectively. These formulas are consistent

with a computation [40] of the one-loop quantum correction in Chern–
Simons theory with a noncompact gauge group.

Either the topological invariance of Chern–Simons gauge theory or the
fact that the A-model is independent of a choice of hyper-Kahler polarization
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implies that there should be a natural projectively flat connection governing
the dependence of H̃t on t. Except in the compact case, it is not known
how to explicitly construct such a connection. However, for GR a split
real form, and a particular component of M (the one that is contractible
topologically), the appropriate representation of the mapping class group
has been constructed by another method based on real polarizations [41].
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