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Abstract

This paper is the continuation of [7]. We essentially prove that the
family of strongly causal spacetimes defined in [7] associated to generic
achronal subsets in Ein2 contains all the examples of BTZ multi-black-
holes. It provides new elements for the global description of these multi-
black-holes. We also prove that any strongly causal spacetime locally
modeled on the anti-de Sitter space admits a well-defined maximal
strongly causal conformal boundary locally modeled on Ein2.

1 Introduction

In [7], we studied certain aspects of causal properties of AdS-spacetimes,
i.e., lorentzian manifolds of dimension 3 with negative constant curvature, in
other words, locally modeled on the anti-de Sitter space AdS. In particular,
we made a detailed analysis on the causality notion in AdS which, to be
meaningful, has to be understood as the projection of the causality relation
in the universal covering ˜AdS. The Einstein universes Ein3 and Ein2 play
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an important role in this study, the first one containing a conformal copy of
AdS, the second being the conformal boundary of AdS (see [7, § 4]).

We also introduced the notion of (generic) closed achronal subset of
the conformal boundary Ein2 (see [7, § 5]). We associate to it the invisi-
ble domains E(Λ) ⊂ AdS and Ω(Λ) ⊂ Ein2 (Section 8). One of the main
results of [7] was the following: assume that Λ is non-elementary, and that
a torsion-free discrete group of isometries of AdS preserves Λ. Then, the
action of Γ on E(Λ) is free, properly discontinuous, and the quotient space
MΛ(Γ) = Γ\E(Λ) is strongly causal (Theorem 10.1). We observed that this
construction provides, when Λ is a topological circle, the entire family of
maximal globally hyperbolic AdS-spacetimes admitting a Cauchy-complete
Cauchy surface (Section 11; the same result is obtained in [9] with a different
proof). We also discussed in which condition a discrete group of isometries Γ
is admissible, i.e., preserves a closed, achronal subset as above: essentially,
up to a permutation of space and time, admissible groups are precisely
the positively proximal groups which are precisely the groups preserving a
proper, closed, convex domain of RP 3 (see [7, Proposition 10.23]). We also
stressed out that there is a natural 1–1 correspondence between admissi-
ble groups and pairs of (marked) complete hyperbolic metrics on the same
surface (not necessarily closed). Finally, if Γ is admissible and non-abelian,
there exists a unique minimal, closed, generic achronal Γ-invariant subset
Λ(Γ) which is contained in every closed achronal Γ-invariant subset (see [7,
Theorem 10.13, Corollary 10.14]). Hence, following the classical terminology
used for isometry groups of H

n, it is natural to call Λ(Γ) the limit set of Γ.

The present paper completes this study in the elementary case, i.e., the
case where Λ is contained in the past or future of one point in Ein2. In
particular, we give the description of invisible domains from elementary,
generic, achronal domains (Section 3).

There is another equivalent definition of invisible domains E(Λ(Γ)) when
Λ(Γ) is the limit set of Γ (since Λ(Γ) is minimal, E(Λ(Γ)) is in some way
maximal among the Γ-invariant invisible domains). For any element γ of
Γ we define the standard causal domain C(γ) as the set of points x in
AdS which are not causally related to their image γx. The interior of the
intersection of all the C(γ) is then the standard causal domain of Γ, denoted
by C(Γ). Every element γ is also the time 1 of a Killing vector field. We
then define the absolute causal domain D(γ) as the domain of AdS where
this Killing vector field has positive norm. The interior of the intersection
of all the D(γ) is the absolute causal domain D(Γ) of Γ. According to
Theorem 8.2 and Corollary 8.4, if Γ is a non-cyclic admissible group, then
D(Γ) and C(Γ) both coincide with E(Λ(Γ)). A first version of this theorem,
in a very particular case, appears in [3, § 7].
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But, most of all, we prove that the spacetimes MΛ(Γ) form a global family
of BTZ multi-black-holes, containing and elaborating all the previous exam-
ples [1–5, 10, 11], except the non-static single BTZ black-holes themselves
(see Remark 10.3).

In order to develop this assertion, since we do not assume any acquain-
tance of the reader with this notion, we need some preliminary discussion
about black-holes.

1.1 A quick insight into Schwarzschild and Kerr black-holes

An honest introduction to the notion of black-hole requires a minimal his-
torical exposition. First of all, a black-hole is a lorentzian manifold (M, g)
solution of the Einstein equation:1

Ricg − R

2
g = Λ · g,

where Ricg is the Ricci tensor, R is the scalar curvature, i.e., the trace of the
Ricci tensor (relatively to the metric g), and Λ is a prescribed real number,
the cosmological constant.

It was soon realized by Schwarzschild that this equation with Λ = 0
admits the following 1-parameter family of solutions:

ds2 = −
(

1 − 2M

r

)

dt2 +
dr2

1 − 2M/r
+ r2 ds2

0.

In this expression, ds2
0 = dθ2 + sin2 θ dφ2 is the usual round metric on the

sphere S
2. The term r is

√

x2 + y2 + z2, where (x, y, z, t) are coordinates of
R

4, and (θ, φ) are the spherical coordinates of (x
r , y

r , z
r ) ∈ S

2.

Moreover, in some manner, the Schwarzschild metric is the ‘unique’ solu-
tion of the Einstein equation on R

4 with spherical symmetry, i.e., invariant
by the usual SO(3, R)-action (Birkhoff Theorem, see [21] for a more rigor-
ous and detailed exposition). Hence, this metric suits perfectly the role of
the model of a non-rotating isolated object (for example, a star) with mass
M . But these solutions contain a psychological difficulty: the radius of the
object could be inferior to r = 2M , in which case the singularity r = 2M of
the metric cannot be dropped out by considering that it is hidden inside the
object, where the general relativity theory does not apply anymore. It has

1The full Einstein equation contains an additional term on the right side, which is a
symmetric trace-free tensor describing the matter and physical forces in the spacetime.
The equation stated here is an equation in the void.
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been realized that the singularity is not a real one: it appears only in rea-
son of the selected coordinate system. Actually, the Schwarzschild metric on
R

4 \ {r = 0, 2M} can be isometrically embedded in another lorentzian mani-
fold MKS, diffeomorphic to R

2 × S
2, and maximal: MKS cannot be isomet-

rically embedded in a bigger spacetime. This maximal spacetime is usually
described in the following way: equip R

2 × S
2 with coordinates (u, v, θ, φ) —

the Kruskal–Szekeres coordinates — where (θ, φ) are still the spherical coor-
dinates. Then MKS is the open domain U × R

2, where U = {v2 − u2 < 1},
equipped with the metric

ds2
KS = (32M3/r)e−r/2M (−dv2 + du2) + r2 ds2

0.

The term r, defined by (r/2M − 1)er/2M = u2 − v2 coincides with the
r-coordinate on the Schwarzschild domain: hence, the ‘singularity’ r = 2M
vanishes; it corresponds to the locus {u2 = v2}.

The domain O = {0 < u2 − v2 < 1} is the outer domain: it is thought as
the region where the typical (prudent) observer takes place. There are two
other regions: B± = {u2 − v2 < 0,±v > 0}. Moreover, MKS is time-oriented
so that v increases with time.

B+ enjoys the following remarkable property: there is no future-oriented
causal curve starting from a point in B+ and reaching a point in O. Similarly,
a past-oriented causal curve cannot escape from B−. In a more “physical”
language, photons cannot escape from B+: B+ is invisible from O. In other
words, B+ is a black-hole. The no-return frontier {v =| u |} is the (event)
horizon.

The family of Schwarzschild metrics is actually included in a more general
family of solutions, the Kerr metrics:

−
(

1 − 2Mr

ρ2

)

dt2 +
ρ2

Δ
dr2 − sin2(θ)

4Mra

ρ2 dφ dt + ρ2 dθ2

+
(

r2 + a2 + sin2(θ)
2Mra

ρ2

)

sin2(θ) dφ2,

where Δ = r2 − 2Mr + a2, t ρ2 = r2 + a2 cos2(θ), M is positive (the “mass”),
and a is a real number (the “angular momentum per mass unit”).

A phenomenon similar to the embedding of Schwarzschild spacetime in
Kruskal–Szekeres coordinates still applies: every Kerr-spacetime can be
embedded in a natural way into a maximal spacetime Mmax

Kerr where the singu-
larities appearing in the Kerr-coordinates vanish, and where some domains
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deserve the appellation “black-hole”. But the description of this completion
is much more involved: it is the entire matter of the excellent book [22],
which is also one of the best references for a rigorous description of
Schwarzschild black-holes.

1.2 Towards a general definition of black-holes

The basic facts on Schwarzschild spacetimes presented above are sufficient
to provide a quite satisfactory illustration of essential notions that should
appear in any mathematical definition of black-holes. Let us be more precise
and express some problems arising when trying to elaborate such a general
theory, i.e., to specify what are the spacetimes deserving the appellation of
spacetime with black-hole.

(1) Where are the typical observers? The description of the Schwarzschild
black-hole makes clear that this notion is relative to the region O where
the observers are assumed to stay. A black-hole is simply a connected
component of the region invisible from O. How to define the region O
in M without specifying the black-hole itself?

(2) Is some part of M missing? The notion of black-hole is a global
property, depending on the entire M . For example, if we delete from
the Minkowski space some regions, we can easily produce in an artificial
way regions invisible from the observers (assuming solved the first
question above), which does not correspond to a physically relevant
example of black-hole. Hence, we have to define a notion of “full”
spacetime ensuring that some part of the invisible domain is not simply
due to the absence of some relevant region.

Remark 1.1. To these two basic problems, another important requirement,
traditionally appearing in the physical literature, should be added: the Cos-
mic Censorship. This condition admits many different formulations. It
is most of the time expressed in the form “singularities of the spacetime
must be hidden to the observers by the horizons”. There is a geometri-
cal way to translate this notion, interpreting singularities as final points of
non-complete causal geodesics or as causal singularities: we could define
spacetimes satisfying the Cosmic Censorship if causal closed curves, if any,
all belong to a black hole, and if any non-complete causal future-oriented ray
in M , with starting point visible from one observer, must enter a black-hole.

There is a particular case of the Cosmic Censorship conjecture often stated
as follows: “generically” (to be defined!), maximal globally hyperbolic space-
times are maximal, i.e., cannot be embedded in a bigger spacetime, even
not globally hyperbolic. But the spacetimes containing a black-hole we will
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consider here are not globally hyperbolic, hence this expression of Cosmic
Censorship is not relevant for them.

Some answer to the first question above seems to be widely accepted:
observers lie near the conformal boundary. Then, we can define the black-
holes as the connected components of the invisible domain, i.e., the interior
of the region of M containing the points x such that no causal future-oriented
curve starting from x tends to a point in the conformal boundary of M . Of
course, this solution arises immediately another question: what is the con-
formal boundary? This new question is not answered in full generality —
for a nice recent survey on related questions see [15]. We can summarize
many works by observing that this point is most of the time solved simply
by prescribing from the beginning what is the conformal boundary, with-
out making sure that the proposed boundary is maximal in any meaning.2

However, in our special AdS context, we have a completely satisfactory and
easy definition of conformal boundary of strongly causal AdS spacetimes
(see next Section).

Concerning the second question, encouraged by the examples of Kruskal-
Szekeres and Kerr spacetimes, one could hope that a good answer is simply
to require M to be maximal in the sense that it cannot be isometrically
embedded in a bigger spacetime satisfying the Einstein equation. Unfortu-
nately, this attempt fails for BTZ black-holes: they are not maximal in this
meaning. Furthermore, such a definition of full would lead to some incoher-
ence in the maximal Kerr spacetime. The restriction to causal spacetimes,
i.e., to require that M is a causal spacetime and that it cannot be embedded
in a bigger causal spacetime does not solve the problem: once more, it does
not apply to BTZ black-holes (see Remark 10.7).

Our deceiving conclusion is that we still do not know how to express
in a satisfying way what is a good notion of full spacetime, even in the
AdS-background. As a positive element of answer, we stress out that all
the examples reproduced later enjoy the following properties of ‘maximal’
nature: every connected component of their conformal boundary is max-
imal globally hyperbolic, and every black-hole, i.e., every connected com-
ponent of the invisible domain (but this domain will always be connected)
is maximal globally hyperbolic too (see Remark 10.9). Observe that these
requirements (global hyperbolicity of black-holes and observer-spacetime)
reflect in some way the Cosmic Censorship principle for globally hyperbolic
spacetimes (Remark 1.1).

2Anyway, for the Kruskal–Szekeres spacetimes MKS and maximal Kerr-spacetimes
Mmax

Kerr, which are all asymptotically flat, the conformal boundary is well defined in a
fully satisfying way.
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1.3 BTZ black-holes

First of all, BTZ-multi-black-holes have dimension 2 + 1, i.e., are
3-dimensional. In this low dimension the Einstein equation is remarkably
simplified: the solutions have all constant sectional curvature with the same
sign that the cosmological constant Λ has. We only consider the case Λ < 0.
Hence, up to rescaling, the spacetimes satisfying the Einstein equation are
precisely the spacetimes locally modeled on AdS.

This special feature allows us to propose a correct answer to the first
question in the preceding paragraph, in the 2 + 1-dimensional case, i.e.,
with AdS-background, due to the natural conformal completion of AdS by
Ein2. More precisely, the spacetimes M we will consider are locally modeled
in AdS — in short, they are AdS-spacetimes. Hence, their universal cover-
ing admits a development D : ˜M → AdS. Define then the lifted conformal
boundary Ω as the interior of the set of final extremities in Ein2 = ∂AdS of
future-oriented causal curves with relative interior contained in D(˜M). We
could try to define the conformal boundary of M as the quotient of Ω by the
holonomy group ρ(Γ). Unfortunately, this definition admits an uncomfort-
able drawback: the development D could be non-injective, which requires
a modification of the definition above. Moreover, we have no guarantee a
priori that the action of ρ(Γ) on Ω is free and proper.

In Section 9, we show how to solve these difficulties in the context of
strongly causal spacetimes: every strongly causal AdS-spacetime admits a
natural strongly causal conformal boundary (Theorem 9.5).

For that reason (besides the physical coherence of such an assumption)
we restrict from now to strongly causal spacetimes. Now we can state our
peculiar definition:

Definition 1.2. An AdS-spacetime with black hole is a strongly causal AdS
spacetime M such that:

– M admits a non-empty strongly causal conformal boundary O,
– the past of O, i.e., the region of M made of initial points of future-

oriented causal curves ending in O, is not the entire M .

Every connected component of the interior of the complement in M of
the past of O is a black-hole.

Let us now collect the examples. While considering discrete groups of
isometries of AdS, we have constructed many examples of spacetimes locally
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modeled on AdS: the quotients M(Γ) = Γ\E(Γ), where Γ is a non-abelian
torsion-free discrete admissible subgroup of Isom(AdS). Every M(Γ) con-
tains a black-hole, except if it is globally hyperbolic, i.e., except if Λ is a
topological circle.

This construction applies in more cases, even if Γ is abelian, but the
elementary achronal subset Λ must be selected: it must contain at least two
points, and Γ must be a cyclic subgroup, generated by an isometry γ0. More
precisely:

– The conical case: This is the case where Λ is the union of two light-
like geodesic segments [y, x], [z, x], each of them not reduced to single
point and with a common extremity x, which is their common past.
Then γ0 must be a hyperbolic–hyperbolic element (see Definition 4.2),
and y, z must be attractive fixed points of γ0.

– The splitting case: This is the case where Λ is a pair of non-causally
related points in Ein2. As in the previous case, these points must be
the attractive and repulsive fixed points of the hyperbolic–hyperbolic
element γ0.

– The extreme case: This last case is the case where Λ is a light-like
segment, not reduced to a single point. Then, γ0 must be a parabolic–
hyperbolic element (see Definition 4.2) fixing the two extremities of Λ.

In all these cases, the quotient MΛ(Γ) = Γ\E(Λ) is still a spacetime with
conformal boundary, and with non-empty invisible set: a black-hole.

Since it requires a basic knowledge of AdS geometry, the description of
these spacetimes is postponed to Section 10. We just mention in this intro-
duction that they essentially3 include all the previously examples named
BTZ black-holes ([1–5, 10, 11]), but also contains new examples: mainly,
the case where Γ is not finitely generated, and also the conical case, which
is not considered as a spacetime with a black-hole in these references, prob-
ably because it is obviously non-maximal since, in this case, MΛ(Γ) embeds
isometrically into Myz(Γ).

1.4 Notation

This paper should be read jointly with [7], in which all basic notions and
notation are introduced. Let us recall some of them, for the reader’s
convenience:

3Except the particular case of non-static single BTZ black-holes; see Remark 10.3.
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• AdS is the anti-de Sitter space, i.e., the locus {Q = −1} in E ≈ R
2,2

equipped with a quadratic form Q of signature (2, 2). It is isometric
to the Lie group SL(2, R) endowed with the lorentzian metric defined
by the Killing form. Its universal covering is denoted by ˜AdS and
its projection into the sphere S(E) of rays in E, the Klein model, is
denoted by ADS. The projective Klein model ADS is the projection
in the projective space P (E). It is naturally identified with the Lie
group G = PSL(2, R). All these lorentzian manifolds are oriented and
chronologically oriented.

• A spacetime is a lorentzian manifold which is oriented and chronolog-
ically oriented. An AdS-spacetime is a spacetime locally modeled on
the anti-de Sitter space AdS.

• Affine domains in AdS, ˜AdS, ADS are lifts of affine domains in ADS,
i.e., intersection in P (E) between ADS and affine domains U of P (E)
such that the intersection between the projective plane ∂U and ADS

is a space-like surface; it is then an isometric copy of the hyperbolic
plane H

2.
• The isometry group of ADS is G × G. The isometry group of ˜AdS is

isomorphic to ˜G × ˜G quotiented by the cyclic diagonal group gener-
ated by (δ, δ), where δ is a generator of the center of ˜G, the universal
covering of G.

• There is a conformal embedding of AdS into the Einstein universe Ein3,
which is S

2 × S
1 equipped with (the conformal class of) the lorentzian

metric ds2 − dt2, where ds2 is the round metric on the 2-sphere and
dt2 the usual metric on S

1 ≈ R/2πZ. The universal covering of Ein3

is denoted by ̂Ein3. There is a conformal embedding of ˜AdS into
̂Ein3. The boundary of the image of this embedding is the conformal
boundary ∂ ˜AdS ≈ ̂Ein2. The projection Ein2 of Ein2 in P (E) is the
conformal boundary of ADS.

• Ein2 is bifoliated by two transverse foliations GL, GR. Every leaf of GL
(the left foliation) or of GR (the right foliation) is a light-like geodesic,
canonically isomorphic to the real projective line RP 1. Every leaf of GL
intersects every leaf of GR at one and only one point. Finally, the leaf
space of the left (respectively right) foliation is naturally isomorphic
to the real projective line. It is denoted by RP 1

L (respectively RP 1
R).

• For all causality notions, we refer to [8]. In [7] we also present the
causality notions pertinent for our purpose. An achronal subset of
̂Ein2 is a subset ˜Λ such that for any pair (x, y) of distinct elements of
˜Λ, x and y are not causally related in ̂Ein2. An achronal subset ˜Λ is
pure light-like if it contains two opposite elements x, δ(x); if not, it
is generic. A generic achronal subset is elementary if it is contained
in the union l ∪ l′, where l, l′ are light-like geodesic segments in ̂Ein2
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(see [7, § 8.7]). All these notions project on similar notions in Ein2.
See [7, § 5], for more details.

• The invisible domain of a generic, closed, achronal subset ˜Λ in ̂Ein2 is
the set of points in ̂Ein2 which are not causally related to any element
of ˜Λ. It is denoted by Ω(˜Λ). It is the region between the graphs ˜Λ+

and ˜Λ− of two 1-Lipschitz functions from S
1 into R (see [7, § 8.6]). The

invisible domain E(˜Λ) in ˜AdS is the set of points in ˜AdS ⊂ ̂Ein3 which
are not causally related to any element of ˜Λ in ̂Ein3.

2 Strongly causal spacetimes

A lorentzian manifold M is strongly causal if for every point x in M every
neighborhood of x contains an open neighborhood U which is causally con-
vex, i.e., such that any causal curve in M joining two points in U is actually
contained in U (see [7, § 2.3]). An isometric action of a group Γ on a strongly
causal lorentzian manifold M is strongly causal if any point x of M admits
arbitrarily small neighborhoods U such that for every non-trivial element γ
of Γ no point of U is causally related to a point of γU . Clearly, if Γ is a
group of isometries of a strongly causal lorentzian manifold M acting freely
and properly discontinuously, the quotient manifold Γ\M is strongly causal
if and only if the action of Γ is strongly causal.

In this paper we need to prove that certain isometric actions are strongly
causal. In this section we provide two lemmas useful for this purpose.

In the first lemma we consider a strongly causal lorentzian manifold M
admitting a Killing vector field X. We assume that X is everywhere space-
like. Let φt be the flow generated by X and assume that the R-action defined
by φt is free and properly discontinuous. Let Qφ be the orbit space of φt

and π : M → Qφ the projection map. It is easy to show that π is a locally
trivial fibration with fibers homeomorphic to R. For every tangent vector v
of Qφ at a point y let x be any element of π−1(y) and let w be the unique
tangent vector to M at x orthogonal to X(x) and such that dπx(w) = v.
Since φt is isometric the norm of w does not depend on the choice of x: we
define the norm | v | as this norm | w |. This procedure defines a lorentzian
metric on Qφ.

Lemma 2.1. If the lorentzian manifold Qφ is strongly causal then the action
of φ1 on M is strongly causal.

Proof. Let x be any element of M and U any neighborhood of x. Let y =
π(x). Since Qφ is assumed strongly causal, U ′ = π(U) contains a causally
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convex open neighborhood V ′ of y. Define V = π−1(V ′): this open subset
is diffeomorphic to V ′ × R, such that the restriction of φt to V corresponds
to the translation on the R-factor. We also take the convention that the R-
coordinate of x is zero: x ≈ (y, 0). Shrinking V ′ if necessary, we can assume
that the space-like norm of X on V is uniformly bounded by some constant
C and, moreover, that any causal curve in V ′ has lorentzian length less than
1/2C. It then follows that the R-coordinate of any causal curve in V cannot
vary more than 1/2. Let W be a causally convex open neighborhood of x
contained in V ′×] − 1/4, +1/4[⊂ V . We claim that for every non-zero inte-
ger n non-point of φnW is causally related to a point of W . Indeed, assume
by contradiction that there is a causal curve c : I → M joining an element
(z, t) to an element (z′, s + n) with z, z′ in V ′ and s, t in ] − 1/4, +1/4[.
The projection π ◦ c is a causal curve in Q joining π(z), π(z′). Since V ′ is
causally convex π ◦ c is contained in V ′, i.e., c is contained in V . Hence the
R-coordinate cannot vary along c more than 1/2. We obtain a contradiction
since s + n − t has absolute value bigger than 1/2. �

Remark 2.2. Lemma 2.1 remains true when the action of φt is not free but
periodic. In this case the group generated by φ1 is finite. Details are left to
the reader.

We will apply Lemma 2.1 in the case where M has dimension 3 and
is simply connected. In this situation the map π is a fibration, and the
homotopy sequence of this fibration, implies that Qφ is a 2-dimensional
manifold which is simply connected. Hence a very nice complement is

Lemma 2.3. Any simply connected 2-dimensional lorentzian manifold is
strongly causal.

Proof. Any simply connected surface is diffeomorphic to the sphere or the
plane R

2. Since the sphere does not admit any lorentzian metric we just
have to consider the case of the plane R

2. Any reader acquainted with
dynamical systems will recognize that the lemma follows quite easily from
the Poincaré–Bendixon Theorem applied to the light-like foliations: every
leaf of one of these foliations is a closed embedding of the real line in R

2

and for any point x in R
2 the future (respectively the past) of x is the

domain bounded by r1 ∪ r2, m where r1, r2 are the future-oriented (respec-
tively past oriented) light-like geodesic rays starting from x. Details are
left to the readers. For readers who are still not convinced, we refer to [8,
Theorem 3.43] where a slightly better statement is proved: lorentzian met-
rics on the 2-plane are stably causal, which is stronger than being strongly
causal. �
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3 Description of the elementary generic achronal
subsets of ̂Ein2

In this section, we complete the descriptions of invisible domains E(˜Λ) and
Ω(˜Λ) by considering the elementary cases. For the reader’s convenience, we
start with the splitting case, which is already described in [7, § 8.8].

3.1 The splitting case

It is the case ˜Λ = {x, y}, where x, y are two non-causally related points
in ̂Ein2. Then {x, y} is a gap pair, and there are two associated ordered
gap pairs that we denote respectively by (x, y) and (y, x) (see [7, Definition
8.24]). ˜Λ+ is the union T +

xy ∪ T +
yx of two future-oriented light-like segments

with extremities x, y that we call upper tents. Such an upper tent is the
union of two light-like segments, one starting from x, the other from y, and
stopping at their first intersection point, that we call the upper corner.

Similarly, ˜Λ− is the union T −
xy ∪ T −

yx of two lower tents admitting a similar
description, but where the light-like segments starting from x, y are now
past-oriented (see figures 1 and 2), and sharing a common extremity, the
lower corner.

Figure 1: Upper and lower tents.
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Figure 2: The splitting case. The domain E(Λ) is between the hyperplanes
x⊥ and y⊥. These hyperplanes, tangent to the hyperboloid, are not drawn,
except their intersections with the hyperboloid, which are the upper and
lower tents T ±

xy, T ±
yx.

The invisible domain Ω(˜Λ) from ˜Λ in ̂Ein2 is the union of two diamond-
shaped regions ˜Δ1, ˜Δ2. The boundary of ˜Δ1 is the union T +

xy ∪ T −
xy, and the

boundary of ˜Δ2 is T +
yx ∪ T −

yx. We project the entire picture in some affine
region V ≈ R

3 of S(E) such that:

– V ∩ ADS is the interior of the hyperboloid: {x2 + y2 < 1 + z2},
– Λ = {(1, 0, 0), (−1, 0, 0)}.

Then, E(Λ) is the region {−1 < x < 1} ∩ ADS. One of the diamond-shaped
regions ˜Δi projects to Δ1 = {−1 < x < 1, y > 0, x2 + y2 = 1 + z2}, the other
projects to Δ2 = {−1 < x < 1, y < 0, x2 + y2 = 1 + z2}. The past of Δ1 in
E(Λ) is P1 = {(x, y, z) ∈ E(Λ)/z < y}, and the future of Δ1 in E(Λ) is
F1 = {(x, y, z) ∈ E(Λ)/z > −y}. We have of course a similar description
for the future F2 and the past P2 of Δ2 in E(Λ). Observe:

– The intersections F1 ∩ F2 and P1 ∩ P2 are disjoint. They are tetra-
hedra in S(E): F1 ∩ F2 is the interior of the convex hull of Λ+, and
P1 ∩ P2 is the interior of the convex hull of Λ−.
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– The intersection F1 ∩ P1 (respectively F2 ∩ P2) is the intersection
between ADS and the interior of a tetrahedron in S(E): the convex
hull of Δ1 (respectively Δ2).

Definition 3.1. E+(Λ) = F1 ∩ F2 is the future globally hyperbolic convex
core; E−(Λ) = P1 ∩ P2 is the past globally convex core.

This terminology is justified by the following (easy) fact: F1 ∩ F2 (respec-
tively P1 ∩ P2) is the invisible domain E(Λ+) (respectively E(Λ−)). Hence,
they are indeed globally hyperbolic.

The intersection between the closure of E(Λ) in S(E) and the boundary Q
of ADS is the union of the closures of the diamond-shaped regions. Hence,
Δ1,2 can be thought of as the conformal boundaries at infinity of E(Λ).
Starting from any point in E(Λ) to Δi we have to enter in Fi ∩ Pi, hence we
can adopt the following definition:

Definition 3.2. F1 ∩ P1 is an end of E(Λ).

Finally

Definition 3.3. The future horizon is the past boundary of F1 ∩ F2; the
past horizon is the future boundary of P1 ∩ P2.

Proposition 3.4. E(Λ) is the disjoint union of the future and past globally
hyperbolic cores E±(Λ), of the two ends, and of the past and future horizons.

Remark 3.5. In the conventions of [4, 5, 11], the globally hyperbolic convex
cores F1 ∩ F2 and P1 ∩ P2 are regions of type II, also called intermediate
regions. The ends F1 ∩ P1 and F2 ∩ P2 are outer regions, or regions of type I.

3.2 The extreme case

The extreme case is harder to picture out since Ω(˜Λ) and E(˜Λ) are not con-
tained in an affine domain (see figure 3). Assume that y is in the future of
x. Observe that ˜Λ± are then pure light-like. Hence, E(˜Λ±) are empty. The
region Ω(x, y) is a “diamond” in Ein2 (we call it an extreme diamond) admit-
ting as boundary four light-like segments: the segments [y, δ(x)], [x, δ(x)],
[δ−1(y), x], and [y, δ−1(y)].

A careful analysis shows that E(x, y) is precisely the intersection between
the past and the future of Ω(x, y).

Keeping x fixed, and considering a sequence yn converging to y, with
yn non-causally related to x, one of the diamond-shaped regions Δn

i of the
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Figure 3: The extreme case. The point δ(x) is in the front of the upper
hyperboloid. The point x is in the rear of the lower hyperboloid. The
domain E(Λ) is the domain between the hyperplanes δ(x)⊥ and δ−1(y)⊥.

associated Ω(x, yn) — let us say, Δn
2 — vanishes. The other converges to

the entire region Ω(x, y). The various parts of the domains E(x, yn), namely
the globally hyperbolic convex cores E±(x, yn) and the ends, vanish, except
one end, which comes closer and closer to the entire E(x, y).

3.3 The conical case

In the conical case, Λ is an upper or lower tent. By symmetry, we can
consider only the upper case: Λ = T +

xy = [x, z] ∪ [z, y]. Then, Λ+ = Λ ∪ T +
yx,

and Λ− is the pure light-like subset Λ ∪ T −
yx. In the notation of Section 3.1,

Λ+ is the future boundary of the diamond Δ1, and Ω(Λ) is the diamond Δ2.
Then, in some affine domain, E(Λ) = {(x, y, z)/ − 1 < x < 1, z > y}. It can
be described as the future in V of Δ2. It is also the intersection between the
past of x, the past of y, and the complement of the past of z. Finally, E(Λ)
is the union of F1 ∩ F2, F2 ∩ P2, and the component of the past horizon of
E(x, y) separating these two regions (see figure 2).
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4 Causal domains of isometries of AdS

4.1 The isometry group

We recall some facts established in [7, § 9], concerning isometries preserving
generic achronal subsets of Ein2. We use the identification ADS ≈ G =
PSL(2, R) (cf. Notation section). Then ˜AdS can be identified with the
universal covering ˜G = ˜SL(2, R). Denote by p̄ : ˜G → G the covering map,
and by Z the kernel of p̄: Z is cyclic, it is the center of ˜G. Let δ be a
generator of Z: we select it in the future of the neutral element id.

˜G × ˜G acts by left and right translations on ˜G. This action is not faithful:
the elements acting trivially are precisely the elements in Z, the image of Z

by the diagonal embedding. The isometry group ̂SO0(2, 2) is then identified
with ( ˜G × ˜G)/Z .

Let G be the Lie algebra sl(2, R) of G: the Lie algebra of ( ˜G × ˜G)/Z
is G × G. We assume that the reader is familiar with the notion of ellip-
tic, parabolic, hyperbolic elements of PSL(2, R). Observe that hyperbolic
(respectively parabolic) elements of PSL(2, R) are the exponentials exp(A)
of hyperbolic (respectively parabolic, elliptic) elements of G = sl(2, R), i.e.,
such that det(A) < 0 (respectively det(A) = 0, det(A) > 0).

Definition 4.1. An element of ˜G is hyperbolic (respectively parabolic, ellip-
tic) if it is the exponential of a hyperbolic (respectively parabolic, elliptic)
element of G.

Definition 4.2. An element γ = (γL, γR) of ˜G × ˜G is synchronized if, up
to a permutation of left and right components, it has one of the following
forms:

• Hyperbolic translation: γL is trivial and γR is hyperbolic;
• Parabolic translation: γL is trivial and γR is parabolic;
• Hyperbolic–hyperbolic: γL and γR are both non-trivial and hyperbolic;
• Parabolic–hyperbolic: γL is parabolic and γR is hyperbolic;
• Parabolic–parabolic: γL and γR are both non-trivial and parabolic;
• Elliptic: γL and γR are elliptic elements conjugate in ˜G.

An element γ of ( ˜G × ˜G)/Z is synchronized if it is represented by a syn-
chronized element of ˜G × ˜G.

Lemma 4.3. ([7, Lemma 9.6]). An isometry γ is synchronized if and only
if there is an affine domain U in ˜AdS such that γn(U) ∩ U 
= ∅ for every n
in Z.
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Observe

Lemma 4.4. ([7, Lemma 5.6]). Every generic, closed, achronal subset Λ of
̂Einn is contained in a de Sitter domain.

Hence

Corollary 4.5. Any isometry preserving a generic, closed, achronal subset
of ̂Ein2 is synchronized.

4.2 Causal open subsets

Let γ = (γL, γR) = (exp(XL), exp(XR)) be a synchronised element of ˜G × ˜G.

Definition 4.6. The standard causal subset of γ, denoted by C(γ), is the
set of points x of ˜AdS for which γx is not causally related to x.

Observe that C(γ) = C(γ−1), and C(γ) is γ-invariant. The inclusions
C(γk) ⊂ C(γ) follow.

Definition 4.7. The convex causal subset of γ, denoted by C∞(γ), is the
set of points of ˜AdS admitting in their future no γ-iterates of themselves.

Clearly, C∞(γ) is the decreasing intersection of all C(γn) when n describes
all Z. It is γ-invariant.

At first glance, it seems natural to consider C∞(γ) as the preferred γ-
invariant subset such that the quotient is causal, i.e., does not admit closed
causal curves (see [8, p. 7]). Actually, there exists a bigger subset with the
same property which, in some way, is a maximal open subset with this
property. The construction goes as follows: γ is the time 1 map of the flow
γt = (exp(tXL), exp(tXR)) induced by some Killing vector field Xγ of ˜AdS.

Definition 4.8. The absolute causal subset of γ, denoted by D(γ), is the
open subset of ˜AdS where Xγ is space-like.

Lemma 4.9. The open domain D(γ) is the union of all the C(γ1/n).

Clearly, since Xγ is light-like on the boundary of D(γ),

Lemma 4.10. Let U ⊂ ˜AdS be a γt-invariant subset containing D(γ). If
the quotient of U by γ is causal, then U = D(γ).
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Proposition 4.11. If γ is not a pair (γL, γR) of elliptic elements with irra-
tional rotation angle, the quotient space of D(γ) by γ is a strongly causal
spacetime.

Proof. Denote

R0 =
(

0 1
−1 0

)

,

Δ =
(

1 0
0 −1

)

,

H =
(

0 1
0 0

)

.

Up to conjugacy in ˜G × ˜G, inversion of time-orientation and permutation
of the left–right components, we have seven cases to consider:

(1) (XL, XR) = (λR0, λR0)(λ > 0),
(2) (XL, XR) = (λΔ, 0)(λ > 0),
(3) (XL, XR) = (H, 0),
(4) (XL, XR) = (H, −H),
(5) (XL, XR) = (H, H),
(6) (XL, XR) = (λΔ, μΔ)(0 < λ ≤ μ),
(7) (XL, XR) = (λΔ, H)(λ > 0).

According to Lemmas 2.1, 2.3, the proposition is proved as soon as we
check in every case that every connected component of D(γ) is simply con-
nected (when not empty).

For every g̃ in ˜AdS ≈ ˜G, the norm of Xγ(g̃) is −det of XL − gXRg−1 =
XL − Ad(g)XR (where g = p(g̃)). It follows easily that in the cases (3) and
(4), D(γ) is actually empty.

Case (1): conjugacy by an elliptic element. In this case D(γ) is ˜G \ R,
where R = {exp(tR0)}, i.e., the complement of the set of fixed points of γ.
The quotient of D(γ) by the flow γt is simply connected: apply Remark 2.2.

Case (2): translation by a hyperbolic element. In this case the action of γ
is free and properly discontinuous since it is an action by left translation.
D(γ) is the entire ˜G: it is homeomorphic to R

3, hence simply connected.

Case (5): conjugacy by a parabolic element. In this case D(γ) is p−1(U),
where U ⊂ SL(2, R) is the set of matrices:

(

a b
c d

)

ad − bc = 1, c 
= 0.
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For g in U the iterate exp(nH)g exp(−nH) is the matrix
(

a + nc −n2c + n(d − a) + b
c −nc + d

)

.

Since c 
= 0 it follows easily that the action on D(γ) is free and properly
discontinuous. Every connected component of D(γ) is simply connected.

Case (6): the hyperbolic–hyperbolic case. A straightforward calculus shows
that in this case g̃ belongs to D(γ) if and only if bc < (λ−μ)2

4λμ , where g = p(g̃)
is

g =
(

a b
c d

)

ad − bc = 1.

The projection in G of the γn-iterate of g̃ is
(

a exp(n(λ − μ)) b exp(n(λ + μ))
c exp(−n(λ + μ)) d exp(n(μ − λ))

)

.

If λ 
= μ then the action of γ on the entire ˜AdS is free and properly
discontinuous (see for example [23]). The strong causality of the action on
D(γ) is once more a corollary of Lemmas 2.1 and 2.3. When λ = μ, the
projection of D(γ) is {bc < 0}: it is easy to see that the action on it is free
and properly discontinuous due to Lemmas 2.1, 2.3, and we observe that
D(γ) is simply connected.

Case (7): the hyperbolic-parabolic case. This last case is completely similar
to the previous one. The action of γ on ˜AdS is free and properly discontin-
uous (see [23]), and D(γ) is defined by

−2ac < λ.

Details are left to the reader. �

Remark 4.12. In case (6), if λ 
= μ, the domain D(γ) is not contained
in an affine domain. This is an union of elementary domain of invisibility
{bc < 0}, connected by domains {0 ≤ bc < (λ−μ)2

4λμ }. The reader can find
complementary descriptions in [11] or [5]. In the terminology of these papers,
{bc < 0} is the union of regions of types I and II, and {0 ≤ bc < (λ−μ)2

4λμ } are
the regions of type III: the “inner regions”. Compare, in particular, our
proof of Proposition 4.11 with [5, § 3.2.5].
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Remark 4.13. The region D(γ) in case (7) is particularly difficult to draw.
The best way to catch a picture of it is to consider this case as a limit of
case (6): for every ε > 0 define γε = (γL, γε

R), where

γε
R =

(

exp(ε) sinh(ε)
ε

0 exp(−ε)

)

.

γε is the exponential of (λΔ, εΔ + H). At the limit ε → 0, γε tends to γ.
Then D(γ) is the limit of the domains D(γε). Recall also Section 3.2.

Remark 4.14. When γL = γR are elliptic elements with rational angle,
the quotient of ˜AdS by γ is a singular spacetime with orbifold type. More
precisely, the time-like line of γ fixed points induces in the quotient a singular
line which can be considered as the trajectory of a massive particle.

This point of view can be extended to the irrational angle case without
difficulty, but we do not want to enter this discussion here. See for exam-
ple [12, 18].

5 Actions on invisible domains from elementary
achronal subsets

According to [7, Theorem 10.1],

Theorem 5.1. Let ˜Λ be a non-elementary generic achronal subset, pre-
served by a torsion-free discrete group Γ ⊂ SO0(2, 2). Then the action of Γ
on Ω(˜Λ) and E(˜Λ) is free, properly discontinuous, and the quotient spacetime
M

˜Λ(Γ) is strongly causal.

This statement does not hold when ˜Λ is elementary. The philosophy which
should be retained is that in the elementary cases the invariant achronal
subset ˜Λ, even if Γ-invariant is not sufficient to reveal the causal properties
of Γ: some points are missing (see Section 7).

5.1 The extreme case

Assume that ˜Λ is extreme, i.e., is a light-like segment [x, y]. We can assume
that the light-like geodesic l containing [x, y] is a leaf of the left foliation,
i.e., an element of RP 1

L . Let lx, ly be the right leaves, i.e., the elements of
RP 1

R, containing respectively x, y. Then, l is a fixed point of (the projection
in G) of the left component γL of every element of Γ, and lx, ly are fixed
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points of γR. It follows easily that γ is synchronized, that the right compo-
nent γR is trivial or hyperbolic, and that the left component is non-elliptic
(maybe trivial). In other words, with the notation involved in the proof of
Proposition 4.11, γL = exp(λΔ + ηH) and γR = exp(μΔ).

The first commutator group [Γ, Γ] is a group of left translations. Since Γ
is discrete, the same is true for [Γ, Γ]. Assume that [Γ, Γ] is not trivial. Then
it is a cyclic group Aff(R) of affine transformations of the line. A homothety
of R cannot be a commutator of elements of Aff(R). Hence, in the last
case above, [Γ, Γ] ⊂ ˜GL is a cyclic group of parabolic elements preserved by
conjugacies by left components of elements of Γ. It follows that these left
components are necessarily parabolic, i.e., translations of R. Hence, left
components of elements of [Γ, Γ] are trivial, which is a contradiction.

Therefore, Γ is an abelian discrete subgroup of Ahyp, Aext, where Ahyp =
{(exp(λΔ), exp(μΔ))(λ, μ∈ R)}, and Aext = {(exp(λH), exp(μΔ))(λ, μ∈ R)}.

5.1.1 The mixed case Γ ⊂ Aext

In this case the action is free since a parabolic element can be conjugate in
˜G to a hyperbolic one only if they are both trivial.

Claim: the action of Γ on E(˜Λ) is properly discontinuous.

Let us prove now the properness: assume by contradiction the existence
of a compact K in E(˜Λ) and a sequence γn = (exp(λnH), exp(μnΔ)) of
elements of Γ such that every γnK ∩ K is not empty. Let ‖ be the operator
norm on gl(E). Up to a subsequence, γn/‖γn‖ converges to an element γ̄
of the unit ball of gl(E). Since Γ is discrete, and since all the γn have
determinant one, the norms ‖γn‖ tend to +∞.

If the λn are unbounded, up to a subsequence, we can assume that they
tend to +∞. Then the kernel of γ̄ is a hyperplane and its image is a line.
More precisely, the image is the line spanned by one of the extremities of
[x, y], let us say x; and the kernel is the Q-orthogonal y⊥. The compact K
is disjoint from y⊥: it follows that in P (E) \ y⊥, the sequence γn converges
uniformly on K towards the constant map x. This is a contradiction, since
x does not belong to K.

If the λn are bounded, the image and the kernel of γ̄ are Q-isotropic 2-
planes (one of them is the 2-plane spanned by x and y): their projection
in S(E) is disjoint from ADS. But the iterates γnK accumulate on the
projection of the image of γ̄: we obtain a contradiction as above. The claim
is proved.
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Moreover, according to Proposition 4.11, case (7), this action is strongly
causal except if some right component exp(μΔ) is trivial (case (3) of
proposition 4.11): in this last case, the quotient is foliated by closed light-like
geodesics, which are orbits of some 1-parameter subgroup of Aext.

5.1.2 The hyperbolic case Γ ⊂ Ahyp

There is a particular situation: the subcase Γ ⊂ ˜GL. Then Γ is cyclic. It
follows from Proposition 4.11, case (2), that the action on E(˜Λ) is free,
properly discontinuous, and strongly causal. The same conclusion holds if
Γ ⊂ ˜GR.

Hence, assume that Γ is not contained in ˜GR or ˜GL. The group Ahyp

admits four fixed points in Ein2, including the projections of x, y. We can
then define two additional Ahyp-fixed points x′, y′ uniquely defined by the
requirement that {x, x′} and {y, y′} are strictly achronal.

Many subcases appear, with different behavior. For example, the action
of Γ on E(˜Λ) may be free and properly discontinuous (for example, if Γ is
cyclic, spanned by an element for which λ > μ). But the action may also
be non-proper (the cyclic case, with λ = μ). Anyway, this action is never
causal. Indeed, if γ is an element of Γ \ ( ˜GL ∪ ˜GR), E(˜Λ) is γt-invariant,
but is not contained in the absolute causal domain D(γ). Then, the γt-orbit
of a point x in E(˜Λ) \ D(γ) is a time-like curve containing x and γx.

5.2 The splitting case

We consider the splitting case ˜Λ = {x, y}, with x, y not causally related.
Then the leaves of ̂GR through x, y are two distinct fixed points in
RP 1

R. The right component of any element of Γ is therefore trivial or hyper-
bolic. A similar argument shows that the left components are trivial or
hyperbolic. Hence, in the notation of the previous section, we have Γ ⊂ Ahyp.

Observe that the segment ]x, y[ is contained in E(˜Λ). Hence, if Γ is not
cyclic, its action on E(˜Λ) cannot be properly discontinuous.

Assume that Γ is cyclic, spanned by γ = (exp(λΔ), exp(μΔ)). If λ or μ
is zero the action is free, properly discontinuous, and causal.

If λ and μ are both non-zero, it follows from case (6) of Proposition 4.11
that the action of Γ on E(˜Λ) is free, properly discontinuous, and strongly
causal if and only if x, y are attractive or repulsive fixed points of γ.
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5.3 The conical case

We assume here that ˜Λ is conical, i.e., the union of two non-trivial light-
like segments I1 = [x1, x] and I2 = [x, x2]. Then {x1, x2} is strictly achronal,
E(˜Λ) is contained in E(x1, x2), and Γ preserves E(x1, x2). As in the previous
section we still have Γ ⊂ Ahyp.

Recall the description of E(˜Λ) (Section 3.3): it is the union of the outer
region P2 ∩ F2, the intermediate region F2 ∩ F1, and their common horizon
boundary. It follows that E(˜Λ) is Ahyp-invariant, and that all the Ahyp-
orbits inside E(˜Λ) are 2-dimensional. Hence, the action of Ahyp on E(˜Λ) is
free and properly discontinuous: the same is true for the action of Γ.

If Γ is contained in ˜GL or ˜GR, then its action on E(˜Λ) is strongly causal.
If not, the statement in the previous case still holds: the action of Γ on E(˜Λ)
is free, properly discontinuous and strongly causal if and only if Γ is cyclic
and x, y are attractive or repulsive fixed points of every non-trivial element
of Γ.

6 Existence of invariant achronal subsets

Recall the following definition ([7, Definition 10.6]):

Definition 6.1. Let ρL : Γ → G and ρR : Γ → G be two morphisms. The
representation ρ = (ρL, ρR) is admissible if and only if it is faithful, has
discrete image and lifts to some representation ρ̃ : Γ → ( ˜G × ˜G)/Z preserving
a generic closed achronal subset of ̂Ein2 containing at least two points.

A ρ-admissible closed subset for an admissible representation ρ is the
projection in Ein2 of ρ̃-invariant generic closed achronal subset of ̂Ein2 con-
taining at least two points.

In [7], we claimed (Theorem 10.7)

Theorem 6.2. Let Γ be a torsion-free group and ρ : Γ → G × G a faithful
representation. Then ρ is admissible if and only if one of the following
occurs:

(1) The abelian case: ρ(Γ) is a discrete subgroup of Ahyp, Aext or Apar,
where (see the notation in Section 5.1 where the first two groups are
already defined) Ahyp = {(exp(λΔ), exp(μΔ))/λ, μ ∈ R}, Aext = {(exp
(λΔ), exp(ηH))/λ, η ∈ R}, and Apar = {(exp(λH), exp(λH))/λ ∈ R}.
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(2) The non-abelian case: The left and right morphisms ρL, ρR are faithful
with discrete image and the marked surfaces ΣL = ρL(Γ)\H

2, ΣR =
ρR(Γ)\H

2 are homeomorphic, i.e., there is a Γ-equivariant homeomor-
phism f : H

2 → H
2 satisfying

∀γ ∈ Γ, f ◦ ρL(γ) = ρR(γ) ◦ f.

Remark 6.3. Parabolic ρL(γ) correspond to punctures in ΣL. Hence, if γ
is a homotopy class corresponding to a loop which is not homotopic to an
isolated end of ΣR, ρL(γ) is necessarily hyperbolic.

Actually, we only proved in [7] the non-abelian case. Here, we justify the
abelian case.

When Γ is cyclic, a case-by-case study is needed, but which follows almost
immediately from the study in the proof of Proposition 4.11. The situation
can be summarized as follows:

Proposition 6.4. When Γ is cyclic, then the representation ρ is admissible
if and only if either the left or right component of ρ(γ) is hyperbolic and
the other component non-elliptic, or if ρL(γ), ρR(γ) are parabolic elements
conjugate one to the other in G.

Assume now that Γ is abelian but not cyclic. It follows from the cyclic
case that ρ is admissible if and only if ρ(Γ) is contained in (a conjugate of
G of) Ahyp, Aext, or Apar. The validity of Theorem 6.2 in the abelian case
follows.

7 Minimal invariant achronal subsets

Let ρ : Γ → G × G be an admissible representation.

Definition 7.1. Λ(ρ) is the closure of the set of attractive fixed points in
P (E).

Since attractive fixed points in P (E) of elements of G belong to Ein2,
Λ(ρ) is contained in Ein2. According to [7, § 10.5]:

Theorem 7.2. Let Γ be a non-abelian torsion-free group, and ρ : Γ → G ×
G. Then every ρ(Γ)-invariant closed subset of P (E) contains Λ(ρ).

Corollary 7.3. Let (Γ, ρ) be a pair satisfying the hypothesis of Theorem 7.2.
Then, Λ(ρ) is a ρ(Γ)-invariant generic non-elementary achronal subset of
Ein2. Furthermore, for every ρ(Γ)-invariant, closed, achronal subset Λ
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in Ein2, the invisibility domain E(Λ) projects injectively in ADS inside
E(Λ(ρ)).

Remark 7.4. We will need the following remark: still assuming that Γ is
not abelian, the minimal closed achronal subset Λ(ρ) is the projection in
P (E) of Λ(ρ) ∪ −Λ(ρ), where Λ(ρ) is a closed achronal subset of Ein2 and
−Λ(ρ) is the image of Λ(ρ) by the antipody in S(E). The action of ρ(Γ) on
Λ(ρ) is minimal, hence Λ(ρ) and −Λ(ρ) are exactly the minimal components
of the action of ρ(Γ) on S(E) (see [7, Lemma 10.21]).

When Γ is abelian, Theorem 7.2 and Corollary 7.3 do not hold. However,
in this case, still assuming that ρ : Γ → G is admissible:

– The extreme case: Let l be the unique Aext-invariant left leaf, and r1, r2
be the two Aext right-invariant right leaves. Let Λext be the set of Aext-
fixed points: Λext = {l ∩ r1, l ∩ r2}. It is easy to show that if ρ(Γ) ⊂
Aext, any generic ρ(Γ)-invariant, closed, achronal subset containing at
least two points must contain Λext. This formulation is an extension
— more accurately, a limit case — of Corollary 7.3, even if elements
of ρ(Γ) do not admit attractive fixed points in P (E).

– The parabolic case: if ρ(Γ) ⊂ Apar, any ρ(Γ)-invariant closed subset
contains the unique fixed point of Apar. Hence, for any ρ(Γ)-invariant,
closed, achronal subset Λ, we have E(Λ) ⊂ D(ρ(Γ)). This is in some
way a limit case of the previous one.

– The hyperbolic–hyperbolic case: the group Ahyp admits four fixed points
in P (E). If ρ(Γ) is a lattice of Ahyp, it is easy to see that every Ahyp-
fixed point is an attractive fixed point in P (E) of some ρ(γ). Anyway,
Corollary 7.3 is false in this situation. There is however a conve-
nient statement: any non-elementary, ρ(Γ)-invariant, generic, closed,
achronal subset of P (E) must contain the four fixed points of Ahyp.

8 Coincidence of standard and absolute
causal domains

In Section 4.2, we have associated to a synchronized element γ of ˜G × ˜G two
open domains:

– the convex causal domain C∞(γ),
– the absolute causal subset D(γ).

In all cases, we have C∞(γ) ⊂ D(γ). Actually, the identity C∞(γ) = D(γ)
holds if and only if γ is a pair (γL, γR), where γL, γR are conjugate in ˜G.
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These definitions easily extend to (lifted) admissible representations ρ̃ :
Γ → ˜G × ˜G:

Definition 8.1. The convex causal domain C∞(ρ̃) is the interior of the
intersection

⋂

γ∈Γ C∞(ρ̃(γ)). The absolute causal domain D(ρ̃) is the interior
of the intersection

⋂

γ∈Γ D(ρ̃(γ)).

The inclusions C∞(γ) ⊂ D(γ) imply C∞(ρ̃) ⊂ D(ρ̃). Conversely,

Theorem 8.2. If Γ is non-cyclic, then the convex causal domains and abso-
lute causal domains coincide.

The rest of this section is devoted to the proof of Theorem 8.2.

8.1 The flat case

In the flat case, i.e., the case where ρ̃(Γ) preserves a point in ˜AdS, the proof
of Theorem 8.2 is obvious. Indeed, after conjugacy, we can assume in this
case that the left and right representations ρL, ρR coincide. Then, for every
γ in Γ, the identity C∞(ρ(γ)) = D(γ) holds.

8.2 The abelian case

If Γ is abelian, since it is assumed non-cyclic, ρ(Γ) is a lattice in Ahyp or
Aext. We only consider the first case, the other can be obtained in a similar
way (or as a limit case).

There are two morphisms α, β : Γ → R such that, for every γ in Γ,

ρL(γ) =
(

exp(α(γ)) 0
0 exp(−α(γ))

)

, ρR(γ) =
(

exp(β(γ)) 0
0 exp(−β(γ))

)

.

Recall that the projections in ADS ≈ SL(2, R) are

C∞(ρ(γ)) = {bc < 0}, D(ρ(γ)) = {bc < sinh2(α(γ) − β(γ))}.

Theorem 8.2 follows then from the fact that, since ρ(Γ) is a lattice in
Ahyp, | α(γ) − β(γ) | admits arbitrarily small value.
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8.3 The proper case

Assume that ρ is strongly irreducible. The representations ρL and ρR are
faithful, with discrete image, semi-conjugate to one another, but not conju-
gate in G, and Γ is not abelian.

Let Λ(ρ) be one of the two minimal closed subsets of D ⊂ S(E) such that
the closure in S(E) of the set of attractive fixed points is Λ(ρ) ∪ −Λ(ρ) (see
Remark 7.4). It projects injectively on Λ(ρ), the closure in P (E) of the set
of attractive fixed points of elements of ρ(Γ).

Let E(ρ) be the invisible domain of Λ(ρ): this is the intersection between
ADS and the intersection of all {x/〈x | p〉 < 0}, where p represents Λ(ρ). Let
E(ρ) be the projection of E(ρ) in ADS. It can be defined in the following
way:

E(ρ) = {[x] ∈ ADS/∀p, q ∈ Λ(ρ), 〈x | p〉〈x | q〉 > 0}.

Indeed, although 〈x | p〉, 〈x | q〉 are not individually well defined for [x] in
P (E), their product has a well-defined sign.

For any subset J of Λ(ρ) ≈ Λ(ρ), we can define E(J) as the interior of
the set {[x] ∈ ADS/∀[p], [q] ∈ J, 〈x | p〉〈x | q〉 > 0}.

Lemma 8.3. If J is ρ(Γ)-invariant and non-empty, then E(J) = E(ρ).

Proof. The inclusion E(ρ) ⊂ E(J) is obvious (observing that E(ρ) is open).
The reverse inclusion follows from the fact that ρ(Γ)-invariant subsets of
Λ(ρ) are dense, that E(J) is open if J is closed, and that if J̄ is the closure
of J , E(J̄) = E(J). �

Corollary 8.4. Every connected component of C∞(ρ̃) projects injectively in
P (E) on E(ρ).

Proof. Let γ be a non-trivial element of Γ. We define J(γ) ⊂ Q in the
following way:

– If ρ(γ) is hyperbolic–hyperbolic, J(γ) = {p+(γ), p−(γ)}, where p+(γ)
is the attractive fixed point of ρ(γ), and p−(γ) is the repulsive fixed
point.

– If ρ(γ) is hyperbolic–parabolic, J(γ) = {p(γ), q(γ)}, where p(γ), q(γ)
are the two ρ(γ) fixed points,

– If ρ(γ) is parabolic–parabolic, J(γ) = {p(γ)}, where p(γ) is the unique
fixed point.
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Then, the study in the proof of Proposition 4.11 shows that, in every case,
every connected component of C∞(ρ(γ)) projects injectively on C∞(ρ(γ)) =
E(J(γ)). On the other hand, if ρL(γ) (or ρR(γ)) is parabolic, every closed
subset of RP 1

L (or RP 1
R) which is ρL(γ)-invariant (or ρR(γ)-invariant) con-

tains the unique ρL(γ)-fixed point (respectively the ρR(γ)-fixed point).
Hence, we have the inclusion J(γ) ⊂ Λ(ρ). In other words, C∞(ρ(γ)) is
contained in E(ρ). Corollary 8.4 follows then from Lemma 8.3. �

Corollary 8.5. Let γ1 be an element of Γ such that ρL(γ1) and ρR(γ1) are
both hyperbolic. Then C∞(ρ̃) =

⋂

γ∈Γ C∞(ρ̃(γγ1γ
−1)).

Proof. Corollary of Lemma 8.3 and Corollary 8.4, since
⋂

γ∈Γ C∞(ρ(γγ1γ
−1))

is equal to E(J), where J is the Γ-orbit of the attractive fixed points of ρ(γ1)
and ρ(γ−1

1 ). �

Proof of Theorem 8.2. According to Sections 8.1 and 8.2, we just have to
consider the case where ρ(Γ) is non-abelian and does not preserve a point in
AdS. The surfaces ΣL = ρL(Γ)\H

2 and ΣR = ρR(Γ)\H
2 are homeomorphic:

let Σ be any surface homeomorphic to ΣR, ΣL.

Let c1 be a closed loop in Σ which is not freely homotopic to an isolated
end of Σ. It represents a conjugacy class [γ1] in Γ. According to Remark 6.3,
every ρL,R(γ1) is hyperbolic. After conjugacy, we can assume

ρL(γ1) =
(

exp(λ) 0
0 exp(−λ)

)

, ρR(γ1) =
(

exp(μ) 0
0 exp(−μ)

)

with λ ≥ μ > 0.

Since Γ is non-abelian, the Euler characteristic of Σ is negative. Hence,
there is a closed loop c2 in Σ, not freely homotopic to an end of Σ, and such
that every loop freely homotopic to c1 intersects every loop freely homotopic
to c2.

Let γ2 be any element of Γ corresponding to the free homotopy class of
c2. We express the coefficients of ρL,R(γ2) = exp(AL,R):

AL =
(

αL βL
νL −αL

)

, AR =
(

αR βR
νR −αR

)

.

The fixed points in RP 1
L of ρL(γ1) are 0 and ∞. Hence, the connected

components of the complement in RP 1
L of these fixed points are ] − ∞, 0[

and ]0, +∞[.
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The fixed points in RP 1
L of AL are αL

1±
√

1+βLνL/α2
L

νL
. Replacing γ2 by

its inverse if necessary, and since the intersection between c1 and c2 is not
trivial, we can assume that the attractive ρL(γ2) fixed point belongs to
]0, +∞[, and that the repulsive fixed point belongs to ] − ∞, 0[. In other
words, we can assume that the products βLνL and αLνL are positive. Hence,
after conjugacy by a diagonal matrix, we can assume νL = βL 
= 0.

Then, since ρL and ρR are semi-conjugate, the right components satisfy
the same properties: we can assume βR = νR 
= 0.

Assume now by contradiction that the inclusion C∞(ρ̃) ⊂ D(ρ̃) is strict.
Then, there is an element x̃ of D(ρ̃) which is in the boundary of C∞(ρ̃). Let
˜U be an open neighborhood of x̃ in D(ρ̃). Let U be the projection of ˜U in
P (E). Then, according to Corollary 8.5, there is an element γ of Γ, a fixed
point x1 of ρ(γ1), and an element p of U such that 〈ρ(γ)x1 | p〉 = 0. After
conjugacy of γ1 by γ, we can assume that γ is trivial. Moreover, we can
also assume without loss of generality that x1 is the attractive fixed point
of ρ(γ1). Then, the equation 〈x1 | p〉 = 0 means c = 0, where p is expressed
by the matrix

g =
(

a b
c d

)

.

Observe that we can also assume, after a slight modification of p ≈ g if
necessary, that b 
= 0.

We consider the elements γn = γn
1 γ2γ

−n
1 of Γ. We have

ρL(γn) = exp(nλΔ) exp(AL) exp(−nλΔ),

ρR(γn) = exp(nμΔ) exp(AR) exp(−nμΔ).

Hence, the norm at g of the Killing vector field generating γn is the
opposite of the determinant of Xn, with

Xn = exp(nλΔ) exp(AL) exp(−nλΔ)g − g exp(nμΔ) exp(AR) exp(−nμΔ).

After computation, we see that Xn is the matrix
⎛

⎝

a(αL − αR) − bβR exp(−2nμ) b(αL + αR) + dβL exp(2nλ)
−aβR exp(2nμ)

aβL exp(−2nλ) − dβR exp(−2nμ) bβL exp(−2nλ) − d(αL − αR)

⎞

⎠ .

We distinguish two subcases:
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The case λ > μ: Observe that b and d are non-zero. If λ > μ, the leading
term of −det(Xn) for n → +∞ is

−d2βLβR exp(2n(λ − μ)).

On the other hand, the leading term for n → −∞ is b2βLβR exp(−2n(λ +
μ)). But, since g corresponds to an element of D(ρ̃), all the −det(Xn) are
positive. Hence, the product βLβR must be positive and negative, which is
a contradiction.

The case λ = μ: More precisely, the remaining case is the case where
λ = μ for any choice of pairs γ1, γ2 as above, such that the corresponding
homotopy classes have non-trivial intersection number. It is equivalent to
the fact that Tr(ρL(γ1)) = Tr(ρR(γ1)) for every γ1 in Γ, which is not freely
homotopic to a loop around an isolated end of Σ.

Select such a pair (γ1, γ2) of Γ satisfying the following additional property:
the product γ3 = γ1γ2 is not freely homotopic to an isolated end of Σ (we
leave to the reader the proof of the fact that such a pair exists). Let Γ1 be the
group generated by γ1, γ2. Hence, we can assume the identity Tr(ρL(γi)) =
Tr(ρR(γi)) for i = 1, 2, 3. By Fricke–Klein Theorem [17, 19] these equalities
imply that the restrictions of ρLand ρR to Γ1 are representations conjugated
in SL(2, R).

Therefore, after conjugacy, we can assume: ρL(γi) = ρR(γi) (i = 1, 2).
In other words, λ = μ, αL = αR, βL = βR. A straightforward computation
shows that the leading term of −det(Xn) for n → +∞ is (aβL − dβR)(dβL −
aβR) = −(a − d)2β2

L. We obtain a contradiction since this term should be
non-negative, whereas d = 1/a 
= a. �

9 Conformal boundaries of strongly causal spacetimes

As we have seen in the introduction, the notion of black-hole is related to
the notion of conformal boundary.

Definition 9.1. (Compare with [13, § 4.2]). An AdS-spacetime with bound-
ary is a triple (M, O,M), where M is a manifold with boundary O and
interior M which is (AdS, Ein2)-modeled, i.e.:

– there exists a morphism (the holonomy representation) ρ = (ρL, ρR) :
Γ → G × G, where Γ is the fundamental group of M;

– there exists a ρ-equivariant local homeomorphism (the developing map)
D : ˜M → Ein3, where ˜M is the universal covering of M ;
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– the image by D of ˜M , the interior of ˜M, is contained in ADS;
– the image by D of the boundary ˜O of ˜M is contained in Ein2.

Observe that if (M, O,M) is an AdS-spacetime with boundary, M inherits
a well-defined AdS-structure, and O an Ein2-structure.

Our aim is to attach to any AdS-spacetime M a AdS-spacetime with
boundary (M, O,M). This procedure should be canonical.

Definition 9.2. Let (M, O,M), (M ′, O′,M′) be two AdS-spacetimes with
boundary. A morphism between them is a local homeomorphism from M
into M′ inducing an AdS-morphism M → M ′.

Such a morphism lifts to a map F̃ : ˜M → ˜M′ such that D′ ◦ F̃ = g ◦ D for
some isometry g of ADS. In particular, it induces an Ein2-morphism O →
O′. Such a morphism if an isomorphism if it is moreover a homeomorphism.

Definition 9.3. An AdS-spacetime with boundary (M, O,M) is an uni-
versal conformal completion of M if for any AdS-spacetime with boundary
(M, O′,M′) there exists an injective morphism (M, O′,M′) → (M, O,M).

It should be clear to the reader that if an AdS-spacetime M admits an
universal conformal completion, then this completion is unique up to iso-
morphism. In this case, the boundary is denoted by OM , and called the
natural conformal boundary of M .

Frances proved that complete AdS spacetimes, i.e., quotients of the entire
AdS by discrete torsion-free subgroups, admit an universal completion ([14,
Theorem 1]). But our spacetimes are never complete, and we will see that
some of them do not admit universal conformal completion as defined above
(see Remark 9.9). However, we can prove the existence of such universal
completions if we restrict to the strongly causal category:

Observe first that causal curves in an AdS-spacetime with boundary is
a well-defined notion since they are well defined in ADS ∪ Ein2. We can
therefore define the causality relation in such a manifold with boundary,
and in particular the strong causality property (see Section 2).

Definition 9.4. An AdS-spacetime with boundary (M, O,M) is an univer-
sal strongly causal conformal completion of M if it is strongly causal, and for
any strongly causal AdS-spacetime with boundary (M, O′,M′) there exists
an injective morphism (M, O′,M′) → (M, O,M).

Obviously, an AdS-spacetime can admit a conformal strongly causal com-
pletion only if it is already strongly causal. Conversely,
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Theorem 9.5. Every strongly causal AdS-spacetime admits an universal
strongly causal conformal completion.

In the proof we will need the following lemmas, valid for any local homeo-
morphism ϕ : X → Y between manifolds (for proofs, see for example
[6, § 2.1]):

Lemma 9.6 (Lemme des assiettes embôıtées). Let U , U ′ be two open
domains in X such that the restrictions of ϕ on U , U ′ are injective. Assume
that U ∩ U ′ is not empty and that ϕ(U ′) contains ϕ(U). Then U ′ contains U .

Lemma 9.7 (Fermeture des assiettes). Assume that ϕ is injective on
some open domain U in X, and that the image V = ϕ(U) is locally connected
in Y , i.e., that every point y in the closure of V admits arbitrarily small
neighborhood W such that V ∩ W is connected. Then, the restriction of ϕ
to the closure of U in X is injective.

Proof of Theorem 9.5. Step 1: the construction of the AdS-spacetime with
conformal boundary (˜M, ˜O, ˜M). We need to start with a definition: an end
in ˜M is an open domain U in ˜M such that the restriction of D to U is
injective, with image an end V in ADS (see Definition 3.2, figure 2). The
proof relies on the geometric understanding of ends, hence we insist on their
description: an end is the intersection F ∩ P , where P is the past of an
element a of Ein2, F the future of an element b of Ein2, and such that a, b
are strictly causally in a de Sitter domain containing V . The interior in Ein2
of the intersection between Ein2 and the closure of V is a diamond-shaped
region, denoted by ∂U . The end itself is the intersection between ADS and
the convex hull in P (E) of the boundary of ∂U .

Let U be the union U ∩ ∂U . Observe that for any end U the triple
(U, ∂U,U) is an AdS-spacetime with boundary. A marked end is a pair
(U, x), where U is an end in ˜M and x an element of ∂U ⊂ Ein2. Let E
be the set of marked ends in ˜M . On E , let ∼ be the equivalence relation
identifying two marked ends (U, x), (U ′, x) if there is a third marked end
(U ′′, x) with U ′′ ⊂ U ∩ U ′. Let Υ be the quotient space of ∼. Let Ξ be the
union Υ ∪ ˜M . For any end U , let ∂ ̂U ⊂ Υ be the set {[U ′, y] ∈ Υ/U ′ ⊂ U},
and let ̂U be the union in Ξ of ∂ ̂U with U . The ∂ ̂U form the basis of a
topology on Υ, and the ̂U form, with the open subset of ˜M , the basis of a
topology in Ξ. It should be clear to the reader that in the special case where
˜M is the end V , all this process gives as final output topological spaces Υ,
Ξ respectively homeomorphic to ∂V , V ∪ ∂V , where ∂V is the interior of
the intersection between Ein2 and the closure of V .
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The inclusion ˜M ⊂ Ξ is clearly a homeomorphism onto its image, which
is dense in Ξ. Similarly, for any marked end (U, x), the open domain ̂U
is a neighborhood of [U, x] in Ξ, which is homeomorphic to V ∪ ∂V , the
conformal completion in Ein3 of the end V = D(U) in ADS. It follows that
Ξ is a manifold with boundary, admitting as chards the chards of ˜M and the
open subsets ̂U . Indeed, the only remaining point to check (with the second
countability that we leave to the reader) is the Hausdorff property: let x1,
x2 be two elements of Ξ such that every neighborhood of x1 intersects every
neighborhood of x2. Then, clearly, if x1 belongs to ˜M , the same is true for
x2, and x1 = x2. If not, x1 and x2 belong to Υ: x1 = [U1, x

′
1], x2 = [U2, x

′
2]

with (Ui, xi) ∈ E . By hypothesis, the neighborhoods ̂U1 and ̂U2 must overlap.
If U1 ∩ U2 ⊂ ˜M is empty, then some [U3, x3] must belong to ̂U1 ∩ ̂U2. Then,
points in U3 correspond to points in ̂U3 which are in U1 ∩ U2, a contradiction.
Hence, U1 ∩ U2 must intersect for any choice of the marked ends (Ui, xi).
Fix one choice (U0

i , x0
i ) of these ends, and consider for every i = 1, 2 smaller

ends Ui ⊂ U0
i . More precisely, fix U1, with [U0

1 , x1] = [U1, x1] and U1 ⊂ U0
1 .

Then, if U2 is sufficiently small, its image D(U2), which intersects D(U1),
is contained in D(U0

1 ). According to Lemma 9.6, U2 is then contained in
U0

1 . But, since x1, x2 are not separated one from the other, they must have
the same image under D. Applying Lemma 9.7, we obtain x = y, i.e., Ξ is
Hausdorff.

The combination of the developing map D : ˜M → ADS with the inclusions
U ⊂ Ein3 induces a well-defined continuous map D : Ξ → Ein3. Moreover,
the restriction of D to (the projection of) any closed end U is injective: D
is a local homeomorphism.

Finally, the action of Γ on ˜M extends naturally on Ξ: for any γ in Γ,
define γ[x ∈ U ] as being [ρ(γ)x ∈ ρ(γ)U ].

Observe that this action is continuous and preserves Υ = Ξ \ ˜M . More-
over, the map D : Ξ → Ein3 is equivariant for this action.

We can now define ˜M: this is the set of Γ-causally wandering points in
Ξ, i.e., the set of elements x of Ξ admitting neighborhood W such that for
every non-trivial element γ of Γ no element of W is causally related in Ξ to
an element of γW . Observe that Ξ is open, Γ-invariant, and that it contains
˜M since the action of Γ on ˜M is strongly causal. ˜O is the complement
˜M \ ˜M (hence, the set of Γ non-causally wandering points).

Step 2: the action of Γ on ˜M is free, proper, and strongly causal. Observe
that the action is free, since the fixed points are not wandering. Assume
that the action of Γ on ˜M is not proper.
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Then, there are sequences (xn)(n∈N), (yn)(n∈N) in ˜M and a sequence γn

in Γ such that:

– γnxn = yn,
– xn → x ∈ ˜M,
– yn → y ∈ ˜M, and
– y is not in the Γ-orbit of x.

Let x̄ = D(x), ȳ = D(y), x̄n = D(xn), ȳn = D(yn). We also decompose
gn = ρ(γn) along their left and right components: gn = (gn

L, gn
R).

Since the action of Γ on ˜M is proper (it is the group of covering automor-
phisms), x or y must belong to ˜O; let us say x. Then x belongs to a diamond
shaped region ∂U , where U is an end in ˜M . Since x is Γ-wandering, we can
choose U so that γU ∩ U = ∅ for every non-trivial γ in Γ. Moreover, since
U is open in ˜M, we can assume that all xn belong to U .

Define Un = γnU , Δ = ∂U , Δn = γnΔ, and Δn = D(Δn), Un = D(Un).
The image Δ = D(Δ) is a diamond-shaped region. Since the Un are neces-
sarily disjoint we can assume that none of them contains y.

Claim: y belongs to ˜O.

Assume not. There is a small neighborhood W of y in ˜M such that the
restriction of D is injective with image a small ellipsoid W in ADS. For
n sufficiently big yn belongs to W , hence the intersection In = W ∩ Un is
not empty. On the other hand, Un is an end: it is a connected compo-
nent of the intersection between ADS and the complement of two hyper-
planes in P (E). It follows that the intersection In between the ellipsoid
W and Un is convex: it is the trace in an ellipsoid of a half-space or a
quarter of space. Moreover, the restriction of D to In and W is injective.
Hence, according to Lemma 9.6, the image of In by D is the entire In.
In other words, the screen W reflects faithfully how the ends Un intersect
W . But it is geometrically clear that Un cannot accumulate to ȳ if they
are disjoint one to the other: visualize by considering an ellipsoid W ′ in
the Minkowski space conformally equivalent to W ; then, in this conformal
chord, the Un are intersections between the past of light-like plane and the
future of another light-like plane. It leads to a contradiction: the claim
is proved.

Replace the ellipsoid W in the proof above by a neighborhood U
′ with

U ′ ∈ E and such that y belongs to ∂U ′. We can assume that all the yn belong
to U ′. The argument above, based on Lemma 9.6, shows that the image by
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D of the intersection Un ∩ U ′ is also the entire U
′ ∩ Un. Applying once more

this lemma to the closure, we obtain that D projects faithfully the intersec-
tions between Δ′ and Δn over the entire Δn ∩ Δ′. But these intersections are
even simpler to visualize than intersection between an ellipsoid and ends:
indeed, through the identification ADS ≈ RP 1

L × RP 1
R, a diamond-shaped

region corresponds to the product of two open intervals IL × IR. Denote
by I0

L, I0
R the open intervals in the projective line such that I0

L × I0
R = ∂Δ′:

ȳ corresponds to a pair (yL, yR) ∈ I0
L × I0

R. For every integer n let In
L ⊂ I0

L
and In

L ⊂ I0
R be the intervals such that Δn ∩ Δ′ = In

L × In
R.

Assume that for some integers n 
= m the intersection In
L ∩ Im

L is not
empty. Then there is light-like segment in Δ′ with one extremity in Δn

and the other in Δm. It follows that there is a causal curve joining an
element of Un ∩ U ′ to an element of Um ∩ U ′. Now, for the first time, we
use the fact that M is strongly causal, i.e., that the action of Γ on ˜M is
strongly causal: it means that the open domain U can be selected so that
for every non-trivial element of Γ no element of γU can be causally related
to an element of U . Apply this remark to γ−1

n γm: we obtain a contradiction.

Hence, for every n 
= m we have In
L ∩ Im

L = ∅. Similarly In
R ∩ Im

R = ∅. But
since the yn converge to y = (yL, yR) it follows that (In

L)(n∈N) (respectively
(In

R)(n ∈ N)) is a decreasing sequence of intervals converging uniformly to
{yL} (respectively {yR}). Hence for big n we have Un ⊂ U ′. We obtain a con-
tradiction since U ′ can be chosen so that γU ′ ∩ U ′ = ∅ for every non-trivial γ.

This final contradiction achieves the proof of step 2. Hence, the quotient
M = Γ\ ˜M is a manifold, with boundary O = Γ\ ˜O.

Step 3: (M, O,M) is an universal conformal completion. Let (M, O′,M′)
be another conformal completion of M . Let π′ : ˜M′ → M′ be the universal
covering of M. The interior of ˜M′ is simply connected, hence it can be iden-
tified with the universal covering of M . Hence M , M′ (and M) have the
same fundamental group Γ. Let D′ : ˜M′ → Ein3 and ρ : Γ → G × G be the
developing map and the holonomy representation of (M, O,M). The devel-
oping map for M is then the restriction to ˜M of D′, and ρ is the holonomy
representation of the AdS-spacetime M .

The main observation is the following: every point x in ˜O′ admits a neigh-
borhood U ′ in ˜M′ such that the restriction of D′ to U ′ is injective and the
image D′(U ∩ ˜M) is an end of AdS. Hence, (U ∩ ˜M, D′(x)) is a marked end
of ˜M . It defines a map ˜O → Υ. With the identity map ˜M → ˜M , and after
composition in the quotient space, we obtain a map ˜F : ˜M′ → Ξ. The proof
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that ˜F is a homeomorphism onto its image is straightforward and left to
the reader.

The main point is to show that ˜F takes value in the domain of Γ-wandering
points ˜M. Assume by contradiction the existence of a point x in ˜M′ such
that x′ = ˜F (x) is not a Γ-wandering point. Since Γ acts properly on ˜M′,
there is a neighborhood W of x such that γW ∩ W = ∅ for every non-trivial
γ. Moreover, since it is not Γ-wandering, x′ does not belong to ˜M . Hence,
x belongs to ˜O′: we can choose W so that W ∩ ˜M is an end of ˜M . Then,
by hypothesis, there is a non-trivial γ such that γW ∩ W is not empty since
W is a neighborhood of x′ in ˜M. But complete ends overlapping in ˜Ξ must
also overlap in the interior of ˜Ξ, i.e., in ˜M . Hence, this overlapping exists
also in ˜M′, which is a contradiction.

Hence, ˜F takes value in ˜M. Since the construction is Γ-equivariant, ˜F
induces the required morphism (M, M′, O′) → (M, O,M). �

Remark 9.8. Consider the quotient of ˜AdS by a cyclic group Γ generated
by a hyperbolic left translation γ = (γL, id). Then the set of fixed points
of γ is the union of two left light-like leaves l1, l2. The action of Γ on
˜AdS ∪ ̂Ein2 \ (l1 ∪ l2) is free and properly discontinuous, hence the quotient
space is an universal conformal boundary for Γ\ ˜AdS. But since every Γ-
orbit of elements of ̂Ein2 is contained in a right light-like leaf, it follows that
the strongly causal conformal boundary of Γ\ ˜AdS is empty.

Remark 9.9. Restricting to the strongly causal category is essential to
ensure the uniqueness of the maximal conformal extension. Indeed, let γ =
(exp(λΔ), exp(μΔ)) be a hyperbolic–hyperbolic element of ˜G × ˜G with λ 
=
μ. The action of γ on ˜AdS is free and properly discontinuous. In Ein2 there
are two γ-invariant left leaves l1, l2, and two γ-invariant right leaves r1, r2.

The preimage l̃i, r̃i in ̂Ein2 of li, ri are light-like geodesics. It is easy
to see that the action of Γ on ˜AdS ∪ ̂Ein2 \ (l1 ∪ l2) is free and properly
discontinuous, and the same is true for the action on ˜AdS ∪ ̂Ein2 \ (r1 ∪ r2).
Each of these extensions provides a conformal completion of Γ\ ˜AdS. But it
can be proved that each of this extensions is maximal, i.e., does not embed
in a larger conformal completion of Γ\ ˜AdS. Hence Γ\ ˜AdS does not admit a
universal conformal completion.

A similar situation appears in the so-called “Taub - NUT” examples; see
[17, 20].
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10 BTZ black holes and multi-black-holes

In this section, we consider various pairs (ρ, Λ), where ρ = (ρL, ρR) : Γ →
G × G is an admissible representation and Λ a ρ-admissible closed subset of
Ein2 (see Definition 6.1). We prove in the selected cases that the spacetimes
MΛ(Γ) are AdS-spacetimes with black-holes in the sense of Definition 1.2.

Remark 10.1. We do not pretend to study all the possibilities: for example,
for non-abelian Λ, we only consider the case Λ = Λ(Γ), whereas the case
Λ 
= Λ(Γ) gives other examples of spacetimes with black-holes. Moreover,
we do not consider the case where Γ is trivial, which would lead, for the Λ
selected below, to AdS-spacetimes with black-hole too!

A justification for this omission is that all these spacetimes are not max-
imal for (too much) obvious reasons, because of the embedding MΛ(Γ) ⊂
MΛ(Γ)(Γ) — especially in the case Γ = id, where the whole spacetime embeds
in ˜AdS.

10.1 The conical black-holes

This is the case where Λ is conical (see Section 3.3). More precisely, we have
to consider the case where Λ is a upper lower tent T +

xy = [x, z] ∪ [z, y] (if it
is a lower tent, then the spacetime is full, but without a black-hole). The
domain E(Λ) has been described in Section 3.3. From this description (see
also figure 2), it appears clearly that the conformal boundary ˜O of E(Λ)
is the diamond-shaped region Δ2 = Ω(Λ), and the completion of E(Λ) is
M(Λ) = E(Λ) ∪ Δ2. The region F1 ∩ F2 is the region invisible from ˜O. We
can understand a part of the terminology reported in Remark 3.5: the outer
region F2 ∩ P2 is the region visible to observers in O.

According to Section 5.3 the action of Γ on E(Λ) is free, properly dis-
continuous, and strongly causal if and only if Γ is a cyclic group generated
by an element γ = (γL, γR) = (exp(uΔ), exp(vΔ)). We can assume without
loss of generality that v ≥ u ≥ 0. It appears then clearly that the action of
Γ on ˜O = Δ2 is free and proper. Moreover, this action is strongly causal if
u = 0. Hence, its quotient O is the natural conformal boundary of MΛ(Γ),
and it is also the strongly causal conformal boundary if u 
= 0 — if u = 0, the
strongly causal conformal boundary is empty (see Remark 9.8). Obviously,
the invisible domain in MΛ(Γ) from O is the quotient of the “intermediate
region” F1 ∩ F2.
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It follows that MΛ(Γ) is an AdS-spacetime with a black-hole in the sense
of Definition 1.2 if and only if u 
= 0.

Remark 10.2. The topology is very simple: MΛ is homeomorphic to the
product of the annulus by R. The same is true for the outer region and the
black-hole, which are separated by a light-like annulus, the horizon.

10.2 Splitting black holes

Here, we consider the case where Λ is splitting, i.e., two non-causally related
points (x, y). This case is fully detailed and described in Section 3.1. Figure
2 is still useful. The discussion above remains essentially the same, but now
the conformal boundary of E(Λ) has two connected components: Δ1 and
Δ2. Hence, the invisible domain from their union is still F1 ∩ P1.

According to Section 5.2, in order to act properly on E(Λ), the group
Γ must be as in the conical case: generated by a hyperbolic translation,
or a hyperbolic–hyperbolic element. Hence, the conformal completion of
the quotient is the quotient of these two diamond-shaped regions. The
strongly causal conformal boundary is Δ1 ∪ Δ2, except if γ is an hyperbolic
translation, in which case the strongly causal boundary is empty.

When γ is hyperbolic–hyperbolic, MΛ(Γ) contains a black-hole — the
quotient of F1 ∩ F2 — isometric to the black-hole of the conical case.

The topological description is the same as in the conical case. But the
horizon is not C2, and the visible domain is not globally hyperbolic.

Remark 10.3. Something similar to what was discussed in Remark 10.1
appears: the conical spacetime MΛ(Γ) embeds isometrically in Mxy(Γ):
hence, it is not maximal. This is a good reason for considering that coni-
cal case does not contain a black-hole, as in the “classical” literature. But
observe that Mxy(Γ) itself is not maximal too: when u < v, Mxy(Γ) embeds
in the spacetime MD(Γ) = Γ\D(Γ), where D(Γ) is the absolute causality
domain (see Definition 4.8, Proposition 4.11, case (6)). Observe that D(Γ) is
an open domain in ˜AdS not contained in a affine domain. Actually, the proof
of case (6) of Proposition 4.11 shows that D(Γ) contains all the preimage
in ˜AdS of Exy, which are connected one to the other by regions (the “inner
regions” with the conventions in [4, 5, 11]) which project in AdS ≈ SL(2, R)
to the domain 0 < bc < (exp(u)−exp(v))2

4 exp(u+v) . Observe that these new regions have
empty conformal boundaries: their closure intersects Ein2 only along the
union of two light-like geodesics. Hence, the conformal boundary of D(Γ) is
the preimage in ̂Ein2 of all the preimage of Δ1 ∪ Δ2.
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In other words, let A is an affine domain containing E(Λ), and let Ai be
the infinite family of affine domains in ˜AdS such that ˜AdS is the union of
the Ai (see [7, § 3.5]). Every Ai contains a copy Ei of E(Λ). Moreover, A
can be selected so that the conformal boundary of Ai contains the conformal
boundary Δi

1 ∪ Δi
2 of Ei. The inner regions connect every Ai to the following

Ai+1, allowing some causal curves to pass from Ai to Ai+1. It is easy to show
that, due to these connecting inner regions, D(Γ) is entirely visible from its
conformal boundary: it has no hole.

However, the quotient MD(Γ) considered in the literature devoted to BTZ
black-holes (including [4]) has the typical spacetime containing a single non-
static (u 
= v) BTZ-black-hole. This requires one to pay attention to simple
blocks Ai ∩ D(Γ) individually, to consider the observers only in the boundary
components of one of them, and to consider other blocks as being other parts
of the universe which can be reached only by going through the horizon of
the black-hole. Adopting this point of view, we observe that Mxy(Γ) is
therefore enough to give a picture of the considered black-hole.

Remark 10.4. This causal description is actually very similar to the
description of black-holes in the maximal Kerr spacetime Mmax

Kerr (see the
Introduction).

10.3 The extreme black hole

The case where Λ is extreme is described in Section 3.2. In this case, the
invisible domain is not contained in an affine domain, hence we need two
successive domains, and Λ must be considered as a closed subset of ̂Ein2
(see figure 3). In this case, the conformal boundary is the extreme diamond
Ω(x, y), and the entire E(Λ) is visible from the boundary: there is no black-
hole!

According to Section 5.1, the group Γ must be contained in Ahyp or Aext,
and since we want the action of Γ on E(Λ) to be causal, the case Γ ⊂ Ahyp
must be excluded (Section 5.1.2). Hence, the action of Γ on E(Λ) is free,
properly discontinuous and strongly causal, except if it contains a parabolic
translation (Section 5.1.1).

Anyway, as we have seen, E(Λ) does not contain any black-hole. But we
can use the same trick as for single non-static BTZ black-holes (Remark 10.3):
consider the absolute causal domain D(Γ). Observe that D(Γ) = E(Λ) if Γ
is not cyclic (Theorem 8.2). Hence, this trick will apply only for cyclic
subgroups of Aext. Moreover, according to Proposition 4.11, case (3), the
absolute causal domain of parabolic translations is trivial: we must exclude
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them. Finally, elements of Γ are not hyperbolic translations since Γ ⊂ Ahyp
is excluded. Hence, Γ must be generated by a parabolic–hyperbolic ele-
ment. According to Proposition 4.11, case (7), the action of Γ on D(Γ) is
free, properly discontinuous and proper.

We can reproduce nearly the same comment as in Remark 10.3: D(Γ)
has to be understood as a δ-invariant subset of ˜AdS, and the quotient space
MD(Γ) is a union of “local universes”. There is a small difference: the con-
formal boundary of every simple block is now connected (the other connect
component “vanished”), and there is no intermediate region: the black-holes
correspond to inner regions.

10.4 Multi-black holes

The last case we consider is the non-elementary case: Γ is non-abelian and
Λ = Λ(Γ) is not elementary. The key point is to use [7, Proposition 8.50]:
E(Λ) is the union of the past and future globally hyperbolic cores, with the
closed ends Ω(I) associated to gaps I of Λ. Observe that the gaps in this
case are not extreme ([7, Remark 8.25]); hence, the diamonds Ω(I) are not
extreme. Moreover, since in this case the left and right morphisms are
both faithful, the stabilizer of Ω(I) is generated by a hyperbolic–hyperbolic
element.

It follows clearly that the connected components of the conformal bound-
ary of E(Λ) are precisely the diamonds Ω(I): the only way to approach this
conformal boundary is to enter a closed end. Observe that the closed end
associated to a gap I is isometric to the outer region of a conical spacetime.
Moreover, if Λ is a topological circle, then the conformal boundary is empty:
there is no observer, no black-hole. Finally, the invisible domain from Ω(Λ)
is precisely the future globally hyperbolic core E(Λ+).

Now, according to Theorem 5.1, and since every element of Γ is hyperbolic–
hyperbolic, the action of Γ on Ω(Λ) ∪ E(Λ) is free, properly discontinuous,
and strongly causal (observe that it is true even if Λ 
= Λ(Γ)). The quo-
tient spacetime MΛ(Γ) is then an AdS-spacetime with one black-hole: the
(globally hyperbolic) quotient of E(Λ+) by Γ.

Remark 10.5. There is an obvious 1–1 correspondence between the con-
nected components of the conformal boundary of MΛ(Γ) and Γ-orbits of
gaps, i.e., non-cuspidal boundary components of the surfaces ΣL ≈ ΣR (see
Remark 6.3).
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Remark 10.6. According to Theorem 8.2, the trick used in Remark 10.3
in order to enlarge the spacetime by considering the absolute causal domain
D(Γ) gives nothing new: the quotient is the same spacetime.

Remark 10.7. Anyway, even if the “obvious” trick above does not work,
many spacetimes MΛ(Γ) are not maximal AdS-spacetimes. Indeed, add to
E(Λ) a very small end U , such that the intersection ∂U of the closure of U
with Ein2 ≈ RP 1

L × RP 1
L is a small rectangle IL × IL around a point x in the

boundary of Ω(I) (for some gap I). Do not take as point x one of the corner
points of Ω(I). Then, if for some element γ of Γ the intersection ∂U ∩ γ∂U
is not empty, then γΩ(I) ∩ Ω(I) is not empty. Then, γ must belong to
the cyclic subgroup ΓI of elements preserving the gap I (see the proof of
Theorem 5.1). Thus, U can be chosen so that the intersection γU ∩ U never
happens. Then, the union of E(Λ) with all the γU (γ ∈ Γ) is a Γ-invariant
connected spacetime E′ on which Γ acts freely and properly discontinuously.
Its quotient is a bigger spacetime M ′ in which MΛ(Γ) embeds isometrically.

Remark 10.8. Consider once more the spacetime M ′ constructed in the
remark above. Let us prove that M ′ is strongly causal. There is no loss of
generality in assuming that the point x has been selected so that its (local)
future does not meet E(Λ) ∪ Ω(Λ). Then, no future-oriented causal curve
starting from a point in E′ \ E(Λ) that can enter E(Λ): we say that E(Λ)
is past-convex in E′.

Let y be an element of E′. If y belongs to E(Λ), since E(Λ) is causally
convex and strongly causal, there is a neighborhood V of y which is not
causally related to any non-trivial Γ-iterate of itself. Assume now that y
belongs to the end U but not to E(Λ). Observe that by construction U
meets E(Λ) only in the closed end E(I) associated to I. It follows that small
neighborhoods of y are contained in U \ E(Λ). Any causal curve c joining a
point near y to a point near γy with γ 
= id must enter E(Λ). Since E(Λ) is
past-convex in E′ the causal curve c must be past-oriented. But the same
argument applied near γy shows that c must be future-oriented.

This contradiction implies that the action of Γ on E′ is strongly causal.
Therefore, M ′ is strongly causal.

It is quite clear that the conformal boundary of M ′ is the quotient by Γ
of the union of Ω(Λ) with the disjoint union of all the γ∂U . Moreover, by
causal convexity of E(Λ) ∪ Ω(Λ), the strongly causal conformal boundary of
M ′ contains as an open subset the conformal boundary of MΛ(Γ). We claim
that the conformal boundary of MΛ(Γ) is actually a connected component
of the strongly causal conformal boundary of M ′. Indeed, for every y in ∂U
and in the boundary of Ω(I) in the Einstein space, for any neighborhood
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V of y in ∂U and for any non-trivial element γ of ΓI there are elements of
V ∩ Ω(I) causally related to elements of γV ∩ ∂U .

It follows quite easily that the strongly causal conformal boundary of
M ′ is the quotient by Γ of the union of Ω(Λ) with the disjoint union of all
γ(∂U \ Ω(I)), where γ describes all Γ, and Ω(I) is the closure in the Einstein
space of Ω(I).

Points in E′ \ E(Λ), i.e., elements of γU (γ ∈ Γ) are in the past of the
strongly causal boundary of E′. Hence, the black-hole in M ′ is contained in
the black-hole of MΛ(Γ). Moreover, if the point x has been selected in the
past of Ω(I) (the proof of strong causality still applies, just replace past-
convex above by future-convex) then the black-hole in M ′ is equal to the
black-hole in MΛ(Γ): the part of the conformal boundary we added did not
reveal any new point. But if the point x has been selected in the future Ω(I)
there is no general answer: the black-hole in M ′ might be strictly smaller
than the black-hole in MΛ(Γ).

Remark 10.9. The example described in Remarks 10.7 and 10.8 shows
that spacetimes with BTZ multi-black-holes are far from being maximal as
spacetimes, even in the strongly causal category. But observe that these
examples become forbidden if in the definition of spacetimes with black-
holes we impose the following additional requirement: the strongly causal
conformal boundary must be globally hyperbolic.

10.5 Kerr-like coordinates

We conclude with the presentation of the Kerr-like expression of the BTZ
metric. This expression concerns the metric on the “outer regions”, i.e., the
ends. Hence we just have to consider the splitting and extreme cases.

10.5.1 The Kerr-like metric on the outer region of a
splitting spacetime

In this case, Γ is generated by γ where, up to conjugacy,

γ = (γL, γR) = (exp(uΔ), exp(vΔ)), v ≥ u > 0

The elements x, y of Λ must be the attractive and repulsive fixed points
of γ.
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Define r± (r+ > r− ≥ 0) by

u = π(r+ − r−), v = π(r+ + r−).

Then

γLgγ−1
R =

(

a exp(−2πr−) b exp(2πr+)
c exp(−2πr+) d exp(2πr−)

)

.

Let (x1, x2, y1, y2) be coordinates of E for which Q = dx2
1 + dx2

2 − dy2
1 −

dy2
2. Consider the identification

AdS → SL(2, R),

(x1, x2, y1, y2) �→
(

y1 + x1 x2 + y2
x2 − y2 y1 − x1

)

.

Then, in the coordinates (x1, y1, x2, y2), the matrix in SO(2, 2) corre-
sponding to γ is

⎛

⎜

⎜

⎝

cosh(2πr−) − sinh(2πr−) 0 0
− sinh(2πr−) cosh(2πr−) 0 0

0 0 cosh(2πr+) sinh(2πr+)
0 0 sinh(2πr+) cosh(2πr+)

⎞

⎟

⎟

⎠

.

The attractive and repulsive fixed points have coordinates (0,±1, 0, 1).
Thus, the outer region is {| y1 |< x1, | x2 |< y2}. A natural associated coor-
dinate system on this domain is

x1 = ρ1 cosh(T ),

y1 = ρ1 sinh(T ),

x2 = ρ2 sinh(φ),

y2 = ρ2 cosh(φ),

with ρ2
1 = ρ2

2 − 1. The AdS-metric dx2
1 + dx2

2 − dy2
1 − dy2

1 in the coordinates
(T, φ, ρ = ρ2) is

1
ρ2 − 1

dρ2 + ρ2dφ2 − (ρ2 − 1)dT 2.

Observe that φ, T may have any real value, and that ρ takes value in
]1, +∞[.

The action of γ in the coordinates (φ, T, ρ1, ρ2) is simply the translation
by 2πr+ on φ and by −2πr− on T . Hence, it preserves the function t =
r−φ+r+T

r2
+−r2

−
, and adds to ϕ = r+φ+r−T

r2
+−r2

−
the term 2π. Therefore, we introduce

the coordinates (t, ϕ) instead of (T, φ): ϕ is considered as a polar coordinate,
the action by γ being represented by ϕ → ϕ + 2π, the other coordinates (t, ρ)
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remaining unchanged. Actually, replace ρ by the coordinate r defined by
ρ2 =

r2−r2
−

r2
+−r2

−
. Then, the AdS-metric becomes

−N(r)dt2 + N(r)−1dr2 + r2
(

dϕ +
J

2r2 dt

)2

,

where

J = −2r−r+,

N(r) =
(r2 − r2

+)(r2 − r2
−)

r2 .

The coordinates (ϕ, t, r) are the Kerr-like coordinates. Considering ϕ as
defined modulo 2π, it provides an expression of the outer region of Mxy(Γ).
The analogy with the Kerr metric is striking if we observe N(r) = r2 − M +
( J
2r )2, where M = r2

+ + r2
−.

Remark 10.10. In the Kerr-like coordinates, the level sets of the time
function t are not homogeneous. The stabilizer of the outer region is Ahyp,
the orbits of which in the outer region are time-like. Observe that this action
of Ahyp is an action by translations on the coordinates (t, ϕ). Actually, the
(scalar) curvature of the level sets of t is not constant (except if r− = 0).
What is the specific geometric feature of these level sets?

A remarkable fact is that the level sets {t = t0} are maximal, i.e., have
zero mean curvature. A quick computation is as follows: parameterize the
level set S0 = {t = t0} by parameters η, ϕ, where ρ = cosh(η):

x1 = sinh(η) cosh(T ),

y1 = sinh(η) sinh(T ),

x2 = cosh(η) sinh(φ),

y2 = cosh(η) cosh(φ),

with T = r+t0 − r−ϕ, φ = r+ϕ − r−t0. Let p be a point of S0 of coordinates
(η, ϕ). Identify the tangent space to AdS at p with the Q-orthogonal p⊥ in
E. Then the tangent vectors of S0 at p are generated by

∂η =

⎛

⎜

⎜

⎝

cosh(η) cosh(T )
cosh(η) sinh(T )
sinh(η) sinh(φ)
sinh(η) cosh(φ)

⎞

⎟

⎟

⎠

, ∂ϕ =

⎛

⎜

⎜

⎝

−r− sinh(η) sinh(T )
−r− sinh(η) cosh(T )
r+ cosh(η) cosh(φ)
r+ cosh(η) sinh(φ)

⎞

⎟

⎟

⎠

.
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The future-oriented normal n0 to S0 at p is the following vector n, divided
by the square root of the opposite of its norm, which is r2

− sinh(η)2 −
r2
+ cosh(η)2 = −r2:

n =

⎛

⎜

⎜

⎝

r+ cosh(η) sinh(T )
r+ cosh(η) cosh(T )
−r− sinh(η) cosh(φ)
−r− sinh(η) sinh(φ)

⎞

⎟

⎟

⎠

.

Now, the second fundamental form of S0 on a tangent vector field X at
p is obtained by computing 〈n0 | ∇XX〉. But the Levi–Civita connection of
AdS is just the orthogonal projection on TAdS of the usual flat connection of
E. Hence, the (extrinsic) curvatures of the curves {ϕ = Cte} and {η = Cte}
are the Q-scalar products with n0 of the following vectors:

∂ηη =

⎛

⎜

⎜

⎝

sinh(η) cosh(T )
sinh(η) sinh(T )
cosh(η) sinh(φ)
cosh(η) cosh(φ)

⎞

⎟

⎟

⎠

= p, ∂ϕϕ =

⎛

⎜

⎜

⎝

r2
− sinh(η) cosh(T )

r2
− sinh(η) sinh(T )

r2
+ cosh(η) sinh(φ)

r2
+ cosh(η) cosh(φ)

⎞

⎟

⎟

⎠

.

These scalar products are null. Since the curves {η = Cte} and {ϕ = Cte}
are everywhere orthogonal, the mean curvature of S0 at p is thus 0 (but
these curves do not define the principal directions if r− 
= 0). Observe that
{ϕ = Cte} is actually a space-like geodesic in AdS.

Moreover, 〈n | ∂ηϕ〉 = r−r+. It follows that the second fundamental form
is II = r−1r−r+ dη dϕ. The pair (∂η, r

−1∂ϕ) is an orthonormal basis of the
tangent space at p. Hence, the Gauss curvature of S0 is

r2
−r2

+

4r4 .

10.5.2 The Kerr-like metric on the outer region of an
extreme spacetime

Observe that the Kerr-like metric remains meaningful when r− = r+, even
if the coordinate transformations considered in the previous section are not
valid anymore. Let E′(r+) be (simply connected) lorentzian manifold con-
sisting of R

2×]r+, +∞[ with coordinates (t, ϕ, ρ), equipped with the metric

−N(r)dt2 + N(r)−1 dr2 + r2
(

dϕ +
J

2r2 dt

)2

,
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where

J = −2r2
+,

N(r) =
(r2 − r2

+)2

r2 = r2 − 2r2
+ +

(

J

2r

)2

,

M ′(r+) is the quotient of E′(r+) by the translation ϕ → ϕ + 2π, the other
coordinates remaining the same. We want to prove that E′(r+) is isometric
to the outer region of an extreme black-hole as defined in Section 10.3.

The sectional curvature of the Kerr-like metric for r− = r+ − ε is −1 for
any ε; it then remains true at the limit ε = 0. Hence, E′(r+) and M ′(r+)
are locally AdS. Observe also that ∂ϕ and ∂t generate a rank 2 abelian
Lie algebra of Killing vector fields. This is the pull-back by the developing
map of an abelian Lie algebra A(r+) of Killing vector fields on AdS. This Lie
algebra is of course a limit of algebras A(r+, r+ − ε) which are all Lie algebras
of subgroups conjugate to Ahyp. It follows easily that A(r+) is conjugate
either to the Lie algebra of Ahyp, or to the Lie algebra of Aext. A quick
calculus shows that ∂ϕ + ∂t is an everywhere-light-like Killing vector field:
it excludes the hyperbolic–hyperbolic case Ahyp; hence, up to conjugacy, the
isometry group generated by ∂t and ∂ϕ is Aext.

Parameterize a line {t = Cte, ρ = Cte} by ϕ, and compute 〈∂ϕϕ | p〉 =
−r2 (once more, we can compute for r− = r+ − ε). Hence, the orbits of
the translations on the ϕ-coordinate are not geodesic. It follows that they
are not hyperbolic translations: they are hyperbolic–parabolic. In other
words, the monodromy of the translation ϕ → ϕ + 2π is conjugate to γ′ =
(exp(2πr0Δ), exp(H)), for some r0 > 0. Actually, r0 = r+: indeed, for r− =
r+ − ε, the left component of the monodromy of ϕ → ϕ + 2π is conjugate to
exp(2πr+), it remains true at the limit ε = 0 by continuity of the monodromy
under deformations of the AdS-structure. Hence γ′ = γ.

We observe now that ∂ϕ is space-like on E′(r+). Hence, the image of the
developing map of E′(r+) is contained in D(γ). The curve c(r) = (t = 0, ϕ =
0, r) is a geodesic (for example, the study in the preceding section shows
that it is true in the case r− < r+, and the case r− = r+ is a limit case).

Moreover, the length between two points c(r), c(r′) is 1
2 log(

r′2−r2
+

r2−r2
+

): c is a
complete space-like geodesic. According to the description of absolute causal
domains of hyperbolic–parabolic elements (case (7) of Proposition 4.11), the
complete space-like geodesics entirely contained in D(γ) must actually lie in
C(γ), which is the outer region E of the extreme black-hole associated to
γ. Moreover, every Aext-orbit in E′(r+) intersects c. Hence, the developing
image of E′(r+) is contained in E. The action of Aext on E is free: it
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follows that the restriction of the developing map D to any Aext-orbit in
E′(r+) is a homeomorphism onto an entire Aext-orbit in E. Finally, the
restriction of c is injective, with image a complete space-like geodesic c̄ in
E. Every Aext-orbit in E intersects c̄. It follows that D is an isometry
between E′(r+) and E: the coordinates (t, ϕ, r) parameterize the entire
outer region E.

Remark 10.11. The limit “r = r+” is a light-like segment τ in ∂AdS. It
follows that the time levels {t = Cte} are closed in AdS. Their closure in
AdS ∪ ∂AdS intersects ∂AdS along an achronal topological circle which con-
tains the light-like segment τ , and is space-like outside τ . Compare this
situation with the example described in [19, p. 45].

Of course, these level sets have zero mean curvature since it is true in the
non-extreme case r− < r+. Furthermore, they have Gauss curvature r4

+/4r4.
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