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Abstract

We formulate and prove a B-model disc level large N duality result
for general conifold transitions between compact Calabi-Yau spaces using
degenerations of Hodge structures.

1 Introduction

Large N duality is a relation between open and closed string theories on two
different Calabi-Yau manifolds connected by an extremal transition [1]. This
relation was originally formulated in the context of topological A-model for
a local conifold transition [1] and was extended to more general noncompact
toric Calabi-Yau manifolds in [2–5].
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This paper is part of a long-term project aimed at understanding large
N duality for extremal transitions between compact Calabi-Yau manifolds.
A first step in this direction has been made in [6] for topological A-models.
Here, we will be concerned with large N duality in the topological B-model.
Open–closed duality for topological B-strings was first developed in [7, 8]
for a special class of noncompact toric Calabi-Yau manifolds employing a
remarkable relation between holomorphic Chern-Simons theory and random
matrix models.

In contrast with the A-model, the topological B-model on compact
Calabi-Yau spaces has not been given so far a rigorous mathematical
description. However, it is well known that the genus zero topological closed
string amplitudes can be expressed in Hodge theoretic terms using the
formalism of special geometry. On the other hand, disc level topological open
string amplitudes associated to D-branes wrapping curves in Calabi-Yau
threefolds can also be given a geometric interpretation in terms of Abel–Jacobi
maps [9–12]. Higher genus amplitudes do not have a pure geometric
interpretation. In principle one would have to quantize Kodaira–Spencer
theory coupled to holomorphic Chern-Simons theory on a compact Calabi-
Yau space, which is a very hard task at best.

In this paper, we will formulate and prove a first order B-model
duality statement for general conifold transitions between compact
Calabi-Yau spaces. By first order duality, we mean a correspondence
between topological disc amplitudes on the open string side and first-order
terms in a suitable expansion of the holomorphic prepotential on the closed
string side. The expansion is taken around an appropriate stratum
parameterizing nodal Calabi-Yau spaces that admit a projective crepant
resolution.

Using special geometry, in Section 2 we show that the first-order terms in
this expansion admit a intrinsic geometric interpretation in terms of degen-
erations of Hodge structures. In Section 3, we will show that the first order
duality statement follows from a Hodge theoretic result relating two differ-
ent mixed Hodge structures. The main element in the proof is the Clemens-
Schmid exact sequence.

A connection between mixed Hodge structures and B-model
topological disc amplitudes on toric Calabi-Yau manifolds has been
previously developed in [13–15]. This machinery has been applied to first
order large N duality for toric Calabi-Yau manifolds in [16]. Our approach is
different and can be used to extend the B-model large N duality
beyond disc level. Some progress along these lines for an interesting class of
noncompact transitions is reported in the companion paper [17].
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2 B-Model transitions and periods

In this section, we discuss the first order behavior of B-model geometric
transitions associated to conifold singularities of Calabi-Yau spaces. For us
a Calabi-Yau space will be a (possibly singular) complex Gorenstein quasi-
projective variety X which has a trivial canonical class. In addition, in the
singular case we will require that X has a Kähler crepant resolution.

This convention is somewhat broader than the usual notion of a Calabi-
Yau space used in physics, where one requires that X is a complex analytic
space equipped with a Ricci flat Kähler metric. We will be primarily inter-
ested in moduli spaces parameterizing Calabi-Yau structures. These mod-
uli spaces can have different components corresponding to different sets of
values of the topological invariants of X. A geometric (or extremal) transi-
tion is a process connecting two connected components of the moduli space
through a degeneration. Schematically an extremal transition is captured
in a diagram

˜Xm̃

��
Xl

�������� Xm.

where Xl is a smooth Calabi-Yau, Xl
�������� Xm is a degeneration of Xl to a

Calabi-Yau variety Xm having only ordinary double points, and ˜Xm̃ → Xm

is a crepant quasi-projective resolution of Xm.

The standard example of such a situation is the local conifold transition:

Example 2.1. Take {Xμ}μ∈C to be the one parameter family of
3-dimensional affine quadrics Xμ = {(x, y, z, w) ∈ C

4|xy − zw = μ}. When
μ → 0 we get a degeneration Xμ

�������� X0 of Xμ to the 3-dimensional qua-
dratic cone xy = zw. To complete this degeneration to a transition

˜X0

��
Xμ �������� X0,

we take ˜X0 to be one of the small resolutions of X0, i.e., the blow-up of
X0 along the Weil divisor in X0 corresponding to one of the two rulings in
the base P

1 × P
1 of the cone. For future reference, we note also that as an

abstract variety ˜X0 is isomorphic to the total space of O(−1) ⊕ O(−1) → P
1,

and the map ˜X0 → X0 is the natural map contracting the zero section of
O(−1) ⊕ O(−1).
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The geometric transition from Xl to ˜Xm̃ changes the topology.
Indeed, the process of degenerating Xl to Xm collapses some
3-spheres in Xl to the singular points of Xm. These spheres are the van-
ishing cycles of the degeneration Xl

�������� Xm . On the other hand, the
small resolution ˜Xm̃ → Xm replaces each singular point of Xm by a copy of
P

1 ∼= S2. So in the passage from Xl to ˜Xm we deleted some 3-spheres from Xl

and glued 2-spheres in their place. It is important to note
that this process not only changes the topology but also alters the type
of geometry of the Calabi-Yau spaces in question. More precisely the tran-
sition interchanges holomorphic and symplectic data: the exceptional P

1’s
in ˜Xm̃ are holomorphic curves, and conjecturally the vanishing 3-spheres
in Xl can be chosen to be special Lagrangian submanifolds for the
Kähler form on Xl. In particular, in an A-model transition one expects a
relationship between open Gromov-Witten invariants on Xl (with
boundaries on the vanishing 3-spheres) and closed Gromov-Witten invari-
ants on ˜Xm. The precise form of such a relationship is the content of
the A-model large N duality which has been extensively analyzed in the
literature, see [3, 4, 6] and references therein. Here, we propose a geo-
metric description for the B-model counterpart of the large N duality and
investigate some of the mathematical and physical consequences of our
proposal.

Suppose L is a fixed component of the moduli space of Calabi-Yau three-
folds with at most ODP singularities. Given a point l ∈ L we write Xl for the
corresponding Calabi-Yau. We will always assume that for a general l ∈ L,
the variety Xl is a smooth (compact or noncompact) Calabi-Yau threefold.
In examples, we will often take Xl to be complete intersections in some toric
variety since we want to keep track of the family of A-models mirror to the
topological B-models specified by the Xl’s.

More precisely, we will look at the subvariety of L parameterizing singular
threefolds with ordinary double points which admit a crepant projective
resolution. Let M be a component of this subvariety and let v denote
the number of ODPs of Xm, for a general m ∈ M . In particular on a
nearby smooth Xl, we have a collection of v embedded Lagrangian 3-spheres
L1, . . . , Lv whose homology classes [L1], . . . , [Lv] ∈ H3(Xm, Z) vanish under
a deformation Xl

�������� Xm . Recall that [18, Theorem 2.9] in order for Xm to
admit a projective small resolution, we must have at least one good relation
among [L1], . . . , [Lv]. That is, in H3(Xl, Z) we must have a relation of the
form

v
∑

i=1

ci[Li] = 0 ∈ H3(Xl, Z), with ci �= 0 for all i = 1, . . . , v.
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Assuming that this is the case, let r ≥ 1 denote the number of relations on
the vanishing cycles. Then for a fixed point m ∈ M , Xm may have finitely
many different projective small resolutions related by flops. This means that
the moduli space ˜M of the resolution is a finite to one cover of the com-
ponent M . In the following, we will denote by ρ : ˜M → M the covering
map and by m̃ a point of ˜M which projects to m ∈ M . Since above we
have restricted our considerations to the moduli space of Calabi-Yau three-
folds with at most isolated ODP singularities, this cover is unramified. The
branching points of the cover would correspond to singular threefolds with
more complicated singularities which have been excluded by our definition
of the moduli space L.

The exceptional locus of the resolution ˜Xm̃ → Xm consists of v smooth
(−1,−1) rational curves C1, . . . , Cv satisfying v − r relations in H2( ˜Xm̃, Z).
Moreover, we have (see e.g. [19]) the following relations among Betti num-
bers of Xm and ˜Xm̃:

b2( ˜Xm̃) = b2(Xm) + r = b2(Xl) + r,

b3( ˜Xm̃) = b3(Xm) − (v − r) = b3(Xl) − 2(v − r),

b4( ˜Xm̃) = b4(Xm) = b4(Xl) + r.

Large N duality conjectures a correspondence between topological string
theories defined on the Calabi-Yau manifolds Xl and ˜Xm̃ related by a geo-
metric transition. In this paper, we will study B-model transitions, in
which case the conjecture predicts an equivalence between closed topolog-
ical strings on Xl and open–closed topological strings on ˜Xm̃. In physical
terms, the open–closed topological string theory on the small resolution
˜Xm̃ is defined by wrapping Ni B-branes on the exceptional curves Ci. It
is by now well established that in a rigorous framework B-branes should
be described by derived objects. However, for the purposes of the present
paper, it suffices to think of a B-brane as an algebraic cycle on ˜Xm̃ of the
form

∑v
i=1 NiCi. Furthermore, we will restrict our considerations to homo-

logically trivial D-brane configurations, i.e.,
v

∑

i=1

Ni[Ci] = 0 (2.1)

where [Ci] ∈ H2( ˜Xm̃, Z) denotes the homology class of Ci. In principle,
the open–closed topological B, model should be well-defined from a phys-
ical point of view for any values of the multiplicities Ni. However, it will
become clear later that the above homology condition is required by large N
duality. While there is no a priori explanation for this condition in topologi-
cal string theory, in physical superstring theory, this is a direct consequence
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of the Gauss law for Ramond–Ramond flux. It is quite interesting that the
topological version of large N duality still requires us to impose the physical
Gauss law.

2.1 Closed strings

The central object of study of any topological string theory is the partition
function, which is a generating functional for topological string amplitudes.
The partition function of the closed topological B-model on Xl can be writ-
ten as

Fcl
Xl

=
∞

∑

g=0

g2g−2
s Fg

Xl
.

The genus g free energy Fg
Xl

is heuristically defined in terms of functional
integrals over moduli spaces of maps from compact genus g Riemann surfaces
to Xl. In the B-model, the functional integral receives contributions only
from degenerate maps, which sit on the boundary of the moduli space. For
genus zero, the degenerate maps in question are constant maps, and the
functional integral reduces to an ordinary integral on Xl [20]. Moreover, the
genus zero free energy depends holomorphically on the complex structure
parameters of Xl. For higher genus, the degenerate maps have a more
complicated structure and there is no rigorous mathematical formulation of
topological amplitudes. In the following, we will restrict ourselves to genus
zero topological strings.

Next we will explain the construction of the genus zero free energy F0
Xl

and its relation to the special geometry of the moduli space L. Since in the
B-model all physical correlators depend on the choice of a global holomor-
phic three-form, we have to introduce the enlarged moduli space L′ param-
eterizing pairs (Xl, Ωl) where Ωl is a nonzero global holomorphic three-form
on Xl. Note that there is a complex holomorphic line bundle L → L so that
the fiber Ll is the space of global holomorphic three-forms on Xl for any
point l ∈ L. The enlarged moduli space L′ is isomorphic to the complement
of the zero section in the total space of L, hence it has the structure of a
holomorphic principal C

×-bundle π : L′ → L. Let us denote by L0 the open
subspace of L parameterizing smooth varieties Xl, and by L′

0 its inverse
image in L′. We also write M ′ for the inverse image of M in L′, and ˜M

′

for the enlarged moduli space of the resolution. Note that there is a finite
to one unramified cover ρ′ : ˜M

′
→ M ′.

Caution. The previous discussion is somewhat loose. For instance, the
moduli L′ of pairs (Xl, Ωl) is the total space of a line bundle L → L only if we
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view L as a stack. More importantly we need to make sure that L → L is a
line bundle on L − L0 as well. If we have a universal family f : X → L, then
L is the pushforward f∗ωX/L of the relative dualizing sheaf, which is locally
free by cohomology and base change. Indeed for this we only need to note
that for a nodal Calabi-Yau Xm we have h0(Xm, KXm) = h0(Xm,O) = 1
and h1(Xm, KXm) = h1(Xm,O) = 0.

Ideally one would like to define F0
Xl

as an intrinsic global geometric object
on the moduli space L′ which can be locally described as a holomorphic
function (for example, a section in a certain line bundle.) Unfortunately,
there is no such intrinsic construction for F0

Xl
. One can construct the three

point function, or Yukawa coupling, as a global cubic form on L′
0 [21, 22].

The genus zero free energy can only be defined locally as a primitive of the
Yukawa coupling. This description is of course ambiguous since the Yukawa
coupling specifies only the third derivatives of the free energy. Therefore, in
order to obtain a well-defined local function we have to make some choices.
Using special geometry (see e.g. [21, 23]) one can show that a local prim-
itive for the Yukawa coupling is determined by a choice of splitting of the
third homology H3(Xl, Z) into a direct sum A ⊕ B of maximal Lagrangian
sublattices.

Recall that we have chosen L to be a component of a moduli space of
Calabi-Yau threefolds with at most isolated ODP singularities. M is a sub-
variety of the discriminant parameterizing threefolds with a fixed number v
of ODPs which admit a crepant projective resolution. In generic situations,
the (v − r) codimensional subvariety M of the discriminant can be locally
represented as the intersection locus of v (local) branches of the discrimi-
nant. Therefore, we can choose an open subset U ⊂ L so that U ∩ M is the
intersection locus of a collection of Weil divisors D1, . . . ,Dv in U so that
v − r of them intersect transversely along M . Moreover, Xl with l ∈ U is
singular if and only if l is a point on

D = D1 + · · · + Dv.

Let U ′ denotes the inverse image of U in L′. In order to write down a
local expression for the genus zero free energy, we have to introduce special
coordinates zα on U ′ by choosing a symplectic basis of three-cycles {γα,l, γ

α
l },

α = 1, . . . h1,2(Xl) + 1 on each threefold Xl, with l ∈ U \ D. The symplectic
basis of cycles determines a splitting H3(Xl, Z) = Al ⊕ Bl where Al, Bl are
complementary maximal Lagrangian sublattices spanned by the cycles {γα,l}
and {γα

l }, respectively. Note that we have a monodromy transformation

Ti : H3(Xl, Z) −→ H3(Xl, Z), Ti(Γ) = Γ + 〈Γ, ξi〉ξi (2.2)
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associated to each component Di, i = 1, . . . , v of the discriminant in U ,
where ξi ∈ H3(Xl, Z) is the corresponding vanishing cycle. We have denoted
by 〈 , 〉 the intersection pairing in H3(Xl, Z). In order to obtain single valued
coordinates on U ′, we have to choose the lattices of A-cycles so that Al is
contained in the fixed locus of Ti for each i = 1, . . . , v. Then the special
projective coordinates are given by

zα =
∫

γα,l

ΩXl

where ΩXl
is a global holomorphic three-form on Xl. Since the cycles γα,l are

fixed by the monodromy transformations (2.2), the coordinates zα extend
as single valued holomorphic functions over the entire open set U ′.

The genus zero free energy — or, adopting special geometry terminology,
the holomorphic prepotential — is a multivalued holomorphic function on
U ′ ∩ L′

0 given by

F0 =
1
2

h1,2(Xl)+1
∑

α=1

zαΠα (2.3)

where
Πα =

∫

γα
l

ΩXl

are the periods of the holomorphic three-form on the B-cycles γα
l . We also

have the special geometry relations

Πα =
∂F0

∂zα
. (2.4)

which will be useful later in the paper.

2.2 Open strings

Let us now discuss the topological open–closed B-model on the small res-
olution ˜Xm̃. In open–closed topological string theory, one would like to
integrate over maps from genus g Riemann surfaces with h boundary com-
ponents to ˜Xm̃ mapping the boundary components to the exceptional curves
Ci. The partition function of the theory is a generating functional of the form

F
˜Xm̃,{Ci},{Ni} =

∞
∑

g=0

∞
∑

h1,...,hv=0

g2g−2+h
s Fg,{hi}

˜Xm̃,{Ci}

v
∏

i=1

Nhi
i (2.5)

where h =
∑v

i=1 hi. The coefficients Fg,{hi}
˜Xm̃,Ci

are heuristically defined in
terms of functional integrals over maps from genus g Riemann surfaces with
h boundary components to ˜Xm mapping hi boundary components to the
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curve Ci. In the B-model, they are expected to depend on complex moduli
for the data ( ˜Xm̃, Ci). Since the exceptional curves are rigid in the three-
fold, it follows that they only depend on the complex structure parameters
of ˜Xm̃.

According to [24], the open-string path integral localizes on degenerate
maps, just as in the closed string situation. However, degenerate open string
maps collapse a Riemann surface with boundary considered as a ribbon
graph, to the corresponding graph embedded in ˜Xm̃. In particular, the
degenerate maps can have a nontrivial structure even at genus zero. For
this reason, there is no rigorous mathematical formulation of open–closed
amplitudes except for g = 0 and h = 0, 1 when degenerate maps are constant
maps. In this paper, we will focus only on these two cases.

The term corresponding to g = h = 0 in (2.5) is the genus zero closed
string free energy F0

˜Xm̃
which was introduced in Section 2.1. The term

corresponding to g = 0, h = 1 represents the disc open string free energy
which is determined by 3-dimensional chain integrals of the holomorphic
three-form Ω

˜Xm̃
. To explain this construction recall that we are considering

D-brane configurations satisfying the homology constraint (2.1). For a fixed
m̃, the solutions to this equation are in one-to-one correspondence with
points in the lattice

Λm̃ = ker
(

H2(C) −→ H2( ˜Xm̃)
)

,

where C = ∪v
i=1Ci. Recall that in our set-up, the points in M parameterize

threefolds with isolated ODP singularities, so that the cover ˜M → M is
unramified. Then the lattices Λm̃ span a locally constant sheaf when m̃

varies in ˜M . A flat section of this sheaf parameterizes a pair ( ˜Xm̃, CN,m̃)
where CN,m̃ is a homologically trivial algebraic cycle on ˜Xm̃ of the form
CN,m̃ =

∑v
i=1 NiCi.

Regarding CN,m̃ as a topological brane on ˜Xm̃, the disc partition function
is a period of the holomorphic three-form Ω

˜Xm̃
over a 3-chain, defined as

follows. Consider the relative homology sequence for a pair ( ˜Xm̃, C), with
˜Xm̃ smooth

0 −→ H3( ˜Xm̃, Z) −→ H3( ˜Xm̃, C, Z) δ−→ Λm̃ −→ 0.

Given a homologically trivial algebraic cycle CN,m̃ on ˜Xm̃, we can find a
relative cycle ˜ΓN,m̃ ∈ H3( ˜Xm̃, C) so that

δ˜ΓN,m̃ = CN,m̃
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According to [10, 12], for fixed Ni satisfying the condition (2.1) the disc par-
tition function is the holomorphic function (= the Griffiths normal function
associated to CN,m̃) on the enlarged moduli space ˜M

′
given by

˜FN,m̃ =
1
gs

v
∑

i=1

F0,ei

˜Xm̃,{Ci}
Ni =

∫

˜ΓN,m̃

Ω
˜Xm̃

. (2.6)

Here as usual we write ei for the ith vector in the standard basis of the
lattice Z

⊕v.

Note that the relative cycle ˜ΓN is only determined modulo elements in
H3( ˜Xm̃, Z), therefore the superpotential (2.6) is defined modulo periods. In
general, there is no preferred choice for a three-chain ˜ΓN , hence we will
regard this as a discrete ambiguity in the disc partition function.

2.3 Duality

Large N duality predicts a correspondence between topological open and
closed strings on a pair of Calabi-Yau threefolds related by an extremal
transition. A precise mathematical statement has not been formulated for
B-model transitions between compact Calabi-Yau threefolds. On general
grounds, large N duality is expected to relate genus zero open string ampli-
tudes with h boundary components on ˜M

′
to terms of order h in the Taylor

expansion of the closed string partition function on L′ near M ′. In this
subsection, our goal is to formulate a precise mathematical statement for
genus zero terms with h = 0, 1.

We will show that for a certain choice of special coordinates zα, α =
1, . . . , h1,2(Xl) + 1 in a neighborhood of M ′ in L′, the closed string
prepotential F0 and its derivatives

(

∂F0

∂zα

)

have well-defined limits F0
M ′ ,

(

∂F0

∂zα

)

M ′
along M ′. Moreover, the following relations hold

˜F0 = ρ′∗(F0
M ′), ˜Fi = ρ′∗

(

∂F0

∂zi

)

M ′
, (2.7)

where ˜F0 denotes the closed string prepotential on the moduli space ˜M ′,
˜F i, i = 1, . . . , v − r are open string superpotentials of the form (2.6), and
i = 1, . . . , v − r labels the normal directions to M ′ in L′. The main point
we would like to make is that these relations are a corollary of the following
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intrinsic geometric results which will be proved in the next section.

(i) For any m̃ ∈ ˜M , and m ∈ M so that m = ρ(m̃), the contraction map
( ˜Xm̃, C) → (Xm, Sing(Xm)) induces an isomorphism

H3( ˜Xm̃, C, Z) � H3(Xm, Z).

Choose a retraction map ret : X → X|M from the universal family on
L onto the universal family on M . (This can always be done in a
neighborhood of a point m ∈ M .) Suppose Γ is a multivalued section
of the sheaf of third homology groups H3(Xl, Z) on L, then the image
of Γ under ret induces a multivalued section ˜Γ of the sheaf of relative
homology groups H3( ˜Xm̃, C; Z) on ˜M .

(ii) Let

Π =
∫

Γl

ΩXl
, ˜Π =

∫

˜Γm̃

Ω
˜Xm̃

be the periods of the respective holomorphic 3-forms, viewed as mul-
tivalued holomorphic functions on L′

0 and ˜M
′
. Then Π induces a

multivalued holomorphic function ΠM ′ on M ′ and

˜Π = ρ′∗(ΠM ′). (2.8)

(iii) For any points l ∈ L0, m̃ ∈ ˜M , such that ret(l) = ρ(m̃), there is a
commutative diagram of the form

0 �� V ⊥
l /Vl

�
��

�� H3(Xl, Z)/Vl

�
��

p �� V ∨
l

��

�
��

0

0 �� H3( ˜Xm̃, Z) �� H3( ˜Xm̃, C, Z)
δ �� Nm̃

�� 0

(2.9)

where the rows are exact and the vertical arrows are isomorphisms.
Vl is the lattice of vanishing cycles in H3(Xl) and V ⊥

l denotes the
orthogonal lattice with respect to the intersection pairing. The map
p : H3(Xl, Z)/Vl → V ∨

l is given by p(Γ) = 〈Γ, •〉 which is well-defined
because Vl is isotropic with respect to the intersection pairing.

The claim (i) follows from the definition of relative homology groups. The
proof of assertions (ii) and (iii) will be given in section 3. In the remaining
part of this section, we will explain how these statements lead to large
N duality up to first order. Recall from Section 2.1 that for l ∈ L0 the
genus zero closed string partition function can be written locally in terms
of splitting of the third homology groups H3(Xl, Z) into a direct sum of two
Lagrangian sublattices. Restricting to an open subset U ′ of L′, suppose we
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can choose the Lagrangian sublattices Al, Bl for a smooth Xl so that

Al = Vl ⊕ ˜Al, Bl = Ul ⊕ ˜Bl (2.10)

subject to the following conditions:

(a) Al is contained in the fixed locus of the monodromy transformations
(2.2).

(b) Vl is orthogonal to ˜Bl and Ul is orthogonal to ˜Al with respect to the
intersection pairing.

More concretely, this means that we choose the symplectic basis of cycles so
that {γ1,l, . . . , γv−r,l} generate the lattice Vl of vanishing cycles. Then Ul is
generated by the dual cycles {γ1

l , . . . , γv−r
l } and V ⊥

l is generated by {γβ,l, γ
α
l }

for α = v − r + 1, . . . , h1,2(Xl) + 1 and β = 1, . . . , h1,2(Xl) + 1. Although
there is no such canonical choice, note that we can obtain a basis of Vl by
choosing any collection Di1 , . . . ,Div−r of local components of the discrimi-
nant which intersect transversely along M . Then we can complete this basis
to a symplectic basis of cycles of H3(Xl, Z).

Given such a basis of cycles on each smooth Xl, the commutative dia-
gram (2.9) shows that the cycles {γα,l, γ

α
l } for α = v − r + 1, . . . , h1,2(Xl) +

1 induce a symplectic basis of cycles on ˜Xm̃ for m̃ in the open set ˜U =
ρ−1(U ∩ M). Moreover, to each basis element γi

l , i = 1, . . . , v − r we can
associate an exceptional curve Ci,m̃ on ˜Xm̃ so that the Ci,m̃ generate Λm̃

for any m̃ ∈ ˜U . The images of the cycles {γ1
l , . . . , γv−r

l } in H3(Vl)/Vl induce
relative three-cycles ˜Γ1,m̃, . . . , ˜Γv−r,m̃ in H3( ˜Xm̃, C) so that

δ(˜Γi,m̃) = Ci,m̃

for i = 1, . . . , v − r. Then we have a well-defined closed string prepotential
˜F : ˜U ′ → C and open string superpotentials ˜Fi : ˜U ′ → C

˜Fi =
∫

˜Γi,m̃

Ω
˜Xm̃

for each Ci,m̃ ∈ Λm̃. The special geometry relations (2.3)–(2.4) together
with statement (ii) above imply that the closed string prepotential F and
its derivatives ∂F

∂zα have well-defined limits FM ′ ,
(

∂F
∂zα

)

M ′ at the points of
U ′ ∩ M ′. The relations (2.7) follow from equation (2.8). Note that these
relations are valid for any choice of a symplectic basis in H3(Xl) satisfying
conditions (a) and (b) above.
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3 Geometric transitions and mixed hodge structures

In this section, we would like to prove statements (ii) and (iii). We will
consider the following abstract situation. Let π : X → Δ be a one parameter
family of projective Calabi-Yau threefolds over the unit disc Δ. The generic
fiber Xμ, μ ∈ Δ \ {0} is assumed to be smooth and the central fiber X0 is a
nodal threefold with ordinary double points p1, . . . , pv. We will assume that
over the complement of the central fiber, the family π : X → Δ is equipped
with a globally defined relative holomorphic 3-form, which restricts to a
holomorphic volume form on each fiber. Moreover, we will assume that
there is a smooth crepant projective resolution ˜X → X0. Such a family can
be obtained for example by taking Δ to be a holomorphic disc in the moduli
space L intersecting M transversely at the origin.

The restriction of the family X → Δ to the punctured disc Δ× = Δ \ {0}
is a family of smooth Calabi-Yau threefolds which determines a geometric
variation of Hodge structures. To this data, we can associate a period map
φ : Δ× → D/M [25], where D is the classifying space of Hodge structures
and M is the monodromy group of the family.

The proof of claim (ii) is Hodge theoretic and is based on the nilpotent
orbit theorem and the Clemens-Schmid exact sequence associated to the
degeneration X → Δ. In the process of proving claim (ii), we will also show
that the Clemens-Schmid exact sequence implies claim (iii).

First observe that the nilpotent orbit theorem implies the existence of a
well-defined limit of the periods of the holomorphic three-form at the origin
0 ∈ Δ. Suppose Γ is a multivalued section of the sheaf of third homology
groups H3(Xs) over Δ×. Let

Π(s) =
∫

Γs

ΩXs

be the period of the holomorphic three-form on Γs, for s �= 0. Π is a multi-
valued holomorphic function on the punctured disc Δ× = Δ \ {0}. Let

ψ : Δ∗ −→ D∨, ψ(s) = exp
(

− logs

2πi
N

)

φ(s),

be the modified period map φ with values in the compact dual D∨ of D [25,
26]. Here, N = log(T ) = T − id is the logarithm of the monodromy trans-
formation about the origin. The identity log(T ) = T − id is equivalent to
(T − id)2 = 0 which holds for any ODP degeneration of threefolds. Indeed,
this follows from the observation that if we write T − id as a block matrix
with respect to the decompositions (2.10), then the only nonzero block of
T − id is the one sending Ul to Vl.



78 DUILIU-EMANUEL DIACONESCU ET AL.

According to the nilpotent orbit theorem [26], the map ψ can be extended
to a single valued holomorphic map

ψ : Δ −→ D∨

In particular, the multivalued map Π : Δ× → C, which is a matrix coefficient
of φ, can be written as

Π(s) = Π(s) +
1

2πi
(log s)η(s)

for some Π(s), η(s) single valued holomorphic functions of s with η(0) = 0.
Later in the proof of relation (2.8) we will see that the value Π(0) admits
an intrinsic description of in terms of the mixed Hodge structure of the
semistable model of the degeneration X → Δ.

The point ψ(0) ∈ D∨ corresponds to the limiting mixed Hodge struc-
ture on the third cohomology group of a smooth fiber H3(Xs), s �= 0. On
the other hand, the relative cohomology group H3( ˜X, C) also carries a
canonical mixed Hodge structure [27, 28]. The relation (2.8) that we wish
to prove asserts that a period in the limiting mixed Hodge structure on
H3(Xs) is equal to the corresponding period in the mixed Hodge structure
on H3( ˜X, C). In particular, (2.8) will follow if we can show that the natural
map H3( ˜X, C) → H3(Xs) is an inclusion of mixed Hodge structures.

We claim that this follows from the Clemens-Schmid exact sequence.
In order to formulate a more precise statement, let us first describe the
mixed Hodge structure on H3( ˜X, C) and construct the Clemens-Schmid
exact sequence for our degeneration.

Recall that a mixed Hodge structure on a vector space H = HZ ⊗ C is
defined by

• a descending Hodge filtration {F k}, and
• an ascending weight filtration {Wm}, defined over Q, so that for every

m the successive quotient Wm/Wm−1 has a pure Hodge structure of
weight m given by the induced filtration

F k

(

Wm

Wm−1

)

=
(

Wm ∩ F k

Wm−1 ∩ F k

)

.

The limiting mixed Hodge structure on the cohomology of a smooth fiber is
defined by the Hodge filtration given by the nilpotent orbit [26] and by the
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monodromy weight filtration

0 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W5 ⊂ W6 = H3(Xs),

which is determined by the monodromy action on cohomology. In our case,
N2 = 0, and the monodromy weight filtration is very simple

W3 = ker(N), W2 = im(N).

Additional information about the limiting mixed Hodge structure can be
obtained from the Clemens-Schmid exact sequence as we will see below.

To describe the mixed Hodge structure on H3( ˜X, C), consider the long
exact sequence of the pair ( ˜X, C)

· · · −→ H2( ˜X) −→ H2(C) −→ H3( ˜X, C) −→ H3( ˜X) −→ 0

where all cohomology groups have complex coefficients. The ascending
weight filtration on H3( ˜X, C) is defined by

W3 = H3( ˜X, C)

W2 = Im
(

H2(C) −→ H3( ˜X, C)
)

� H2(C)/im
(

H2( ˜X) −→ H2(C)
)

W1 = 0.

The Hodge filtration is the standard Hodge filtration on the cohomology of
the quasi-projective variety X \ C. The relation between the mixed Hodge
structures on H3(Xs) and H3( ˜X, C) will be extracted from the Clemens-
Schmid exact sequence, which is constructed in terms of a semistable model
of the degeneration X → Δ.

A semistable model for the family X → Δ is a new family X → Δ which
fits in a commutative diagram of the form

X �����

����
��

��
��

f∗X

��

�� X

��
Δ

f �� Δ

(3.1)

Here X is assumed smooth, f : Δ → Δ is a finite cover of Δ branched at
the origin and the dashed arrow represents a birational map which is an
isomorphism over the punctured disc Δ×. In addition, the central fiber
X ≡ X0 is required to be a normal crossing divisor in X with smooth reduced
irreducible components.

The cohomology of the central fiber X0 of the semistable degeneration
can be equipped with a mixed Hodge structure, which can be described in
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terms of the Mayer-Vietoris spectral sequence. The Clemens-Schmid exact
sequence is an exact sequence of mixed Hodge structures of the form

· · · −→ H1(X0) −→ H3(X0) −→ H3(Xs)
N−→ H3(Xs) −→ H3(X0) −→ · · ·

The Clemens–Schmid theorem [29] guarantees that all maps in this sequence
are morphisms of mixed Hodge structures. The mixed Hodge structure on
homology is induced by the mixed Hodge structure on cohomology using the
universal coefficient formula.

Now, claim (ii) follows from the following two facts which will be proven
in the rest of the section.

• H3(X0) � ker
(

N : H3(Xs) −→ H3(Xs)
)

as mixed Hodge structures.
This follows from H1(X0) = 0.

• H3( ˜X, C) � H3(X0) as mixed Hodge structures.

To begin with, let us construct the semistable degeneration for our family
X → Δ. Let f : Δ → Δ be a double cover of the disc defined in local coor-
dinates by s = s2, and let f∗X denote the pull-back of the family X → Δ to
Δ. The total space of the family f∗X → Δ has double point singularities at
the points pi on the central fiber (f∗X )0, which is canonically isomorphic to
X0. We construct a new family X → Δ by blowing-up the singular points
on the total space of f∗X . Since all the singular points lie on the central
fiber, it is an easy check that the fiber Xs is isomorphic to Xs, s = s2, for
s �= 0. The central fiber X0 is a normal crossing variety consisting of v + 1
smooth reduced irreducible components

X0 = ̂X ∪ Q1 · · · ∪ Qv,

where ̂X → X0 is the blow-up of X0 at the v singular points and Q1, . . . , Qv

are quadric threefolds. The blow-up ̂X → X0 replaces each ordinary double
point pi with an exceptional divisor Ei isomorphic to the Hirzebruch surface
F0. ̂X intersects each quadric threefold Qi along Ei, which is a hyperplane
section of Qi. Note that the exceptional divisors Ei are pairwise disjoint,
hence the components Qi have no common points. Therefore, X0 is indeed
a normal crossing divisor with smooth reduced irreducible components.

Note that a small resolution of X0 can be obtained by contracting ̂X

along a collection of rulings of the exceptional divisor Ei ⊂ ̂X. Since each
divisor Ei admits two distinct rulings, we can obtain in principle different
small resolutions ˜X related by flops. Note however that not all possible
contractions result in projective small resolutions. The considerations of
this section are valid for any projective contraction ̂X → ˜X.
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Next, we will compute the rational homology of the semi-stable model X0
using Mayer-Vietoris exact sequences. First, we compute the homology of
the singular fiber X0 in the initial family. From a topological point of view
X0 can be represented as the cone of a map from a disjoint collection of v
three-spheres to a smooth fiber Xs

f : �v
i=1S

3
i −→ Xs

so that f maps each S3
i homeomorphically onto a vanishing cycle associated

to the ith node of X0. Therefore X0 is homotopy equivalent to the union of
Xs and v closed four-discs D4

i , i = 1, . . . , 4 so that Xs ∩ D4
i = f(S3

i ). The
associated homology Mayer-Vietoris sequence reads

· · · −→ ⊕v
i=1Hk(S3

i ) −→ Hk(Xs) ⊕ ⊕v
i=1Hk(D4)

−→ Hk(X0) −→ ⊕v
i=1Hk−1(S3

i ) −→ · · · (3.2)

In particular we have

0 −→ H4(Xs) −→ H4(X0) −→ ⊕v
i=1H3(S3

i ) −→ H3(Xs) −→ H3(X0) −→ 0

The image of the map ⊕v
i=1H3(S3

i ) → H3(Xs) is the v − r dimensional lattice
V of vanishing cycles on Xs, and the kernel is the r-dimensional lattice R
of relations among vanishing cycles. Therefore, we find two short exact
sequences

0 −→ H4(Xs) −→ H4(X0) −→ R −→ 0

0 −→ V −→ H3(Xs) −→ H3(X0) −→ 0

which yield the relations b3(X0) = b3(Xs) − (v − r), b4(X0) = b4(Xs) + r.
The remaining Betti numbers can be easily determined by writing down
the other terms in (3.2). We record the complete results below, using the
notation bk ≡ bk(Xs)

i 6 5 4 3 2 1 0
bi(Xs) 1 0 b2 b3 b2 0 1
bi(X0) 1 0 b2 + r b3 − (v − r) b2 0 1

(3.3)

In order to determine the homology of the blow-up ̂X, consider the long
exact homology sequence for the pair ( ̂X, E)

· · · −→ Hk(E) −→ Hk( ̂X) −→ Hk( ̂X, E) −→ Hk−1(E) → · · · , (3.4)

where E = ∪v
i=1Ei denotes the exceptional divisor. Using the fact that

Ei � P
1 × P

1 for each i = 1, . . . , v and that X0 is ̂X with each Ei collapsed
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to a point, we see that (3.4) reduces to the following straightforward iso-
morphisms

Hk( ̂X) � Hk(X0), k = 0, 1, 5, 6
and two exact sequences of the form

0 −→ H4(E) −→ H4( ̂X) −→ H4( ̂X, E) −→ 0

0 −→ H3( ̂X) −→ H3( ̂X, E) δ−→ H2(E) ι∗−→ H2( ̂X) −→ H2( ̂X, E) −→ 0.
(3.5)

The first sequence yields

b4( ̂X) = b4(X0) + v = b2(Xs) + v + r.

By Poincaré duality we also have

b2( ̂X) = b4( ̂X) = b2(Xs) + v + r.

Also taking into account (3.3) and the second sequence in (3.5) we find

b3( ̂X) = b3(Xs) − 2(v − r).

Moreover, it follows that

dim(ker(ι∗)) = v − r, dim(im(ι∗)) = v + r

where ι∗ : H2(E) → H2( ̂X) is the map on homology determined by the inclu-
sion ι : E → ̂X. Note that ker(ι∗) = im(δ) is spanned by relative homology
three-cycles for the pair ( ̂X, E) modulo cycles in ̂X. These cycles gener-
ate the lattice of relations among curve classes on E regarded as homology
cycles on ̂X.

There is a similar exact sequence for the pair ( ˜X, C), where ˜X is a small
projective resolution of X0 and C is the collection of exceptional curves

· · · −→ Hk(C) −→ Hk( ˜X) −→ Hk( ˜X, C) −→ Hk−1(C) −→ · · · (3.6)

Again, by construction we have Ci
∼= P

1 and X0 is ˜X with each Ci collapsed
to a point. The long exact sequence (3.6) reduces to isomorphisms

Hk( ˜X) = Hk(X0), k = 0, 1, 4, 5, 6, (3.7)

and a shorter exact sequence

0 −→ H3( ˜X) −→ H3( ˜X, C)
˜δ−→ H2(C) ι̃∗−→ H2( ˜X) −→ H2( ˜X, C) −→ 0.

(3.8)
Then, using (3.7), (3.8) and the fact that b2( ˜X) = b4( ˜X) one gets

b3( ˜X) = b3(Xs) − 2(v − r).

and
dim(ker(ι̃∗)) = v − r, dim(im(ι̃∗)) = r
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where ι̃∗ : H2(C) → H2( ˜X) is the map on homology determined by the inclu-
sion ι̃ : C → ˜X. Note that ker(ι̃∗) � im(˜δ) is spanned by relative homology
three-cycles on ( ˜X, C) modulo cycles in ˜X. Just as in the blow-up case
these cycles generate the lattice of relations among exceptional curve classes
on ˜X.

For future reference, we analyze the direct relation between the rational
homology of ̂X and the homology of ˜X. Choose a basis of homology two-
cycles (ai, bi) in H2(Ei), i = 1, . . . , v corresponding to the two rulings so that
the contraction map q : ̂X → ˜X contracts all rational curves in the classes bi,
i = 1, . . . , v. A simple intersection computation yields the following relations
in the homology ring of ̂X

ai · Ej = bi · Ej = −δij , i, j = 1, . . . , v. (3.9)

Now let us consider the following commutative diagram of spaces

E
ι ��

p

��

̂X

q

��
C

ι̃ ��
˜X

where p : E → C is a projection map contracting the rulings bi, i = 1, . . . , v.
Then we have a natural relation between maps on homology

q∗ι∗ = ι̃∗p∗.

This shows that that p∗ : H2(E) → H2(C) induces a map

p∗ : ker(ι∗) −→ ker(ι̃∗).

Moreover, one can show that p∗ is injective, since any element in the ker-
nel of p∗ is necessarily a linear combination of bi ∈ H2(E). However, any
nontrivial linear combination of bi cannot lie in ker(ι∗) because the inter-
section pairing on (bi, Ei), i = 1, . . . , v is nondegenerate according to (3.9).
Therefore ker(p∗) = 0. Since ker(ι∗), ker(ι̃∗) are Q-vector spaces of equal
dimension v − r, it follows that p∗ is an isomorphism. Furthermore, ker(ι∗)
is contained in the linear span of the homology classes ai − bi, i = 1, . . . , v.

Note also that the map q∗ : H3( ̂X, E) → H3( ˜X, C) is an isomorphism.
This follows from the commutative diagram of pairs

( ̂X, E)

q

�� ������������

( ˜X, C) �� (X0, X
sing
0 )
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which induces isomorphisms H3( ̂X, E) � H3(X0, X
sing
0 ) and H3( ˜X, C) �

H3(X0, X
sing
0 ). Therefore, we obtain the following commutative diagram

of homology groups

0 �� H3( ̂X) ��

q∗
��

H3( ̂X, E)
δ ��

q∗
��

ker(ι∗) ��

p∗
��

0

0 �� H3( ˜X) �� H3( ˜X, C)
˜δ �� ker(ι̃∗) �� 0

(3.10)

where the rows are exact and the middle and rightmost vertical arrows are
isomorphisms. We conclude that the leftmost vertical arrow must be an
isomorphism as well, and there is also an isomorphism

H3( ̂X, E)/H3( ̂X) � H3( ˜X, C)/H3( ˜X).

To conclude the homology computations, let us determine the homology of
the central fiber X0 of the semistable degeneration. We will employ again
a Mayer-Vietoris exact sequence with respect to the closed cover

X0 = ̂X ∪ Q1 ∪ · · · ∪ Qv

where Qi are smooth quadric threefolds intersecting ̂X transversely along
the exceptional divisors Ei, i = 1, . . . , v. Let Q denote the disjoint union
Q = Q1 ∪ . . . ∪ Qv. Then, we have

0 −→H6( ̂X) ⊕H6(Q) −→H6(X0) −→H5(E) −→H5( ̂X) ⊕H5(Q) −→H5(X)

−→H4(E) −→H4( ̂X) ⊕H4(Q) −→H4(X0) −→H3(E) −→H3( ̂X) ⊕H3(Q)

−→H3(X) −→H2(E) −→H2( ̂X) ⊕ H2(Q) −→H2(X0) −→H1(E)

−→ H1( ̂X) ⊕ H1(Q) −→ H1(X) −→ H0(E) −→ H0( ̂X) ⊕ H0(Q)

−→ H0(X0) −→ 0 (3.11)

The homology of Q can be computed easily from the Lefschetz hyperplane
theorem and an Euler characteristic computation via Gauss-Bonet formula.
We have

Hk(Q) = Q, k = 0, 2, 4, 6, Hk(Q) = 0, k = 1, 3, 5.

Moreover, since Ei is a hyperplane section of Qi, i = 1, . . . , v, it follows that
the map

H4(E) −→ H4( ̂X) ⊕ H4(Q)
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is injective. Thus, the long exact sequence (3.11) yields the following straight-
forward isomorphisms

H6(X0) � H6( ̂X) ⊕ H6(Q) = Q
⊕(1+v)

H5(X0) � H5( ̂X) ⊕ H5(Q) = 0

H0(X0) � H0( ̂X) = Q

H1(X0) � H1( ̂X) = 0.

(3.12)

The remaining part of (3.11) splits into two exact sequences

0 −→ H4(E) −→ H4( ̂X) ⊕ H4(Q) −→ H4(X0) −→ 0

0 −→H3( ̂X) −→H3(X0) −→H2(E)
(ι∗,j∗)−→ H2( ̂X) ⊕H2(Q) −→ H2(X0) −→ 0,

(3.13)

where the j∗ : H2(E) → H2(Q) is the map on homology determined by the
inclusion j : E ↪→ Q. The first sequence gives

b4(X) = b4( ̂X) + v − v = b4( ̂X) = b2(Xs) + v + r.

Since E is a hyperplane section of Q, the kernel of the map j∗ : H2(E) →
H2(Q) is spanned by the homology classes ai − bi, i = 1, . . . , v. On the other
hand ker(ι∗) is a v − r dimensional subspace of the linear span of ai − bi,
i = 1, . . . , v. Therefore we find that

ker(ι∗, j∗) � ker(ι∗)

is also v − r dimensional. This fixes the remaining Betti numbers

b3(X) = b3( ̂X) + (v − r) = b3(Xs) − (v − r)

b2(X) = b2( ̂X) + v − (2v − v + r) = b2(Xs) + v.

In summary we can extend the table (3.3) to include all the spaces appearing
in the geometric transition and the semi-stable degeneration:

i 6 5 4 3 2 1 0
bi(Xs) 1 0 b2 b3 b2 0 1
bi(X0) 1 0 b2 + r b3 − (v − r) b2 0 1
bi( ̂X) 1 0 b2 + v + r b3 − 2(v − r) b2 + v + r 0 1
bi( ˜X) 1 0 b2 + r b3 − 2(v − r) b2 + r 0 1
bi(X0) 1 + v 0 b2 + v + r b3 − (v − r) b2 + v 0 1
bi( ˜X, C) 1 0 b2 + r b3 − (v − r) b2 v − 1 1

(3.14)

With all this information in place, we are ready to finish the proof of (ii).
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Recall that
ker(ι∗) � H3( ̂X, E)/H3( ̂X)

according to the top exact sequence in (3.10). Then the second exact
sequence in (3.13) yields a short exact sequence of the form

0 −→ H3( ̂X) −→ H3(X0) −→ H3( ̂X, E)/H3( ̂X) −→ 0. (3.15)

Comparing (3.15) with the top row of (3.10) we get an isomorphism H3(X0)
∼= H3( ̂X, E)/H3( ̂X) of mixed Hodge structures. Combined with the fact
that the vertical arrows in (3.10) are isomorphisms we get an isomorphism
H3(X0) ∼= H3( ˜X, C) as mixed Hodge structures. Dualizing and applying
the universal coefficients theorem we get the desired isomorphism of mixed
Hodge structures H3(X0) ∼= H3( ˜X, C). Since by (3.12) we have H1(X0) = 0
this completes the proof of (ii).

At this point we still have to tie a few loose ends and prove claim (iii).
Note that the universal coefficients theorem and (3.14) give that H5(X0) =
0. Therefore the Clemens-Schmid exact sequence reduces to

0 −→ H3(Xs)/im(N)
β−→H3(X0) −→ 0.

The middle map β in this exact sequence is defined by the sequence of maps

H3(Xs)
PD−→H3(Xs) −→ H3(X ) � H3(X0)

where the first map is Poicaré duality on a smooth fiber and the next map is
induced by inclusion in the total space X of the semistable family. Since the
image of N = log(T ) = T − id is the space V of vanishing cycles, it follows
that we have an isomorphism of mixed Hodge structures

0 −→ H3(Xs)/V −→ H3(X0) −→ 0. (3.16)

The weight filtration on H3(Xs)/V is a one step filtration induced by the
monodromy weight filtration of H3(Xs)

W3 = H3(Xs)/V

W2 = (ker N)/V = V ⊥/V

W1 = 0

Therefore we have a three-term exact sequence

0 −→ V ⊥/V −→ H3(Xs)/V
p−→V ∨ −→ 0

where the map p is induced by N = log(T ) = T − id

p(Γ) = 〈Γ, •〉.
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The monodromy weight filtration on H3(X0) is also a one step filtration of
the form

W3 = H3(X0) � H3( ˜X, C)

W2 = H3( ̂X) � H3( ˜X)
W1 = 0.

Since (3.16) is an isomorphism of mixed Hodge structures, it is in partic-
ular compatible with the weight filtrations. This implies the commutative
diagram (2.9) of claim (iii).
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[28] P. Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math.
44 (1974) 5.

[29] H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44
(1977), 215.




