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Abstract

We compute Seidel’s mirror map for abelian varieties by construct-
ing the homogeneous coordinate rings from the Fukaya category of the
symplectic mirrors. The computations are feasible, as only linear holo-
morphic disks contribute to the Fukaya composition in the case of the
planar Lagrangians used. The map depends on a symplectomorphism ρ
representing the large complex structure monodromy. For the example
of the two-torus, different families of elliptic curves are obtained by using
different ρ’s which are linear in the universal cover. In the case where
ρ is merely affine linear in the universal cover, the commutative elliptic
curve mirror is embedded in noncommutative projective space. The case
of Kummer surfaces is also considered.

1 Introduction

In [14], we constructed Seidel’s mirror map for the two-torus. Starting
from the Fukaya category of a symplectic two-torus X, we computed the
homogeneous coordinate ring R of the mirror elliptic curve Y. The proof
of Kontsevich’s conjecture for the elliptic curve [12] allowed us to do so.
Namely, DFuk(X) ∼= D(Y ) implies that R is computable on X alone, i.e.,
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we have

R =
∞⊕

k=0

Γ(OY (k)) =
∞⊕

k=0

HomDFuk(X)(ψ(O), ψ(O(k))), (1.1)

where ψ is the equivalence of categories (see also [1]). In fact, in the above,
O can be replaced by any line bundle L. As the mirror of the automor-
phism — ⊗OY (1) is known to be the symplectomorphism ρ effecting the
monodromy around the large complex structure limit, the right-hand side
can be computed entirely from the Fukaya category, once we choose any
Fukaya object mirror to some line bundle. In this paper, we extend the
computation of [14] to higher-dimensional abelian varieties. These cases
were treated in [7] and [10], where partial results were obtained toward
Kontsevich’s conjecture. Those results imply the existence of some of the
findings in this paper, although our methods are more direct. We find that
the homogeneous coordinate ring of the mirror abelian variety is described
by the computation on the right-hand side of equation (1.1). Specifically, we
find that the theta relations of the mirror abelian variety are obeyed by the
intersection points mirror to the theta functions. Computations are made
feasible by the fact that the objects in the Fukaya category are all linear
planes in the universal cover.

In addition, we explore the dependence of the homogeneous coordinate
ring on ρ. Specifically, different choices for ρ yield different families of abelian
varieties. When ρ(x, y) is not strictly linear but contains a translation, the
mirror elliptic curve sits as a commutative variety inside a noncommutative
projective space, not unlike the situation found in [3]. The Hesse family of
elliptic curves was found to be dual to ρ(x, y) = (x, y + 3x), in [14]. If we
choose ρ(x, y) = (x, y + x), we find the universal family of elliptic curves
inside weighted projective space P(1, 2, 3) corresponding to a quasihomoge-
neous coordinate ring with corresponding weights. In the four-dimensional
case, Z/2Z invariant maps on the four torus provide a mirror map for
Kummer K3 surfaces.

2 Definitions

Our main objects of study are symplectic tori with B-field admitting the
structure of Lagrangian brane fibration with section (see [9,11]). This moti-
vates the following definitions. Let V be a real vector space of dimen-
sion 2n together with a complexified symplectic form iω + b and a basis
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l1 . . . , ln, l′1, . . . , l
′
n for which (iω + b)(l′i, lj) = iMij + Bij or, in matrix form,

ω =
(

0 −MT

M 0

)
b =

(
0 −BT

B 0

)

where M = (Mij) and B = (Bij) are invertible n × n matrices. Moreover, let

Λ0 := Z〈l1, . . . , ln〉, Λ′ := Z〈l′1, . . . , l′n〉.

Consider the Lagrangian subspaces L0 := Λ0 ⊗ R, L′ := Λ′ ⊗ R. Suppose
that there is a lattice homomorphism f : Λ0 → Λ′ such that its R-linear
extension (also denoted by f) satisfies f(li) =

∑
j Njil

′
j and let N := (Nij).

Then the following are equivalent

(1) The graph Lf := {l + f(l)|l ∈ L0} is Lagrangian
(2) NTM and NTB are symmetric
(3) iω + b admits the compatible complex structure

Jf :=
(

0 −N−1

N 0

)

(4) iω + b admits the symplectomorphism

ρf :=
(

Id 0
N Id

)
.

Notice that if f satisfies these equivalent conditions, then so does kf for all
k �= 0 and ρ(kf) = ρk

f . In more general settings, we drop the subscript of ρ.

Consider now the quotient torus T := V/(Λ0 ⊕ Λ′). Each Lk := Lkf =
ρk

fL0 has rational slope with respect to the lattice and so it descends to a
Lagrangian subtorus, also denoted by Lk. We are interested in the (derived)
Fukaya subcategory generated by these Lagrangian subtori. Define

Λ(Lk)0 := f−1
(

1
k
Λ′

)
, K(Lk)0 :=

Λ(Lk)0
Λ0

.

Then for k1 �= k2, we have the following isomorphisms of vector spaces

Hom(Lk1 , Lk2) ∼= 〈Lk1 ∩ Lk2〉 ∼= 〈{(l, l′)|l′ = k1f(l) = k2f(l) mod Λ′}〉
∼= 〈K(Lk2−k1)0〉 ∼= 〈L0 ∩ Lk2−k1〉 ∼= Hom(L0, Lk2−k1).

Since ρk2−k1
f is a symplectomorphism, the first term and last one are iso-

morphic as whatever structure the Fukaya category is enriched over. Using
these isomorphisms, the composition

m: Hom(L0, Lk1) ⊗ Hom(L0, Lk2) −→ Hom(L0, Lk1+k2) (2.1)

is well defined.
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3 Only planar disks contribute

The results in this section are not new. See for example [7].

All compositions relevant to our computation involve calculating holo-
morphic maps from a disk with three marked points on the boundary.
The three intervals on the boundary between pairs of marked points must
be mapped to three Lagrangians, with the points sent to intersections of
those Lagrangians. In our case, the three Lagrangians are all related to the
base of the Lagrangian fibration L0 by the symplectomorphism ρf linear in
the periodic coordinates, thus they all lift to planes in the universal cover V .

Since the image of a holomorphic map from a disk is connected, in the
universal cover, only one preimage of a Lagrangian will be relevant to any
given disk. As a result, we may perform our calculation in the universal
cover. Further, we may define coordinates such that the preimages of L0
and Lk1 intersect at the origin Y0 = 0 ∈ V . Let Y1 be the second vertex,
where Y1 ∈ L0 ∩ Lk2−k1 . Then the minimal choice for the third vertex is
Y2 = ((k2 − k1)/k2)Y1 ∈ L0 ∩ Lk2 . With respect to the complex structure
Jf , the holomorphic map g: D → V may be constructed as

zm(y) = amy m ≥ 1

where am are the coefficients in the decomposition Y1 =
∑n

m=1 amlm, and
y = y1 + iy2 is the holomorphic coordinate on a triangular domain (disk) D
in the complex plane defined by the vertices 0, 1 and (k2/(k2 − k1))(1 + k1i).
The three legs of this triangle have slope 0, k1 and k2, and we call these
boundary intervals C0, C1 and C2, respectively. The map g is easily shown
to satisfy all boundary conditions. Since the universal cover V is a vector
space, any other holomorphic map g′ satisfying the boundary conditions may
be expressed as g′ = g + ξ, with ξ a vector-valued holomorphic function.
Further, since g and g′ satisfy the same affine linear boundary conditions,
the boundary conditions on ξ are strictly linear. Explicitly, we have

C0: ξj = ξj ; C1: ξj = µα(k1)ξj ; ξj = µα(k2)ξj , j = 1, 2,

where we have defined α(n) = 1 + ni and µα = α/α. Note that |µα| = 1.
Consider ξ ≡ ξj , where j could be 1 or 2. Since ξ is homolorphic, it has a
convergent power series expansion ξ =

∑
n cnyn, and the boundary condition

on C0 requires that the cn are real. For the boundary C1, put α ≡ α(k1) =
1 + k1i and note that on C1 we may write y = sα, where s is real and runs
from 0 to k2/(k2 − k1). Then we write the boundary conditions as

ξ |C1=
∞∑

n=0

cn(sα)n = µαξ |Cd
=

(
α

α

) ∞∑

n=0

cn(sα)n.
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Equating powers of s requires that for all n such that Cn is nonzero, we have
(µα)n−1 = 1. If n �= 1 we learn that µα must be a root of unity. However,
µα = −((k2

1 − 1)/(k1
1 + 1)) − (2k1/(k2

1 + 1))i = q1 + q2i, with q1 and q2
rational. But only the first, second and fourth roots of unity belong to
Q(i), and µα is none of these. Finally, the case n = 1 may be considered
separately and shown not to satisfy the boundary condition along C2. Thus
all cn = 0 and ξ ≡ 0. This completes the proof that no non-planar holomor-
phic disks contribute to the Fukaya product of Lagrangian planes.

4 Relations

In the previous section, we found that only planar disks contribute to the
product (2.1). In this section, we use this information to derive an explicit
expression for the product and some results about the structure of the
ring R.

The basic holomorphic disk with vertices Y0 ∈L0 ∩Lk1 , ρk1(Y1) ∈ ρk1(L0 ∩
Lk2) and Y2 ∈ L0 ∩ Lk1+k2 has symplectic area (k1k2/(2(k1 + k2)))ω(Y1 −
Y0, f(Y1 − Y0)). The other triangles relevant to the same composition are
taken into account by the generating function

A
[k]
Y1−Y0

=
∑

λ∈Λ0

e−πk(ω−ib)(Y1−Y0−λ,f(Y1−Y0−λ))

In the canonical lattice basis, these generating functions are structure
constants for the product

Y0Y1 :=
∑

Y2∈K(Lk2+k1 )0

A
[k1k2/(k2+k1)]
Y1−Y0

Y2. (4.1)

This expression is compatible with Seidel’s mirror map in the following sense.
Let T̃ := (Λ0 ⊕ Λ′∗) ⊗ R/(Λ0 ⊕ Λ′∗) be the dual torus, mirror to T . If M , B

and N are as in Section 2, then T̃ has complex structure

J̃ :=
(

1 0
B 1

) (
0 −M−1

M 0

) (
1 0

−B 1

)

while the mirror of the endomorphism Jf is the polarization

Ef :=
(

0 −NT

N 0

)
,

which is compatible with J̃ by the symmetry of NTM . Therefore, Ef is
the first Chern class of some line bundle (of zero characteristics) L̃. Assume
that L̃ is ample. We denote by Hf the Hermitian form associated to Ef
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and by Sf the C-linear extension of Hf restricted to (Λ′∗ ⊗ R) × (Λ′∗ ⊗ R).
Moreover, let

J̃b :=
(

0 −B−1

B 0

)
.

Then, for all x, y ∈ L0,

(Hf − Sf )(x, y) := Ef (J̃x, y) − iEf (J̃bx, y) = (ω − ib)(x, f(y)).

This identification allows us to compare the Fukaya product with the classi-
cal product of theta functions. We follow the treatment of [5]. A canonical
basis for H0(T̃ , L̃) is given by the following theta functions:

θ
˜L
c (v) := e((π/2)Sf (v,v)−(π/2)(Hf −Sf )(c+2v,c))

×
∑

λ∈Λ(Lk)0

eπ(Hf −Sf )(c+v,λ)−(π/2)(Hf −Sf )(λ,λ),

where v ∈ (Λ0 ⊕ Λ′∗) ⊗ R and c ∈ K(L0)0. Moreover, the product

m̃: H0(T̃ , L̃) ⊗ H0(T̃ , L̃) −→ H0(T̃ , L̃2)

can be expressed on this basis as

m̃(θ˜L
c1 ⊗ θ

˜L
c2) =

∑

c3∈K(L2)0

θ
˜L2

c2−c1(0)θ˜L2

c3 (4.2)

Since the elements of the canonical bases for HomDFuk(T ) and HomD( ˜T ) are
both labeled by elements in K(L)0, it is natural to put them in correspon-
dence Yc ↔ θc. In this way, we identify the generators of the ring R with the
generators of the homogenous coordinate ring of the projective embedding
of the mirror complex torus T̃ . Given a relation

∑
Cc1,...,cnYc1 · · ·Ycn = 0

in R, we can reduce it to a linear one using the product (4.1). Replacing
Yc ↔ θc everywhere yields another valid linear relation, as both sets of gen-
erators are linearly independent over C. Finally, using the product (4.2) and
the identity

θ
˜L2k

c (0) =
∑

λ

e−kπ(Hf −Sf )(c−λ,c−λ) = A[k]
c ,

we can work backwards and obtain the relation
∑

Cc1,...,cnθc1 , . . . , θcn =
0. Clearly, this process can be reversed and we conclude that R and the
homogeneous coordinate ring of the embedded mirror are isomorphic.

At least in principle, we can apply the point of view of [14] and present,
using only the knowledge of the Fukaya category of T , the mirror torus T̃
as an explicit complete intersection in some projective space, uniquely spec-
ified by the Lagrangian L0 and the symplectomorphism ρ. For example,
a set of simple relations can be recovered as follows. Let mk: R⊗k → R
be the k-fold multiplication. Then for any z ∈ R of degree k and for any
pair x1 ⊗ · · · ⊗ xk, y1 ⊗ · · · ⊗ yk such that xi, yi ∈ R all of degree 1 and
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mk(x1 ⊗ · · · ⊗xk) = αxz, mk(y1 ⊗ · · · ⊗ yk) = αyz, then αy(x1, . . . , xk) =
αx(y1, . . . , yk) is clearly a relation in R. In the language of theta-functions,
for k = 2, 3, these relations are classically known as Riemann’s theta rela-
tions and cubic theta relations, respectively. The linear map f can be chosen
so that the above relations generate any other relation in R.

5 Dependence on ρ

In this section, we investigate some examples and study how the mirror fam-
ily depends on the choice of symplectomorphism around the large complex
structure point.

5.1 Twisted homogeneous coordinate rings

So far, we assumed the symplectomorphism ρf to be strictly linear. Relaxing
this condition and allowing affine symplectomorphisms, one can reconstruct
twisted homogeneous rings as well. As an example, we now show that the
noncommutative projective plane can be reconstructed from a symplectic
two-torus together with the symplectomorphism ρ(x, y) = (x + b, y + 3x)
for any b �= Z. If b ∈ Z we recover the situation of [14] from which we
adapt the notation as follows. Let T = R

2/Z
2 be the torus with coordinates

x, y and symplectic form τdx ∧ dy. In the universal cover, we define three
Lagrangians L0 := {y = 0}, L1 := {y = 3(x − b)} and L2 := {y = 6(x −
3b/2)} for some b ∈ R. Passing to the quotient, L0 ∩ L1 = {Xi := (i/3 +
b, 0)|i = 0, 1, 2}, L0 ∩ L2 = {Yj := (j/6 + 3b/2, 0)|j = 0, . . . , 5} and L1 ∩ L2
= {(k/3 + 2b, k + 3b)|k = 0, 1, 2} = ρ{X0, X1, X2}. For general b ∈ R, the
product formula of [14] becomes

XiXj =
1∑

k=0

Ai−j+3k(b)Yi+j+3k,

where we have put

Ak(b) :=
∑

n

eiπ6τ(n+k/6+b/2)2 = θ

[
k

6
+

b

2
, 0

]
(6τ, 0).

If b ∈ Z, commutativity is ensured by the relation Ak(b) = A6−k(−b). For
b /∈ Z, we get the relations

pX2
2 + qX0X1 + rX1X0 = 0

pX2
1 + qX2X0 + rX0X2 = 0

pX2
0 + qX1X2 + rX2X1 = 0
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where

p := A1A2 − A4A5, q := A3A4 − A0A1, r := A0A5 − A3A2

and b dependence is understood. The noncommutative algebra, which is
the quotient of the noncommutative (associative) homogeneous polynomial
ring C{X0, X1, X2} by the above relations, is known as the Sklyanin algebra
Skl3(p, q, r). If b ∈ Z, Skl3(p, q, r) simply reduces to the ring of homogeneous
polynomials in three variables and so when b /∈ Z, it makes sense to interpret
it as the homogeneous coordinate ring of a noncommutative projective plane.
Numerical checks confirm that elliptic curve E with modular parameter τ
(i.e., the mirror of T ) has the equation

Qpqr := X3
0 + X3

1 + X3
2 − p3 + q3 + r3

pqr
X0X1X2 = 0.

On the other hand, Qpqr generates the center of Skl3(p, q, r) and (as shown
in [3, 4, 6])

Skl3(p, q, r)
Qpqr

∼=
⊕

n≥1

H0(E, L ⊗ (tb)∗L ⊗ · · · ⊗ ((tb)n−1)∗L)

where L is the degree 3 line bundle on E which defines the projective embed-
ding such that E = Proj(C[X0, X1, X2]/Qpqr) and tb ∈ Aut(E) is the trans-
lation by b. Moreover, the category of coherent sheaves on E embeds into
the category of graded modules (up to torsion) over Skl3(p, q, r) which, in
the language of [4], justifies the assertion that the mirror of T sits as a
commutative curve into a noncommutative projective space.

5.2 Quasihomogeneous coordinate rings

Consider the two-torus of [14] again, but with ρ(x, y) = (x, y + x) rather
than the choice (x, y + 3x) which led to cubic curves in the Hesse family.
The appearance of quasihomogeneous coordinate rings will be quite natural.
To do the calculation, we return to the philosophy of [14], where the mirror
map was found without any prior knowledge of it. The relations will be
shown to agree with Section 4.

We have Lk = {y = kx}. Let X be the lattice point 0 ∈ L0 ∩ L1, Y0
and Y1 the points Yk = (k/2, 0) ∈ L0 ∩ L2, and Z0, Z1, Z2 the points
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Zk = (k/3, 0) ∈ L0 ∩ L3. Compute X2 = A
[2]
0 Y0 + A

[2]
1 Y1, where we define

A
[k]
j = θ

[
j

k
, 0

]
(kτ, 0), j ∈ Z/kZ.

We put Y = Y0 and Z = Z1. Then relations will necessarily be quasihomoge-
neous with respect to the grading |X| = 1, |Y | = 2, |Z| = 3. Also note that
using the (commutative) Fukaya product, we can express Zk in terms of X3,
XY and Z.1 Similarly, the results of [14] allow us to readily express the six
points Wk = (k/6, 0) ∈ L0 ∩ L6 in terms of products ZiZj . We only require
W0 = a1Z

2
0 − a3Z1Z2 and W2 + W4 = a1(Z2

1 + Z2
2 ) − a3(Z0Z1 + Z0Z2),

where ak = A
[6]
k /(A[6]

0 A
[6]
1 − A

[6]
2 A

[6]
3 ). Writing the Wk in terms of bilinears

in X3, XY and Z gives six of the seven quasihomogeneous monomials of
degree six in X, Y , and Z. The remaining one is Y 3, which we calculate in
terms of the Wk as

Y 3 =
(
A

[4]
0 A

[12]
0 + A

[4]
2 A

[12]
6

)
W0 +

(
A

[4]
0 A

[12]
4 + A

[4]
2 A

[12]
2

)
(W2 + W4).

This gives a single relation in degree six.

Now given a polynominial equation as

F ≡ Y 3 − (p0Z
2 + p1XY Z + p2X

2Y 2 + p3X
3Z + p4X

4Y + p6X
6) = 0,

it is a simple matter to make “linear” changes of variables (such as Z →
Z + (1/2p0)(p1XY + p3X

3)) to put the equation in a form with p0 = 1/4,
p1 = p2 = p3 = 0. Then working in an affine patch with coordinates y =
Z/X3, x = Y/X2, the equation has the Weierstrass form y2 = 4x3 − g2x −
g3,2 from which one reads j(τ) = 1728g3

2/(g3
2 − 27g2

3). Plugging in the power
series as outlined above and in the footnotes, we find (up to the first few
dozen coefficients checked by computer) the usual integer q-series expansion
for j, with q = e2πiτ , i.e., the elliptic curve has modular parameter τ , and
the usual mirror map is established.

1Define

µ =
A

[2]
0 A

[6]
0 + A

[2]
1 A

[6]
3

A
[2]
0 A

[6]
2 + A

[2]
1 A

[6]
1

, ν =
A

[6]
0

A
[6]
2

.

Then

Z0 =
1

(A[2]
0 A

[6]
2 + A

[2]
1 A

[6]
1 )(µ − ν)

X3 − 1

A
[6]
2 (µ − ν)

XY, Z1 = Z,

and Z2 = − ν

(A[2]
0 A

[6]
2 + A

[2]
1 A

[6]
1 )(µ − ν)

X3 − µ

A
[6]
2 (µ − ν)

XY − Z.

2Define t2 = p2 − p2
1/(4p0), t4 = p4 − p1p3/(2p0), t6 = p6 − p2

3/(4p0). Then g3
2 =

(2/p0)2
[
t4 + t22/3

]3 and g2
3 = (1/p0)2

[
t6 + t4t2/3 + 2t32/27

]2
.
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The ring R = C[X, Y, Z]/F describes the mirror elliptic curve F = 0 inside
weighted projective space P

2(1, 2, 3) (see [13]). To compare with the
quadratic relations of Section 3, one considers the seven monomials

V0, . . . , V6 = X6, X4Y, X3Z, X2Y 2, XY Z, Y 3, Z2

as homogeneous projective coordinates on P
6. The nine quadratic rela-

tions such as V0V4 = V1V2 describe the (image of the) Veronese embed-
ding P

2(1, 2, 3) ↪→ P
6. In this description, the relation F = 0 is linear in

the Vk, i.e., the projective line bundle has a unique section — the mirror of
X ∈ L0 ∩ L1.

5.3 Kummer varieties

Seidel’s method applies to quotients of abelian varieties as well. By defini-
tion, a Kummer surface is the quotient of an abelian variety with respect to
the involution which reverses the orientation of the lattice. It is a singular
surface with 16 singularities, and if it can be embedded as a hypersurface in
P

3 it has equation [8]

A(X4
0 + X4

1 + X4
2 + X4

3 ) + B(X2
0X2

1 + X2
2X2

3 ) + C(X2
0X2

2 + X2
1X2

3 )

+ D(X2
0X2

3 + X2
1X2

2 ) + 2EX0X1X2X3 = 0

We claim that we can reconstruct such a Kummer surface from a real four-
torus T := R

4/Z
4 endowed with complex symplectic form

ω = τ1dx1 ∧ dy1 + τ2dx2 ∧ dy2 + τ3(dx1 ∧ dy2 + dx2 ∧ dy1),

the standard involution ι(x1, y1, x2, y2) = −(x1, y1, x2, y2) and the symplec-
tomorphism ρ(x1, y1, x2, y2) = (x1, y1 + 2x1, x2, y2 + 2x2). On K := T/ι,

|L0 ∩ ρL0| =
(

4
1

)
|L0 ∩ ρ2L0| =

(
5
2

)
|L0 ∩ ρ3L0| =

(
6
3

)

|L0 ∩ ρ4L0| =
(

7
4

)
− 1

so that, generically, among the homogeneous polynomials in X0, . . . , X3 ∈
L0 ∩ ρL0, we expect one relation in degree 4 to define the ring R with no
relations in degree 2 or 3. The computation of R for general Kummer
varieties will appear elsewhere [2].

To give an idea of the computation, here we illustrate the degenerate case
where τ := τ1 = τ2 and τ3 = 0. In particular, the matrices M , B and N (see
Section 2) are simultaneously diagonalizable, a situation that is mirror to
the case of an abelian surface polarized by the square of a reducible principal
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polarization. Therefore we expect (e.g., from [8], Proposition 4.23) a map
onto a quadric in P

3. In the universal cover, consider the Fukaya products

Y
[k]
(a,b)Y

[k]
(c,d) :=

∑

i,j∈Z/2Z×Z/2Z

A
[2k]
c−a+2kiA

[2k]
d−b+2kjY

[2k]
(a+c+2ki,b+d+2kj)

where

Y
[k]
(a,b) :=

(
a

2k
, 0,

b

2k
, 0

)
∈ L0 ∩ ρkL0

In particular, defining

X0 := Y
[1]
(0,0), X1 := Y

[1]
(1,0), X2 := Y

[1]
(0,1), X3 := Y

[1]
(1,1),

we have

X0X3 = A
[4]
1 A

[4]
1

(
Y

[2]
(1,1) + Y

[2]
(1,3) + Y

[2]
(3,1) + Y

[2]
(3,3)

)
= X1X2 (5.1)

The last equation defines the image of a Veronese embedding P
1 × P

1 ↪→ P
3.

On the other hand, ρ can be restricted to ρi(xi, yi) = (xi, yi + 2xi), i = 1, 2.
The corresponding Seidel map (R2/Z

2, ωi = τdxi ∧ dyi) → P
1 can be used

to find the equation of the mirror elliptic curve in weighted projective space
P(1, 1, 2), as in the last section. The mirror map defined by ρ is seen to be
the composition of the Veronese embedding and the Cartesian product of
the maps arising from ρ1 and ρ2.
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