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Abstract

A new approach is suggested to the problem of quantising causal
sets� or topologies� or other such models for space�time �or space�� The
starting point is the observation that entities of this type can be re�
garded as objects in a category whose arrows are structure�preserving
maps� This motivates investigating the general problem of quantising
a system whose �con�guration space� �or history�theory analogue� can
be regarded as the set of objects Ob�Q� in a category Q� In this �rst
of a series of papers� we study this question in general and develop a
scheme based on constructing an analogue of the group that is used in
the canonical quantisation of a system whose con�guration space is a
manifold Q � G�H where G and H are Lie groups� In particular� we
choose as the analogue of G the monoid of �arrow �elds� on Q� Phys�
ically� this means that an arrow between two objects in the category
is viewed as some sort of analogue of momentum� After �nding the
�category quantisation monoid�� we show how suitable representations
can be constructed using a bundle of Hilbert spaces over Ob�Q��
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� Introduction

One of the enduringly
 and endearingly
 fascinating challenges in quantum
gravity is to give meaning to the idea of quantising space
 or space
time
 at
a level that is more fundamental than that of quantising a metric tensor on
a background manifold�� For example
 one comes across phrases in the liter

ature such as �quantising causal sets�� ��� ��� ��� ���
 or �quantising topology�

and the goal of the present paper is to invest these concepts with a new
 and
precise
 meaning�

In the present paper an operator
based approach to quantising space

or space
time
 structure is described� The ensuing theory is applicable to
two types of physical situation� The �rst is �canonical quantisation�
 where
the states in the Hilbert space refer to the situation at a �xed time� For
example
 in a theory of the quantisation of the topology � of physical space

the states might be functions � �� ����
 or an extension thereof� Such a
theory would then need to be augmented with a �Hamiltonian� operator to
specify how these states evolve in �possibly
 a discrete� time�

On the other hand
 it is not appropriate to talk about the canonical

quantisation of causal sets since each causal set c is a complete space
time in
itself
 and hence a state function c �� ��c� has no physical meaning within
the interpretative framework of standard quantum theory� However
 states
of this type are meaningful in a consistent
history approach to quantum
theory� More precisely
 in the �HPO� �history projection operator� method

propositions about complete histories of a system are represented by pro

jection operators on a �history Hilbert space� ���� In the case of causal sets

the propositions would include statements about the causal
set structure of
space
time� In a theory of this type
 the analogue of �dynamics� is coded into
the decoherence functional that is to be constructed from the basic quantum
operators in the history Hilbert space�

It is important to keep in mind these two di�erent ways of using operators
and Hilbert spaces� �i� a canonical quantum theory
 and �ii� the HPO ap

proach to a consistent history theory� The general mathematical framework
is the same in both cases
 but the physical interpretation is quite di�erent�

Let us now consider in more detail the construction a quantum history

�This is not meant to imply that it is obvious how to quantise a metric �eld on a
background space or space�time� it is not�

�A 	causal set
 is a partially�ordered set P whose elements represent points in a discrete
model for space�time� If p� q � P are such that p � q then the physical interpretation is
that an event at p can causally in�uence events at q�
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theory of causal sets� A �rst guess might be that the history state vectors are
functions c �� ��c�
 or some generalisation thereof� This sounds plausible

but how is it to be justi�ed� and what is the appropriate �generalisation� of
a function � of causal sets�

In the canonical quantisation of
 say
 a particle moving in one dimension

the rationale for identifying states with wave functions in the Hilbert space
L��IR� lies in the existence of operators �x and �p that are assumed to satisfy
the canonical commutation relations � �x� �p � � i�� It then follows from the
famous theorem of Stone and Von Neumann that any irreducible represen

tation of this canonical algebra� is unitarily equivalent to the familiar one
on L��IR� in which ��x���x� �� x��x� and ��p���x� �� �i�d��dx�

More generally
 consider a system whose con�guration space is a �nite

dimensional di�erentiable manifold Q such that Q � G�H
 where G and
H are Lie groups� The analogue of the canonical commutation relations
includes a representation of the Lie algebra of G
 and the elements of this
algebra are the momentum variables in the theory� The question arises

therefore
 of whether there is analogue of momentum for causal sets� When
Q � G�H
 the Lie group G generates transformations from one point in Q to
another
 which leads us to consider how one causal set can be �transformed�
into another�� Similarly
 in quantum topology
 we would seek a natural way
of �transforming� from one topological space to another�

In the case of causal sets
 one can imagine trying to remove
 or add

points and links
 but it is not easy to describe a general scheme for doing
this� For example
 removing a point �and the associated links� might result
in a disconnected causal set� But suppose we do not wish to admit space

times of this type� what then� Similarly
 adjoining a point to a causal set is
not trivial since enough links must be also added to ensure that the resulting
structure is a partially
ordered set
 and this can be done in di�erent ways�

The key idea of the present paper is that
 in the example of causal
sets
 what �connects� one causal set to another is the collection of all order

preserving maps between them� This suggests that to each such map f � c� �
c� there is to be associated an operator �d�f�� Moreover
 if we have three
causal sets c�� c�� c�
 and order
preserving maps f � c� � c�
 and g � c� � c�

then the composition g � f � c� � c� is also order
preserving� It is natural
to postulate that the operators �d�f� re�ect this structure by satisfying the

�More precisely� the theorem refers to weakly continuous representations of the expo�
nentiated form of the canonical commutation relations�

�This question has also been of particular interest to Rafael Sorkin and Ioannis Raptis
in the context of their own work on causal sets
 private communication�
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relations

�d�g � f� � �d�g� �d�f�� ���

or
 perhaps


�d�g � f� � �d�f� �d�g�� ���

since
 at this stage
 there is no prima facie reason for preferring any partic

ular ordering of the operators�

Note that in a scheme of this type it is easy to use just connected causal
sets
 if so desired� Or we can require the causal sets to be �nite� or restrict
our attention to order
preserving maps that are one
to
one� or to any of a
number of variants of the basic idea if there is some good physical reason for
doing so� It is clear that a similar idea could be applied to topological spaces

with the analogue of order
preserving maps being continuous functions�

These preliminary ideas could be developed into genuine quantisation
schemes for causal sets and topological spaces� However
 these particular
examples admit a natural generalisation that applies to many di�erent phys

ical situations
 and it is this generalisation that is described in the present
paper� The application of this scheme to causal sets is discussed in a com

panion paper �	��

To motivate this generalisation
 consider the example of
 say
 �nite causal
sets� The key remark is that these can be viewed as the objects of a cat

egory
 whose arrows�morphisms are order
preserving maps� Similarly
 one
can imagine forming a category whose objects are topological spaces of some
speci�c physical interest
 and whose arrows are continuous maps�

Thus we are led to the following general problem� Namely
 to construct
the quantum theory of a system whose �con�guration space� �or history ana

logue� is the set of objects in some category Q
 and in which the role of
momentum transformations is played by the arrows in Q� More precisely
 if
f � A� B is an arrow �i�e�
 the objects A and B are the domain and range
of f respectively�
 then we think of f as providing a �partial� description of
how to �transform� from A to B� In general
 there will be many arrows from
A to B
 and we shall regard the set of all of them
 denoted Hom�A�B�
 as
a�ording the complete description of how to transform from A to B�

Note that for this idea to be mathematically meaningful
 the category
Q must be �small� in the sense that the collection of all objects
 Ob�Q�
 in
Q
 and the collection of all arrows
 Hom�Q�
 in Q must be genuine sets
 not
classes� For example
 the category of all sets is certainly not of this type�
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To construct a quantum theory on a general small category Q we gen

eralise what was said above for causal sets� Thus we expect each arrow
f � Hom�Q� to be associated with an operator �d�f� in such a way as to rep

resent the law of arrow composition by the operator relations Eq� ��� �or Eq�
����� If the objects in Ob�Q� have a physically important internal structure�
as manifested mathematically by the sets Hom�A�A�
 A � Ob�Q�
 being
non
trivial�this should be re�ected in the quantum theory� In particular

we anticipate that the �history� state vectors are vector
space valued func

tions on Ob�Q�
 in analogy to what happens for a manifoldQ � G�H where

generically
 the states are cross
sections of a vector bundle over Q whose �bre
carries a representation of H� In fact
 as we shall see
 the construction of a
quantum theory on Q involves a generalisation of the idea of vector
valued
functions�

A variety of physically interesting situations are special cases of this
categorical scheme� For example�

�� Q is a category of �nite �perhaps connected� causal sets interpreted
as a history theory� Another possibility is to use causal sets that are
locally �nite� Or one could choose some �master� causal set� U and let
Q be the category of all causal subsets of U 
 with the arrows being the
order
preserving embeddings of one causal set in another�

�� Q is a small category of partially ordered sets interpreted canonically
as the structure of physical space at a given �time��

�� Q is a small category of topological spaces� This gives a new approach
to �quantum topology�� to be interpreted as a history theory if the
objects represent space
time
 and as a canonical theory if the objects
represent space��

�� Q is a small category of di�erentiable manifolds
 with the arrows being
di�erentiable maps between manifolds
 regarded as models of either
space
time or space�

�� A more bizarre example is to take Q to be a small category of groups

with the arrows being group homomorphisms� For example
 perhaps
the symmetry group of a uni�ed �eld theory undergoes �quantum �uc

tuations� near the big bang singularity� This certainly gives a novel
interpretation to the idea of �quantum group theory��
�

�Fay Dowker� private discussion�
�More generally� Q could be a small category of locales �in the context of topology

without points� whose arrows are localic maps�
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�� In all the examples above
 the category Q is a category of sets with
structure
 and the arrows are maps that preserve this structure� Thus
it is useful to look �rst at the case where Q is a small category of sets

and the arrows between two sets A and B are any functions from A
to B� This is studied in detail in �	��

	� An example of a category whose objects are not structured sets is a
partially
ordered set �poset� P � The objects of this category are the
points in P 
 and if p� q � P 
 an arrow is de�ned to exist from p to q
if and only if p � q �hence there can be at most one arrow between
any two points�objects�� In this case
 the objects have no internal
structure
 and so the quantum theory should be relatively simple�

This example is useful for providing a mathematically simple illustra

tion of the general scheme
 and we shall discuss it in �	�� However
 it
cannot be interpreted as a theory of quantum space
time �or space� of
the type in which we are interested since each possible space
time �or
space� is represented by structureless point��

At this point
 however
 it is important to observe that there is an obvious
problem with imposing Eq� ��� �or Eq� ���� as it stands� Namely
 the com

position g �f is only de�ned if the range
 Ran f 
 of f is equal to the domain

Dom g
 of g� Thus
 if f � A � B
 and g � C � D
 the composition g � f is
only de�ned if B � C� On the other hand
 the operator product �d�g� �d�f� on
the right hand side of Eq� ��� �or Eq� ���� is always de�ned�� The resolution
of this issue is one of the key steps in the quantum scheme� Two approaches
are suggested� the �rst involves a semigroup Sem�Q� that is constructed
from the arrows in Q� the second
 and preferred
 method involves the idea
of an �arrow �eld��

The plan of the paper is as follows� An initial approach to developing a
quantum theory is discussed in Section �� The focus is placed on equipping
the set of arrows Hom�Q� ofQ with a semigroup structure� We show how this
semigroup
 Sem�Q�
 generates transformations of the set of objects Ob�Q��
as such
 it constitutes our �rst attempt at �nding an analogue of the group G
used in the quantisation of a system whose con�guration space is a manifold
Q � G�H�

�The canonical theory could be interpreted as that of a particle whose position is
con�ned to one of the points in the poset P � but there is no obvious reason why such a
system should be of any physical interest�

�If the operators �d�f�� f � Hom�Q�� are unbounded then these products may not exist�
But that is not the point at issue here which applies even when the operators concerned
are all bounded�
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However
 the construction of Sem�Q� is rather coarse
 involving as it
does the ad hoc introduction of an element ��� whose sole role is to serve as
the value of g � f when the range of f does not equal the domain of g� This
is remedied in Section � by the introduction of the idea of an �arrow �eld�

de�ned to be an assignment to each object A � Ob�Q� of an arrow whose
domain is A� The crucial property of the set AF�Q� of all arrow �elds is
that it has a natural semigroup structure without the need for additional

spurious elements�

The action of the semigroup AF�Q� on Ob�Q� is used in Section � to
provide the foundation of the quantum scheme� We start in Section ���
with a simple approach in which the quantum states are complex
valued
functions on Ob�Q�� This su ces to construct the basic �category quantisa

tion monoid�
 each of whose faithful
 irreducible representations is deemed
to constitute a proper quantisation on Q�

However
 as it stands
 this simple scheme is inadequate since the quantum
operators do not distinguish arrows with the same domain and range� We
solve this problem in Section ����� by generalising the state vectors to become
vector
valued functions on the set of objects Ob�Q�� It transpires that the
vector space in which a function takes its values must vary from object to
object
 and each such �multiplier� representation is associated with a presheaf
of Hilbert spaces over Ob�Q�� �However
 no detailed language of presheaf
theory is used in the present paper��

The collection of basic quantum operators is completed in Section ���
with a computation of the adjoints of the operators �a�X� that represent ar

row �elds X � AF�Q�� In Section ���
 we compute the products �a�X�y�a�X�
and �a�X��a�X�y that might be expected to play an important role in spe

ci�c applications of the quantum scheme� In Section ��	 there are a few
preliminary remarks about the irreducibility of the representations we have
constructed� The paper concludes with Section �
 which is mainly a list of
problems for further research�

The present paper
 the �rst in a series
 introduces the general theory
of quantising on a category� In the second paper �	�
 the general theory is
developed for the physically important case where Q is a category of sets�
In �!� we return to the general theory and present an alternative approach
in which state vectors are complex
valued functions on arrows
 rather than

as in the present paper
 on objects� Later papers in the series will describe
further developments of some of the main ideas
 and more concrete examples�
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� Quantising Using the Semigroup Sem�Q�

��� The Semigroup Sem�Q�

The key problem identi�ed above in the context of Eq� ��� is that the com

position g � f of arrows is only de�ned if Ran f � Dom g
 whereas the
operator product �d�g� �d�f� �or �d�f� �d�g�� is always de�ned� In other words

the set Hom�Q� of arrows is only a partial semigroup under the law of com

posing arrows
 whereas the �bounded� operators on a Hilbert space are a full
semigroup under operator multiplication�

In this context
 recall that a �full� semigroup is a non
empty set S with
a law of combination that is associative� Thus

a�bc� � �ab�c ���

for all a� b� c � S� A semigroup with a unit element is called a monoid�� In
a monoid �and unlike in a group� elements may not have inverses�

A partial semigroup S is a more general structure in which not all pairs
of elements a� b � S can be combined� if a pair a� b can be combined
 they
are said to be compatible� The associativity law Eq� ��� is now imposed
only when it makes sense� i�e�
 when the di�erent elements in Eq� ��� are
compatible in the appropriate way�

For our purposes
 a key observation is that the equation Eq� ���
 �d�g�f� �
�d�g� �d�f�
 would be well de�ned if the elements g and f belonged to a full
semigroup rather than only to a partial one� Thus
 we start by considering if
it is possible in general to convert a partial semigroup into a full semigroup�

One simple approach is to append an extra element � to a partial semi

group S
 and then try to de�ne a new combination law ��� by

a�b ��

�
ab if a and b are compatible�
� otherwise


���

and

��a �� � ���

a�� �� � ���

��� �� � �	�

�This distinction is not very important since a unit element can always be appended if
one is not present�
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for all�	 a � S� Note that it follows from these de�nitions that if a and b are
compatible elements of S
 then a�b �� ��

The combination law ��� de�ned by Eqs� ���	� on the extended set S
 ��
S 	 f�g has the serious failing that
 in general
 it is not associative� For
example
 consider a� b� c � S such that a and b are not compatible� Then

for all c � S
 we have �a�b��c � ��c � �� On the other hand
 it could be
that b and c are compatible
 in which case b�c �� �� Then
 if a is compatible
with b�c
 which is possible
 we have a��b�c� �� �
 and hence a failure of
associativity�

However
 this objection does not apply when the partial semigroup is the
set of arrows in a category Q
 with a�b �� a � b for a� b � Hom�Q�� For a
and b are not compatible if and only if Ran b �� Dom a� But if b and c are
compatible
 then b�c � b � c
 and since Ran b � c � Ran b it follows that a
and b�c are not compatible�

In conclusion
 the partial semigroup Hom�Q� of arrows in a small cat

egory Q can be given the structure of a full semigroup by augmenting the
set Hom�Q� with an additional element � �which is not given a domain or
range�
 and then de�ning
 for all f� g � Hom�Q�


g�f ��

�
g � f if Ran f � Dom g�
� otherwise


�!�

and

��f �� � �"�

f�� �� � ����

��� �� � ����

for all f � Hom�Q�� This semigroup will be denoted Sem�Q�� It does not
have a unit element���

��� An Embryo Quantum Theory on Q

If a Lie group G acts on the left on a manifold Q then an elementary �anti�

representation of G is given on the vector space of complex
valued functions

�	Thus � is an absorptive element�
��We could also construct a free Sem�Q��algebra over jC� denoted jC�Sem�Q��� whose

elements are de�ned to be complex�valued functions on Sem�Q� that vanish for all but a
�nite number of elements of Sem�Q� ���� If u� v � jC�Sem�Q��� their product uv is de�ned as
uv�h� ��

P
f
g�h u�f�v�g�� In the special case where the category Q is a partially�ordered

set� this reproduces the incidence algebra used by Raptis and Zapatrin in their work on
discretising space�time topology ��� ���� �����
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on Q by � �U �g����q� �� ��gq�
 and this can be used as a starting point for
discussing the quantum theory of a system whose con�guation space is Q
�for more details see Section �����

As anticipated in Section �
 in the category case
 a crucial idea is that
the arrows in a category can be thought of as �transforming� one object
into another
 which suggests that perhaps Hom�Q� can play the role of
the group G above� Thus
 if f is an arrow such that f � A � B
 we
de�ne �f �A� �� B� However
 this leaves open the question of how to de�ne
�f �A� when A �� Dom f � The simplest way �although not the one we shall
ultimately adopt� is to augment the set Ob�Q� with an additional element

denoted #
 and then to de�ne the action of an arrow f on the augmented
set Ob�Q�
 by

�f �A� ��

�
Ran f if Dom f � A�
# otherwise


����

and �f �#� �� #� This can be extended to an action of the semigroup Sem�Q�
by de�ning ���A� �� # for all A � Ob�Q�
� It is easy to check that
 for all
f� g � Sem�Q�


�f � �g � �f�g� ����

Thus
 by these means
 we have de�ned a left action of the semigroup Sem�Q�
on the extended set of objects Ob�Q�
�

This action can be used to give a �rst attempt at a quantum theory on
Q� The simplest scheme is to choose state vectors to be complex
valued
functions on Ob�Q�
 and then to de�ne operators �d�f� by

� �d�f����A� �� ���f �A�� ����

for all f � Sem�Q� and A � Ob�Q�
� Then
 if f� g � Sem�Q�


� �d�g� �d�f����A� � � �d�f�����g�A�� � ���f ��g�A���

� ���f�g�A�� � � �d�f�g����A� ����

and so

�d�g� �d�f� � �d�f�g� ����

which is an �anti�
representation of the semigroup Sem�Q��

One implication of Eq� ���� is that if f � Hom�Q� but Dom f �� A

then � �d�f����A� � ��#�
 and also � �d������A� � ��#� for all A � Ob�Q�
�
In fact
 nothing of signi�cance is lost if we forget the extra element # in
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Ob�Q�
 in the sense that we de�ne the state vectors to be functions on
Ob�Q� only �which is equivalent to setting ��#� � ��� i�e�
 we de�ne for
f � Hom�Q�


� �d�f����A� ��

�
��Ran f� if Dom f � A�
� otherwise


��	�

and with � �d������A� �� � for all A � Ob�Q�� This scheme can be extended
to include quantising �con�guration� variables�i�e�
 real
valued functions �
on Ob�Q��by de�ning

� �����A� �� ��A���A� ��!�

for any � � Ob�Q�� IR�

By these means we obtain a simple quantum model� But
 several sig

ni�cant problems can be seen already� For example
 no inner product has
been speci�ed on the state functions� we shall discuss this question shortly�
However
 the main problem is that this representation of Sem�Q� fails to
separate arrows with the same domain and range� This is because if f and
g are two such arrows then the action of Sem�Q� on Ob�Q�
 in Eq� ���� is
such that �f �A� � �g�A� for all A � Ob�Q�
�

This problem could be addressed using similar methods to those adopted
later in the context of arrow �elds� However
 we will not follow this path here
since
 anyway
 the de�nition Eq� ����
 or Eq� ��	�
 of the operator �d�f� has
some peculiar features� In particular
 �d�f� annihilates any function whose
support lies in the complement of the singleton set fDom fg
 which is rather
draconian� It seems more natural to de�ne an operator

��a�f����A� ��

�
��Ran f� if Dom f � A�
��A� otherwise


��"�

which leaves the values of � unchanged except on the object Dom f on which
the arrow f naturally acts� This would correspond to an action of Hom�Q�
on Ob�Q�

� �f �A� ��

�
Ran f if Dom f � A�
A otherwise


����

in contrast to Eq� �����

However
 the operators de�ned by Eq� ��"� do not combine into them

selves� For example
 let f � A � B and g � C � D be arrows with C �� A



��� QUANTISING ON A GENERAL CATEGORY � � �

and A �� D� Then

��a�g��a�f����C� � ��a�f����D� � ��D� ����

��a�g��a�f����A� � ��a�f����A� � ��B� ����

��a�g��a�f����E� � ��E� for all E not equal to C or A� ����

But this is not of the form �a�h�� for any arrow h�

The problem lies in the de�nition Eq� �!� of the combination law on
Sem�Q� whereby the partial semigroup Hom�Q� is transformed into a full
semigroup� The introduction of the additional element � is a rather crude
device
 and distinctly ad hoc� As we shall now see
 there is a far more elegant
way of associating a full semigroup with the set of arrows Hom�Q�
 and it
is within this framework that the quantisation scheme will be developed
further�

� The Monoid of Arrow Fields

��� The Idea of an Arrow Field

The constructions used above are very �local� in object space� For example

when �f acts on Ob�Q�

 the only object that is a�ected is Dom f � the rest
are mapped to the �dustbin� element � that is appended to Ob�Q�� On the
other hand
 in the motivating case of a group G that acts on a manifold Q

each element g � G acts on every element q of Q �of course
 this includes
the case where g leaves q �xed�
 without the need to append anything to Q�
This suggests that it would be pro�table to drop the use of �
 and to seek
an alternative structure that better resembles the typical action of a group
on a manifold�

We shall do this by choosing for each object A an arrow whose domain
is A �this could be the identity arrow idA � A � A�
 and then act on A
with it� Thus we consider maps X � Ob�Q� � Hom�Q� such that
 for each
A � Ob�Q�
 the domain�� of X�A� is A� thus X�A� � A � B for some
B � Ob�Q�� Such a map will be called an out�arrow �eld 
 or just an arrow

�eld��
 on Q�

��The map X can be viewed as a cross�section of a bundle on Ob�Q� whose �bre over
A � Ob�Q� is the set of all arrows whose domain is A�

��Similarly� an in�arrow �eld is a map Y � Ob�Q� � Hom�Q� such that� for each
A � Ob�Q�� the range of the arrow Y �A� is A� Only out�arrow �elds will be used in what
follows�
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For our purposes
 the key property of arrow �elds is that they form
a full monoid without needing to append any additional elements� More
precisely
 if X� and X� are arrow �elds
 we construct an arrow �eld X��X�

by de�ning
 for all A � Ob�Q�
 the arrow �X��X���A� to be the composition
of the arrow X��A� with the arrow obtained by evaluating X� on the range
of X��A��

�X��X���A� �� X��Ran X��A�� �X��A�� ����

Put more simply
 if X��A� � A� B
 then

�X��X���A� �� X��B� �X��A� ����

as summarised in the diagram A
X��A

�� B

X��B

�� C�

To prove associativity
 it is helpful to use the diagram

A
X��A

�� B

X��B

�� C

X��C

�� D� ����

Then �X���X��X����A� is the arrow from A to D given by

�X���X��X����A� � X��Ran �X��X���A�� � �X��X���A�

� X��C� � �X��X���A�

� X��C� � �X��B� �X��A�� ��	�

for all A � Ob�Q�� On the other hand

��X��X���X���A� � �X��X���B� �X��A�

� �X��C� �X��B�� �X��A� ��!�

for allA � Ob�Q�� Thus the arrow
�eld associativity property
X���X��X�� �
�X��X���X�
 follows from the associativity of arrow composition in the
category Q�

There is also a unit element for the �
algebraic structure� This is the
arrow �eld � de�ned by

��A� �� idA ��"�

for all A � Ob�Q�� Thus the set of all arrow �elds on Q is a full monoid�
We will denote it AF�Q����

��If desired� an 	incidence algebra
 jC�AF�Q�� can be associated with the monoid AF�Q�
in the same way that jC�Sem�Q�� is generated by Sem�Q��
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��� The Action of AF�Q� on Ob�Q�

The de�nition of an arrow �eld is such that
 for each object A
 X�A� is an
arrow whose domain is A� Thus we can de�ne an action � of the monoid
AF�Q� on the set Ob�Q� by letting X � AF�Q� transform A � Ob�Q� into
the range of the arrow X�A��

�X�A� �� Ran X�A�� ����

In other words
 if X�A� � A� B then �X�A� �� B�

This de�nes a genuine monoid action of AF�Q� on Ob�Q�
 since
 for all
A � Ob�Q�


�X��X�
�A� �� Ran ��X��X���A�� � Ran �X��Ran X��A�� �X��A��

� Ran �X��Ran X��A��� ����

whereas

�X�
��X�

�A�� � �X�
�Ran X��A�� � Ran �X��Ran X��A��� ����

and hence
 for all X��X� � AF�Q�


�X�
� �X�

� �X��X�
����

as required�

Note that a signi�cant di�erence between this action and that of a Lie
group G on a manifold Q is that the same group element acts at each point
q � Q
 whereas
 in the arrow
�eld action
 it is not X as a whole
 but rather
the arrow X�A� which acts at A � Ob�Q�
 and this arrow is arbitrary for
each A� Thus the arrow
�eld transformations are more like the action on Q
of the full di�eomorphism group Di��Q� than that of the �nite
dimensional
subgroup G� If one wanted to emulate the familiar group case more closely it
would be necessary to relate the arrows at di�erent objects in some way� For
most categories Q there is no obvious way of doing this since the di�erent
objects in the category are frequently very di�erent from each other��� There
are some speci�c examples of �constant� arrow �elds in �	��

��� The Special Arrow�Fields Xf

An arrow
�eld X assigns an arbitrary arrow X�A� to each object A subject
only to the requirement that Dom X�A� � A� However
 a particularly

��One exception is when a manifold Q � G�H is regarded as a category in the way
discussed later in Section ������ In this case� we can de�ne the special arrow �elds Xg �
g � G� as Xg�q� � q � gq for all q � Q�
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simple choice of X is when all but one of the arrows X�A�
 A � Ob�Q�
 is
the identity idA� More precisely
 for each arrow f � Hom�Q�
 an arrow �eld
Xf can be de�ned by

Xf �A� ��

�
f if Dom f � A�
idA otherwise


����

for all A � Ob�Q��

The action of Xf on the set Ob�Q� is

�Xf
�A� �

�
Ran f if Dom f � A�
A otherwise


����

which should be contrasted with the de�nition of �f in Eq� ����� The trans

formation Eq� ���� was anticipated in Eq� �����

A natural extension is to pick any �nite set of elements f�� f�� � � � � fn �
Hom�Q�
 each of which has a di�erent domain from the others� We can then
de�ne the arrow
�eld

Xf��f����� �fn�A� ��

�
fi if Dom fi � A
 i � �� �� � � � � n�
idA otherwise�

����

Arrow �elds of this type have �nite support
 where the support of an arrow
�eld is de�ned to be the set of all objects A � Ob�Q� such that X�A� �� idA�

The collection of all arrow �elds of �nite support is a submonoid of
AF�Q�
 and is likely to play an important role in a deeper analysis of the
quantum theory� From a mathematical perspective
 its role could perhaps
be compared with that of the group of gauge transformations of compact
support in a normal gauge theory �although it must be emphasised that the
physical signi�cance of AF�Q� is not the same as that of a standard gauge
group��

One might anticipate that the set of arrow �elds of �nite support can be
constructed by taking the � product of arrow �elds of the type Xf � This is
true
 but the order of the elements in the product is important� For example

consider a pair of arrows f � A � B and g � C � D with A �� C� Then
 if
B �� C


Xf�Xg � Xg�Xf � Xf�g� ��	�

On the other hand
 if B � C
 so that we have the chain A
f
�� B

g
�� D


and if A �� B
 then Xf�Xg � Xf�g but Xg�Xf � Xg�f�g �� Xf�g�
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Finally
 note that if Dom f �� Ran f then

Xf�Xf � Xf � ��!�

so these are idempotent elements of the monoid AF�Q�� On the other hand

if Dom f � Ran f then Xf�Xf � Xf�f �

� Arrow�Field Quantum Theory

��� Quantisation on a Manifold Q

To motivate what follows
 consider �rst a classical system whose con�gura

tion space is a manifold Q on which there is a transitive left action by a Lie
group G with Q � G�H
 where H is a closed subgroup of G� Thus
 to each
g � G there is a di�eomorphism �g � Q� Q with

�g� � �g� � �g�g� ��"�

for all g�� g� � G�

The classical state space is the cotangent bundle T �Q
 and the quantisa

tion scheme advocated in ��� involves �nding the smallest �nite
dimensional
group of symplectic transformations that acts transitively on T �Q� This is a
semi
direct product G
�W �the �� � denotes the action of G on Q� where W
�a �nite
dimensional
 linear subspace of C��Q�� is the dual of the smallest
vector space that carries a linear representation of G with a G
orbit that
is equivariantly di�eomorphic to G�H� Induced representation theory ����
shows that the main class of unitary irreducible representations of G
� W
is given by vector bundles over this orbit
 in which the vector
space �bre
carries an irreducible representation of H���

Note that G 
� W is a �nite
dimensional subgroup of the �in�nite

dimensional� group of symplectic transformations
 Di��Q�
dC

��Q�
 of T �Q
�where d denotes the action on Q of the di�eomorphism group
 Di��Q�
 of
Q�� Many of the representations of G
�W extend to the group G
�C

��Q�

and some of these extend to Di��Q�
dC

��Q�� However
 the general repre

sentation theory of the in�nite
dimensional group Di��Q� 
d C

��Q� is far
more complicated
 and incomplete
 than that of its �nite
dimensional sub

group G
�W � Unfortunately
 if the manifold Q is not a homogeneous space
G�H
 then usually one has to fall back on using Di��Q�
d C

��Q��

��There may also be 	atypical
 representations in which the vector bundle is over an
orbit that is not di�eomorphic to Q�
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It would be good to develop a complete analogy of this scheme for a
general small category Q� However
 this involves �nding an appropriate
analogue of symplectic geometry
 which is not obvious� Here
 we will adopt
a more heuristic approach in which we start by thinking of state vectors as
being merely complex
valued functions on Ob�Q�
 and then see where this
leads in the construction of the analogue of the quantisation group G
� W �
or
 perhaps more precisely
 of the group Di��Q�
d C

��Q��

In the manifold case
 if there is some G
invariant measure 	 on Q
 then a
representation of G on the Hilbert space L��Q� d	� of complex
valued func

tions on Q can be de�ned by

� �U�g����q� �� ���g���q��� ����

so that �U�g�� �U �g�� � �U�g�g�� for all g�� g� � G� If 	 is invariant under the
action of G on Q then this representation is unitary� Note that if �U�g� is
de�ned instead as

� �U �g����q� �� ���g�q�� ����

then �U�g�� �U�g�� � �U�g�g�� for all g�� g� � G
 i�e�� we get an anti
representation
of G�

When Q � G�H
 the representation Eq� ���� can be used as the basis
for a simple quantisation of the system� This involves de�ning operator
representations of con�guration variable functions � � C��Q�
 by

� �����q� �� ��q���q� ����

which can be exponentiated to give the unitary operators

� �V ������q� �� e�i��q
��q�� ����

Together
 �U�g� and �V ��� satisfy the relations

�U�g�� �U �g�� � �U�g�g�� ����

�V ���� �V ���� � �V ��� $ ��� ����

�U�g� �V ��� � �V �� � �g��� �U�g� ����

where � � �g���q� �� ���g���q��� If the de�nition Eq� ���� is used instead of
Eq� ����
 we get the relations

�U�g�� �U�g�� � �U�g�g�� ��	�

�V ���� �V ���� � �V ��� $ ��� ��!�

�U�g� �V ��� � �V �� � �g� �U �g�� ��"�
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For this system
 Eqs� ������� �or Eqs� ��	��"�� are the analogue of the �expo

nentiated� canonical commutation relations of elementary wave mechanics���

They constitute a representation of the subgroup G
� C
��Q� of the much

larger group Di��Q�
d C
��Q��

��� The Basic Algebra for the Quantum Theory on Q

Our �rst task is to �nd the analogue of Eqs� ��	��"� for a system whose
con�guration space �or history
theory equivalent� is the set of objects Ob�Q�
in a small category Q� The key idea is to use the monoid AF�Q� as an
analogue of the group of di�eomorphisms of Q�

We start with the simplest approach to constructing a quantum theory
on Q
 which is to take the state vectors to be complex
valued functions on
Ob�Q�� The action of the monoid AF�Q� on such functions is �writing �X�A�
as �XA for typographical clarity�

��a�X����A� �� ���XA� � ��Ran X�A�� ����

which is like the earlier de�nition Eq� ���� except that there is no need to
augment the set Ob�Q� with the additional element #�

We have

��a�X���a�X�����A� � ��a�X������X�
A� � ���X�

��X�
A�� � ���X��X�

A�

� ��a�X��X�����A� ����

where Eq� ���� has been used� Thus we have an anti
representation of the
monoid AF�Q��

�a�X���a�X�� � �a�X��X�� ����

for all X��X� � AF�Q��

If Eq� ���� is applied to the special arrow �elds Xf in Eq� ���� then

de�ning �a�f� �� �a�Xf �
 we get

��a�f����A� �

�
��Ran f� if Dom f � A�
��A� otherwise


����

��To be more precise� this is so when the functions � � Q� IR are restricted to belong to
the �nite�dimensional subspaceW � C��Q� mentioned earlier� However� a representation
of G��W on sections of vector bundles over Q can be extended to include all C� functions
on Q �modulo the usual subtleties with operator domains��
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as anticipated in Eq� ��"�� The �closure� problem that arose earlier in the
context of Eqs� ������� no longer applies since the monoid product of two
arrow �elds Xf 
 Xg is itself an arrow �eld �albeit
 possibly not of the form
Xh for any h � Hom�Q���

One might wonder what the adjoint of an operator �a�X� looks like
 but
this cannot be answered before putting an inner product on the state func

tions
 which of course is essential anyway to the physical interpretation of
the theory� However
 there is no obvious way of doing this in general� If
Ob�Q� is a �nite
 or countably in�nite
 set we can de�ne

h
j�i ��
X

A�Ob�Q



�A����A�� ����

although it would be nice to have some speci�c physical
 or mathematical

reason for choosing this particular inner product�

More generally
 we need to explore the construction of �appropriate� mea

sures 	 on Ob�Q� so that we can de�ne

h
j�i ��

Z
Ob�Q


d	�A�
��A���A�� ����

The �rst step is to �nd �elds of measurable sets on Ob�Q�
 and the easiest
way to do this is if there is a topology on Ob�Q�� For example
 in the
special case where Q is a poset P there are the order topologies on P �i�e�
generated by the upper or lower sets of P � and there are probably analogues
of these on a general small category� However
 this is a complicated issue

and is deferred to a later paper� For the purposes of the present paper it
will be assumed that Ob�Q� is �nite or countable
 so that the simple inner
product Eq� ���� can be used� This is reasonable since many of the physically
interesting examples do have a countable collection of objects�

The next step in the construction of our �category quantisation monoid� is
to represent the space of real
valued functions on Ob�Q� �the �con�guration
variables�� by

� �����A� �� ��A���A� ����

as in Eq� ��!��

The crucial task now is to extract an algebra from the operators �a�X�
and ��� To this end
 we �rst compute

��a�X� �� ���A� � �������XA� � ���XA����XA� ��	�
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while

� �� �a�X����A� � ��A���a�X����A� � ��A����XA� ��!�

which implies that

��� � �X�a�X����A� � ���XA����XA� ��"�

where�� � �X is de�ned by ��� � �X���A� �� ���XA���A� for all A � Ob�Q��
From Eq� ��	� and Eq� ��"� we obtain the relation

�a�X� �� ��� � �X �a�X� ����

for all X � AF�Q� and functions � � Ob�Q�� IR�

Next we introduce the unitary operator �V ��� �� exp�i�� which satis�es
�V ���� �V ���� � �V ��� $ ��� for all functions �� and ��� Finally
 putting these
relations together
 we get

�a�X���a�X�� � �a�X��X�� ����

�V ���� �V ���� � �V ��� $ ��� ����

�a�X� �V ��� � �V �� � �X��a�X� ����

which should be viewed as the category analogue of Eqs� ��	��"�� In the
manifold case of Eqs� ��	��"� we have a representation of the group G 
�

C��Q�� In the category case of Eqs� ������� we have a representation of the
semi
direct product AF�Q�
� F �Ob�Q�� IR� of the monoid AF�Q� with the
vector space F �Ob�Q�� IR� of all real
valued functions on Ob�Q�� In what
follows
 AF�Q� 
� F �Ob�Q�� IR� will be called the �category quantisation
monoid��

Note
 however
 that in the manifold case
 the functions � � Q � IR are
not totally arbitrary� At the very least
 they are required to be measurable
with respect to the natural �
algebra of sets associated with the topology on
Q� and one may well wish to restrict them to be C�� However
 no analogous
structure has yet been placed on Ob�Q�
 and therefore
 as things stand
 the
only option is to include all real
valued functions on Ob�Q��

Modulo this caveat
 the central idea of the proposed quantum scheme is
that the possible quantum theories on Q are given by the di�erent faithful

irreducible representations of the category quantisation monoid AF�Q� 
�

F �Ob�Q�� IR�� Each such representation will satisfy the relations in Eqs� ����
���� However
 some important questions arise when comparing these with
the analogous relations Eqs� ��	��"� for the case where the con�guration
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space is a manifold Q � G�H� For example
 the group G acts transitively
on Q
 and this is an important requirement in proving the irreducibility of
the representation of the quantisation group G
� C

��Q�� It is necessary to
explore the analogue for the action of the monoid AF�Q� on Ob�Q�� This
issue will be discussed brie�y in Section ��	
 and is examined in more detail
in a later paper�

Note that the operators �U�g�
 g � G
 in Eqs� ��	��"� are unitary
 but
this will not be the case for the operators �a�X�
 irrespective of the choice of
the measure 	 on Ob�Q�� Indeed
 although it is natural to view an arrow as
the analogue of momentum�in the sense that it transforms one object to
another�objects in a category of structured sets are typically very di�erent
from each other and
 in this sense
 �a�X� is a type of creation or annihilation
operator� In Section ��� we shall see how this works in speci�c examples�

��� Introducing a Multiplier

����� The Basic Ideas

In the context of arrow �elds
 we shall say that two arrows f� g are separated
in the quantum theory if �a�Xf � �� �a�Xg�� In this respect
 the representation
of the category quantisation monoid constructed above is inadequate since
it fails to separate arrows that have the same domain and range� indeed
 if
f� g
 are any two such arrows then �a�Xf �� � �a�Xg�� for all states �� In
particular
 it cannot represent any of the internal structure of the objects in
the category as re�ected in the sets Hom�A�A�
 A � Ob�Q�� To get such a
separation
 the crucial step is to re�ne the quantum scheme by letting the
state functions � take their values in a Hilbert space K that is larger than
jC�

To motivate what follows
 we note �rst that a system with a con�guration
manifold Q � G�H
 where G is a Lie group
 can be viewed as a special
example of this categorial structure� Speci�cally� let Q be the category
whose objects are the points in Q
 and whose arrows from q� � Q to q� � Q
are de�ned to be the group elements g � G such that q� � gq�
 where
gq denotes the point in Q obtained by acting on q � Q with g � G �i�e�

gq �� �g�q��� Thus

Hom�q�� q�� �� fg � G j q� � gq�g� ����

Composition of group elements regarded as arrows�� is just the group prod


��In this example� an arrow �eld is de�ned by a function X � Q � G� Since we are
dealing with manifolds� it would be natural to require this function to be smooth�
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uct� Thus if g� � q� � q� �i�e�
 q� � g�q�� and g� � q� � q� �i�e�
 q� � g�q��

then we de�ne g� � g� � q� � q� as g�g� � q� � q�� The associativity of the
composition of arrows follows from the associativity of the group product���
In particular
 Eq� ���� gives

Hom�q� q� � fg � G j q � gqg � Gq ����

where Gq denotes the �little group� �or stability group� of the G
action at
the point q � Q�

Now suppose that g�� g� be arrows with the same domain and range
 so
that g� � q� � q� and g� � q� � q� for some q�� q� � Q� Thus q� � g�q� and
q� � g�q�
 so that q� � g��� g�q�
 and hence g

��
� g� belongs to the stability

group Gq� 
 which is isomorphic to H� If we denote h �� g��� g� � Gq� 
 then
g� � g�h� or
 in arrow language
 g� � g� �h where h � Hom�q�� q��� Thus
 to
separate the arrows g� and g� �with domain q�� it su ces that Gq� � H be
represented faithfully on K� This is because
 if R�g� denotes the represen

tation of g � G
 then R�g�� � R�g��R�h�
 and hence R�g��R�g��

�� � R�h�

which
 for h �� e �the identity element in Gq��
 will not equal the unit oper

ator if the representation of H is faithful�

However
 in a general small category Q
 if f�� f� � Hom�A�B� this does
not imply the existence of an arrow � � A� A such that f� � f� � �
 or an
arrow � � B � B such that f� � � � f�
 or even a pair of arrows � � A� A

� � B � B such that f� � � � f� � �� Nevertheless
 the arrows that need to
be distinguished certainly include those in the sets Hom�A�A�
 A � Ob�Q�

and these are generally object
dependent� This suggest strongly that
 in
general
 K must be object dependent �

In the manifold case when G acts on Q
 the standard procedure ���� for
�nding group representations usingK
valued functions requires the introduc

tion of a family of linear maps m�g� q� � K � K
 g � G
 q � Q
 �a so
called
�multiplier�� and then de�ning � �U �g����q� � m�g� q���gq�� Therefore
 in the
case of a general small category
 we are led to consider a family of Hilbert
spaces K�A�
 A � Ob�Q�
 with a multiplier
 m�X�A�
 that is a linear map
from K��XA� to K�A��

To summarise� we take a bundle of Hilbert spaces
S
A�Ob�Q
K�A� over

Ob�Q�
 whose cross
sections are to be identi�ed as the quantum states� For

��This is a generalisation of the well�known fact that a group can be regarded as a
category with a single object� and whose arrows are the group elements� In fact� since
each arrow is invertible� the category associated with Q is a groupoid �
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a speci�c measure 	 on Ob�Q�
 the inner product is

h
j�i ��

Z
Ob�Q


d	�A� h
�A�� ��A�iK�A� ����

where h
�A�� ��A�iK�A� denotes the inner product in the Hilbert space K�A��
The arrow
�eld operator is de�ned as

��a�X����A� �� m�X�A����XA� ��	�

where �X�A� �� Ran X�A�
 and

m�X�A� � K��XA�� K�A� ��!�

is a linear map from K��XA� to K�A�� The con�guration variables are real

valued functions � on Ob�Q�
 and are represented �in exponentiated form�
by the unitary operators

� �V ������A� �� e�i��A
��A�� ��"�

Using Eqs� ��	��"�
 it is easy to check that Eq� ���� is satis�ed
 and of
course Eq� ���� remains unchanged� However
 to satisfy Eq� ���� certain
conditions must be imposed on the multipliers� Speci�cally
 we have

��a�Y�X����A� � m�Y�X�A����Y �XA� � m�Y�X�A����Y ��XA�� �	��

while

��a�X��a�Y ����A� � m�X�A���a�Y �����XA�

� m�X�A�m�Y� �XA����Y ��XA��� �	��

Hence the required condition is

m�Y�X�A� � m�X�A�m�Y� �XA� �	��

for all arrow �elds X�Y and all A � Ob�Q��

Note that if X and Y are such that X�A� � A � A and Y �A� � A � A

then Eq� �	�� gives

m�Y�X�A� � m�X�A�m�Y�A� �	��

which corresponds to an anti
representation of the monoid Hom�A�A� on
the Hilbert space K�A��

The goal in choosing the individual Hilbert spaces K�A� is to distinguish
di�erent arrows between the same objects� Hence
 in particular
 the repre

sentation Eq� �	�� of the monoid Hom�A�A� on K�A� must be faithful for



��� QUANTISING ON A GENERAL CATEGORY � � �

all A � Ob�Q�� Of course
 this may not be su cient to distinguish arrows
between di�erent objects�

It is possible to introduce multipliers even when the state vectors are
only complex
valued functions on Ob�Q�� A multiplier would then be a
family of complex numbers m�X�A�
 X � AF�Q�
 A � Ob�Q�
 satisfying
the consistency conditions in Eq� �	��� However
 such an addition to the
simple quantum theory is unlikely to help with the problem of separating
arrows with the same domain and range� For example
 in a category of sets

the monoid Hom�A�A� is non
abelian for any set A with more than one
element� as such
 it cannot be represented faithfully with multipliers that
are complex numbers�

����� Equivalent and Inequivalent Multipliers

Let us now discuss brie�y the question of when two multipliers give rise
to unitarily equivalent representations of the category quantisation monoid�
Consider a function A �� L�A� which to each A � Ob�Q� associates an
invertible linear operator in the Hilbert space K�A� �i�e�
 L�A� � GL�K�A����
Let B �� Ran X�A� and C �� Ran Y �Ran X�A�� �so that X�A� � A � B
and Y �B� � B � C� and de�ne a linear map mL�X�A� � K�B�� K�A� by

mL�X�A� �� L�A�m�X�A�L�B��� �	��

for all X � AF�Q� and A � Ob�Q�� Then

mL�Y�X�A� � L�A�m�Y�X�A�L���C�� �	��

whereas

mL�X�A�mL�Y�B� � L�A�m�X�A�L�B��� L�B�m�Y�B�L�C���

� L�A�m�X�A�m�Y�B�L�C��� � L�A�m�Y�X�A�L�C���

� mL�Y�X�A�� �	��

Hence Eq� �	�� is satis�ed
 and so mL�X�A� �� L�A�m�X�A�L�B��� is also
a multiplier�

If the operators L�A� are unitary for all A � Ob�Q� �i�e�
 L�A� �
U�K�A���
 then the representation of the monoid AF�Q� de�ned by ��a�X����A� ��
mL�X�A����XA� is clearly unitarily equivalent to the one obtained using
m�X�A�� This suggests that there is a family of inequivalent multipliers
classi�ed by functions A �� GL�K�A���U�K�A����	

�	Following the nomenclature used in group theory� we could say that a quantity m
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����� The Presheaf Perspective

As things stand��
 the linear map m�X�A� � K�Ran X�A�� � K�A� could
depend on the values of the arrow
�eld X at objects B other than A� How

ever
 such a �non
local� property seems unnatural
 and from now on we will
suppose that the dependence of m�X�A� on X � AF�Q� and A � Ob�Q� is
via the arrow X�A� only� Hence

m�X�A� � 
�X�A�� �		�

for some 
�X�A�� � K�Ran X�A��� K�A��

The consistency conditions Eq� �	�� on the multiplier become


��Y�X��A�� � 
�X�A��
�Y �B�� �	!�

where B�C � Ob�Q� are such that X�A� � A� B and Y �B� � B � C� But
�Y�X��A� � Y �B� �X�A�
 and so Eq� �	!� becomes


�Y �B� �X�A�� � 
�X�A��
�Y �B��� �	"�

However
 given any arrow f � Hom�Q�
 there is at least one arrow �eld
X such that X�Dom f� � f �for example
 Xf de�ned in Eq� ���� has this
property�� Thus a multiplier 
 satisfying Eq� �	!� determines linear maps

�f� � K�Ran f � � K�Dom f �
 for all f � Hom�Q�� From Eq� �	"�
 these
satisfy the conditions


�g � f� � 
�f�
�g� �!��

for all f� g � Hom�Q� such that Ran f � Dom g �so that g � f is de�ned��
Conversely
 any family of maps 
�f� � K�Ran f �� K�Dom f �
 f � Hom�Q�

that satis�es Eq� �!��
 gives rise to a multiplier de�ned by m�X�A� ��

�X�A���

Such a family of maps 
�f�
 f � Hom�Q�
 corresponds precisely to a
presheaf �� of Hilbert spaces on Q
 and this is the most elegant language in
which to summarise what we have done so far� Namely
 we are constructing
representations of the category quantisation monoid
 and hence satisfying

Eqs� ������� in the following way�

satisfying Eq� ���� is a one�cocycle of the monoid AF�Q� in its action on Ob�Q�� Further�
more� two multipliers�one�cocycles that are related as in Eq� ���� and with all the L�A��
A � Ob�Q� being unitary� could be said to di�er by a one�coboundary�

��This section can be safely ignored at a �rst reading� a knowledge of presheafs is not
essential for the theory being developed�

��Here� a presheaf is de�ned as a contravariant functor from Q to the category of sets
�in our case� Hilbert spaces��
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�� Find a presheaf K of Hilbert spaces A �� K�A� over Q� Thus for any
arrow f � A� B there is a linear map 
�f� � K�B�� K�A�
 and these
linear maps satisfy the �coherence conditions� that if A

f
�� B

g
�� C

then K�A�
��f

�� K�B�

��g

�� K�C� with 
�f�
�g� � 
�g � f� � K�C� �

K�A��

�� De�ne the quantum states to be cross
sections of the corresponding
bundle of Hilbert spaces

S
A�Ob�Q
K�A�� thus ��A� � K�A� for all

A � Ob�Q�� The inner product is Eq� ���� for some measure 	 on
Ob�Q��

�� An arrow �eld X � AF�Q� is represented by the operator

��a�X����A� �� 
�X�A�����XA�� �!��

Functions � � Ob�Q�� IR are represented �in exponentiated form� by
the unitary operators

� �V ������A� �� e�i��A
��A� �!��

for all A � Ob�Q��

The goal is to �nd a presheaf K such that the ensuing representation of the
category quantisation monoid is irreducible and can separate arrows with
the same domain and range�

Note that
 although a presheaf structure is a fundamental ingredient in
our scheme
 it is not the case that the states � are de�ned as sections �or
�global elements�� of this presheaf� Indeed
 such a section � would satisfy
the matching conditions

��A� � 
�f���B� �!��

if f � A� B� This would imply that

��a�X����A� � ��A� �!��

for all arrow �elds X and objects A� This is why the states are de�ned to be
sections of the bundle of Hilbert spaces associated with the presheaf
 rather
than sections of the presheaf itself� a section of the bundle does not have to
satisfy Eq� �!���
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��� The Adjoint of �a�X�

����� The Simple Case With no Multipliers

The next step is to �nd the adjoints of the operators �a�X�
 X � AF�Q��
We start with the simple situation in which there are no multipliers
 so that
the state vectors are just complex
valued functions on Ob�Q�� We shall also
assume initially that the category Q contains only a �nite number of objects�
Hence
 we can use the inner product

h
j�i ��
X

A�Ob�Q



�A����A� �!��

and then
 as usual
 for all vectors j
i� j�i we have

h
j �a�X�y j�i � h�j a�X� j
i�

�
X

A�Ob�Q



��XA�
���A� �!��

To illustrate what this means let us take a simple example of a category with
�ve objects fA�� A�� A�� B�Cg
 and the particular arrow �eld X de�ned by

X�A�� � A� � B �!	�

X�A�� � A� � B

X�A�� � A� � B

X�B� � B � C

X�C� � idC � C � C� �!!�

Then we have

h
j �a�X�y j�i � 
�B�����A�� $ ��A�� $ ��A��� $ 
�C����B� $ 
�C����C�
�!"�

where the last term comes from the fact that X�C� � idC �

It is clear that
 in general
 we can write

h
j �a�X�y j�i �
X

B�Ob�Q


X
A����X fBg


�B����A� �"��

where we have been able to sum over all B � Ob�Q� by allowing for the fact
that ���X fBg may be the empty set for some objects B� Thus we see that

��a�X�y���B� �
X

A����X fBg

��A�� �"��
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This result can be extended to the case where the set of objects Ob�Q� is
countably in�nite
 although the usual care will need to be taken with the
domains of the operators �a�X� and their adjoints�

If Dirac notation is used
 we write ��A� as hAj�i
 in which case the
equation ��a�X����A� �� ���XA� reads hAj �a�X� j�i � h�XAj�i
 and so

�a�X�y jAi � j�XAi� �"��

In particular
 this shows that
 for any object A � Ob�Q�
 �a�X�y jAi is never
zero��� In this restricted sense
 �a�X�y looks like a type of creation operator�

On the other hand
 the equation ��a�X�y���B� �
P

A����X fBg ��A� be

comes

hBj �a�X�y j�i �
X

A����X fBg

hAj�i �"��

and so

�a�X� jBi �
X

A����X fBg

jAi� �"��

In particular
 if B is an object that is not the range of any arrow in the
arrow �eld X
 then ���X fBg � �
 and hence

�a�X� jBi � �� �"��

Thus
 in this restricted sense
 �a�X� looks like a type of annihilation operator�

To illustrate these results concretely
 let us return to the simple category
with �ve objects fA�� A�� A�� B�Cg
 and the arrow �eld shown in Eq� �!!��
Since no arrows in the arrow �eld X enter A�
 A�
 or A� we have

�a�X� jA�i � �a�X� jA�i � �a�X� jA�i � �� �"��

On the other hand ���X fBg � fA�� A�� A�g
 and so

�a�X� jBi � jA�i$ jA�i$ jA�i� �"	�

Finally
 ���X fCg � fB�Cg �using X�C� � idC�
 which gives

�a�X� jCi � jBi$ jCi� �"!�

��Of course� this does not exclude the existence of states j�i for which �a�X�y j�i � ��
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����� The Arrow Field Operators �a�f��

The arrow �elds Xf 
 f � Hom�Q�
 are particularly interesting as they gen

erate the arrow �elds with �nite support� The operators �a�f� �� �a�Xf � acts
as

��a�f����A� �

�
��Ran f� if Dom f � A�
��A� otherwise


�""�

and so
 in Dirac notation


�a�f�y jAi �

�
jRan fi if Dom f � A�
jAi otherwise

�����

Furthermore
 from Eq� �"�� we see that

�a�f� jAi �

�
jDom fi if Ran f � A�
� otherwise�

�����

Note that the operators �a�f� and �a�f�y are always bounded
 even when the
quantum Hilbert space is in�nite dimensional�

����� The Situation for a General Measure 	 on Ob�Q��

For a general measure 	 on Ob�Q�
 if �a�X� is bounded we have the equation

h
j �a�X�y j�i � h�j �a�X� j
i� �

Z
Ob�Q


d	�A�
��XA�
���A�� �����

If 
 is chosen to be the characteristic function �S of a measurable subset S
of Ob�Q�
 Eq� ����� gives��

Z
S

d	�A� ��a�X�y���A� �

Z
Ob�Q


d	�A��S��XA�
���A�

�

Z
���X �S�

d	�A���A� �����

where ���X �S� �� fA � Ob�Q� j �XA � Sg� Note that if Ob�Q� is a �nite set

and if 	 is the point measure that assigns equal weight � to each object A

and if we chose S �� fBg
 then the result in Eq� �"�� is recovered�

��Of course� to do this rigourously it is necessary to de�ne precisely what is meant by
integrating over vectors�
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��� Products of �a�X� and �a�X�y

����� The Operator �a�X�y�a�X��

When applying this quantum theory to speci�c physical situations
 all im

portant physical quantities must be constructed from the operators ��
 �a�X�
and �a�X�y� For example
 if the theory is being interpreted canonically
 then
the Hamiltonian will be particularly important� If the theory is interpreted
as a history theory
 then the decoherence function will be of central impor

tance� Here we shall look brie�y at the quadratic expressions �a�X�y�a�X�
and �a�X��a�X�y�

First
 ignoring possible problems with operator domains
 left multiplying
Eq� ���� with �a�X�y gives

�a�X�y�a�X� �� � �a�X�y�� � �X�a�X�� �����

On the other hand
 taking the adjoint of Eq� ���� gives �� �a�X�y � �a�X�y�� � �X 

and right multiplying this with �a�X� gives

�� �a�X�y�a�X� � �a�X�y�� � �X�a�X�� �����

Hence


� �a�X�y�a�X�� �� � � � �����

which
 working on the assumption that the algebra generated by the opera

tors of the form �� is maximal abelian��
 implies that

��a�X�y�a�X����A� � �X�A���A� ���	�

for some measurable function �X � Ob�Q�� IR�

It is easy to compute �a�X�y�a�X� explicitly for the simple case when Q
has a �nite number of objects and the inner product Eq� �!�� is used� We
get

��a�X�y�a�X����A� �
X

C����X fAg

��a�X����C�

�
X

C����X fAg

���XC� ���!�

��More precisely� assuming that the space L��Ob�Q�� d�� of � essentially�bounded real�
valued functions on Ob�Q� is maximal abelian when considered as an algebra of multipli�
cation operators on L��Ob�Q�� d���
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or
 in Dirac notation
 �a�X�y�a�X� jAi �
P

C����X fAg j�XCi� However
 for

each C � ���X fAg we have �XC � A
 and hence

�a�X�y�a�X� jAi � j���X fAgj jAi ���"�

where j���X fAgj denotes the number of elements in the set ���X fAg� As is to
be expected
 this is consistent with the general result in Eq� ���	����

For example
 in the model category discussed earlier with the arrow �eld
X in Eq� �!!�
 we have

�a�X�y�a�X� jBi � � jBi� �����

����� The Operator �a�X��a�X�y�

In a similar way
 we can compute

��a�X��a�X�y���A� � ��a�X�y����XA�

�
X

C����X f�XAg

��C� �����

where ���X f�XAg is the set of all arrows in the arrow �eld X whose range is
�XA� In Dirac notation this reads

�a�X��a�X�y jAi �
X

C����X f�XAg

jCi� �����

For example
 in the model category with �ve objects fA�� A�� A�� B�Cg
and the arrow �eld represented by Eq� �!!�
 we have
 for i � �� �� �


���X f�XAig � fA�� A�� A�g �����

and so

�a�X��a�X�y jAii � jA�i$ jA�i$ jA�i �����

for i � �� �� ��

��When there is a general measure � on Q the calculations are more complicated� How�
ever� it can be shown that if �a�X� is a bounded operator� and if � is a �nite measure� then
the Radon�Nikodym derivative d�X��

d�
exists and is equal to the function �X in Eq� ������

Thus� in these circumstances� we have

��a�X�y�a�X����A� �
d�X��

d�
�A���A� �����

everywhere except on a set of ��measure zero�
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��� Including the Multiplier�

The calculations become more complicated when the state vectors are Hilbert

space valued with a multiplierm� However
 the essence is the same
 and here
we just quote some of the results�

The �rst is that the adjoint �a�X�y is given by �c�f� Eq� �"���

��a�X�y���B� �
X

A����X fBg

m�X�A�y��A� �����

wherem�X�A�y � K�A�� K��XA� is the adjoint
�� of the linear mapm�X�A� �

K��XA�� K�A��

When the category Q has only a �nite number of objects
 the operator
products �a�X��a�X�y and �a�X�y�a�X� can be readily computed� Thus we
have �c�f� Eq� ������

��a�X��a�X�y���A� � m�X�A����a�X�y����XA��

�
X

C����X f�XAg

m�X�A�m�X�C�y��C� ���	�

and �c�f� Eq� ���!��

��a�X�y�a�X����A� �
X

C����X fAg

m�X�C�y���a�X����C��

�
X

C����X fAg

m�X�C�ym�X�C����XC�

�
X

C����X fAg

m�X�C�ym�X�C���A�� ���!�

��� The Question of Irreducibility

Finally
 something should be said about the irreducibility
 or otherwise
 of
these representations of the category quantisation monoid� When quantising
a system whose con�guration space is a manifold Q � G�H
 the correspond

ing quantisation group is the semi
direct product G
� W 
 and the unitary
equivalence classes of irreducible representations are classi�ed via induced

��These adjoint maps m�X�A�y � ��X�A��y de�ne a covariant functor from Q to the
category of sets �in our case� Hilbert spaces��
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representation theory in terms of �i� the orbits of G on the dual of W 
 and
�ii� the di�erent irreducible representations of H �����

It remains a task for the future to determine a complete representation
theory for the case of a general small category Q� if
 indeed
 this is possible�
However
 in the manifold analogy
 if Q can be decomposed into more than
one G
orbit
 then there is a corresponding decomposition of the group repre

sentation into a direct sum or direct integral� This
 at least
 should have an
analogue in the category case
 and so a natural question is whether Ob�Q�
is a single orbit under the action of AF�Q��

The concept of an �orbit� is more subtle for an action of a semigroup on
a set than it is for a group
 and a fuller discussion of this issue is deferred
to a later paper in this series� However
 on looking at the operators �a�X�
and �a�X�y as given
 for example
 in Eq� �"�� and Eq� �"�� it seems natural
to de�ne a subset O of Ob�Q� to be �connected� if for any pair of objects
A�B � O there exists a �nite collection of objects fA�� A�� � � � � ANg � O

with A� � A
 AN � B and such that
 for all i � �� �� � � � N � �
 there exists
an arrow with domain Ai and range Ai
�
 or an arrow with range Ai and
domain Ai
��

Clearly
 if Ob�Q� decomposes into a disjoint union of connected subsets

then the representation of the category quantisation monoid will decompose
in a corresponding way� Thus a necessary condition for the representation
to be irreducible is that Ob�Q� is connected in this sense� All the physical
examples we have mentioned so far have this property� However
 connected

ness alone is certainly not su cient to guarantee irreducibility
 and we will
return to this issue later�

� Conclusions

We have seen how to construct a quantum scheme for a system whose con

�guration space �or history equivalent� is the set of object Ob�Q� in a small
category Q� A key ingredient is the monoid AF�Q� of arrow �elds and its
action on Ob�Q�� Multiplier representations are needed to distinguish quan

tum theoretically between arrows with the same range and domain� Each
such representation can be expressed in terms of a presheaf of Hilbert spaces
over Ob�Q��

The material in the present paper is only an introduction to what needs
to be done to construct a complete representation theory of a category quan

tisation monoid� Many topics remain for further research
 some of the most
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important of which are the following�

�� A general question is how much the theory can be developed in terms
of an arbitrary small category Q
 and how much will need to rely on
the special properties of particular categories of physical interest�

�� It would be good to determine some general way of specifying the
Hilbert spaces K�A�
 A � Ob�Q�
 such that the ensuing representation
of the category quantisation monoid is both faithful and irreducible�
At the very least
 this is likely to require a proper study of the meaning

and role
 of an orbit of the monoid AF�Q� as it acts on the set Ob�Q��
However
 it may be that a full discussion of irreducibility can only be
given in the context of a case
by
case study with speci�c categories Q�

�� The classi�cation of inequivalent irreducible representations of the cat

egory quantisation monoid will involve the choice of a presheaf of
Hilbert spaces
 and the choice of the measure 	 used in the inner
product in Eq� ����� It is necessary therefore to develop a proper mea

sure theory on the set Ob�Q�� Whether this is feasible for a general
small category Q is unclear
 but even if it is
 it seems likely that the
construction of the physically relevant measures will depend on the
details of the category� For example
 Brightwell et al have recently
developed a particular measure theory on a space of causal sets ����
����� This was carried out in the context of constructing a classical
stochastic theory of causal sets
 but perhaps these are also the correct
measures to use in the quantum theory as developed in the present
paper�

�� The quantisation of a system whose con�guration space is a manifold
Q � G�H
 uses only the �nite
dimensional subgroup G of the group
of all di�eomorphisms
 Di��Q�
 and the question arises therefore if
 in
the category case
 there is some submonoid of AF�Q� that still acts
�transitively� on Ob�Q� and which would be a more appropriate entity
to use in the category quantisation monoid� The answer is likely to
depend strongly on the details of the category Q�

�� In the standard quantum theory of a system whose con�guration space
is an in�nite dimensional topological vector space V �for example
 in a
quantum �eld theory�
 the state vectors are typically functions on the
topological dual of V rather than on V itself� This is closely connected
to the theory of measures on spaces of this type�

This raises the intriguing question of whether something like this could
happen when quantising on a category Q� In other words
 are there
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situations in which an analogue of the topological dual is needed� and
what is the �dual� of the set of objects Ob�Q�� The answer is likely to
be closely linked with the problem of constructing suitable measures
on Ob�Q�� It is also related to the issue of whether the quantum
scheme should involve only some linear subspace of the set of all real

valued functions on Ob�Q�� This would be an analogue of the use of
W � C��Q� when Q � G�H�

When applied to categories of space
times �or spaces� the scheme de

scribed above deals with the quantum states of those structures only� How

ever
 in practice
 there will be other degrees of freedom too �for example

matter �elds�
 and these need to be incorporated at some point� This could
be done by exploiting whatever is known already about the quantisation
of these extra degrees of freedom
 and adjusting the Hilbert spaces K�A�

A � Ob�Q�
 accordingly� The representation of the category quantisation
monoid will then no longer be irreducible because of the presence of these
extra modes�

However
 it may be possible to include any extra degrees of freedom
strictly within the category quantisation scheme by changing the category
Q to get an appropriately extended category quantisation monoid� For ex

ample
 if Q is a category of topological spaces
 then one might replace the
objects �topological spaces� with the spaces of continuous functions on them

with appropriate modi�cations of the arrows� This would give a type of
quantum �eld theory on a space that is itself quantised�

Note that
 if Q is a category of manifolds
 additional degrees of freedom
could include quantised metric �elds� For example
 it would be possible to
construct a canonical theory of quantum gravity �in either the traditional
formalism
 or in the newer scheme based on loop variables� in which the
spatial �
manifold is itself subject to �quantum �uctuations�� The analogue
in a history theory would be to quantise Lorentzian metrics on a quantised
background space
time manifold� Or the techniques could be applied to give
a version of string theory in which the manifold in which the strings
 or
d
branes
 propagate is itself the subject of quantum e�ects�

Finally
 note that
 when discussing the quantum theory of causal sets
 I
have assumed that the space K�c� associated with each causal set c is a stan

dard Hilbert space
 in accordance with normal quantum theory� However

in ���� it is argued that normal quantum theory is problematic in such a sit

uation because the use of the continuum real and complex numbers assumes
a priori that the background space and space
time are manifolds
 which is
not the case if the space
time is a causal set� This suggests that each K�c�
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should be replaced by something quite di�erent� in fact
 by whatever the
analogue is for that speci�c causal set c of the Hilbert space of states in nor

mal quantum theory� It is a task for future research to decide what this may
be
 but once the decision is made
 the techniques described in the present
paper would be a good starting point to construct a theory in which the
causal sets
 and the associated quantum theories
 are themselves subject to
�quantum �uctuations��

These projects are exciting
 but it should be emphasised that what is
described in the present paper is only a �tool
kit� for constructing operator

based models of quantum space
time or space� it needs a creative leap to use
these tools to construct a physically realistic model of
 for example
 quantum
causal sets� The key step would be to choose a decoherence functional for the
quantum history theory� This decoherence functional would be constructed
from the operators described in this paper
 but new physical principles are
needed to decide its precise form� This is an important topic for future
research�
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