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Abstract

The main purpose in the present paper is to build a Hamiltonian
theory for fields which is consistent with the principles of relativity.
For this we consider detailed geometric pictures of Lepage theories in
the spirit of Dedecker and try to stress out the interplay between the
Lepage-Dedecker (LP) description and the (more usual) De Donder-
Weyl (DDW) one. One of the main points is the fact that the Legen-
dre transform in the DDW approach is replaced by a Legendre corre-
spondence in the LP theory (this correspondence behaves differently:
ignoring the singularities whenever the Lagrangian is degenerate).
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1 Introduction

1.1 Presentation

Multisymplectic formalisms are finite dimensional descriptions of variational
problems with several variables (or field theories for physicists) analogue
to the well-known Hamiltonian theory of point mechanics. For example
consider on the set of maps u : R — R a Lagrangian action of the type

Llu] = /n L(x,u(z), Vu(z))dz! - - - dz".

Then it is well-known that the maps which are critical points of £ are char-
acterized by the Euler-Lagrange equation % (a(g—iu)) = g—{:. By analogy
with the Hamiltonian theory we can do the change of variables p* := 30,0

)
and define the Hamiltonian function

ou
OxH

H(z,u,p) :=p" — L(x,u,Vu),

Ou
oxH

a(g—fu)(x,u, Vu). Then the Euler-Lagrange equation is equivalent to the

where here Vu = ( ) is a function of (z,u,p) defined implicitly by p#* :=

generalized Hamilton system of equations

ou oOH

i = W(xvuvp)
o OH (1)
= ),

This simple observation is the basis of a theory discovered by T. De Donder
[3] and H. Weyl [20] independently in 1935. This theory can be formu-
lated in a geometric setting, an analogue of the symplectic geometry, which
is governed by the Poincaré-Cartan n-form 6 := ew + ptdu A w, (where
w=dz' A Ada" and w, = 9, Jw) and its differential 2 := df, often
called multisymplectic (or polysymplectic form).

Although similar to mechanics this theory shows up deep differences. In
particular there exist other theories which are analogues of Hamilton’s one
as for instance the first historical one, constructed by C. Carathéodory in
1929 [2]. In fact, as realized by T. Lepage in 1936 [16], there are infinitely
many theories, due to the fact that one could fix arbitrary the value of some
tensor in the Legendre transform (see also [18], [6]). Much later on, in 1953,
P. Dedecker [4] built a geometrical framework in which all Lepage theories
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are embedded. The present paper, which is a continuation of [9], is devoted
to the study of the Lepage-Dedecker theory. We also want to compare this
formalism with the more popular De Donder—Weyl theory.

First recall that the range of application of the De Donder—Weyl theory is
restricted in principle to variational problems on sections of a bundle F. The
right framework for it, as expounded e.g. in [8], consists in using the first jet
bundle J'F and its affine dual (J 1)* F as analogues of the tangent and the
cotangent bundles for mechanics respectively. For non degenerate variational
problems the Legendre transform induces an immersion of J!F in (J 1)* F.
In contrast the Lepage theories can be applied to more general situations
but involve, in general, many more variables and so are more complicated to
deal with, as noticed in [15]. This is probably the reason why most papers on
the subject focus on the De Donder-Weyl theory, e.g. [14], [8]. The general
idea of Dedecker in [4] for describing Lepage’s theories is the following: if we
view variational problems as being defined on n-dimensional submanifolds
embedded in a (n + k)-dimensional manifold A, then what plays the role of
the (projective) tangent bundle to space-time in mechanics is the Grassmann
bundle Gr" N of oriented n-dimensional subspaces of tangent spaces to N.
The analogue of the cotangent bundle in mechanics is A"T*N . Note that
dimGr"N = n + k + nk so that dimA"T*N = n + k + (ZT:!)! is strictly
larger than dimGr"AN + 1 unless n = 1 (classical mechanics) or k = 1
(submanifolds are hypersurfaces). This difference between the dimensions
explains the multiplicity of Lepage theories: as shown in [4], we substitute
to the Legendre transform a Legendre correspondence which associates to
each n-subspace T € GT(T;N (a “generalized velocity”) an affine subspace
of A™T, q*./\/ called pseudofibre by Dedecker. Then two points in the same
pseudofiber do actually represent the same physical (infinitesimal) state, so
that the coordinates on A"T*N, called momentoides by Dedecker do not
represent physically observable quantities. In this picture any choice of a
Lepage theory corresponds to a selection of a submanifold of A"T*N, which
— when the induced Legendre transform is a well-defined map — intersects
transversally each pseudofiber at one point (see Figure 1.1): so the Legendre
correspondence specializes to a Legendre transform. For instance the De
Donder—Weyl theory can be recovered in this setting by the restriction to
some submanifold of A"T*N (see Section 2.2).

In [9] and in the present paper we consider a geometric pictures of Lepage
theories in the spirit of Dedecker and we try to stress out the interplay
between the Lepage-Dedecker description and the De Donder—Weyl one.
Roughly speaking a comparison between these two points of view shows up
some analogy with some aspects of the projective geometry, for which there
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Figure 1: Pseudofibers which intersect a submanifold corresponding to the choice of a
Lepage theory

is no perfect system of coordinates, but basically two: the homogeneous
ones, more symmetric but redundant (analogue to the Dedecker description)
and the local ones (analogue to the choice of a particular Lepage theory like
e.g. the De Donder—Weyl one). Note that both points of view are based on
the same geometrical framework, a multisymplectic manifold:

Definition 1.1. Let M be a differential manifold. Let n € N be some
positive integer. A smooth (n + 1)-form Q on M is a multisymplectic
form if and only if

(i) Q is non degenerate, i.e.Nm € M, V¢ € T,, M, if & 1Q,,, = 0, then
£=0
(ii) Q is closed, i.e.dS) = 0.

Any manifold M equipped with a multisymplectic form Q will be called a
multisymplectic manifold.

For the De Donder—Weyl theory we choose M to be (J 1)* F and for the
Lepage-Dedecker theory M is A"T*N. In both descriptions solutions of the
variational problem correspond to n-dimensional submanifolds I' (analogues
of Hamiltonian trajectories: we call them Hamiltonian n-curves) and are
characterized by the Hamilton equation X 1 = (—1)"dH, where X is a
n-multivector tangent to I', H is a (Hamiltonian) function defined on M and
by “ 1”7 we mean the interior product.

We may insist on the point that many contributions on the De Donder—Weyl
theory are devoted to the construction of multisymplectic manifolds having
the same dimension as the Lagrangian formulation configuration space, i.e.
JIF, either by pulling back the multisymplectic form by the Legendre map
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as in [8], or by working on a quotient or a submanifold of (J!)*F as for in-
stance in [7] (see [5] for a comparaison between the different points of view).
However when dealing with Lepage—Dedecker theories, one is forced to aban-
don these points of view and to work with multisymplectic manifolds whose
dimension is larger than the number of physical variables. The advantage is
however is that we do not need for any extra structure, like connections, and
in particular in our setting the Hamiltonian function is thought as a global
function on M.

Consequently, in Section 2 we present a complete derivation of the (Dedecker)
Legendre correspondence and of the generalized Hamilton equations, using a
method that does not rely on any trivialization or connection on the Grass-
mannian bundle. A remarkable property, which is illustrated in this paper
through the examples given in Paragraph 2.2.2, is that when n and k are
greater than 2, the Legendre correspondence is generically never degenerate.
The more spectacular example is when the Lagrangian density is a constant
function — the most degenerate situation one can think about — then the
Legendre correspondence is well-defined almost everywhere except precisely
along the De Donder—Weyl submanifold. We believe that such a phenomenon
was not noticed before; it however may be useful when one deals for example
with the bosonic string theory with a skewsymmetric 2-form on the target
manifold (a “B-field”, as discussed in [9] and in subsection 2.2, example 5)
or with the Yang—Mills action in 4 dimensions with a topological term in
the Lagrangian: then the De Donder—Weyl formalism may fail but one can
cure this degenerateness by using another Lepage theory or by working in
the full Dedecker setting.

In this paper we also stress out another aspect of the (Dedecker) Legen-
dre correspondence: one expects that the resulting Hamiltonian function on
A™T*N should satisfy some condition expressing the “projective” invariance
along each pseudofiber. This is indeed the case. On the one hand we observe
in Section 2.1 that any smoothly continuous deformation of a Hamiltonian
n-curve along directions tangent to the pseudofibers remains a Hamiltonian
n-curve! (Corollary 2.1). On the other hand we give in Section 4.3 an intrin-
sic characterization of the subspaces tangent to pseudofibers. This motivates
the definition given in Section 3.3 of the generalized pseudofiber directions
on any multisymplectic manifold.

LA property quite similar to a gauge theory behavior although of different meaning.
Here we are interested by desingularizing the theory and avoid the problems related to the
presence of a constraints.
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Beside these properties in this paper and in its companion paper [11] we
wish to address other kind of questions related to the physical gain of these
theories: the main advantage of multisymplectic formalisms is to offer us
a Hamiltonian theory which is consistent with the principles of Relativity,
i.e. being covariant. Recall for instance that for all the multisymplectic for-
malisms which have been proposed one does not need to use a privilege time
coordinate. One of our ambitions in this paper was to try to extend this
democracy between space and time coordinates to the coordinates on fiber
manifolds (i.e. along the fields themselves). This is quite in the spirit of
the Kaluza—Klein theory and its modern avatars: 11-dimensional supergrav-
ity, string theory and M-theory. This concern leads us naturally to replace
De Donder—Weyl by the Dedecker theory. In particular we do not need in
our formalism to split the variables into the horizontal (i.e. corresponding to
space-time coordinates) and vertical (i.e. non horizontal) categories.

Moreover we may think that we start from a (hypothetical) geometrical
model where space-time and fields variables would not be distinguished a
priori and then ask how to make sense of a space-time coordinate function
(that we call a “r-regular” in Section 3.2). A variant of this question would
be how to define a constant time hypersurface (that we call a “slice” in Sec-
tion 3.2) without referring to a given space-time background. We propose
in Section 3.2 a definition of r-regular functions and of slices which, roughly
speaking, requires a slice to be transversal to all Hamiltonian n-curves. Here
the idea is that the dynamics only (i.e. the Hamiltonian equation) should de-
termine what are the slices. We give in Section 4.2 a characterization of these
slices in the case where the multisymplectic manifold is A"T*N .

These questions are connected to the concept of observable functionals over
the set of solutions of the Hamilton equation. First because by using a codi-
mension 7 slice ¥ and an (n — r)-form F' on the multisymplectic manifold
one can define such a functional by integrating F' over the the intersection of
Y. with a Hamiltonian curve. And second because one is then led to impose
conditions on F' in such a way that the resulting functional carries only dy-
namical information. The analysis of these conditions is the subject of our
companion paper [11]. And we believe that the conditions required on these
forms are connected with the definitions of r-regular functions given in this
paper, although we have not completely elucidated this point.

Lastly in a future paper [12] we investigate gauge theories, addressing the
question of how to formulate a fully covariant multisymplectic for them.



F. HELEIN & J. KOUNEIHER 571

Note that the Lepage—Dedecker theory expounded here does not answer this
question completely, because a connection cannot be seen as a submanifold.
We will show there that it is possible to adapt this theory and that a conve-
nient covariant framework consists in looking at gauge fields as equivariant
submanifolds over the principal bundle of the theory, i.e.satisfying some
suitable zeroth and first order differential constraints.

1.2 Notations

The Kronecker symbol 8} is equal to 1 if 4 = v and equal to 0 otherwise.
We shall also set

11 1
A 7.

HiHp

Oy = :
12 12
R 1.

In most examples, 7, is a constant metric tensor on R"™ (which may be
Euclidean or Minkowskian). The metric on his dual space his n*”. Also, w
will often denote a volume form on some space-time: in local coordinates

w=dz' A---Adz™ and we will use several times the notation Wy = % Jdw,
D AD . L ) 3
wu,, = Our A EE _ w, etc. Partial derivatives Dk and &Dal on

time abbreviated by 9, and %" respectively.

will be some-

When an index or a symbol is omitted in the middle of a sequence of in-

dices or symbols, we denote this omission by ~. For example Ui, =
D n

iy iy ipyyoiny ATO A ANdTOB N Ndz® = dx® N Ndx®et Ndr et A

A datn,

If NV is a manifold and FN a fiber bundle over A/, we denote by I'(N, FN)
the set of smooth sections of FN. Lastly we use the following notations
concerning the exterior algebra of multivectors and differential forms. If
N is a differential N-dimensional manifold and 0 < k < N, AFTN is
the bundle over N of k-multivectors (k-vectors in short) and A*T*N is
the bundle of differential forms of degree k (k-forms in short). Setting
ATN = B AFTN and AT*N = &) AFT*N, there exists a unique
duality evaluation map between AT N and AT*N such that for every decom-
posable k-vector field X, i.e.of the form X = X; A --- A Xi, and for every
[-form p, then (X, p) = u(Xy, -+, Xg) if £ =1 and = 0 otherwise. Then
interior products _| and L are operations defined as follows. If & <, the
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product I : (N, AFTN) x TN, A'T*N) — T'(N, AI=FT*N) is given by
(V)X Jp)y=(XAY,u), V(- k)-vector Y.

Andif k > [, the product L : T'(N, AkTN)xF(/\/, AZT*/\/') — TN, Ak_lTN)
is given by
(XL up,vy=(X,uAv), Y(k—I)-form v.

2 The Lepage—Dedecker theory

We expound here a Hamiltonian formulation of a large class of first order
variational problems in an intrinsic way. Details and computations in coor-
dinates can be found in [14], [9].

2.1 Hamiltonian formulation of variational problems with
several variables

2.1.1 Lagrangian formulation

The category of Lagrangian variational problems we start with is described
as follows. We consider n,k € N* and a smooth manifold N of dimension
n + k; N will be equipped with a closed nowhere vanishing “space-time
volume” n-form w. We define

e the Grassmannian bundle Gr™N, it is the fiber bundle over N whose
fiber over ¢ € N is Grf;./\/ , the set of all oriented n-dimensional vector
subspaces of T N

e the subbundle Gr*N := {(q,T) € Gr"N Jwyr > 0}.

e the set G¥, it is the set of all oriented n-dimensional submanifolds
G C N, such that Vg € G, T,G € Grg N (i.e. the restriction of w on G
is positive everywhere).

Lastly we consider any Lagrangian function L, i.e.a smooth function L :
Gr“ N +—— R. Then the Lagrangian of any G € G“ is the integral

(6] = /GL (0. T,G)w @)

We say that a submanifold G € G¥ is a critical point of £ if and only if, for
any compact K C N, GNK is a critical point of Lk[G] := [,k L (¢, T,G)w
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with respect to variations with support in K.

It will be useful to represent Gr" N differently, by means of n-vectors. For
any ¢ € N, we define DI to be the set of decomposable n-vectors?,
i.e.elements z € A"T,N such that there exist n vectors zi,....z, € TuN
satisfying z = 21 A -+ A z,. Then D"N is the fiber bundle whose fiber at
each ¢ € N'is Dy N'. Moreover the map

DN — GryN
21NNz — T(z1,0 , 2n),

where T'(z1,- - , zp,) is the vector space spanned and oriented by (z1,- - , zy),
induces a diffeomorphism between (DA \ {0}) /R% and GrjN. If we set
also DYN = {(q,2) € DyN Jwy(z) = 1}, the same map allow us also to
identify GT;”N with Dg/\/ .

This framework includes a large variety of situations as illustrated below.

Example 1 — Classical point mechanics — The motion of a point mov-
ing in a manifold ) can be represented by its graph G C N := R x Y. If
7w : N — R is the canonical projection and ¢ is the time coordinate on R,
then w := 7w*dt.

Example 2 — Maps between manifolds — We consider maps v : X — Y,
where X and ) are manifolds of dimension n and k respectively and X
is equipped with some non vanishing volume form w. A first order La-
grangian density can represented as a function [ : TY ®@xxy T*X +— R,
where TY Qxxy T*X = {(z,y,v)/(z,y) € X x Y,v € T, Y@ T;X}. (We
use here a notation which exploits the canonical identification of T,V ® Ty X
with the set of linear mappings from T, X to T,); note that the bundle
TYRxxyT*X — X x )Y is diffeomorphic to the first jet bundle J'F — F,
where F = X x Y is a trivial bundle over X). The action of a map u is

L]u) ::/Xl(:c,u(x),du(:c))w.

In local coordinates 2* such that w = dxA- - -Adz™, critical points of £ satisfy

the Euler-Lagrange equation 3 7, =2 (a% (x,u(z), du(x))) = 68yli (x,u(z),du(x)),
Vi=1,--- k.

Then we set N := X x ) and denoting by 7 : N' — X" the canonical pro-
jection, we use the volume form w ~ 7*w. Any map u can be represented by

2another notation for this set would be DA™T, N, for it reminds that it is a subset of
AT N, but we have chosen to lighten the notation.
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its graph Gy, := {(z,u(z))/z € X} € G¥, (and conversely if G € G then the
condition w)g > 0 forces G to be the graph of some map). For all (z,y) € NV
we also have a diffeomorphism

TYRTIX — G,

v — T(v),

)J\/':D“’ N

(z,y)

where T'(v) is the graph of the linear map v : T,X — T, ). Then if we set
L(z,y,T(v)) :=l(z,y,v), the action defined by (2) coincides with ¢.
Example 3 — Sections of a fiber bundle — This is a particular case of our
setting, where N is the total space of a fiber bundle with base manifold X
The set G¥ is then just the set of smooth sections.

2.1.2 The Legendre correspondence

Now we consider the manifold A"T*AN and the projection mapping II :
A"T*N — N. We shall denote by p an n-form in the fiber A"TN. There
is a canonical n-form 6 called the Poincaré—Cartan form defined on A"T*N
as follows: V(q,p) € A"T*N, VX1, -+, Xy, € T(gp) (A"T*N),

e(q’p)(X1,~ .- ,Xn) ::p(H*X1,~ .- ,H*Xn) = <H*X1 VAR /\H*n,p>,

where IL X, := dll(g ;) (X ). If we use local coordinates (¢%); <<, 00 N,
then a basis of A"T;J\/ is the family (dg®* A --- A dqo‘")1§OLI<___<%§”+,C and
we denote by pa,...a, the coordinates on ATy N in this basis. Then 6 writes

0 := > Pan-—andg™ A -+ A dg®. (3)

Its differential is the multisymplectic form 2 := df and will play the role
of generalized symplectic form.

In order to build the analogue of the Legendre transform we consider the
fiber bundle GrN xn A"T*N := {(q,2,p)/q € N,z € Gry N ~ DZN ,p €
A"TN'} and we denote by Il : Gr“N xn A"T*N — N the canonical

projection. To summarize:

H 4
GroN x v NPT N ——= AnT* A <— M

| \len -

Gr"N 7 Gre N
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We define on Gr“ /N x xr A"T*N the function

W(q, z,p) :== (z,p) — L(q, 2).

Note that for each (g, z, p) there a vertical subspace Vig,zp) C T(q,z,p)(erNxN
A™T*N'), which is canonically defined as the kernel of

A (g2 p)  Tigzp) (GrN xx A"T"N) — TyN.

We can further split Vi, . )

and T,A" TN =~ KerdH(Lq o) Then, for any function F' defined on Gr“ N x zr

A"T* N, we denote respectively by 0F/0z(q, z,p) and OF/0p(q, z,p) the re-
strictions of the differential® dF{, , ) on respectively T, D¥N and T,A" TN .

~ T.DYN®T,A" TN, where T, Dy N ~ KerdIl(!

Instead of a Legendre transform we shall rather use a Legendre correspon-
dence: we write

(¢,2) < (g¢,p) if and only if %—V:(q,z,p):& (4)

Let us try to picture geometrically the situation (see figure 2.1.2): D;”N is

Figure 2: T.Dy N is a vector subspace of A" TN

a smooth submanifold of dimension nk of the vector space A"T,N, which
is of dimension kL. T.DyN is thus a vector subspace of A"T; /. And

nlk!
g—g(q, z) or %—VZV(q7 z,p) can be understood as linear forms on TZD(‘;N whereas
p € A"TyN as a linear form on A"T;N'. So the meaning of the right hand

side of (4) is that the restriction of p at T, D¢ N coincides with g—g(q, z,p):

oL
Pi.ogn = 5-(4,2). (5)

3However in order to make sense of “OF/dq(q, z,p)” we would need to define a “hori-
zontal” subspace of T{g . ») (Gr“N xar A"T*N'), which requires for instance the use of a
connection on the bundle Gr*N xxy A"T*N — N. Indeed such a horizontal subspace
prescribes a inertial law on A, such a law would have a sense on a Galilee or Minkowski
space-time but not in general relativity.

(9,2,p)
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Given (q,2) € Gr*/N we define the enlarged pseudofiber in ¢ to be:
oW
FPy(z):={pe AanN/E(qaZ,p) = 0}.

In other words, p € Py(z) if it is a solution of (5). Obviously P,(z) is not
empty; moreover given some py € P,(z),

L *
p1 € Py(2), <= p1—po € (I.DGN)™ := {p € N"T;N /¢ € T.DN , p(¢) = 0}.
(6)
So P,(z) is an affine subspace of A"T N of dimension (ZT:!)! —nk. Note that
in case where n = 1 (the classical mechanics of point) then dim P, (z) = 1:
this is due to the fact that we are still free to fix arbitrarily the momentum
component dual to the time (i.e. the energy)?.

We now define

Py = U Py(z) CA"T/N, VqeN
zEDg’/\/

and we denote by P := Uzen P, the associated bundle over N'. We also let,
for all (q,p) € A"T*N,

Zy(p)={z € Grfl"/\//p € Py(2)}.

It is clear that Z,(p) # 0 <= p € P,;. Now in order to go further we need
to choose some submanifold M, C P,, its dimension is not fixed a priori.

Legendre Correspondence Hypothesis — We assume that there exists
a subbundle manifold M C P C A"T*N over N where dim M =: M such
that,

o for all ¢ € N the fiber My is a smooth submanifold, possibly with

boundary, of dimension 1 < M —n —k < %Tlck!)!

o for any (q,p) € M, Zy(p) is a non empty smooth connected submani-
fold of Gre N

4a simple but more interesting example is provided by variational problems on maps
u : R? — R2. Then one is led to the multisymplectic manifold A2T*R*. And given any
(q,2) € GrR* the enlarged pseudofiber P,(z) C A*T*R* is an affine plane parallel to
R [(v%v% — v%v%) dat A da? — eijvﬁdyi Adz? +dy' A dy2] @ Rdz' A dz?, where (using the
notations of Example 2) T'(v) = z. For details see Paragraph 2.2.2.
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o if 20 € Zy(p), then we have Zy(p) = {2 € DIN/Vp € TyMy, (2 —
Zo,p> = 0}

Remark — In the case where M = %Tkkl)! +n + k, then M, is an open

subset of A"TyN and so TpM, ~ A"TN. Hence the last assumption of
the Legendre Correspondence Hypothesis means that Z,(p) is reduced to a
point. In general this condition will imply that the inverse correspondence
can be rebuild by using the Hamiltonian function (see Lemma 2.2 below).

Lemma 2.1. Assume that the Legendre correspondence hypothesis is true.
Then for all (q,p) € M, the restriction of W to {q} x Z,(p) x{p} is constant.

Proof — Since Z4(p) is smooth and connected, it suffices to prove that
W is constant along any smooth path inside {(q, z,p)/q, p fixed ,z € Z,(p)}.
Let s — 2(s) be a smooth path with values into Z,(p), then

d%(W(q,z(S),p)) = %—v:(q,z(s),p) <%) —0,

because of (4). [ |

A straightforward consequence of Lemma 2.1 is that we can define the
Hamiltonian function H : M — R by

. OW
H(q,p) :=Wi(q,2,p), where z € Z,(p), ie. E(q, z,p) =0.

Any function f constructed this way will be called Legendre Image
Hamiltonian function. In the following, for all (¢,p) € M and for all
z € DN we denote by

2T, M, oMy, — R
p o — ()
the linear map induced by z on T,M,. Then:

Lemma 2.2. Assume that the Legendre Correspondence Hypothesis is true.
Then?

5The advised Reader may expect to have also the relation “88—7; (¢,p) = f%—]{; (¢,2)”. But

as remarked above the meaning of %—H and ‘?9—1‘ is not clearly defined, because we did not

q
introduce a connection on the bundle Gr* N xx A"T*N. This does not matter and we
shall make the economy of this relation later ! (cf footnote 2)
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(1) Y(q,p) € M and ¥z € Zy(p),

oH
a—p(qu) = 2T, M, (7)

As a corollary of the above formula, 21, r, does not depend on the
choice of z € Zy(p).

(ii) Conversely if (q,p) € M and z € DZN satisfy condition (7), then
z € Zy(p) or equivalently p € Py(z).

Proof — Let (¢,p) € M and (0,p) € T4, M, where p € T, M,. In order to
compute dH, ) (0,p), we consider a smooth path s —— (g, p(s)) with values
into M, whose derivative at s = 0 coincides with (0,p). We can further lift
this path into another one s — (g, 2(s), p(s)) with values into Gry N' x My,
in such a way that z(s) € Z;(p(s)), Vs. Then using (5) we obtain

L MmNy = = (205), () — L{a,p(5)) Do

ds S
= () + (228) — 9o (0,9)E) = (28),
z
from which (7) follows. This proves (i).
The proof of (ii) uses the Legendre Correspondence Hypothesis: consider
2,20 € DyN and assume that zp € Z,(p) and that z satisfies (7). Then by
applying the conclusion (i) of the Lemma to zo we deduce that OH /Ip(q, p) =
20T, M, and thus (z — 20)7,0, = 0. Hence by the Legendre Correspondence
Hypothesis we deduce that z € Z,;(p). [

A further property is that, given (¢,2) € D“N, it is possible to find a
p € Py(%) and to choose the value of H(g,p) simultaneously. This property
will be useful in the following in order to simplify the Hamilton equations.
For that purpose we define, for all h € R, the pseudofiber:

Py (2) = {p € Py(2)/M(a,p) = h}.
We then have:
Lemma 2.3. For all (q,z) € Gr*N the pseudofiber th(z) is a affine sub-

space® of A"T; N parallel to (TZD;L./\/)J'. Hence dim Pl'(z) = dim Py(z) —
1= g1

nlk!

Sagain in the instance of variational problems on maps u : R?> — R? and the multi-
symplectic manifold A*T*R*, for any (g, 2) € Gr*R* the pseudofiber PJ'(z) C A*T*R* is
an affine line parallel to R [(v%vg — v%v%) dat A dx? — eijvﬁdyi Adz” + dy' A dy2], where
T(v) = z. (See also Paragraph 2.2.2.)
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Proof — We first remark that, Vg € N and Vz € DyN, w, belongs to

(TZD;’N)J', because of the definition of DYN. So VA € R, Vp € Py(z), we
deduce from (6) that p + Aw, € P;(2) and thus

H(g,p+ dwg) = (2,04 Awy) — L(q, 2)
= H(g,p) + Az,wq) = H(g,p) + A.

Hence we deduce that Vh € R, Vp € P,(z), 3!\ € R such that
H(g,p + dwy) = h,

so that th(z) is non empty. Moreover if py € P;‘(z) then p; € P;‘(z) if and
only if p; —pp € (TZD;"N)J' N zt, where 2+ := {p € A"TGN /(z,p) = 0}. In
order to conclude observe that (TZD(‘;N )L Nzt = (TZDZ;N )l. [ |

2.1.3 Ceritical points

We now look at critical points of the Lagrangian functional using the above
framework. Instead of the usual approach using jet bundles and contact
structure, we shall derive Hamilton equations directly, without writing the
Fuler-Lagrange equation.

First we extend the form w on M by setting w ~ IT*w, where Il : M — N
is the bundle projection, and we define G¥ to be the set of oriented n-
dimensional submanifolds I' of M, such that wir > 0 everywhere. A conse-
quence of this inequality is that the restriction of the projection II to any
T € G¥is an embedding into A: we denote by II(T") its image. It is clear
that II(I") € G¥. Then we can view I' as (the graph of) a section g — p(q)
of the pull-back of the bundle M — A by the inclusion II(T") C N.

Second, we define the subclass pgA“ - Q\w as the set of I € QA“ such that,
V(q,p) € T, p € Py(T,II(I")) (a contact condition). [As we will see later it
can be viewed as the subset of " € C?“’ which satisfy half of the Hamilton
equations.] And given some G € G¥, we denote by p@ C pg“’ the family of
submanifolds I' € pG¥ such that II(T") = G and we say that pG is the set of
Legendre lifts of G. We hence have p@’ = UGngp@.

Lastly, we define the functional on Q\“

T[T = /Fe — Hw.
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Properties of the restriction of 7 to p@’ — First we claim that
Ir) = L[G], VG e G¥ VI € pG. (8)

This follows from

[o-mo = [ Gapa)e - s
= f(<ZGap(Q)>_<zGap(Q)>+L(QaZG))W—/GL(QaZG)W7

G

where G — M : ¢ — (q,p(q)) is the parametrization of I' and where z¢g
is the unique n-vector in Dy (for ¢ € G) which spans T,G.

Second let us exploit relation (8) to compute the first variation of Z at any
submanifold I' € pG, i.e.a Legendre lift of G € G¥. We let £ € (N, TN)
be a smooth vector field with compact support and G, for s € R, be the
image of G by the flow diffeomorphism e*. For small values of s, Gy is
still in G¥ and for all ¢, := e*¢(q) € G, we shall denote by z, the unique
n-vector in D;JSJ\/' which spans T, G;. Then we choose a smooth section
(s,9s) — p(q)s in such a way that p(q)s € Py, (2s). This builds a family of
Legendre lifts I's = {(¢s,p(q)s)}. We can now use relation (8): Z[I's] = L[G]
and derivate it with respect to s. Denoting by E € T(q,p(q)M the vector
d(qs,p(q)s)/ds|s=0, We obtain

d d

OT[)(€) = - ZTuljsm0 = -

Variations of 7 along 7, M, — On the other hand for all I' € QA“ and for
all vertical tangent vector field along I' ¢, i.e.such that dll,,y(¢) = 0 or
such that ¢ € Ty)M, C T{, ,) M, we have

oH

sire) = | (<zH(r> 0= T an(©) v (10)

where 2y is the unique n-vector in DYAN (for ¢ € G(I')) which spans
T,II(T"). Note that in the special case where I' € pé\w, we have 2y € Z4(p),
so we deduce from (7) and (10) that 0Z[I'}(¢) = 0. And the converse is true.
So pé\“’ can be characterized by requiring that condition (10) is true for all
vertical vector fields (.

L[Gs)js=0 = 0L[G(E). (9)

Conclusion — The key point is now that any vector field along I' can be
written f + (, where 5 and ¢ are as above. And for any G € G* and for all
e pG the first variation of 7 at I' with respect to a vector field § + ¢,
where locally ¢ lifts ¢ € T,N and ¢ € T,M,, satisfies

ST[T)(€ +¢) = SL[GI(E). (11)
We deduce the following.
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Theorem 2.1. (i) For any G € G¥ and for all Legendre lift T' € p@, Gisa
critical point of L if and only if I' is a critical point of T.

(i) Moreover for allT' € @0, if ' is a critical point of T then I" is a Legendre
lift, i.e.T € pH/(F) and II(T") is a critical point of L.

Proof — (i) is a straightforward consequence of (11). Let us prove (ii):
if I € G¥ is a critical point of Z, then in particular for all vertical tangent
vector field ¢ € T, Mg, 6Z[I'](¢) = 0 and by (10) this implies (zr(r))7sm, =
(0H/0p)(q,p). Then by applying Lemma 2.2—(ii) we deduce that zrry €
Z4(p). Hence I is a Legendre lift. Lastly we use the conclusion of the part
(i) of the Theorem to conclude that G(I) is a critical point of L. [

Corollary 2.1. LetT' € QA“’ be a critical point of T and let 1) : T' — A"T*N
be a smooth map satisfy:

(i) ML o = Idr (so 1 is a section of the pull-back of A"T*N by the
inclusion map v : T — A"T*N );

(ii) ¥(g,p) € T, ¥(q,p) =~ ¥(q) € (T.DLN) " (where z € Zy(p))-
Then T := {(¢,p+ ¥(q))/(g,p) €T} is another critical point of T.

Proof — By using Theorem 2.1-(ii) we deduce that I" has the form I' =
{(¢,p)/q € TI(T'), p € Py(zryry)} and thus T' = {(g,p + ¥(q))/q € IIT),p €
Py(zr¢ry)}. This implies, by using (6), that I e pH/(F); then T is also a
critical point of Z because of Theorem 2.1-(i). |

Note that, for any constant h € R, by choosing 1(q) = (h—H(q,p)) wq
(see the proof of Lemma 2.3) in the above Corollary we deform any critical
point I' of Z T’ € G¥ into a critical point ' of T contained in M" := {m €
M/H(m) = h}.

Definition 2.1. An Hamiltonian n-curve is a critical point I' of T such
that there exists a constant h € R such that T' ¢ M".

2.1.4 Hamilton equations

We now end this section by looking at the equation satisfied by critical points
of 7. Let I' € G¥ and £ € I'(M, T M) be a smooth vector field with compact
support. We let e*¢ be the flow mapping of ¢ and I’y be the image of T
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by e%. We let X be an n-dimensional manifold diffeomorphic to I and we

denote by
o: (0,l)xXx — M
(s,x) —  o(s, )

a map such that if v5 : z — o (s, ) then v = =g is a parametrization of I,
~s is a parametrization of I'y and = (o(s,7)) =& (o(s,7)). Then

IO =TI0) = [ 250 He) =770~ o)

= / 0" (0 — Hw) = / d(o*(0 — Hw))
((0,5)x X) (0,8)x X
- o*(Q — dH A w)).

(0,s)xX
Thus
limM = lim1 o (Q—dH ANw)
s=0 s “Hog (0,8)x X
= —JU*(Q—d’H/\w):/’y*(fJ(Q—d’H/\w))
x Os x

= /FgJ (Q—dH Aw).
We hence conclude that I' is a critical point of 7 if and only if Ym € T,
V¢ e TyM, VX € A"T,,T,
EJQQ=—dHAW)(X)=0 <= X JIJ(Q-dHAwWw)() =0.
We thus deduce the following.
Theorem 2.2. A submanifold I" € G¥ is a critical point of T if and only if

Vm € I,VX € A"T, T, X J(Q—dHAw)=0. (12)

Moreover, if there exists some h € R such that T ¢ M" (i.e.T is a Hamil-
tonian n-curve) then

¥YmeT, 31X € A"T,,I, X 1Q=(—1)"dH. (13)

Recall that, because of Lemma 2.3 and Corollary 2.1, it is always possible
to deform a Hamiltonian n-curve I' — T in such a way that H be constant
on I and II(T") = II(T).

Proof — We just need to check (13). Let I' ¢ M". Since dHr = 0,
VX € AT, T, X JdH ANw = (—1)"(X,w)dH.. So by choosing the unique
X such that (X,w) = 1, we obtain X 1dH Aw = (—1)"dH. Then (12) is
equivalent to (13). [ |
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2.2 Some examples

We pause to study on some simple examples how the Legendre correspon-
dence and the Hamilton work. In particular in the construction of M we let
a large freedom in the dimension of the fibers M, having just the constraint

that dim M, < dim P, = (T;Tk]?!. This leads to a large choice of approaches
between two opposite ones: the first one consists in using as less variables as
possible, i.e. to choose M to be of minimal dimension (for example the De
Donder—Weyl theory), the other one consists in using the largest number of
variables, i.e.to choose M to be equal to the interior of P (the advantage

will be that in some circumstances we avoid degenerate situations).

We focus here on special cases of Example 2 of the previous Section: we
consider maps u : X — ). We denote by ¢* = z#, if 1 < u < n, coordinates
on X and by ¢"" =4, if 1 <i < k, coordinates on ). Recall that Vo € X,
Vy € Y, the set of linear maps v from T;X& to T,,) can be identified with
T,Y ®T;X. And coordinates representing some v € T,) ® Ty X’ are denoted
by vf“ in such a way that v = > >, UL&?,Z’ ® dx*. Then through the
diffeomorphism T, @ Ty X 5> v — T(v) € Gra’y)/\/ (where N = X x )
we obtain coordinates on Gr;"/\/ ~ D;’N. We also denote by e := pj..n,

Ho_ H1p2
Dy = Plo(u=1)i(ut1)-ms Doty 7= Plo(pin—1)i1 (1 +1)-(2—1)iz(po+1)--n> €tC., SO

that
n . .
Q=deNw+ Z Z Z dpfll,,,i’;] A w,zjl...zﬁj,

J=1 pr<o-<pj iy <o+ <ij

where, for 1 <p <n,

w = da’:l/\"’/\dmn

Remark — It can be checked (see for instance [9]) that, by denoting by p*
all coordinates pZ 1: 7 for j > 1, the Hamiltonian function has always the

form H(q,e,p*) = e+ H(q,p*).

2.2.1 The De Donder—Weyl formalism

In the special case of the De Donder—Weyl theory, is the submanifold
of ATy N defined by the constraints pit M =0, for all j > 2 (Observe that

i1
these constraints are invariant by a changé of coordinates, so that they have

DDW
My
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an intrinsic meaning.) We thus have

QDDW:de/\w—I—Zdef/\wL..
w %

Then the equation dW/9z(q, z,p) = 0 is equivalent to pt' = dl/ 81}2((], v), SO
that the Legendre Correspondence Hypothesis holds if and only if (¢, v) —
(¢,0l/0v(q,p)) is an invertible map. Note that then the enlarged pseud-
ofibers P,;(z) intersect MC?DW 8?;1,3 (q, v)w@/e € R}. Sosince
dimA" TN = (T;T,ﬁ)!, dimMPPW = nk+1 and dimP,(z) = (m'—kk')' —nk, the
Legendre Correspondence Hypothesis can be rephrased by saying that each

Py(z) meets MPPW transversally along a line. Moreover Zg(ew + pif w/ﬁ)

is then reduced to one point, namely 7'(v), where v is the solution to

Pl = W L (q,v).

For more details and a description using local coordinates, see [9].

2.2.2 Maps from R? to R? via the Lepage-Dedecker point of view

Let us consider a simple situation where X = Y = R? and M C A’T*R*.
It corresponds to variational problems on maps v : R?> — R?. For any
point (z,7y) € R, we denote by (e, p/'“ ) the coordinates on A*T(, ,\R?, such
that 6 = edz! A da? + pldy® A da? + p2dat A dy' + rdy' A dy?. An explicit
parametrization of {z € D R4/w(z) > 0} is given by the coordinates

(t,v},) through
0 0 o) 1o 19 O 0

0
=1 = Ao + eV, = A — A —,
z 501 9.2 +te v“@y 57 + (viv5 v2v1)8 o7

where €2 = —€?! =1 and €' = €22 = 0. One then finds that (TZD§R4)J'
R [(v%v% — vivg) dzt A da? — eijvidyi Adz” + dyt A dyQ] , Whereas (TZD;“R4)J'
is (T.D2RY)" @ Rda! A da?.

We deduce that the sets P;(z) and P;‘(z) form a family of non parallel affine
subspaces so we expect that on the one hand these subspaces will intersect,
causing obstructions there for the invertibility of the Legendre mapping, and
on the other hand they will fill “almost” all of AQT&y)R‘l, giving rise to the
phenomenon that the Legendre correspondence is “generically everywhere”
well defined.
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Example 4 — The trivial variational problem — We just take [ = 0, so
that any map map from R? to R? is a critical point of ¢ ! This example is
motivated by gauge theories where the gauge invariance gives rise to con-
straints. In this case the sets P,(z) are exactly (TZD;JIR‘l)L and U, P(z) is
equal to Py := {(e,pl,r) € A*TR*/r # 0} U{(e,0,0)/e € R}. If we assume
that r # 0 and choose M, = {(e,p!’,7) € AQT;R4/T # 0}, then
1,2 1,2
P1P3 — PopP

H(q,p) = e — %
One can then check that all Hamiltonian 2-curves are of the form
I'={(v,u(),e(x)dz' Ada® + eupl (z)dy’ Ada” +r(z)dy' A dy?®) Jz € R?},
where u : R — R? is an arbitrary smooth function, r : R? — R* is also an
arbitrary smooth function, e(x) = r(z) (g—;i(x)g—gi(x) — g—;;(@g—;;(@) + h,

(for some constant h € R) and pf'(z) = —r(w)eije“”gT“Z(x).

Example 5 — The elliptic Dirichlet integral (see also [9]) — The La-
grangian is 1(z,y,0) = L|of? + B(ulod — vu}) where” [of? = (v})? + (0})? +
(v?)2 + (v3)2. We then find that

1 |19|2 1,2 1,2
H(g,p) =e+ T—(r—B)2 <7 + (r — B)(p1p2 — p2pi) | -
Example 6 — Mazwell equations in two dimensions — We choose l(z,y,v)

—% (v3 — v%)Q, so that by identifying (u!,u?) with the components (A1, Az)

of a Maxwell gauge potential, we recover the usual Lagrangian [(dA) =

2
—i > o (‘9‘4” 8‘4“) for Maxwell fields without charges. We then obtain

OxH ~ OV

Hlgp) = e+ (pb +p1)* —4pip;  1(ps —p})°
’ 4r 4 24r

Conclusion — It is worth looking at the differences between the Lepage—
Dedecker and the De Donder—Weyl theories through these examples. Indeed
the De Donder—Weyl theory can be simply recovered by letting » = 0. One
sees immediately that for the trivial variational problem this forces pip3 —
p3p? to be 0: actually a more careful inspection shows that all pseudofibers
intersect along p; = 0 so that all these components must be set to 0 in the
De Donder—Weyl theory. In the example of the elliptic Dirichlet functional
no constraint appears unless B = £1. And for the Maxwell equations all
pseudofibers intersect along the subspace pi + p? = pi = p2 = 0 and so we
recover the constraints already observed in [14] and [9] in the De Donder—
Weyl formulation.

"There B could be interpreted as a B-field of a bosonic string theory.
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2.3 Invariance properties along pseudofibers

We have seen that for all g € N, for h € R and z € Df;/\/ , the pseudofiber

th(z) is an affine subspace of A"T;\ parallel to (TZD;’./\/ )J'. Let us assume
that M, is an open subset of A"Ty N: then the Legendre Correspondence
Hypothesis implies that V(p,q) € M, Z,(p) is reduced to one point that we
shall denote by Z(q,p). Hence we can define the distribution of subspaces
on M by:

oL
v(va) €M, Lz,p) = (TZ(‘LP)DQN) :

It is actually the subspace tangent to the pseudo-fiber passing through (g, p).
In Section 3.3 we will propose a generalization of the definition of Lg’p)
which makes sense on an arbitrary multisymplectic manifold. We will prove
in Section 4.3 that this generalized definition coincides with the first one in
the case where the multisymplectic manifold is A"T*N. Lastly Lemma 2.3

and Corollary 2.1 can be rephrased as

Theorem 2.3. Let M be an open subset of A"T*N and let H be a Legendre
image Hamiltonian function on M (by means of the Legendre correspon-
dence). Then

v(Qap) E M, V¢ € Lz_;,p)v dH(q,p) (5) =0. (14)

And if ' € G is a Hamiltonian n-curve and if & a vector field which is a
smooth section of L™, then denoting by €% the flow mapping of &

Vs € R, small enough ,e**(T) is a Hamiltonian n—curve. (15)

2.4 Gauge theories

The above theory can be adapted for variational theories on gauge fields (con-
nections) by using a local trivialization. More precisely, given a g-connection
V? acting on a trivial bundle with structure group & (and Lie algebra g)
any other connection V can be identified with the g-valued 1-form A on the
base manifold X such that V = VY 4 A. We may couple A to a Higgs field
p: X — &, where ® is a vector space on which & is acting. Then any
choice of a field (A, ¢) is equivalent to the data of an n-dimensional subman-
ifold ' in M := (g ® T*X) x ® which is a section of this fiber bundle over
X. An example of this approach is the one that we use for the Maxwell field
at the end of this paper.
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But if we wish to study more general gauge theories and in particular con-
nections on a non trivial bundle we need a more general and more covariant
framework. Such a setting can consist in viewing a connection as a g-valued
1-form a on a principal bundle F over the space-time satisfying some equiv-
ariance conditions (under some action of the group &). Similarly the Higgs
field, a section of an associated bundle, can be viewed as an equivariant map
¢ on F with values in a fixed space. Thus the pair (a,¢) can be pictured
geometrically as a section I, i.e. a submanifold of some fiber bundle N over
F, satisfying two kinds of constraints:

e I' is contained in a submanifold N (a geometrical translation of the
constraints “the restriction of a; to the subspace tangent to the fiber
Fris —dg-g~1'”) and

e I' is invariant by an action of & on A/ which preserves Nj.

Within this more abstract framework we are reduced to a situation similar to
the one studied in the beginning of this Section, but we need to understand
what are the consequence of the two equivariance conditions. (In particular
this will imply that there is a canonical distribution of subspaces which is
tangent to all pseudofibers). This will be done in details in [12]. In particular
we compare this abstract point of view with the more naive one expounded
above.

3 Multisymplectic manifolds

We now set up a general framework extending the situation encountered in
the previous Section.

3.1 Definitions

Recall that, given a differential manifold M and n € N a smooth (n+1)-form
Q on M is a multisymplectic form if and only if (i)  is non degenerate,
ie.Vm € M, V¢ € Tj,yM, if € 1, = 0, then £ = 0 (ii) Q is closed,
i.e.d) = 0. And we call any manifold M equipped with a multisymplectic
form € a multisymplectic manifold. (See Definition 1.1.) In the following,
N denotes the dimension of M. For any m € M we define the set

DM M = {X; A AXp € NTuM/X1, X, € TuMJ,

of decomposable n-vectors and denote by D" M the associated bundle.



588 COVARIANT HAMILTONIAN FORMALISM ...

Definition 3.1. Let H be a smooth real valued function defined over a mul-
tisymplectic manifold (M, ). A Hamiltonian n-curve I' is a n-dimensional
submanifold of M such that for any m € T, there exists a n-vector X in
AT, T which satisfies

X 1Q=(-1)"dH.

We denote by EM the set of all such Hamiltonian n-curves. We shall also
write for allm € M, [X|/t :={X ¢ D’ M/X 1Q = (-1)"dH,,}.

A Hamiltonian n-curve is automatically oriented by the n-vector X in-
volved in the Hamilton equation. Remark also that it may happen that
no Hamiltonian n-curve exist. An example is M = A’T*R?* with Q =
ZlSu<u§4 dpuy N dgt A dg” for the case H(q,p) = pi2 + p3a. Assume that
a Hamiltonian 2-curve I" would exist and let X : (t!,¢%) — X (t',t2) be a
parametrization of I' such that g%f A g%g 1Q = (=1)2dH. Then, denoting by
X, == 8, we would have dz# A dz” (X1, X) = jp—ﬁ which is equal to £1 if
{u,v} = {1,2} or {3,4} and to 0 otherwise. But this would contradict the
fact that X7 A X5 is decomposable. Hence there is no Hamiltonian 2-curve

in this case.

Note that beside the the Lepage-Dedecker multisymplectic manifold (A"T*N, Q)
studied in the previous Section, other examples of multisymplectic manifolds
arises naturally as for example a multisymplectic structure associated to the

Palatini formulation of pure gravity in 4-dimensional space-time (see [10],
[11], [17]).

In the following we address questions related to the following general prob-
lematic, set in the spirit of the general relativity: assume that a field theory
(and in particular including a space-time description) is modelled by a mul-
tisymplectic manifold (M, ) and possibly a Hamiltonian H. How could we
recover its physical properties, i.e. understand how space-time coordinates
merge out, how momenta and energy appear, without using ad hoc hypothe-
ses 7 We probably do not know enough to be able to answer such questions
and in the following we will content ourself with partial answers.

3.2 The notion of r-regular functions

This question is motivated by the search for understanding space-time coor-
dinates. One could characterize components of a space-time chart as func-
tions which: (i) are defined for all possible dynamics, (ii) allow us to separate
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any pair of different points on space-time. The easiest way to fulfill the first
requirement is to assume that any coordinate function is obtained as the
restriction of a function f : M — R on the Hamiltonian n-curve describ-
ing the dynamics. The infinitesimal version of the second requirement is
then to assume that the restriction of the n functions chosen f!,---, f” on
any Hamiltonian n-curve is locally a diffeomorphism. This motivates the
following

Definition 3.2. Let (M, ) be a multisymplectic manifold and H € C*>°(M)
a Hamiltonian function. Let 1 < r < n be an integer. A function f €
CYM,R") is called r-regular if and only if for any Hamiltonian n-curve
[' C M the restriction fir is a submersion.

The dual notion is:

Definition 3.3. Let H be a smooth real valued function defined over a mul-
tisymplectic manifold (M,Q). A slice of codimension r is a cooriented
submanifold ¥ of M of codimension r such that for any T € ™, ¥ is trans-
verse to I'. By cooriented we mean that for each m € X, the quotient space
TnM/T, % is oriented continuously in function of m.

Indeed it is clear that the level sets of a r-regular function f: M — R"
are slices of codimension r.
Example 7 — The case when M = A"T*(X x )) and that H(z,y,p) =
e+ H(x,y,p*) as in Section 2.2 —Let I1y : M — X be the natural projec-
tion. Then for any function ¢ € C'(X,R") without critical point (i.e. dip is of
rank r everywhere) the function polly : M — R" a r-regular function. In-
deed because of the particular dependance of H on e a Hamiltonian n-curve
is always a graph over X. A particular case is when r» = 1, then any level
set ¥ of ¢ is a codimension 1 slice and a (class of) vector 7 € T,, M/T,,,¥ is
positively oriented if and only if dp(7) > 0.

Note that in this framework an event in space-time can be represented by a
slice of codimension n. The notion of slice is also important because it helps
to construct observable functionals on the set of solutions £7. Indeed if F
is a (n — 1)-form on M and if ¥ is a slice of codimension 1 we define the
functional denoted symbolically by fE F:&"+—— R by:

I — F.
snr

Here the intersection X NI is oriented as follows: assume that o € T);, M is
such that o7, »» = 0 and a > 0 on T, M/T},X and let X € A"T,,I" be posi-
tively oriented. Then we require that X L o € A"~!T,, (X NT) is positively
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oriented. We can further assume restrictions on the choice of F' in order
to guarantee the fact that the resulting functional is physically observable.
Such a situation is achieved if for example F' is so that dFz, r depends only
on dH,, (see [11] for details).

In the next Section we will study a characterization of r-regular functions in
the special case where M = A"T*N.

3.3 Pataplectic invariant Hamiltonian functions

In Section 2.3 we gave a definition of the subspaces tangent to the pseud-
ofibers L/t which was directly deduced from our analysis of pseudofibers.
In Section 4.3 we will prove that an alternative characterization of Lt in
A"T*N exists and is more intrinsic. It motivates the following definition:
given an arbitrary multisymplectic manifold (M, Q) and a Hamiltonian func-
tion H : M — R and for all m € M we define the generalized pseud-
ofiber direction to be

L
1 = (T DM Q)
= {£e T, M/VX € [X]It, VX € Tx DM, € 1Q(6X) = 0}.
(16)
And we write L™ := Uem LY C TM for the associated distribution of
subspaces.

Note that if we choose an arbitrary Hamiltonian function H, there is no
reason for the conclusions of Theorem 2.3 to be true, unless we know that H
was created out of a Legendre correspondence. This motivates the following
definition®:

Definition 3.4. We say that ‘H is pataplectic invariant if

(i) V€ € LI, dHom(€) = 0

(ii) for all Hamiltonian n-curve I' € EM, for all vector field & which is a
smooth section of L™, then, for s € R sufficiently small, Ty := e%(I")
1s also a Hamiltonian n-curve.

8In the following if ¢ is a smooth vector field, we denote by e*¢ (for s € I, where I is an
interval of R) its flow mapping. And if E is any subset of M, we denote by E; := e*¢(E)
its image by e®¢.



F. HELEIN & J. KOUNEIHER 591

In [11] we prove that, if H is pataplectic invariant and if some further
hypotheses are fulfilled, functionals of the type fz F' are invariant by defor-
mations along L.

4 The study of A"T*N

In this Section we analyze in details the special case where M is an open
subset of A"T*N. Since we are interested here in local properties of M,
we will use local coordinates m = (q,p) = (¢%, Pay--a,) O M, and the
multisymplectic form reads Q = dpay-a, NAg*T N -+ Ndg®. For
m = (q,p), we write

deH = Z 8_7qua’ dyH = Z aidpal---am

5]
1<a<n+k q 1< <-<an<n+k Pay--an

ap<-<onp

so that dH = d,/H + d,’H.

4.1 The structure of [X]"

Here we are given some Hamiltonian function H : M — R and a point
m € M such that [X]7¢ # 0 and® dyH,, # 0. Given any X = Xy A---AX,, €
D, M and any form a € T,;, M we will write that ajx # 0 (resp. a)x = 0)
if and only if (a(Xy),---,a(X,)) # 0 (resp. (a(Xi),---,a(X,)) =0). We
will say that a form a € T M is proper on [X] if and only if it’s either
a point-slice

VX € [X]%7 a|x 7é 0, (17)
or a co-isotropic
VX € X)), ax =0. (18)

We are interested in characterizing all proper 1-forms on [X]*. We show in
this section the following.

Lemma 4.1. Let M be an open subset of A"T*N endowed with its standard
multisymplectic form €, let H : M — R be a smooth Hamiltonian function.

Let m € M such that dyHy, # 0 and [X]It £ 0. Then
(i) the n+k forms dq',--- ,dg"™* are proper on [X]'t and satisfy the follow-

m

ing property: ¥YX € [X|1 and for all Y,Z € T,, M which are in the vector

m

observe that, although the splitting dH = d,H + dpH depends on a trivialization of
A"T* N, the condition dpH. # 0 is intrinsic: indeed it is equivalent to de‘Kerde #0,
where I1: A"T*N — N.
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space spanned by X, if dg*(Y) =dq*(Z), Va=1,--- ,n+k, then Y = Z.
(i) Moreover for all a € Tj;, M which is proper on [X]!t we have

m
n+k
INER, HMar, + ,antk) ER™F o =AdHp + > agdg™. (19)
a=1
(iii) Up to a change of coordinates on N we can assume that dq',--- ,dq"

are point-slices and that dg™*',---  dg"*" satisfy (18). Then a € T*M is a
point-slice if and only if (19) occurs with (a1,--- ,a,) # 0.

Proof — First step — analysis of [X]’t. We start by introducing some
extra notations: each vector Y € T,,, M can be decomposed into a “vertical”
part YV and a “horizontal” part Y as follows: for any Y = Zl§a§n+k YO‘%—I—

[e) H ._ a_0 V.
Zl§a1<---<an§n+k‘ Yal---an 8pal---an’ set Y 1= Zl§a§n+ky e and YV =
0 —
Zl§a1<---<an§n+k Yal"'aniapalman et X =X AN X, € D;ln (A”T*N)

and let us use this decomposition to each X,: then X can be split as
X = Z?:o X(j)» where each X(;) is homogeneous of degree j in the vari-
ables X/Y and homogeneous of degree n — j in the variables X f .

Recall that a decomposable n-vector X is in [X]7 if and only if X 1Q =
(—1)"dH. This equation actually splits as

Xy 4 Q= (~1)"d,H (20)

and
Xy Q= (—1)"dH. (21)

Equation (20) determines in an unique way X € DZ;N . The condition
dyH # 0 implies that necessarily!’ Xy # 0. At this stage we can choose

a family of n linearly independent vectors X7, ---, X9 in T,N such that
XP A+ AX) = X). Thus the forms d¢* are proper on [X]¥, since their

restriction on X are fully determined by their restriction on the vector sub-
space spanned by X7, .- XY Furthermore the subspace of T, M spanned
by X is a graph over the subspace of T,V spanned by X (0)- This proves the
part (i) of the Lemma..

Proving (ii) and (iii) requires more work. First we deduce that there exists a
unique family (X1, --- , X,,) of vectors in T}, M such that Yy, Xf = XS and

9Note also that (20) implies that d,H must satisfy some compatibility conditions since
X(0) is decomposable.



F. HELEIN & J. KOUNEIHER 593

X1 A+ ANX, =X. And Equation (21) consists in further underdetermined
conditions on the vertical components X, o, ..., of the X,’s, namely

[ SRERe 7 OH
2. 2 OF T Xuaran =55

nooop<---<ap

where N
Cg,al...an — Z 6gu(_1)u+yA?.1.:ﬁ-?zz.an
v
and
Xoboooo Xo
A = :
Xpr oo X

Step2 — Local coordinates. To further understand these relations we choose
suitable coordinates ¢® in such a way that d,H,, = dpi..., and

X —

i 8—(]“ for p=1,....,n, (22)

so that (20) is automatically satisfied. In this setting we also have

H B n<pB

and so (21) is equivalent to

0
Xuim = —a—;i, for1<pu<n
(23)
Il FX _ o f 1<8< k
(—1) ;(—) plefieend = ik orn+1<38<n+k.
Let us introduce some notations: I := {(aq, - ,a,)/1 < ag < -+ <
an§n+k}) -[0 = {(177n)}) I* = {(ala"'uanfluﬂ)/lgal<”’<

ap—1 <nn+1<pg<n+k}, I"™:=1\ (IOUI*). We note also M, :
Z(oq,m,an)el* Xppon ooy 04700 Ry, = Z(a1,~~~,an)el** X0, 0477 and
My 5 = (=1)"** X, 1..0.n3- Then the set of solutions of (20) and (21)
satisfying (22) is
0 oH 0

9t gt Opr.m
where the components of I, are arbitrary, and the coefficients of M, are
only subject to the constraint

OH

T
ZMu,ﬁ__a—q,@’ forn+1<8<n+k. (25)
n

+ M, + Ry, (24)
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Step 3 — The search of all proper 1-forms on [X]It. Now let a € T/, M and
let us look at necessary and sufficient conditions for a to be a proper 1-form
on [X]¥. We write

a = Z aadq + Z almandpal---an-

a1 <---<ap

k(o aqeam
Let us write a* := (a )(a1,---,an)61*’ a

and

+ (M, a") + (Ry,a™).

Lemma 4.2. Condition (17) (resp. (18)) is equivalent to the two following
conditions:

a*=a"=0 (26)
and OH OH
O gl _0) 9
(1= Far o= SR ) 40 (e =) (21

Proof — We first look at necessary and sufficient conditions on for a to

be a point-slice, i.e. to satisfy (17). Let us denote by A= ( ay, — %ﬁal ”)

and M := (M), R = (Ry.),- We want conditions on a®"*" in order that
the image of the affine map (M, R) — A(M,R) := A+ (M,a*) + (R, a**)
does not contain 0 (assuming that M satisfies the constraint (25)). We see
immediately that if a™ would be different from 0, then by choosing M =0
and R suitably, we could have A(M R) = 0. Thus a** = 0. Similarly,
assume by contradiction that a* is different from 0. Up to a change of
coordinates, we can assume that (al“'ﬁ"'”(’“‘“))1 <y<n 7 0. And by another

change of coordinates, we can further assume that a2+ = ) # 0 and
ab=7n(ntl) — 0 if » > 1. Then choose MY 3 =0if 3> n+2, and

1 1 1 1
Ml n+1 M2 n+1 M3 n+l Mn2,n+1 t1 to tg3 -0 Uy
Ml,’ﬂJrl M2,TL+1 MS,’FL+1 e M’FL,TLJrl 0 S 0 oo 0

n n n n
Ml,’ﬂJrl M2,TL+1 MS,’FL+1 A Mn’n+1 O 0 0 A O
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where s = —t;—H/0q"*!. Then we find that A, (M, R) = A,+(—1)"*"Xt,,
so that this expression vanishes for a suitable choice of the ¢,’s. Hence we get
a contradiction. Thus we conclude that a* = 0 and A # 0. The analysis of

1-forms which satisfies (18) is similar: this condition is equivalent to a* =0
and A =0. |

Conclusion. We translate the conclusion of Lemma 4.2 without using local
coordinates: it gives relation (19). [ |

4.2 Slices and r-regular functions

As an application of the above analysis we can give a characterization of
r-regular functions. We first consider the case r = 1.

Indeed any smooth function f : M — R is 1-regular if and only if Vm € M,
dfp, is a point-slice. Using Lemma 4.2 we obtain two conditions on df,: the
condition (26) can be restated as follows: for all m € M there exists a real
number A(m) such that d, f, = A(m)d,H,,. Condition (27) is equivalent to:
o, - ,an) €1, < pu<n,

OH of

B (m) of OH
" OPaya, 0q°r

B 0oy -aum (m) Oqr

{H, f1a, " (m): (m) (m) # 0.
(28)
[Alternatively using Lemma 4.1, df,, is a point-slice if and only if I\(m) €
R, a1, - ,anik) € R such that df, = A(m)dH,, + Zgi]f aqdg® and
(a1,--+,an) # 0.] Now we remark that d,f,, = A(m)d,H,, everywhere if
and only if there exists a function J? of the variables (¢,h) € N x R such

~

that f(q,p) = f(q,H(q,p)). So we deduce the following.

Theorem 4.1. Let M be an open subset of A"T*N endowed with its stan-
dard multisymplectic form Q, let H : M — R be a smooth Hamiltonian
function and let f : M — R be a smooth function. Assume that dyH # 0
and [ X]T # () everywhere. Then f is 1-regqular if and only if there exists a
smooth function f: N x R — R such that

~

fla,p) = f(q,H(q,p)), Y(g,p) e M

and VYm € M,

3(0&1,"‘ ,Oén)GI,EHS/JSTL, {H7f alman(m)#o'

Ap
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By the same token this result gives sufficient conditions for a hypersurface
defined as the level set f~1(s) ;= {m € M/f(m) = s} of a given function to
be a slice: it suffices that the above condition be true along f~!(s).
Example 8 — We come back here to critical points u : X — ) of a La-
grangian functional [. We use the notations of Section 2.2 and denote by p*
the set of coordinates pfllluj for j > 1, so that H(q, e,p*) = e+ H(q,p*). Let
us assume that, Vg € N'= X x Y, there exists some value p{ of p* such that
O0H/0p*(q,pf) = 0. Note that this situation arises in almost all standard
situation (if in particular the Lagrangian I(z,u,v) has a quadratic depen-
dence in v). Assume further the hypotheses of Theorem 4.1 and consider a 1-

~

regular function f € C*°(M,R). We note that f(q,p) = f(q, H(g,p)) implies
that {H, f}21 (g, p) = M (g p) 83{; (¢, H(q,p)). Now for all (¢,h) €

" Opaj--an

N x R, let p§ be such that 0H/dp*(q,p§) = 0 and let eg := h — H(q,pg).
Since g—;f(q, e, py) = 0 and %—73 =1, condition (28) at m = (g, eg, p{;) means

that 3p with 1 < p < n such that 22 (q,h) = 2L-(¢,H(q, e, p§)) # 0. This
singles out space-time coordinates: they are the functions on M needed
to build slices.

We now turn to the case where 1 < r < n. We consider a map f =
(f,---, f7) from M to R” and look for necessary and sufficient conditions
on f for being r-regular. We still assume that dyH # 0 and [X]" # 0.
We first analyze the situation locally. Given a point m € M, the property
“Xe X = df m|x is of rank 77 is equivalent to:

Y(t, -, t,) e RT\ {0}, Xe[X|"= Ztidffn‘x £ 0.
=1

Hence by using Lemma 4.1 we deduce that the property X € [X]" = rank

dfmx =7 is equivalent to

o Y(t1, ;) € R\ {0}, IN(m) € R, S, tidy fi, = A(m)dpHyn. And
then one easily deduce that IA!(m),--- ,\"(m) € R, such that A\(m) =
2 i1 tiX'(m).

o V(t,---,t,) € RIN\{0}, I, -+ ) € [, < pp <, {H, 300 tif1}olon
(m) # 0.

Now the second condition translates as V(t1,--- ,t,) € R"\{0}, I(a1, -+ ,an) €

I,31 < p <n,
Z’" OH oft ., OH
tzap (8q% —A 8q%> 7 0.

i=1 HLran
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This condition can be expressed in terms of minors of size 7 from the matrix
(a?:u -\ 8311 )Z o For that purpose let us denote by

O

{{Hafla"'vfr}}:: Z Z

1<or<<an<ntk 1<pr <-<pr<n

0 0 0
A Ao N—m . d /\dl/\.../\dT da---a A% A - - Adg®er .
<8pa1---an dq*m aqaur’ H f if > Pa-a, NG q

We deduce the following.

Proposition 4.1. Let M be an open subset of A"T*N endowed with its
standard multisymplectic form Q, let H : M — R be a smooth Hamiltonian
function and let f : M — R" be a smooth function. Let m € M and
assume that dyH # 0 and [X]™ # 0 everywhere. Then X € [X]" = df,,,x
is of rank v if and only if

e IN(m), -+ ,N'(m) eR, V1 <i<r, dyfl, = XN(m)dyH.

b {{H7f17”' 7fr}}(m)?é0

And we deduce the global result:

Theorem 4.2. Let M be an open subset of A"T*N endowed with its stan-
dard multisymplectic form Q, let H : M — R be a smooth Hamiltonian
function and let f : M — R" be a smooth function. Assume that d,H # 0
and [X]Tt # 0 everywhere. Then [ is r-reqular if and only if there exists

~

a smooth function f : N x R — R" such that f(q,p) = f(q, H(q,p)) and
vaMy {{valv"' ’fr}}(m) 7&0

4.3 Generalized pseudofibers directions

We are now able to prove the equivalence in (an open subset of) M = A"T*N
between the two possible definitions of L¥: either (TZDZ;N )l or

1
(T[Xm DM Q)

.f H _
={§ €TiypM/ VX € [X](qyp),WSX € TXD?q’p)M, £ 1Q(6X) =0}
as presented in Sections 2.3 and 3.3. First recall that the Legendre corre-
spondence hypothesis implies here that Z,(p) is reduced to a point that we

shall denote by Z(p,q). As a preliminary we prove the following:
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Lemma 4.3. Let M be an open subset of A"T*N and let H be an arbitrary
smooth function from M to R, such that d,H never vanishes. Let & € LTt
then dg®(§) =0, Vo, i.e.

0
§: Z 5041 ana

a1 <--<anp Pay--om

(g:p)’

Proof — We use the results proved in Section 4.1: we know that we can
assume w.l.g. that d,’H = dp1...,. Then any n-vector X € D(q,p M such that
(—1)"X 1 Q = dH can be written X = X; A--- A X,,, where each vector X,
is given by (24) with the conditions on M} 5 and R, descrlbed in Sectlon

4.1. We construct a solution X of (~1)"X 1Q=dH =3, 2 oI L dg® + dpy...n
by choosing
e R,=0,Vi<pu<n
o MYy =0if (v) # (1,1)
. M}ﬁ— M,vn+1<ﬂ<n+k
in relations (24). It corresponds to
o OH 0 Eoon o
X1 = —1——1—+(—1)n Z _—
oqt  Oq! Op1..n, Pt 9qB Opa..np
0 oH 0
Xr = a., s if 2 < <n.
“T G dgropr., T
We first choose 6 X e TXD” )M to be XM = 5X£1) ANXo Ao N X,
where 6.X, . dpl . It gives
sx® — 0 A 0 0

— A A —.
opr.n  0¢? g™

Now let € € Lz; p)» We must have ¢ 1 Q(6X™M) = 0. But a computation gives

€ 1Q0xW) =

so that dgq'(¢) = 0.

For n+1 < 8 < n+k, consider 6 X := 6X(m/\X2/\~

where 6X(m = 8—
p2

(—1)"ox ™ JQ(€) = —dg' (),

ANX, € TxD' ‘M,

(¢,p)

Then we compute that 6X @ Q= d¢?. Hence, by
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a similar reasoning, the relation & _I Q(6 X)) = 0 is equivalent to dg®(¢) =
0.

Lastly by considering another solution X € DZ‘q p)/\/l to the Hamilton equa-
tion, where the role of X; has been exchanged with the role of X, for some
2 < u < n, we can prove that dg”(§) = 0, as well. |

Recall that the tangent space T, ) (A"T*N) possesses a canonical “vertical”
subspace KerdIl, ,y ~ A"T, q*./\/ : Lemma 4.3 can be rephrased by saying that,
if dyH # 0 everywhere, then Lg,p) can be identified with a vector subspace
of this vertical subspace.

Proposition 4.2. Let M be an open subset of A"T*N and let H be a
Hamiltonian function on M built from a Lagrangian function L by means of
the Legendre correspondence. Then, through the identification Kerdll, 5 ~

1
AN, (T DM Q) coincides with (T DgN)

Proof — First we remark that the hypotheses imply that d,H never

vanishes (because dH(0,w) = 1). Let { € (T[X}%D%M _ Q)L, using the
preceding remark we can associate a n-form m € A"T, q*/\/ to & with coordi-
nates Ty, ..a, = €ay--an, Simply by the relation 7 = £ 1 Q. Now let us look
at the condition:

VX e [X](t ), V0X € TxD{, M, & 19(6X) =0. (29)

By the analysis of section 4.1 we know that the “horizontal” part X(g) of
X is fully determined by H: it is actually Xy = Z(g,p). Now take any

6X € Tx D, )M and split it into its horizontal part dz € Ty(qp)DyN and

a vertical part dXV. We remark that

e iz € TZ(q,p)DgN
e £ 1Q(0X) =7m(6X) =m(dz).

Hence (29) means that 7 € (g, DiN )l. So the result follows. [ |
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