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Abstract

The main purpose in the present paper is to build a Hamiltonian
theory for fields which is consistent with the principles of relativity.
For this we consider detailed geometric pictures of Lepage theories in
the spirit of Dedecker and try to stress out the interplay between the
Lepage-Dedecker (LP) description and the (more usual) De Donder-
Weyl (DDW) one. One of the main points is the fact that the Legen-
dre transform in the DDW approach is replaced by a Legendre corre-
spondence in the LP theory (this correspondence behaves differently:
ignoring the singularities whenever the Lagrangian is degenerate).
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1 Introduction

1.1 Presentation

Multisymplectic formalisms are finite dimensional descriptions of variational
problems with several variables (or field theories for physicists) analogue
to the well-known Hamiltonian theory of point mechanics. For example
consider on the set of maps u : Rn −→ R a Lagrangian action of the type

L[u] =
∫

Rn

L(x, u(x),∇u(x))dx1 · · · dxn.

Then it is well-known that the maps which are critical points of L are char-
acterized by the Euler–Lagrange equation ∂

∂xµ

(
∂L

∂(∂µu)

)
= ∂L

∂u . By analogy

with the Hamiltonian theory we can do the change of variables pµ := ∂L
∂(∂µu)

and define the Hamiltonian function

H(x, u, p) := pµ ∂u

∂xµ
− L(x, u,∇u),

where here ∇u =
(

∂u
∂xµ

)
is a function of (x, u, p) defined implicitly by pµ :=

∂L
∂(∂µu)(x, u,∇u). Then the Euler-Lagrange equation is equivalent to the
generalized Hamilton system of equations⎧⎪⎪⎨

⎪⎪⎩
∂u

∂xµ
=

∂H

∂pµ
(x, u, p)∑

µ

∂pµ

∂xµ
= −∂H

∂u
(x, u, p).

(1)

This simple observation is the basis of a theory discovered by T. De Donder
[3] and H. Weyl [20] independently in 1935. This theory can be formu-
lated in a geometric setting, an analogue of the symplectic geometry, which
is governed by the Poincaré–Cartan n-form θ := eω + pµdu ∧ ωµ (where
ω := dx1 ∧ · · · ∧ dxn and ωµ := ∂µ ω) and its differential Ω := dθ, often
called multisymplectic (or polysymplectic form).

Although similar to mechanics this theory shows up deep differences. In
particular there exist other theories which are analogues of Hamilton’s one
as for instance the first historical one, constructed by C. Carathéodory in
1929 [2]. In fact, as realized by T. Lepage in 1936 [16], there are infinitely
many theories, due to the fact that one could fix arbitrary the value of some
tensor in the Legendre transform (see also [18], [6]). Much later on, in 1953,
P. Dedecker [4] built a geometrical framework in which all Lepage theories
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are embedded. The present paper, which is a continuation of [9], is devoted
to the study of the Lepage–Dedecker theory. We also want to compare this
formalism with the more popular De Donder–Weyl theory.

First recall that the range of application of the De Donder–Weyl theory is
restricted in principle to variational problems on sections of a bundle F . The
right framework for it, as expounded e.g. in [8], consists in using the first jet
bundle J1F and its affine dual

(
J1
)∗ F as analogues of the tangent and the

cotangent bundles for mechanics respectively. For non degenerate variational
problems the Legendre transform induces an immersion of J1F in

(
J1
)∗F .

In contrast the Lepage theories can be applied to more general situations
but involve, in general, many more variables and so are more complicated to
deal with, as noticed in [15]. This is probably the reason why most papers on
the subject focus on the De Donder–Weyl theory, e.g. [14], [8]. The general
idea of Dedecker in [4] for describing Lepage’s theories is the following: if we
view variational problems as being defined on n-dimensional submanifolds
embedded in a (n+ k)-dimensional manifold N , then what plays the role of
the (projective) tangent bundle to space-time in mechanics is the Grassmann
bundle GrnN of oriented n-dimensional subspaces of tangent spaces to N .
The analogue of the cotangent bundle in mechanics is ΛnT ∗N . Note that
dimGrnN = n + k + nk so that dimΛnT ∗N = n + k + (n+k)!

n!k! is strictly
larger than dimGrnN + 1 unless n = 1 (classical mechanics) or k = 1
(submanifolds are hypersurfaces). This difference between the dimensions
explains the multiplicity of Lepage theories: as shown in [4], we substitute
to the Legendre transform a Legendre correspondence which associates to
each n-subspace T ∈ Grn

qN (a “generalized velocity”) an affine subspace
of ΛnT ∗

qN called pseudofibre by Dedecker. Then two points in the same
pseudofiber do actually represent the same physical (infinitesimal) state, so
that the coordinates on ΛnT ∗N , called momentöıdes by Dedecker do not
represent physically observable quantities. In this picture any choice of a
Lepage theory corresponds to a selection of a submanifold of ΛnT ∗N , which
— when the induced Legendre transform is a well-defined map — intersects
transversally each pseudofiber at one point (see Figure 1.1): so the Legendre
correspondence specializes to a Legendre transform. For instance the De
Donder–Weyl theory can be recovered in this setting by the restriction to
some submanifold of ΛnT ∗N (see Section 2.2).

In [9] and in the present paper we consider a geometric pictures of Lepage
theories in the spirit of Dedecker and we try to stress out the interplay
between the Lepage–Dedecker description and the De Donder–Weyl one.
Roughly speaking a comparison between these two points of view shows up
some analogy with some aspects of the projective geometry, for which there
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pseudofibres

a choice of a

Lepage theory

Figure 1: Pseudofibers which intersect a submanifold corresponding to the choice of a
Lepage theory

is no perfect system of coordinates, but basically two: the homogeneous
ones, more symmetric but redundant (analogue to the Dedecker description)
and the local ones (analogue to the choice of a particular Lepage theory like
e.g. the De Donder–Weyl one). Note that both points of view are based on
the same geometrical framework, a multisymplectic manifold:

Definition 1.1. Let M be a differential manifold. Let n ∈ N be some
positive integer. A smooth (n + 1)-form Ω on M is a multisymplectic
form if and only if

(i) Ω is non degenerate, i.e.∀m ∈ M, ∀ξ ∈ TmM, if ξ Ωm = 0, then
ξ = 0

(ii) Ω is closed, i.e. dΩ = 0.

Any manifold M equipped with a multisymplectic form Ω will be called a
multisymplectic manifold.

For the De Donder–Weyl theory we chooseM to be
(
J1
)∗F and for the

Lepage–Dedecker theoryM is ΛnT ∗N . In both descriptions solutions of the
variational problem correspond to n-dimensional submanifolds Γ (analogues
of Hamiltonian trajectories: we call them Hamiltonian n-curves) and are
characterized by the Hamilton equation X Ω = (−1)ndH, where X is a
n-multivector tangent to Γ, H is a (Hamiltonian) function defined onM and
by “ ” we mean the interior product.

We may insist on the point that many contributions on the De Donder–Weyl
theory are devoted to the construction of multisymplectic manifolds having
the same dimension as the Lagrangian formulation configuration space, i.e.
J1F , either by pulling back the multisymplectic form by the Legendre map
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as in [8], or by working on a quotient or a submanifold of (J1)∗F as for in-
stance in [7] (see [5] for a comparaison between the different points of view).
However when dealing with Lepage–Dedecker theories, one is forced to aban-
don these points of view and to work with multisymplectic manifolds whose
dimension is larger than the number of physical variables. The advantage is
however is that we do not need for any extra structure, like connections, and
in particular in our setting the Hamiltonian function is thought as a global
function on M.

Consequently, in Section 2 we present a complete derivation of the (Dedecker)
Legendre correspondence and of the generalized Hamilton equations, using a
method that does not rely on any trivialization or connection on the Grass-
mannian bundle. A remarkable property, which is illustrated in this paper
through the examples given in Paragraph 2.2.2, is that when n and k are
greater than 2, the Legendre correspondence is generically never degenerate.
The more spectacular example is when the Lagrangian density is a constant
function — the most degenerate situation one can think about — then the
Legendre correspondence is well-defined almost everywhere except precisely
along the De Donder–Weyl submanifold. We believe that such a phenomenon
was not noticed before; it however may be useful when one deals for example
with the bosonic string theory with a skewsymmetric 2-form on the target
manifold (a “B-field”, as discussed in [9] and in subsection 2.2, example 5)
or with the Yang–Mills action in 4 dimensions with a topological term in
the Lagrangian: then the De Donder–Weyl formalism may fail but one can
cure this degenerateness by using another Lepage theory or by working in
the full Dedecker setting.

In this paper we also stress out another aspect of the (Dedecker) Legen-
dre correspondence: one expects that the resulting Hamiltonian function on
ΛnT ∗N should satisfy some condition expressing the “projective” invariance
along each pseudofiber. This is indeed the case. On the one hand we observe
in Section 2.1 that any smoothly continuous deformation of a Hamiltonian
n-curve along directions tangent to the pseudofibers remains a Hamiltonian
n-curve1 (Corollary 2.1). On the other hand we give in Section 4.3 an intrin-
sic characterization of the subspaces tangent to pseudofibers. This motivates
the definition given in Section 3.3 of the generalized pseudofiber directions
on any multisymplectic manifold.

1A property quite similar to a gauge theory behavior although of different meaning.
Here we are interested by desingularizing the theory and avoid the problems related to the
presence of a constraints.
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Beside these properties in this paper and in its companion paper [11] we
wish to address other kind of questions related to the physical gain of these
theories: the main advantage of multisymplectic formalisms is to offer us
a Hamiltonian theory which is consistent with the principles of Relativity,
i.e. being covariant. Recall for instance that for all the multisymplectic for-
malisms which have been proposed one does not need to use a privilege time
coordinate. One of our ambitions in this paper was to try to extend this
democracy between space and time coordinates to the coordinates on fiber
manifolds (i.e. along the fields themselves). This is quite in the spirit of
the Kaluza–Klein theory and its modern avatars: 11-dimensional supergrav-
ity, string theory and M-theory. This concern leads us naturally to replace
De Donder–Weyl by the Dedecker theory. In particular we do not need in
our formalism to split the variables into the horizontal (i.e. corresponding to
space-time coordinates) and vertical (i.e. non horizontal) categories.

Moreover we may think that we start from a (hypothetical) geometrical
model where space-time and fields variables would not be distinguished a
priori and then ask how to make sense of a space-time coordinate function
(that we call a “r-regular” in Section 3.2). A variant of this question would
be how to define a constant time hypersurface (that we call a “slice” in Sec-
tion 3.2) without referring to a given space-time background. We propose
in Section 3.2 a definition of r-regular functions and of slices which, roughly
speaking, requires a slice to be transversal to all Hamiltonian n-curves. Here
the idea is that the dynamics only (i.e. the Hamiltonian equation) should de-
termine what are the slices. We give in Section 4.2 a characterization of these
slices in the case where the multisymplectic manifold is ΛnT ∗N .

These questions are connected to the concept of observable functionals over
the set of solutions of the Hamilton equation. First because by using a codi-
mension r slice Σ and an (n − r)-form F on the multisymplectic manifold
one can define such a functional by integrating F over the the intersection of
Σ with a Hamiltonian curve. And second because one is then led to impose
conditions on F in such a way that the resulting functional carries only dy-
namical information. The analysis of these conditions is the subject of our
companion paper [11]. And we believe that the conditions required on these
forms are connected with the definitions of r-regular functions given in this
paper, although we have not completely elucidated this point.

Lastly in a future paper [12] we investigate gauge theories, addressing the
question of how to formulate a fully covariant multisymplectic for them.
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Note that the Lepage–Dedecker theory expounded here does not answer this
question completely, because a connection cannot be seen as a submanifold.
We will show there that it is possible to adapt this theory and that a conve-
nient covariant framework consists in looking at gauge fields as equivariant
submanifolds over the principal bundle of the theory, i.e. satisfying some
suitable zeroth and first order differential constraints.

1.2 Notations

The Kronecker symbol δµ
ν is equal to 1 if µ = ν and equal to 0 otherwise.

We shall also set

δ
µ1···µp
ν1···νp :=

∣∣∣∣∣∣∣
δµ1
ν1 . . . δµ1

νp

...
...

δ
µp
ν1 . . . δ

µp
νp

∣∣∣∣∣∣∣ .

In most examples, ηµν is a constant metric tensor on Rn (which may be
Euclidean or Minkowskian). The metric on his dual space his ηµν . Also, ω
will often denote a volume form on some space-time: in local coordinates
ω = dx1∧· · ·∧dxn and we will use several times the notation ωµ := ∂

∂xµ ω,
ωµν := ∂

∂xµ ∧ ∂
∂xν ω, etc. Partial derivatives ∂

∂xµ and ∂
∂pα1···αn

will be some-
time abbreviated by ∂µ and ∂α1···αn respectively.

When an index or a symbol is omitted in the middle of a sequence of in-
dices or symbols, we denote this omission by .̂ For example ai1···îp···in :=

ai1···ip−1ip+1···in , dxα1 ∧· · ·∧ d̂xαµ∧· · ·∧dxαn := dxα1 ∧· · ·∧dxαµ−1∧dxαµ+1∧
· · · ∧ dxαn .

If N is a manifold and FN a fiber bundle over N , we denote by Γ(N ,FN )
the set of smooth sections of FN . Lastly we use the following notations
concerning the exterior algebra of multivectors and differential forms. If
N is a differential N -dimensional manifold and 0 ≤ k ≤ N , ΛkTN is
the bundle over N of k-multivectors (k-vectors in short) and ΛkT ∗N is
the bundle of differential forms of degree k (k-forms in short). Setting
ΛTN := ⊕N

k=0Λ
kTN and ΛT ∗N := ⊕N

k=0Λ
kT ∗N , there exists a unique

duality evaluation map between ΛTN and ΛT ∗N such that for every decom-
posable k-vector field X, i.e. of the form X = X1 ∧ · · · ∧Xk, and for every
l-form µ, then 〈X,µ〉 = µ(X1, · · · ,Xk) if k = l and = 0 otherwise. Then
interior products and are operations defined as follows. If k ≤ l, the
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product : Γ(N ,ΛkTN )× Γ(N ,ΛlT ∗N ) −→ Γ(N ,Λl−kT ∗N ) is given by

〈Y,X µ〉 = 〈X ∧ Y, µ〉, ∀(l − k)-vector Y.
And if k ≥ l, the product : Γ(N ,ΛkTN )×Γ(N ,ΛlT ∗N ) −→ Γ(N ,Λk−lTN )
is given by

〈X µ, ν〉 = 〈X,µ ∧ ν〉, ∀(k − l)-form ν.

2 The Lepage–Dedecker theory

We expound here a Hamiltonian formulation of a large class of first order
variational problems in an intrinsic way. Details and computations in coor-
dinates can be found in [14], [9].

2.1 Hamiltonian formulation of variational problems with
several variables

2.1.1 Lagrangian formulation

The category of Lagrangian variational problems we start with is described
as follows. We consider n, k ∈ N∗ and a smooth manifold N of dimension
n + k; N will be equipped with a closed nowhere vanishing “space-time
volume” n-form ω. We define

• the Grassmannian bundle GrnN , it is the fiber bundle over N whose
fiber over q ∈ N is Grn

qN , the set of all oriented n-dimensional vector
subspaces of TqN .

• the subbundle GrωN := {(q, T ) ∈ GrnN/ωq|T > 0}.
• the set Gω, it is the set of all oriented n-dimensional submanifolds
G ⊂ N , such that ∀q ∈ G, TqG ∈ Grω

qN (i.e. the restriction of ω on G
is positive everywhere).

Lastly we consider any Lagrangian function L, i.e. a smooth function L :
GrωN 
−→ R. Then the Lagrangian of any G ∈ Gω is the integral

L[G] :=
∫

G
L (q, TqG)ω (2)

We say that a submanifold G ∈ Gω is a critical point of L if and only if, for
any compact K ⊂ N , G∩K is a critical point of LK [G] :=

∫
G∩K L (q, TqG)ω
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with respect to variations with support in K.

It will be useful to represent GrnN differently, by means of n-vectors. For
any q ∈ N , we define Dn

qN to be the set of decomposable n-vectors2,
i.e. elements z ∈ ΛnTqN such that there exist n vectors z1,...,zn ∈ TqN
satisfying z = z1 ∧ · · · ∧ zn. Then DnN is the fiber bundle whose fiber at
each q ∈ N is Dn

qN . Moreover the map

Dn
qN −→ Grn

qN
z1 ∧ · · · ∧ zn 
−→ T (z1, · · · , zn),

where T (z1, · · · , zn) is the vector space spanned and oriented by (z1, · · · , zn),
induces a diffeomorphism between

(
Dn

qN \ {0}
)
/R∗

+ and Grn
qN . If we set

also Dω
qN := {(q, z) ∈ Dn

qN/ωq(z) = 1}, the same map allow us also to
identify Grω

qN with Dω
q N .

This framework includes a large variety of situations as illustrated below.

Example 1 — Classical point mechanics — The motion of a point mov-
ing in a manifold Y can be represented by its graph G ⊂ N := R × Y. If
π : N −→ R is the canonical projection and t is the time coordinate on R,
then ω := π∗dt.
Example 2 — Maps between manifolds — We consider maps u : X −→ Y,
where X and Y are manifolds of dimension n and k respectively and X
is equipped with some non vanishing volume form ω. A first order La-
grangian density can represented as a function l : TY ⊗X×Y T ∗X 
−→ R,
where TY ⊗X×Y T ∗X := {(x, y, v)/(x, y) ∈ X × Y, v ∈ TyY ⊗ T ∗

xX}. (We
use here a notation which exploits the canonical identification of TyY⊗T ∗

xX
with the set of linear mappings from TxX to TyY; note that the bundle
TY⊗X×Y T ∗X −→ X×Y is diffeomorphic to the first jet bundle J1F −→ F ,
where F = X × Y is a trivial bundle over X ). The action of a map u is

	[u] :=
∫
X
l(x, u(x), du(x))ω.

In local coordinates xµ such that ω = dx1∧· · ·∧dxn, critical points of 	 satisfy
the Euler-Lagrange equation

∑n
µ=1

∂
∂xµ

(
∂l

∂vi
µ
(x, u(x), du(x))

)
= ∂l

∂yi (x, u(x), du(x)),
∀i = 1, · · · , k..
Then we set N := X × Y and denoting by π : N −→ X the canonical pro-
jection, we use the volume form ω � π∗ω. Any map u can be represented by

2another notation for this set would be DΛnTqN , for it reminds that it is a subset of
ΛnTqN , but we have chosen to lighten the notation.
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its graph Gu := {(x, u(x))/x ∈ X} ∈ Gω, (and conversely if G ∈ Gω then the
condition ω|G > 0 forces G to be the graph of some map). For all (x, y) ∈ N
we also have a diffeomorphism

TyY ⊗ T ∗
xX −→ Grω

(x,y)N � Dω
(x,y)N

v 
−→ T (v),

where T (v) is the graph of the linear map v : TxX −→ TyY. Then if we set
L(x, y, T (v)) := l(x, y, v), the action defined by (2) coincides with 	.
Example 3 — Sections of a fiber bundle — This is a particular case of our
setting, where N is the total space of a fiber bundle with base manifold X .
The set Gω is then just the set of smooth sections.

2.1.2 The Legendre correspondence

Now we consider the manifold ΛnT ∗N and the projection mapping Π :
ΛnT ∗N −→ N . We shall denote by p an n-form in the fiber ΛnT ∗

qN . There
is a canonical n-form θ called the Poincaré–Cartan form defined on ΛnT ∗N
as follows: ∀(q, p) ∈ ΛnT ∗N , ∀X1, · · · ,Xn ∈ T(q,p) (ΛnT ∗N ),

θ(q,p)(X1, · · · ,Xn) := p (Π∗X1, · · · ,Π∗Xn) = 〈Π∗X1 ∧ · · · ∧Π∗n, p〉,
where Π∗Xµ := dΠ(q,p)(Xµ). If we use local coordinates (qα)1≤α≤n+k on N ,
then a basis of ΛnT ∗

qN is the family (dqα1 ∧ · · · ∧ dqαn)1≤α1<···<αn≤n+k and
we denote by pα1···αn the coordinates on ΛnT ∗

qN in this basis. Then θ writes

θ :=
∑

1≤α1<···<αn≤n+k

pα1···αndq
α1 ∧ · · · ∧ dqαn . (3)

Its differential is the multisymplectic form Ω := dθ and will play the role
of generalized symplectic form.

In order to build the analogue of the Legendre transform we consider the
fiber bundle GrωN ×N ΛnT ∗N := {(q, z, p)/q ∈ N , z ∈ Grω

qN � Dω
qN , p ∈

ΛnT ∗
qN} and we denote by Π̂ : GrωN ×N ΛnT ∗N −→ N the canonical

projection. To summarize:

GrωN ×N ΛnT ∗N
ΠL

��

ΠH
��

Π̂

����������������� ΛnT ∗N
Π

��

Mı��

Π|M�����������

GrnN GrωNı
�� �� N
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We define on GrωN ×N ΛnT ∗N the function

W (q, z, p) := 〈z, p〉 − L(q, z).

Note that for each (q, z, p) there a vertical subspace V(q,z,p) ⊂ T(q,z,p)(GrωN×N
ΛnT ∗N ), which is canonically defined as the kernel of

dΠ̂(q,z,p) : T(q,z,p) (GrωN ×N ΛnT ∗N ) −→ TqN .
We can further split V(q,z,p) � TzD

ω
qN⊕TpΛnT ∗

qN , where TzD
ω
qN � KerdΠH

(q,z,p)

and TpΛnT ∗
qN � KerdΠL

(q,z,p). Then, for any function F defined onGrωN×N
ΛnT ∗N , we denote respectively by ∂F/∂z(q, z, p) and ∂F/∂p(q, z, p) the re-
strictions of the differential3 dF(q,z,p) on respectively TzD

ω
qN and TpΛnT ∗

qN .

Instead of a Legendre transform we shall rather use a Legendre correspon-
dence: we write

(q, z)←→ (q, p) if and only if
∂W

∂z
(q, z, p) = 0. (4)

Let us try to picture geometrically the situation (see figure 2.1.2): Dω
qN is

T
q

q N

Λ
n

D
ω D q N

z

T z
ω

N

Figure 2: TzDω
q N is a vector subspace of ΛnTqN

a smooth submanifold of dimension nk of the vector space ΛnTqN , which
is of dimension (n+k)!

n!k! ; TzD
ω
qN is thus a vector subspace of ΛnTqN . And

∂L
∂z (q, z) or ∂W

∂z (q, z, p) can be understood as linear forms on TzD
ω
qN whereas

p ∈ ΛnT ∗
qN as a linear form on ΛnTqN . So the meaning of the right hand

side of (4) is that the restriction of p at TzD
ω
qN coincides with ∂L

∂z (q, z, p):

p|TzDω
q N =

∂L

∂z
(q, z). (5)

3However in order to make sense of “∂F/∂q(q, z, p)” we would need to define a “hori-
zontal” subspace of T(q,z,p) (GrωN ×N ΛnT ∗N ), which requires for instance the use of a
connection on the bundle GrωN ×N ΛnT ∗N −→ N . Indeed such a horizontal subspace
prescribes a inertial law on N , such a law would have a sense on a Galilee or Minkowski
space-time but not in general relativity.
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Given (q, z) ∈ GrωN we define the enlarged pseudofiber in q to be:

Pq(z) := {p ∈ ΛnT ∗
qN/

∂W

∂z
(q, z, p) = 0}.

In other words, p ∈ Pq(z) if it is a solution of (5). Obviously Pq(z) is not
empty; moreover given some p0 ∈ Pq(z),

p1 ∈ Pq(z), ⇐⇒ p1−p0 ∈
(
TzD

ω
q N

)⊥ := {p ∈ ΛnT ∗
qN/∀ζ ∈ TzD

ω
qN , p(ζ) = 0}.

(6)
So Pq(z) is an affine subspace of ΛnT ∗

qN of dimension (n+k)!
n!k! −nk. Note that

in case where n = 1 (the classical mechanics of point) then dimPq(z) = 1:
this is due to the fact that we are still free to fix arbitrarily the momentum
component dual to the time (i.e. the energy)4.

We now define

Pq :=
⋃

z∈Dω
q N

Pq(z) ⊂ ΛnT ∗
qN , ∀q ∈ N

and we denote by P := ∪q∈NPq the associated bundle over N . We also let,
for all (q, p) ∈ ΛnT ∗N ,

Zq(p) := {z ∈ Grω
q N/p ∈ Pq(z)}.

It is clear that Zq(p) �= ∅ ⇐⇒ p ∈ Pq. Now in order to go further we need
to choose some submanifold Mq ⊂ Pq, its dimension is not fixed a priori.

Legendre Correspondence Hypothesis — We assume that there exists
a subbundle manifold M ⊂ P ⊂ ΛnT ∗N over N where dimM =: M such
that,

• for all q ∈ N the fiber Mq is a smooth submanifold, possibly with
boundary, of dimension 1 ≤M − n− k ≤ (n+k)!

n!k!

• for any (q, p) ∈ M, Zq(p) is a non empty smooth connected submani-
fold of Grω

qN
4a simple but more interesting example is provided by variational problems on maps

u : R2 −→ R2. Then one is led to the multisymplectic manifold Λ2T ∗R4. And given any
(q, z) ∈ GrωR4 the enlarged pseudofiber Pq(z) ⊂ Λ2T ∗R4 is an affine plane parallel to
R
[(

v1
1v2

2 − v2
1v1

2

)
dx1 ∧ dx2 − εijv

j
νdyi ∧ dxν + dy1 ∧ dy2

] ⊕ Rdx1 ∧ dx2, where (using the
notations of Example 2) T (v) = z. For details see Paragraph 2.2.2.
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• if z0 ∈ Zq(p), then we have Zq(p) = {z ∈ Dω
qN/∀ṗ ∈ TpMq, 〈z −

z0, ṗ〉 = 0}.

Remark — In the case where M = (n+k)!
n!k! + n + k, then Mq is an open

subset of ΛnT ∗
qN and so TpMq � ΛnT ∗

qN . Hence the last assumption of
the Legendre Correspondence Hypothesis means that Zq(p) is reduced to a
point. In general this condition will imply that the inverse correspondence
can be rebuild by using the Hamiltonian function (see Lemma 2.2 below).

Lemma 2.1. Assume that the Legendre correspondence hypothesis is true.
Then for all (q, p) ∈M, the restriction of W to {q}×Zq(p)×{p} is constant.

Proof — Since Zq(p) is smooth and connected, it suffices to prove that
W is constant along any smooth path inside {(q, z, p)/q, p fixed , z ∈ Zq(p)}.
Let s 
−→ z(s) be a smooth path with values into Zq(p), then

d

ds
(W (q, z(s), p)) =

∂W

∂z
(q, z(s), p)

(
dz

ds

)
= 0,

because of (4). �

A straightforward consequence of Lemma 2.1 is that we can define the
Hamiltonian function H :M−→ R by

H(q, p) := W (q, z, p), where z ∈ Zq(p), i.e.
∂W

∂z
(q, z, p) = 0.

Any function f constructed this way will be called Legendre Image
Hamiltonian function. In the following, for all (q, p) ∈ M and for all
z ∈ Dn

qN we denote by

z|TpMq
: TpMq −→ R

ṗ 
−→ 〈z, ṗ〉

the linear map induced by z on TpMq. Then:

Lemma 2.2. Assume that the Legendre Correspondence Hypothesis is true.
Then5

5The advised Reader may expect to have also the relation “ ∂H
∂q

(q, p) = − ∂L
∂q

(q, z)”. But

as remarked above the meaning of ∂H
∂q

and ∂L
∂q

is not clearly defined, because we did not
introduce a connection on the bundle GrωN ×N ΛnT ∗N . This does not matter and we
shall make the economy of this relation later ! (cf footnote 2)
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(i) ∀(q, p) ∈M and ∀z ∈ Zq(p),

∂H
∂p

(q, p) = z|TpMq
. (7)

As a corollary of the above formula, z|TpMq
does not depend on the

choice of z ∈ Zq(p).

(ii) Conversely if (q, p) ∈ M and z ∈ Dω
qN satisfy condition (7), then

z ∈ Zq(p) or equivalently p ∈ Pq(z).

Proof — Let (q, p) ∈M and (0, ṗ) ∈ T(q,p)M, where ṗ ∈ TpMq. In order to
compute dH(q,p)(0, ṗ), we consider a smooth path s 
−→ (q, p(s)) with values
into Mq whose derivative at s = 0 coincides with (0, ṗ). We can further lift
this path into another one s 
−→ (q, z(s), p(s)) with values into Grω

qN ×Mq,
in such a way that z(s) ∈ Zq(p(s)), ∀s. Then using (5) we obtain

d

ds
(H(q, p(s)))|s=0 =

d

ds
(〈z(s), p(s)〉 − L(q, p(s)) )|s=0

= 〈ż, p〉+ 〈z, ṗ〉 − ∂L

∂z
(q, z)(ż) = 〈z, ṗ〉,

from which (7) follows. This proves (i).
The proof of (ii) uses the Legendre Correspondence Hypothesis: consider
z, z0 ∈ Dn

qN and assume that z0 ∈ Zq(p) and that z satisfies (7). Then by
applying the conclusion (i) of the Lemma to z0 we deduce that ∂H/∂p(q, p) =
z0|TpMq

and thus (z− z0)|TpMq
= 0. Hence by the Legendre Correspondence

Hypothesis we deduce that z ∈ Zq(p). �

A further property is that, given (q, z) ∈ DωN , it is possible to find a
p ∈ Pq(z) and to choose the value of H(q, p) simultaneously. This property
will be useful in the following in order to simplify the Hamilton equations.
For that purpose we define, for all h ∈ R, the pseudofiber:

P h
q (z) := {p ∈ Pq(z)/H(q, p) = h}.

We then have:

Lemma 2.3. For all (q, z) ∈ GrωN the pseudofiber P h
q (z) is a affine sub-

space6 of ΛnT ∗
qN parallel to

(
TzD

n
qN

)⊥. Hence dim P h
q (z) = dim Pq(z) −

1 = (n+k)!
n!k! − nk − 1.

6again in the instance of variational problems on maps u : R2 −→ R2 and the multi-
symplectic manifold Λ2T ∗R4, for any (q, z) ∈ GrωR4 the pseudofiber P h

q (z) ⊂ Λ2T ∗R4 is
an affine line parallel to R

[(
v1
1v2

2 − v2
1v1

2

)
dx1 ∧ dx2 − εijv

j
νdyi ∧ dxν + dy1 ∧ dy2

]
, where

T (v) = z. (See also Paragraph 2.2.2.)
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Proof — We first remark that, ∀q ∈ N and ∀z ∈ Dω
qN , ωq belongs to(

TzD
ω
q N

)⊥, because of the definition of Dω
qN . So ∀λ ∈ R, ∀p ∈ Pq(z), we

deduce from (6) that p+ λωq ∈ Pq(z) and thus

H(q, p+ λωq) = 〈z, p + λωq〉 − L(q, z)
= H(q, p) + λ〈z, ωq〉 = H(q, p) + λ.

Hence we deduce that ∀h ∈ R, ∀p ∈ Pq(z), ∃!λ ∈ R such that

H(q, p+ λωq) = h,

so that P h
q (z) is non empty. Moreover if p0 ∈ P h

q (z) then p1 ∈ P h
q (z) if and

only if p1− p0 ∈
(
TzD

ω
qN

)⊥ ∩ z⊥, where z⊥ := {p ∈ ΛnT ∗
qN/〈z, p〉 = 0}. In

order to conclude observe that
(
TzD

ω
qN

)⊥ ∩ z⊥ =
(
TzD

n
qN

)⊥. �

2.1.3 Critical points

We now look at critical points of the Lagrangian functional using the above
framework. Instead of the usual approach using jet bundles and contact
structure, we shall derive Hamilton equations directly, without writing the
Euler–Lagrange equation.

First we extend the form ω on M by setting ω � Π∗ω, where Π :M−→ N
is the bundle projection, and we define Ĝω to be the set of oriented n-
dimensional submanifolds Γ of M, such that ω|Γ > 0 everywhere. A conse-
quence of this inequality is that the restriction of the projection Π to any
Γ ∈ Ĝω is an embedding into N : we denote by Π(Γ) its image. It is clear
that Π(Γ) ∈ Gω. Then we can view Γ as (the graph of) a section q 
−→ p(q)
of the pull-back of the bundleM−→ N by the inclusion Π(Γ) ⊂ N .

Second, we define the subclass pĜω ⊂ Ĝω as the set of Γ ∈ Ĝω such that,
∀(q, p) ∈ Γ, p ∈ Pq(TqΠ(Γ)) (a contact condition). [As we will see later it
can be viewed as the subset of Γ ∈ Ĝω which satisfy half of the Hamilton
equations.] And given some G ∈ Gω, we denote by pĜ ⊂ pĜω the family of
submanifolds Γ ∈ pĜω such that Π(Γ) = G and we say that pĜ is the set of
Legendre lifts of G. We hence have pĜω = ∪G∈GωpĜ.

Lastly, we define the functional on Ĝω

I[Γ] :=
∫

Γ
θ −Hω.
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Properties of the restriction of I to pĜω — First we claim that

I[Γ] = L[G], ∀G ∈ Gω,∀Γ ∈ pĜ. (8)

This follows from∫
Γ
θ −Hω =

∫
G
〈zG, p(q)〉ω −H(q, p(q))ω

=
∫

G
(〈zG, p(q)〉 − 〈zG, p(q)〉 + L(q, zG))ω =

∫
G
L(q, zG)ω,

where G −→ M : q 
−→ (q, p(q)) is the parametrization of Γ and where zG
is the unique n-vector in Dω

qN (for q ∈ G) which spans TqG.
Second let us exploit relation (8) to compute the first variation of I at any
submanifold Γ ∈ pĜ, i.e. a Legendre lift of G ∈ Gω. We let ξ ∈ Γ(N , TN )
be a smooth vector field with compact support and Gs, for s ∈ R, be the
image of G by the flow diffeomorphism esξ. For small values of s, Gs is
still in Gω and for all qs := esξ(q) ∈ Gs we shall denote by zs the unique
n-vector in Dω

qs
N which spans TqsGs. Then we choose a smooth section

(s, qs) 
−→ p(q)s in such a way that p(q)s ∈ Pqs(zs). This builds a family of
Legendre lifts Γs = {(qs, p(q)s)}. We can now use relation (8): I[Γs] = L[Gs]
and derivate it with respect to s. Denoting by ξ̂ ∈ T(q,p(q))M the vector
d(qs, p(q)s)/ds|s=0, we obtain

δI[Γ](ξ̂) =
d

ds
I[Γs]|s=0 =

d

ds
L[Gs]|s=0 = δL[G](ξ). (9)

Variations of I along TpMq — On the other hand for all Γ ∈ Ĝω and for
all vertical tangent vector field along Γ ζ, i.e. such that dΠ(q,p)(ζ) = 0 or
such that ζ ∈ TpMq ⊂ T(q,p)M, we have

δI[Γ](ζ) =
∫

Γ

(
〈zΠ(Γ), ζ〉 −

∂H
∂p

(q, p)(ζ)
)
ω, (10)

where zΠ(Γ) is the unique n-vector in Dω
qN (for q ∈ G(Γ)) which spans

TqΠ(Γ). Note that in the special case where Γ ∈ pĜω , we have zΠ(Γ) ∈ Zq(p),
so we deduce from (7) and (10) that δI[Γ](ζ) = 0. And the converse is true.
So pĜω can be characterized by requiring that condition (10) is true for all
vertical vector fields ζ.

Conclusion — The key point is now that any vector field along Γ can be
written ξ̂ + ζ, where ξ̂ and ζ are as above. And for any G ∈ Gω and for all
Γ ∈ pĜ, the first variation of I at Γ with respect to a vector field ξ̂ + ζ,
where locally ξ̂ lifts ξ ∈ TqN and ζ ∈ TpMq, satisfies

δI[Γ](ξ̂ + ζ) = δL[G](ξ). (11)

We deduce the following.
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Theorem 2.1. (i) For any G ∈ Gω and for all Legendre lift Γ ∈ pĜ, G is a
critical point of L if and only if Γ is a critical point of I.
(ii) Moreover for all Γ ∈ Ĝω, if Γ is a critical point of I then Γ is a Legendre
lift, i.e.Γ ∈ pΠ̂(Γ) and Π(Γ) is a critical point of L.

Proof — (i) is a straightforward consequence of (11). Let us prove (ii):
if Γ ∈ Ĝω is a critical point of I, then in particular for all vertical tangent
vector field ζ ∈ TpMq, δI[Γ](ζ) = 0 and by (10) this implies (zΠ(Γ))|T ∗

p Mq
=

(∂H/∂p)(q, p). Then by applying Lemma 2.2–(ii) we deduce that zΠ(Γ) ∈
Zq(p). Hence Γ is a Legendre lift. Lastly we use the conclusion of the part
(i) of the Theorem to conclude that G(Γ) is a critical point of L. �

Corollary 2.1. Let Γ ∈ Ĝω be a critical point of I and let ψ : Γ −→ ΛnT ∗N
be a smooth map satisfy:

(i) Π ◦ ψ = IdΓ (so ψ is a section of the pull-back of ΛnT ∗N by the
inclusion map ι : Γ −→ ΛnT ∗N );

(ii) ∀(q, p) ∈ Γ, ψ(q, p) � ψ(q) ∈ (TzD
ω
qN

)⊥ (where z ∈ Zq(p)).

Then Γ̃ := {(q, p + ψ(q))/(q, p) ∈ Γ} is another critical point of I.

Proof — By using Theorem 2.1–(ii) we deduce that Γ has the form Γ =
{(q, p)/q ∈ Π(Γ), p ∈ Pq(zΠ(Γ))} and thus Γ̃ = {(q, p + ψ(q))/q ∈ Π(Γ), p ∈
Pq(zΠ(Γ))}. This implies, by using (6), that Γ̃ ∈ pΠ̂(Γ); then Γ̃ is also a
critical point of I because of Theorem 2.1–(i). �

Note that, for any constant h ∈ R, by choosing ψ(q) = (h−H(q, p))ωq

(see the proof of Lemma 2.3) in the above Corollary we deform any critical
point Γ of I Γ ∈ Ĝω into a critical point Γ̃ of I contained in Mh := {m ∈
M/H(m) = h}.
Definition 2.1. An Hamiltonian n-curve is a critical point Γ of I such
that there exists a constant h ∈ R such that Γ ⊂Mh.

2.1.4 Hamilton equations

We now end this section by looking at the equation satisfied by critical points
of I. Let Γ ∈ Ĝω and ξ ∈ Γ(M, TM) be a smooth vector field with compact
support. We let esξ be the flow mapping of ξ and Γs be the image of Γ
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by esξ. We let X be an n-dimensional manifold diffeomorphic to Γ and we
denote by

σ : (0, 1) ×X −→ M
(s, x) 
−→ σ(s, x)

a map such that if γs : x 
−→ σ(s, x), then γ = γ0 is a parametrization of Γ,
γs is a parametrization of Γs and ∂

∂s (σ(s, x)) = ξ (σ(s, x)). Then

I[Γs]− I[Γ] =
∫
X
γ∗s (θ −Hω)− γ∗(θ −Hω)

=
∫

∂((0,s)×X )
σ∗(θ −Hω) =

∫
(0,s)×X

d (σ∗(θ −Hω))

=
∫

(0,s)×X
σ∗(Ω − dH ∧ ω)).

Thus

lim
s→0

I[Γs]− I[Γ]
s

= lim
s→0

1
s

∫
(0,s)×X

σ∗(Ω− dH ∧ ω)

=
∫
X

∂

∂s
σ∗(Ω − dH ∧ ω) =

∫
X
γ∗(ξ (Ω− dH ∧ ω))

=
∫

Γ
ξ (Ω− dH ∧ ω).

We hence conclude that Γ is a critical point of I if and only if ∀m ∈ Γ,
∀ξ ∈ TmM, ∀X ∈ ΛnTmΓ,

ξ (Ω− dH ∧ ω)(X) = 0 ⇐⇒ X (Ω− dH ∧ ω)(ξ) = 0.

We thus deduce the following.

Theorem 2.2. A submanifold Γ ∈ Ĝω is a critical point of I if and only if

∀m ∈ Γ,∀X ∈ ΛnTmΓ, X (Ω− dH ∧ ω) = 0. (12)

Moreover, if there exists some h ∈ R such that Γ ⊂ Mh (i.e.Γ is a Hamil-
tonian n-curve) then

∀m ∈ Γ,∃!X ∈ ΛnTmΓ, X Ω = (−1)ndH. (13)

Recall that, because of Lemma 2.3 and Corollary 2.1, it is always possible
to deform a Hamiltonian n-curve Γ 
−→ Γ̃ in such a way that H be constant
on Γ̃ and Π(Γ) = Π(Γ̃).
Proof — We just need to check (13). Let Γ ⊂ Mh. Since dH|Γ = 0,
∀X ∈ ΛnTmΓ, X dH ∧ ω = (−1)n〈X,ω〉dH.. So by choosing the unique
X such that 〈X,ω〉 = 1, we obtain X dH ∧ ω = (−1)ndH. Then (12) is
equivalent to (13). �
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2.2 Some examples

We pause to study on some simple examples how the Legendre correspon-
dence and the Hamilton work. In particular in the construction ofM we let
a large freedom in the dimension of the fibersMq, having just the constraint
that dimMq ≤ dimPq = (n+k)!

n!k! . This leads to a large choice of approaches
between two opposite ones: the first one consists in using as less variables as
possible, i.e. to choose M to be of minimal dimension (for example the De
Donder–Weyl theory), the other one consists in using the largest number of
variables, i.e. to choose M to be equal to the interior of P (the advantage
will be that in some circumstances we avoid degenerate situations).

We focus here on special cases of Example 2 of the previous Section: we
consider maps u : X −→ Y. We denote by qµ = xµ, if 1 ≤ µ ≤ n, coordinates
on X and by qn+i = yi, if 1 ≤ i ≤ k, coordinates on Y. Recall that ∀x ∈ X ,
∀y ∈ Y, the set of linear maps v from T ∗

xX to TyY can be identified with
TyY ⊗T ∗

xX . And coordinates representing some v ∈ TyY⊗T ∗
xX are denoted

by vi
µ, in such a way that v =

∑
α

∑
i v

i
µ

∂
∂yi ⊗ dxµ. Then through the

diffeomorphism TyY ⊗ T ∗
xX � v 
−→ T (v) ∈ Grω

(x,y)N (where N = X × Y)
we obtain coordinates on Grω

qN � Dω
qN . We also denote by e := p1···n,

pµ
i := p1···(µ−1)i(µ+1)···n, pµ1µ2

i1i2
:= p1···(µ1−1)i1(µ1+1)···(µ2−1)i2(µ2+1)···n, etc., so

that

Ω = de ∧ ω +
n∑

j=1

∑
µ1<···<µj

∑
i1<···<ij

dp
µ1···µj

i1···ij ∧ ω
i1···ij
µ1···µj ,

where, for 1 ≤ p ≤ n,

ω := dx1 ∧ · · · ∧ dxn

ω
i1···ip
µ1···µp := dyi1 ∧ · · · ∧ dyip ∧ ( ∂

∂xµ1 ∧ · · · ∧ ∂
∂xµp ω

)
.

Remark — It can be checked (see for instance [9]) that, by denoting by p∗

all coordinates pµ1···µj

i1···ij for j ≥ 1, the Hamiltonian function has always the
form H(q, e, p∗) = e+H(q, p∗).

2.2.1 The De Donder–Weyl formalism

In the special case of the De Donder–Weyl theory,MDDW
q is the submanifold

of ΛnT ∗
qN defined by the constraints pµ1···µj

i1···ij = 0, for all j ≥ 2 (Observe that
these constraints are invariant by a change of coordinates, so that they have
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an intrinsic meaning.) We thus have

ΩDDW = de ∧ ω +
∑
µ

∑
i

dpµ
i ∧ ωi

µ..

Then the equation ∂W/∂z(q, z, p) = 0 is equivalent to pµ
i = ∂l/∂vi

µ(q, v), so
that the Legendre Correspondence Hypothesis holds if and only if (q, v) 
−→
(q, ∂l/∂v(q, p)) is an invertible map. Note that then the enlarged pseud-
ofibers Pq(z) intersectMDDW

q along lines {eω+ ∂l
∂vi

µ
(q, v)ωi

µ/e ∈ R}. So since

dimΛnT ∗
qN = (n+k)!

n!k! , dimMDDW
q = nk+ 1 and dimPq(z) = (n+k)!

n!k! −nk, the
Legendre Correspondence Hypothesis can be rephrased by saying that each
Pq(z) meets MDDW

q transversally along a line. Moreover Zq(eω + pµ
i ω

i
µ)

is then reduced to one point, namely T (v), where v is the solution to
pµ

i = ∂l
∂vi

µ
(q, v).

For more details and a description using local coordinates, see [9].

2.2.2 Maps from R2 to R2 via the Lepage–Dedecker point of view

Let us consider a simple situation where X = Y = R2 and M ⊂ Λ2T ∗R4.
It corresponds to variational problems on maps u : R2 −→ R2. For any
point (x, y) ∈ R4, we denote by (e, pi

µ, r) the coordinates on Λ2T(x,y)R
4, such

that θ = e dx1 ∧ dx2 + p1
i dy

i ∧ dx2 + p2
i dx

1 ∧ dyi + r dy1 ∧ dy2. An explicit
parametrization of {z ∈ D2

(x,y)R
4/ω(z) > 0} is given by the coordinates

(t, vi
µ) through

z = t2
∂

∂x1
∧ ∂

∂x2
+ t εµνvi

µ

∂

∂yi
∧ ∂

∂xν
+ (v1

1v
2
2 − v1

2v
2
1)

∂

∂y1
∧ ∂

∂y2
,

where ε12 = −ε21 = 1 and ε11 = ε22 = 0. One then finds that
(
TzD

2
qR4

)⊥ is

R

[(
v1
1v

2
2 − v2

1v
1
2

)
dx1 ∧ dx2 − εijvj

νdyi ∧ dxν + dy1 ∧ dy2
]
, whereas

(
TzD

ω
q R4

)⊥
is
(
TzD

2
qR4

)⊥ ⊕ Rdx1 ∧ dx2.

We deduce that the sets Pq(z) and P h
q (z) form a family of non parallel affine

subspaces so we expect that on the one hand these subspaces will intersect,
causing obstructions there for the invertibility of the Legendre mapping, and
on the other hand they will fill “almost” all of Λ2T ∗

(x,y)R
4, giving rise to the

phenomenon that the Legendre correspondence is “generically everywhere”
well defined.
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Example 4 — The trivial variational problem — We just take l = 0, so
that any map map from R2 to R2 is a critical point of 	 ! This example is
motivated by gauge theories where the gauge invariance gives rise to con-
straints. In this case the sets Pq(z) are exactly

(
TzD

ω
q R4

)⊥ and ∪zPq(z) is
equal to Pq := {(e, pµ

i , r) ∈ Λ2T ∗
q R4/r �= 0} ∪ {(e, 0, 0)/e ∈ R}. If we assume

that r �= 0 and choose Mq = {(e, pµ
i , r) ∈ Λ2T ∗

q R4/r �= 0}, then

H(q, p) = e− p1
1p

2
2 − p1

2p
2
1

r
.

One can then check that all Hamiltonian 2-curves are of the form

Γ =
{(
x, u(x), e(x)dx1 ∧ dx2 + εµνp

µ
i (x)dyi ∧ dxν + r(x)dy1 ∧ dy2

)
/x ∈ R2

}
,

where u : R2 −→ R2 is an arbitrary smooth function, r : R2 −→ R∗ is also an
arbitrary smooth function, e(x) = r(x)

(
∂u1

∂x1 (x)∂u2

∂x2 (x)− ∂u1

∂x2 (x)∂u1

∂x2 (x)
)

+ h,

(for some constant h ∈ R) and pµ
i (x) = −r(x)εijεµν ∂uj

∂xν (x).

Example 5 — The elliptic Dirichlet integral (see also [9]) — The La-
grangian is l(x, y, v) = 1

2 |v|2 +B(v1
1v

2
2 − v2

1v
1
2) where7 |v|2 := (v1

1)
2 + (v1

2)
2 +

(v2
1)

2 + (v2
2)

2. We then find that

H(q, p) = e+
1

1− (r −B)2

( |p|2
2

+ (r −B)(p1
1p

2
2 − p1

2p
2
1)
)
.

Example 6 — Maxwell equations in two dimensions — We choose l(x, y, v) =
−1

2

(
v1
2 − v2

1

)2, so that by identifying (u1, u2) with the components (A1, A2)
of a Maxwell gauge potential, we recover the usual Lagrangian l(dA) =

−1
4

∑
µ,ν

(
∂Aν
∂xµ − ∂Aµ

∂xν

)2
for Maxwell fields without charges. We then obtain

H(q, p) = e+
(p1

2 + p2
1)

2 − 4p1
1p

2
2

4r
− 1

4
(p1

2 − p2
1)

2

2 + r
.

Conclusion — It is worth looking at the differences between the Lepage–
Dedecker and the De Donder–Weyl theories through these examples. Indeed
the De Donder–Weyl theory can be simply recovered by letting r = 0. One
sees immediately that for the trivial variational problem this forces p1

1p
2
2 −

p1
2p

2
1 to be 0: actually a more careful inspection shows that all pseudofibers

intersect along pµ
i = 0 so that all these components must be set to 0 in the

De Donder–Weyl theory. In the example of the elliptic Dirichlet functional
no constraint appears unless B = ±1. And for the Maxwell equations all
pseudofibers intersect along the subspace p1

2 + p2
1 = p1

1 = p2
2 = 0 and so we

recover the constraints already observed in [14] and [9] in the De Donder–
Weyl formulation.

7There B could be interpreted as a B-field of a bosonic string theory.
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2.3 Invariance properties along pseudofibers

We have seen that for all q ∈ N , for h ∈ R and z ∈ Dω
qN , the pseudofiber

P h
q (z) is an affine subspace of ΛnT ∗

qN parallel to
(
TzD

n
qN

)⊥. Let us assume
that Mq is an open subset of ΛnT ∗

qN : then the Legendre Correspondence
Hypothesis implies that ∀(p, q) ∈ M, Zq(p) is reduced to one point that we
shall denote by Z(q, p). Hence we can define the distribution of subspaces
on M by:

∀(q, p) ∈M, LH
(q,p) :=

(
TZ(q,p)D

n
qN

)⊥
.

It is actually the subspace tangent to the pseudo-fiber passing through (q, p).
In Section 3.3 we will propose a generalization of the definition of LH

(q,p)
which makes sense on an arbitrary multisymplectic manifold. We will prove
in Section 4.3 that this generalized definition coincides with the first one in
the case where the multisymplectic manifold is ΛnT ∗N . Lastly Lemma 2.3
and Corollary 2.1 can be rephrased as

Theorem 2.3. LetM be an open subset of ΛnT ∗N and let H be a Legendre
image Hamiltonian function on M (by means of the Legendre correspon-
dence). Then

∀(q, p) ∈M,∀ξ ∈ LH
(q,p), dH(q,p)(ξ) = 0. (14)

And if Γ ∈ Ĝω is a Hamiltonian n-curve and if ξ a vector field which is a
smooth section of LH, then denoting by esξ the flow mapping of ξ

∀s ∈ R, small enough , esξ(Γ) is a Hamiltonian n−curve. (15)

2.4 Gauge theories

The above theory can be adapted for variational theories on gauge fields (con-
nections) by using a local trivialization. More precisely, given a g-connection
∇0 acting on a trivial bundle with structure group G (and Lie algebra g)
any other connection ∇ can be identified with the g-valued 1-form A on the
base manifold X such that ∇ = ∇0 +A. We may couple A to a Higgs field
ϕ : X −→ Φ, where Φ is a vector space on which G is acting. Then any
choice of a field (A,ϕ) is equivalent to the data of an n-dimensional subman-
ifold Γ in M := (g⊗ T ∗X ) × Φ which is a section of this fiber bundle over
X . An example of this approach is the one that we use for the Maxwell field
at the end of this paper.
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But if we wish to study more general gauge theories and in particular con-
nections on a non trivial bundle we need a more general and more covariant
framework. Such a setting can consist in viewing a connection as a g-valued
1-form a on a principal bundle F over the space-time satisfying some equiv-
ariance conditions (under some action of the group G). Similarly the Higgs
field, a section of an associated bundle, can be viewed as an equivariant map
φ on F with values in a fixed space. Thus the pair (a, φ) can be pictured
geometrically as a section Γ, i.e. a submanifold of some fiber bundle N over
F , satisfying two kinds of constraints:

• Γ is contained in a submanifold Ng (a geometrical translation of the
constraints “the restriction of af to the subspace tangent to the fiber
Ff is −dg · g−1”) and

• Γ is invariant by an action of G on N which preserves Ng.

Within this more abstract framework we are reduced to a situation similar to
the one studied in the beginning of this Section, but we need to understand
what are the consequence of the two equivariance conditions. (In particular
this will imply that there is a canonical distribution of subspaces which is
tangent to all pseudofibers). This will be done in details in [12]. In particular
we compare this abstract point of view with the more naive one expounded
above.

3 Multisymplectic manifolds

We now set up a general framework extending the situation encountered in
the previous Section.

3.1 Definitions

Recall that, given a differential manifoldM and n ∈ N a smooth (n+1)-form
Ω on M is a multisymplectic form if and only if (i) Ω is non degenerate,
i.e. ∀m ∈ M, ∀ξ ∈ TmM, if ξ Ωm = 0, then ξ = 0 (ii) Ω is closed,
i.e. dΩ = 0. And we call any manifold M equipped with a multisymplectic
form Ω a multisymplectic manifold. (See Definition 1.1.) In the following,
N denotes the dimension of M. For any m ∈M we define the set

Dn
mM := {X1 ∧ · · · ∧Xn ∈ ΛnTmM/X1, · · · ,Xn ∈ TmM},

of decomposable n-vectors and denote by DnM the associated bundle.
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Definition 3.1. Let H be a smooth real valued function defined over a mul-
tisymplectic manifold (M,Ω). A Hamiltonian n-curve Γ is a n-dimensional
submanifold of M such that for any m ∈ Γ, there exists a n-vector X in
ΛnTmΓ which satisfies

X Ω = (−1)ndH.
We denote by EH the set of all such Hamiltonian n-curves. We shall also
write for all m ∈M, [X]Hm := {X ∈ Dn

mM/X Ω = (−1)ndHm}.

A Hamiltonian n-curve is automatically oriented by the n-vector X in-
volved in the Hamilton equation. Remark also that it may happen that
no Hamiltonian n-curve exist. An example is M := Λ2T ∗R4 with Ω =∑

1≤µ<ν≤4 dpµν ∧ dqµ ∧ dqν for the case H(q, p) = p12 + p34. Assume that
a Hamiltonian 2-curve Γ would exist and let X : (t1, t2) 
−→ X(t1, t2) be a
parametrization of Γ such that ∂X

∂t1
∧ ∂X

∂t2
Ω = (−1)2dH. Then, denoting by

Xµ := ∂X
∂tµ , we would have dxµ ∧ dxν(X1,X2) = ∂H

∂pµν
, which is equal to ±1 if

{µ, ν} = {1, 2} or {3, 4} and to 0 otherwise. But this would contradict the
fact that X1 ∧X2 is decomposable. Hence there is no Hamiltonian 2-curve
in this case.

Note that beside the the Lepage–Dedecker multisymplectic manifold (ΛnT ∗N ,Ω)
studied in the previous Section, other examples of multisymplectic manifolds
arises naturally as for example a multisymplectic structure associated to the
Palatini formulation of pure gravity in 4-dimensional space-time (see [10],
[11], [17]).

In the following we address questions related to the following general prob-
lematic, set in the spirit of the general relativity: assume that a field theory
(and in particular including a space-time description) is modelled by a mul-
tisymplectic manifold (M,Ω) and possibly a Hamiltonian H. How could we
recover its physical properties, i.e. understand how space-time coordinates
merge out, how momenta and energy appear, without using ad hoc hypothe-
ses ? We probably do not know enough to be able to answer such questions
and in the following we will content ourself with partial answers.

3.2 The notion of r-regular functions

This question is motivated by the search for understanding space-time coor-
dinates. One could characterize components of a space-time chart as func-
tions which: (i) are defined for all possible dynamics, (ii) allow us to separate
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any pair of different points on space-time. The easiest way to fulfill the first
requirement is to assume that any coordinate function is obtained as the
restriction of a function f : M −→ R on the Hamiltonian n-curve describ-
ing the dynamics. The infinitesimal version of the second requirement is
then to assume that the restriction of the n functions chosen f1, · · · , fn on
any Hamiltonian n-curve is locally a diffeomorphism. This motivates the
following

Definition 3.2. Let (M,Ω) be a multisymplectic manifold and H ∈ C∞(M)
a Hamiltonian function. Let 1 ≤ r ≤ n be an integer. A function f ∈
C1(M,Rr) is called r-regular if and only if for any Hamiltonian n-curve
Γ ⊂M the restriction f|Γ is a submersion.

The dual notion is:

Definition 3.3. Let H be a smooth real valued function defined over a mul-
tisymplectic manifold (M,Ω). A slice of codimension r is a cooriented
submanifold Σ ofM of codimension r such that for any Γ ∈ EH, Σ is trans-
verse to Γ. By cooriented we mean that for each m ∈ Σ, the quotient space
TmM/TmΣ is oriented continuously in function of m.

Indeed it is clear that the level sets of a r-regular function f :M−→ Rr

are slices of codimension r.
Example 7 — The case when M = ΛnT ∗(X × Y) and that H(x, y, p) =
e+H(x, y, p∗) as in Section 2.2 —Let ΠX :M−→ X be the natural projec-
tion. Then for any function ϕ ∈ C1(X ,Rr) without critical point (i.e. dϕ is of
rank r everywhere) the function ϕ◦ΠX :M−→ Rr a r-regular function. In-
deed because of the particular dependance of H on e a Hamiltonian n-curve
is always a graph over X . A particular case is when r = 1, then any level
set Σ of ϕ is a codimension 1 slice and a (class of) vector τ ∈ TmM/TmΣ is
positively oriented if and only if dϕ(τ) > 0.

Note that in this framework an event in space-time can be represented by a
slice of codimension n. The notion of slice is also important because it helps
to construct observable functionals on the set of solutions EH. Indeed if F
is a (n − 1)-form on M and if Σ is a slice of codimension 1 we define the
functional denoted symbolically by

∫
Σ F : EH 
−→ R by:

Γ 
−→
∫

Σ∩Γ
F.

Here the intersection Σ ∩ Γ is oriented as follows: assume that α ∈ T ∗
mM is

such that α|TmΣ = 0 and α > 0 on TmM/TmΣ and let X ∈ ΛnTmΓ be posi-
tively oriented. Then we require that X α ∈ Λn−1Tm(Σ ∩ Γ) is positively
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oriented. We can further assume restrictions on the choice of F in order
to guarantee the fact that the resulting functional is physically observable.
Such a situation is achieved if for example F is so that dF|TmΓ depends only
on dHm (see [11] for details).

In the next Section we will study a characterization of r-regular functions in
the special case whereM = ΛnT ∗N .

3.3 Pataplectic invariant Hamiltonian functions

In Section 2.3 we gave a definition of the subspaces tangent to the pseud-
ofibers LH

m which was directly deduced from our analysis of pseudofibers.
In Section 4.3 we will prove that an alternative characterization of LH

m in
ΛnT ∗N exists and is more intrinsic. It motivates the following definition:
given an arbitrary multisymplectic manifold (M,Ω) and a Hamiltonian func-
tion H : M −→ R and for all m ∈ M we define the generalized pseud-
ofiber direction to be

LH
m :=

(
T[X]HmD

n
mM Ω

)⊥
:= {ξ ∈ TmM/∀X ∈ [X]Hm,∀δX ∈ TXD

n
mM, ξ Ω(δX) = 0}.

(16)
And we write LH := ∪m∈MLH

m ⊂ TM for the associated distribution of
subspaces.

Note that if we choose an arbitrary Hamiltonian function H, there is no
reason for the conclusions of Theorem 2.3 to be true, unless we know that H
was created out of a Legendre correspondence. This motivates the following
definition8:

Definition 3.4. We say that H is pataplectic invariant if

(i) ∀ξ ∈ LH
m, dHm(ξ) = 0

(ii) for all Hamiltonian n-curve Γ ∈ EH, for all vector field ξ which is a
smooth section of LH, then, for s ∈ R sufficiently small, Γs := esξ(Γ)
is also a Hamiltonian n-curve.

8In the following if ξ is a smooth vector field, we denote by esξ (for s ∈ I , where I is an
interval of R) its flow mapping. And if E is any subset of M, we denote by Es := esξ(E)
its image by esξ.
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In [11] we prove that, if H is pataplectic invariant and if some further
hypotheses are fulfilled, functionals of the type

∫
Σ F are invariant by defor-

mations along LH.

4 The study of ΛnT ∗N

In this Section we analyze in details the special case where M is an open
subset of ΛnT ∗N . Since we are interested here in local properties of M,
we will use local coordinates m = (q, p) = (qα, pα1···αn) on M, and the
multisymplectic form reads Ω =

∑
α1<···<αn

dpα1···αn ∧ dqα1 ∧ · · · ∧ dqαn . For
m = (q, p), we write

dqH :=
∑

1≤α≤n+k

∂H
∂qα

dqα, dpH :=
∑

1≤α1<···<αn≤n+k

∂H
∂pα1···αn

dpα1···αn ,

so that dH = dqH+ dpH.

4.1 The structure of [X]Hm

Here we are given some Hamiltonian function H : M −→ R and a point
m ∈M such that [X]Hm �= ∅ and9 dpHm �= 0. Given any X = X1∧· · ·∧Xn ∈
Dn

mM and any form a ∈ T ∗
mM we will write that a|X �= 0 (resp. a|X = 0)

if and only if (a(X1), · · · , a(Xn)) �= 0 (resp. (a(X1), · · · , a(Xn)) = 0). We
will say that a form a ∈ T ∗

mM is proper on [X]Hm if and only if it’s either
a point-slice

∀X ∈ [X]Hm, a|X �= 0, (17)

or a co-isotropic
∀X ∈ [X]Hm, a|X = 0. (18)

We are interested in characterizing all proper 1-forms on [X]Hm. We show in
this section the following.

Lemma 4.1. LetM be an open subset of ΛnT ∗N endowed with its standard
multisymplectic form Ω, let H :M−→ R be a smooth Hamiltonian function.
Let m ∈M such that dpHm �= 0 and [X]Hm �= ∅. Then
(i) the n+k forms dq1, · · · , dqn+k are proper on [X]Hm and satisfy the follow-
ing property: ∀X ∈ [X]Hm and for all Y,Z ∈ TmM which are in the vector

9observe that, although the splitting dH = dqH + dpH depends on a trivialization of
ΛnT ∗N , the condition dpHm �= 0 is intrinsic: indeed it is equivalent to dH

m|KerdΠm
�= 0,

where Π : ΛnT ∗N −→ N .
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space spanned by X, if dqα(Y ) = dqα(Z), ∀α = 1, · · · , n+ k, then Y = Z.
(ii) Moreover for all a ∈ T ∗

mM which is proper on [X]Hm we have

∃!λ ∈ R,∃!(a1, · · · , an+k) ∈ Rn+k, a = λdHm +
n+k∑
α=1

aαdq
α. (19)

(iii) Up to a change of coordinates on N we can assume that dq1, · · · , dqn

are point-slices and that dqn+1, · · · , dqn+k satisfy (18). Then a ∈ T ∗M is a
point-slice if and only if (19) occurs with (a1, · · · , an) �= 0.

Proof — First step — analysis of [X]Hm. We start by introducing some
extra notations: each vector Y ∈ TmM can be decomposed into a “vertical”
part Y V and a “horizontal” part Y H as follows: for any Y =

∑
1≤α≤n+k Y

α ∂
∂qα +∑

1≤α1<···<αn≤n+k Yα1···αn
∂

∂pα1···αn
, set Y H :=

∑
1≤α≤n+k Y

α ∂
∂qα and Y V :=∑

1≤α1<···<αn≤n+k Yα1···αn
∂

∂pα1···αn
. Let X = X1 ∧ · · · ∧Xn ∈ Dn

m (ΛnT ∗N )
and let us use this decomposition to each Xµ: then X can be split as
X =

∑n
j=0X(j), where each X(j) is homogeneous of degree j in the vari-

ables XV
µ and homogeneous of degree n− j in the variables XH

µ .

Recall that a decomposable n-vector X is in [X]Hm if and only if X Ω =
(−1)ndH. This equation actually splits as

X(0) Ω = (−1)ndpH (20)

and
X(1) Ω = (−1)ndqH. (21)

Equation (20) determines in an unique way X(0) ∈ Dn
qN . The condition

dpH �= 0 implies that necessarily10 X(0) �= 0. At this stage we can choose
a family of n linearly independent vectors X0

1 , · · · ,X0
n in TqN such that

X0
1 ∧ · · · ∧X0

n = X(0). Thus the forms dqα are proper on [X]Hm, since their
restriction on X are fully determined by their restriction on the vector sub-
space spanned by X0

1 , · · · ,X0
n. Furthermore the subspace of TmM spanned

by X is a graph over the subspace of TqN spanned by X(0). This proves the
part (i) of the Lemma..

Proving (ii) and (iii) requires more work. First we deduce that there exists a
unique family (X1, · · · ,Xn) of vectors in TmM such that ∀µ, XH

µ = X0
µ and

10Note also that (20) implies that dpH must satisfy some compatibility conditions since
X(0) is decomposable.
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X1 ∧ · · · ∧Xn = X. And Equation (21) consists in further underdetermined
conditions on the vertical components Xµ,α1···αn of the Xµ’s, namely∑

µ

∑
α1<···<αn

Cµ,α1···αn

β Xµ,α1···αn = − ∂H
∂qβ

,

where
Cµ,α1···αn

β :=
∑

ν

δαν
β (−1)µ+ν∆α1···α̂ν ..αn

1···µ̂···n

and

∆α1···αn−1
µ1···µn−1 :=

∣∣∣∣∣∣∣
Xα1

µ1
. . . Xα1

µn−1

...
...

Xαn
µ1

. . . X
αn−1
µn−1

∣∣∣∣∣∣∣ .
Step2 — Local coordinates. To further understand these relations we choose
suitable coordinates qα in such a way that dpHm = dp1···n and

XH
µ =

∂

∂qµ
for µ = 1, ...., n, (22)

so that (20) is automatically satisfied. In this setting we also have

(−1)nX(1) Ω = −
∑
µ

Xµ,1···ndqµ − (−1)n
∑

µ

∑
n<β

(−1)µXµ,1···µ̂···nβdq
β,

and so (21) is equivalent to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xµ,1···n = − ∂H
∂qµ

, for 1 ≤ µ ≤ n

(−1)n
∑

µ

(−1)µXµ,1···µ̂···nβ = − ∂H
∂qβ

, for n+ 1 ≤ β ≤ n+ k.

(23)

Let us introduce some notations: I := {(α1, · · · , αn)/1 ≤ α1 < · · · ≤
αn ≤ n + k}, I0 := {(1, · · · , n)}, I∗ := {(α1, · · · , αn−1, β)/1 ≤ α1 < · · · <
αn−1 ≤ n, n + 1 ≤ β ≤ n + k}, I∗∗ := I \ (I0 ∪ I∗) . We note also Mµ :=∑

(α1,··· ,αn)∈I∗ Xµ,α1···αn∂
α1···αn , Rµ :=

∑
(α1,··· ,αn)∈I∗∗ Xµ,α1···αn∂

α1···αn and
Mν

µ,β := (−1)n+νXµ,1···ν̂···nβ. Then the set of solutions of (20) and (21)
satisfying (22) is

Xµ =
∂

∂qµ
− ∂H
∂qµ

∂

∂p1···n
+Mµ +Rµ, (24)

where the components of Rµ are arbitrary, and the coefficients of Mµ are
only subject to the constraint∑

µ

Mµ
µ,β = − ∂H

∂qβ
, for n+ 1 ≤ β ≤ n+ k. (25)
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Step 3 — The search of all proper 1-forms on [X]Hm. Now let a ∈ T ∗
mM and

let us look at necessary and sufficient conditions for a to be a proper 1-form
on [X]Hm. We write

a =
∑
α

aαdq
α +

∑
α1<···<αn

aα1···αndpα1···αn .

Let us write a∗ := (aα1···αn)(α1,··· ,αn)∈I∗ , a
∗∗ := (aα1···αn)(α1,··· ,αn)∈I∗∗ and

〈Mµ, a
∗〉 :=

∑
ν

∑
n<β

(−1)n+νMν
µ,βa

1···ν̂···nβ,

and
〈Rµ, a

∗∗〉 :=
∑

(α1,··· ,αn)∈I∗∗
Xµ,α1···αna

α1···αn .

Using (24) we obtain that

a(Xµ) = aµ − ∂H
∂qµ

a1···n + 〈Mµ, a
∗〉+ 〈Rµ, a

∗∗〉 .

Lemma 4.2. Condition (17) (resp. (18)) is equivalent to the two following
conditions:

a∗ = a∗∗ = 0 (26)

and (
a1 − ∂H

∂q1
a1···n, · · · , an − ∂H

∂qn
a1···n

)
�= 0 (resp. = 0). (27)

Proof — We first look at necessary and sufficient conditions on for a to
be a point-slice, i.e. to satisfy (17). Let us denote by �A :=

(
aµ − ∂H

∂qµa
1···n

)
µ

and �M := (Mµ)µ, �R := (Rµ)µ. We want conditions on aα1···αn in order that

the image of the affine map ( �M, �R) 
−→ �A( �M, �R) := �A+ 〈 �M, a∗〉+ 〈�R, a∗∗〉
does not contain 0 (assuming that �M satisfies the constraint (25)). We see
immediately that if a∗∗ would be different from 0, then by choosing �M = 0
and �R suitably, we could have �A( �M, �R) = 0. Thus a∗∗ = 0. Similarly,
assume by contradiction that a∗ is different from 0. Up to a change of
coordinates, we can assume that

(
a1···ν̂···n(n+1)

)
1≤ν≤n

�= 0. And by another

change of coordinates, we can further assume that a2···n(n+1) = λ �= 0 and
a1···ν̂···n(n+1) = 0, if ν ≥ 1. Then choose Mν

µ,β = 0 if β ≥ n+ 2, and⎛
⎜⎜⎜⎝

M1
1,n+1 M1

2,n+1 M1
3,n+1 · · · M1

n,n+1

M2
1,n+1 M2

2,n+1 M2
3,n+1 · · · M2

n,n+1
...

...
...

...
Mn

1,n+1 Mn
2,n+1 Mn

3,n+1 · · · Mn
n,n+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t1 t2 t3 · · · tn
0 s 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎠ ,
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where s = −t1−∂H/∂qn+1. Then we find thatAµ( �M, �R) = Aµ+(−1)n+1λtµ,
so that this expression vanishes for a suitable choice of the tµ’s. Hence we get
a contradiction. Thus we conclude that a∗ = 0 and �A �= 0. The analysis of
1-forms which satisfies (18) is similar: this condition is equivalent to a∗ = 0
and �A = 0. �

Conclusion. We translate the conclusion of Lemma 4.2 without using local
coordinates: it gives relation (19). �

4.2 Slices and r-regular functions

As an application of the above analysis we can give a characterization of
r-regular functions. We first consider the case r = 1.

Indeed any smooth function f :M−→ R is 1-regular if and only if ∀m ∈M,
dfm is a point-slice. Using Lemma 4.2 we obtain two conditions on dfm: the
condition (26) can be restated as follows: for all m ∈ M there exists a real
number λ(m) such that dpfm = λ(m)dpHm. Condition (27) is equivalent to:
∃(α1, · · · , αn) ∈ I, ∃1 ≤ µ ≤ n,

{H, f}α1···αn
αµ

(m) :=
∂H

∂pα1···αn

(m)
∂f

∂qαµ
(m)− ∂f

∂pα1···αn

(m)
∂H
∂qαµ

(m) �= 0.

(28)
[Alternatively using Lemma 4.1, dfm is a point-slice if and only if ∃λ(m) ∈
R, ∃(a1, · · · , an+k) ∈ Rn+k such that dfm = λ(m)dHm +

∑n+k
α=1 aαdq

α and
(a1, · · · , an) �= 0.] Now we remark that dpfm = λ(m)dpHm everywhere if
and only if there exists a function f̂ of the variables (q, h) ∈ N × R such
that f(q, p) = f̂(q,H(q, p)). So we deduce the following.

Theorem 4.1. Let M be an open subset of ΛnT ∗N endowed with its stan-
dard multisymplectic form Ω, let H : M −→ R be a smooth Hamiltonian
function and let f :M −→ R be a smooth function. Assume that dpH �= 0
and [X]H �= ∅ everywhere. Then f is 1-regular if and only if there exists a
smooth function f̂ : N × R −→ R such that

f(q, p) = f̂(q,H(q, p)), ∀(q, p) ∈M

and ∀m ∈M,

∃(α1, · · · , αn) ∈ I,∃1 ≤ µ ≤ n, {H, f}α1···αn
αµ

(m) �= 0.
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By the same token this result gives sufficient conditions for a hypersurface
defined as the level set f−1(s) := {m ∈M/f(m) = s} of a given function to
be a slice: it suffices that the above condition be true along f−1(s).
Example 8 — We come back here to critical points u : X −→ Y of a La-
grangian functional l. We use the notations of Section 2.2 and denote by p∗

the set of coordinates pµ1···µj

i1···ij for j ≥ 1, so that H(q, e, p∗) = e+H(q, p∗). Let
us assume that, ∀q ∈ N = X ×Y, there exists some value p∗0 of p∗ such that
∂H/∂p∗(q, p∗0) = 0. Note that this situation arises in almost all standard
situation (if in particular the Lagrangian l(x, u, v) has a quadratic depen-
dence in v). Assume further the hypotheses of Theorem 4.1 and consider a 1-
regular function f ∈ C∞(M,R). We note that f(q, p) = f̂(q,H(q, p)) implies
that {H, f}α1···αn

αµ
(q, p) = ∂H

∂pα1···αn
(q, p) ∂f̂

∂qαµ (q,H(q, p)). Now for all (q, h) ∈
N × R, let p∗0 be such that ∂H/∂p∗(q, p∗0) = 0 and let e0 := h − H(q, p∗0).
Since ∂H

∂p∗ (q, e0, p∗0) = 0 and ∂H
∂e = 1, condition (28) at m = (q, e0, p∗0) means

that ∃µ with 1 ≤ µ ≤ n such that ∂f̂
∂xµ (q, h) = ∂f̂

∂xµ (q,H(q, e0, p∗0)) �= 0. This
singles out space-time coordinates: they are the functions on M needed
to build slices.

We now turn to the case where 1 ≤ r ≤ n. We consider a map f =
(f1, · · · , f r) from M to Rr and look for necessary and sufficient conditions
on f for being r-regular. We still assume that dpH �= 0 and [X]H �= ∅.
We first analyze the situation locally. Given a point m ∈ M, the property
“X ∈ [X]H =⇒ dfm|X is of rank r” is equivalent to:

∀(t1, · · · , tr) ∈ Rr \ {0}, X ∈ [X]H =⇒
r∑

i=1

tidf
i
m|X �= 0.

Hence by using Lemma 4.1 we deduce that the property X ∈ [X]H =⇒ rank
dfm|X = r is equivalent to

• ∀(t1, · · · , tr) ∈ Rr \ {0}, ∃λ(m) ∈ R,
∑r

i=1 tidpf
i
m = λ(m)dpHm. And

then one easily deduce that ∃λ1(m), · · · , λr(m) ∈ R, such that λ(m) =∑r
i=1 tiλ

i(m).

• ∀(t1, · · · , tr) ∈ Rr\{0}, ∃(α1, · · · , αn) ∈ I,∃1 ≤ µ ≤ n, {H,∑r
i=1 tif

i}α1···αn
αµ

(m) �= 0.

Now the second condition translates as ∀(t1, · · · , tr) ∈ Rr\{0}, ∃(α1, · · · , αn) ∈
I,∃1 ≤ µ ≤ n,

r∑
i=1

ti
∂H

∂pα1···αn

(
∂f i

∂qαµ
− λi ∂H

∂qαµ

)
�= 0.
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This condition can be expressed in terms of minors of size r from the matrix(
∂f i

∂qαµ − λi ∂H
∂qαµ

)
i,αµ

. For that purpose let us denote by

{{H, f1, · · · , f r}} :=
∑

1≤α1<···<αn≤n+k

∑
1≤µ1<···<µr≤n〈

∂

∂pα1···αn

∧ ∂

∂qαµ1
∧ · · · ∧ ∂

∂qαµr
, dH ∧ df1 ∧ · · · ∧ df r

〉
dpα1···αn∧dqαµ1∧· · ·∧dqαµr .

We deduce the following.

Proposition 4.1. Let M be an open subset of ΛnT ∗N endowed with its
standard multisymplectic form Ω, let H :M−→ R be a smooth Hamiltonian
function and let f : M −→ Rr be a smooth function. Let m ∈ M and
assume that dpH �= 0 and [X]H �= ∅ everywhere. Then X ∈ [X]H =⇒ dfm|X
is of rank r if and only if

• ∃λ1(m), · · · , λr(m) ∈ R, ∀1 ≤ i ≤ r, dpf
i
m = λi(m)dpHm.

• {{H, f1, · · · , f r}}(m) �= 0.

And we deduce the global result:

Theorem 4.2. Let M be an open subset of ΛnT ∗N endowed with its stan-
dard multisymplectic form Ω, let H : M −→ R be a smooth Hamiltonian
function and let f :M−→ Rr be a smooth function. Assume that dpH �= 0
and [X]H �= ∅ everywhere. Then f is r-regular if and only if there exists
a smooth function f̂ : N × R −→ Rr such that f(q, p) = f̂(q,H(q, p)) and
∀m ∈M, {{H, f1, · · · , f r}}(m) �= 0.

4.3 Generalized pseudofibers directions

We are now able to prove the equivalence in (an open subset of)M = ΛnT ∗N
between the two possible definitions of LH

m: either
(
TzD

n
qN

)⊥ or

(
T[X]HmD

n
mM Ω

)⊥
:= {ξ ∈ T(q,p)M/ ∀X ∈ [X]H(q,p),∀δX ∈ TXD

n
(q,p)M, ξ Ω(δX) = 0}

as presented in Sections 2.3 and 3.3. First recall that the Legendre corre-
spondence hypothesis implies here that Zq(p) is reduced to a point that we
shall denote by Z(p, q). As a preliminary we prove the following:
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Lemma 4.3. LetM be an open subset of ΛnT ∗N and let H be an arbitrary
smooth function fromM to R, such that dpH never vanishes. Let ξ ∈ LH

(q,p),
then dqα(ξ) = 0, ∀α, i.e.

ξ =
∑

α1<···<αn

ξα1···αn

∂

∂pα1···αn

.

Proof — We use the results proved in Section 4.1: we know that we can
assume w.l.g. that dpH = dp1···n. Then any n-vector X ∈ Dn

(q,p)M such that
(−1)nX Ω = dH can be written X = X1 ∧ · · · ∧Xn, where each vector Xµ

is given by (24) with the conditions on Mν
µ,β and Rµ described in Section

4.1. We construct a solution X of (−1)nX Ω = dH =
∑

α
∂H
∂qαdq

α + dp1···n
by choosing

• Rµ = 0, ∀1 ≤ µ ≤ n
• Mν

µ,β = 0 if (µ, ν) �= (1, 1)

• M1
1,β = − ∂H

∂qβ , ∀n+ 1 ≤ β ≤ n+ k

in relations (24). It corresponds to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X1 =
∂

∂q1
− ∂H
∂q1

∂

∂p1···n
+ (−1)n

n+k∑
β=n+1

∂H
∂qβ

∂

∂p2···nβ

Xµ =
∂

∂qµ
− ∂H
∂qµ

∂

∂p1···n
, if 2 ≤ µ ≤ n.

We first choose δX(1) ∈ TXD
n
(q,p)M to be δX(1) := δX

(1)
1 ∧X2 ∧ · · · ∧ Xn,

where δX(1)
1 := ∂

∂p1···n . It gives

δX(1) =
∂

∂p1···n
∧ ∂

∂q2
∧ · · · ∧ ∂

∂qn
.

Now let ξ ∈ LH
(q,p), we must have ξ Ω(δX(1)) = 0. But a computation gives

ξ Ω(δX(1)) = (−1)nδX(1) Ω(ξ) = −dq1(ξ),
so that dq1(ξ) = 0.

For n+1 ≤ β ≤ n+k, consider δX(β) := δX
(β)
1 ∧X2∧· · ·∧Xn ∈ TXD

n
(q,p)M,

where δX(β)
1 := ∂

∂p2···nβ
. Then we compute that δX(β) Ω = dqβ . Hence, by
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a similar reasoning, the relation ξ Ω(δX(β)) = 0 is equivalent to dqβ(ξ) =
0.

Lastly by considering another solution X ∈ Dn
(q,p)M to the Hamilton equa-

tion, where the role of X1 has been exchanged with the role of Xµ, for some
2 ≤ µ ≤ n, we can prove that dqµ(ξ) = 0, as well. �

Recall that the tangent space T(q,p) (ΛnT ∗N ) possesses a canonical “vertical”
subspace KerdΠ(p,q) � ΛnT ∗

qN : Lemma 4.3 can be rephrased by saying that,
if dpH �= 0 everywhere, then LH

(q,p) can be identified with a vector subspace
of this vertical subspace.

Proposition 4.2. Let M be an open subset of ΛnT ∗N and let H be a
Hamiltonian function onM built from a Lagrangian function L by means of
the Legendre correspondence. Then, through the identification KerdΠ(p,q) �
ΛnT ∗

qN ,
(
T[X]HmD

n
mM Ω

)⊥
coincides with

(
TZ(q,p)D

n
qN

)⊥.

Proof — First we remark that the hypotheses imply that dpH never

vanishes (because dH(0, ω) = 1). Let ξ ∈
(
T[X]HmD

n
mM Ω

)⊥
, using the

preceding remark we can associate a n-form π ∈ ΛnT ∗
qN to ξ with coordi-

nates πα1···αn = ξα1···αn , simply by the relation π = ξ Ω. Now let us look
at the condition:

∀X ∈ [X]H(q,p), ∀δX ∈ TXD
n
(q,p)M, ξ Ω(δX) = 0. (29)

By the analysis of section 4.1 we know that the “horizontal” part X(0) of
X is fully determined by H: it is actually X(0) = Z(q, p). Now take any
δX ∈ TXD

n
(q,p)M and split it into its horizontal part δz ∈ TZ(q,p)D

n
qN and

a vertical part δXV . We remark that

• δz ∈ TZ(q,p)D
n
qN

• ξ Ω(δX) = π(δX) = π(δz).

Hence (29) means that π ∈ (TZ(q,p)D
n
qN

)⊥. So the result follows. �
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