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STRUCTURE OF HOCHSCHILD COHOMOLOGY OF PATH
ALGEBRAS AND DIFFERENTIAL FORMULATION OF EULER’S

POLYHEDRON FORMULA∗

LI GUO† AND FANG LI‡

Abstract. This article studies the Lie algebra Der(kΓ) of derivations on the path algebra kΓ of
a quiver Γ and the Lie algebra on the first Hochschild cohomology group HH

1(kΓ). We relate these
Lie algebras to the algebraic and combinatorial properties of the path algebra. Characterizations
of derivations on a path algebra are obtained, leading to a canonical basis of Der(kΓ) and its Lie
algebra properties. Special derivations are associated to the vertices, arrows and faces of a quiver,
and the concepts of a connection matrix and boundary matrix are introduced to study the relations
among these derivations, giving rise to an interpretation of Euler’s polyhedron formula in terms
of derivations. By taking dimensions, this relation among spaces of derivations recovers Euler’s
polyhedron formula. This relation also leads to a combinatorial construction of a canonical basis of
the Lie algebra HH

1(kΓ), together with a new semidirect sum decomposition of HH
1(kΓ).
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1. Introduction. This paper studies the structure of the Lie algebra of deriva-
tions on the path algebra kΓ of a quiver Γ and the Lie algebra of outer derivations
on the path algebra, also known as the first Hochschild cohomology group HH1(kΓ).
This study has two motivations, one from Hochschild cohomology and one from dif-
ferential algebra. We determine a canonical basis and their multiplication constants
for these two Lie algebras, and relate it to the combinatorial properties of the quiver,
such as Euler’s Polyhedron Theorem.

The study of Hochschild cohomology of quiver related algebras started with the
dimension formula for HHn(kΓ) given by Happel in 1989 [11], who showed that for
an acyclic quiver Γ and a field k,

HH0(kΓ) = k, dimk HH1(kΓ) = 1− | V | +
∑

α∈E

v(α), HHi(kΓ) = 0, ∀i ≥ 2

where v(α) = dimk t(α)kΓh(α), while V and E are respectively the sets of vertices
and arrows of Γ. Afterwards, there have been extensive studies on the dimensions of
the Hochschild cohomology groups of quiver related algebras, such as truncated path
algebras, monomial algebras, schurian algebras and 2-nilpotent algebras [1, 6, 11, 19,
20, 23, 24, 26, 29]. In [24], the first Hochschild cohomology group of a monomial
algebra of radical square zero is given as the splitting extension of a semi-simple
Lie algebra by the radical due to Levi-Malcev Theorem where the semisimple Lie
algebra is related to the cardinality of parallel arrows and the radical to the Euler
characteristic of the quiver. The quiver is supposed to be planar.

Further understanding of the Lie algebraHH1(kΓ) would benefit from an explicit
structure of this Lie algebra, such as a canonical basis and the corresponding multi-
plication constants. This is what we achieve in this paper. We find that the choice
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of the basis of HH1(kΓ) is related to the combinatorics, such as Euler’s formula, and
the topology, such as the genus, of the quiver.

Our second motivation is differential algebra which has its origin in the algebraic
study of differential equations [13, 22, 25] and is a natural yet profound extension
of commutative algebra and the related algebraic geometry. After many years of
developments, the theory has expanded into a vast area in mathematics [5, 13, 25].
Furthermore, differential algebra has found important applications in arithmetic ge-
ometry, logic and computational algebra, especially in the profound work of W. Wu
on mechanical proof of geometric theorems [27, 28].

Most of the study on differential algebra has been for commutative algebras and
fields. Recently, there have been interests to study differential algebra for noncommu-
tative algebras. For instance, in connection with combinatorics, differential structures
were found on heap ordered trees [9] and on decorated rooted trees [10].

This paper gives a differential study of the path algebra of a quiver, as a first
step in the study of differential structures on Artinian algebras. According to the
well-known Gabriel Theorem [2, 3], a basic algebra over an algebraically closed field
is a quotient of the path algebra of its Ext-quiver modulo an admissible ideal. More
generally, by [18], an Artinian algebra over a perfect field is isomorphic to a quotient
of the generalized path algebra of its natural quiver. Thus if we can determine the
differential structures on path algebras (resp. generalized path algebras), including
their differential ideals, then by taking the quotients of these algebras modulo their
differential ideals, we will be able to obtain the differential structure on a basic algebra
(resp. an Artinian algebra). For more related references, see [15, 16, 17].

In Section 2 we characterize when a linear operator on a path algebra is a deriva-
tion. These characterizations of derivations allow us to obtain in Section 3 a canonical
basis of the Lie algebra of derivations on a path algebra and obtain a structure theorem
of Der(kΓ). This structure theorem is then applied to study Lie algebra properties
of Der(kΓ). In Section 4, we focus on three types of derivations of combinatorial na-
ture, namely derivations from the vertices, arrows and faces of the quiver respectively.
Dimension formulas of the spaces spanned by these derivations are proved and the
relations among them are determined. In Section 5 we give two applications of these
dimension formulas. We first revisit Euler’s Polyhedron Theorem from a differential
viewpoint, and prove that the linear space of edge derivations is the direct sum of
the linear spaces of vertex derivations and face derivations. Taking dimensions of the
spaces in this direct sum decomposition gives the original formula of Euler. We next
apply the combinatorial derivations to obtain a canonical basis for HH1(kΓ). This
basis allows us to perform computations in this Lie algebra and to factor it into a
semidirect sum of an abelian Lie subalgebra and an Lie ideal. This given basis and
the semidirect sum decomposition, i.e. the splitting extension, of the first Hochschild
cohomology are in the context of combinatorics and topology. The splitting extension
given here is not obtained from a semi-simple Lie algebra by the radical, hence is differ-
ent from the one in [24] depending upon Levi-Malcev theorem for a finite-dimensional
Lie algebra.

2. Derivations on path algebras. The main purpose of this section is to
provide necessary and sufficient conditions for a linear operator on a path algebra to
be a differential operator.

2.1. Derivations. We briefly recall concepts, notations and facts on differential
algebras, Lie algebras and path algebras of quivers. Further details on these three
subjects can be found in [5, 10, 13], in [12] and in [7, 2, 3, 15], respectively.
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Let k be a field and let A be a k-algebra. Let Lie(A) = (A, [, ]) denote the Lie
algebra structure on A with the Lie bracket

[x, y] := xy − yx, x, y ∈ A.

A derivation (or a differential operator) on A is a k-linear map D : A → A such
that

D(xy) = D(x)y + xD(y), ∀x, y ∈ A.

Let Der(A) denote the set of derivations on A. Then with the Lie bracket

[D1, D2] := D1 ◦D2 −D2 ◦D1, D1, D2 ∈ Der(A),

Der(A) is a Lie algebra, called the Lie algebra of derivations on A.
For a ∈ A, define the inner derivation

(1) Da : A → A, Da(b) = (ada)(b) := ab− ba, b ∈ A.

Then the map

(2) D : Lie(A) → Der(A), D(a) = Da, a ∈ A,

from Eq. (1) is a Lie algebra homomorphism whose kernel is C(A), the center of A
and also the zeroth Hochschild cohomology group HH0(A).

The subset InDer(A) := imD ⊆ Der(A) is a Lie ideal. The quotient Lie algebra

(3) OutDer(A) := Der(A)/InDer(A)

is called the Lie algebra of outer derivations. As is well-known [21, §11.5],
OutDer(A) is also the first Hochschild cohomology group HH1(A).

We will study Der(A) and HH1(A) when A = kΓ is the path algebra of a con-
nected quiver Γ.

2.2. Path algebras. A quiver is a quadruple Γ = (V,E, t, h) consisting of a
set V of vertices, a set E of arrows and a pair of maps h, t : E → V such that for
any arrow a ∈ E, h(a) is called the head of a and t(a) is called the tail of a. When
there is no danger of confusion, we also denote Γ = (V,E). A quiver is called trivial
if E = ∅.

Let p be a path in Γ consisting of the ordered list v0, p1, v1, · · · , vℓ−1, pℓ, vℓ, with
vi ∈ V, 0 ≤ i ≤ ℓ and pj ∈ E, 1 ≤ j ≤ ℓ, such that t(pj) = vj−1 and h(pj) = vj ,
1 ≤ j ≤ ℓ. The integer ℓ ≥ 0 is called the length of the path p and is denoted by
ℓ(p). The path p is expressed as

p = v0p1v1 · · · vℓ−1pℓvℓ,

called the standard decomposition of p, and the expression

p = p1 · · · pℓ,

is called the decomposition of p into arrows. Both decompositions are unique.
Let P denote the set of paths of Γ. For p ∈ P let t(p) and h(p) denote the tail

and the head of p respectively.
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Let

kΓ =
⊕

p∈P

kp,

denote the path algebra of Γ where the product is given by

p · q := δh(p),t(q)pq :=

{
pq, h(p) = t(q),
0, otherwise.

Here δh(p),t(q) is the delta function. To simplify notations, we often suppress the
symbol · and denote p · q = pq, with the convention that pq = 0 when h(p) 6= t(q).

We will use the following notations on quivers and their path algebras.

Definition 2.1.

(a) For two paths p and q, denote p ‖ q and called p and q parallel, if t(p) = t(q)
and h(p) = h(q).

(b) For two paths p and q, if q = pr (resp. q = rp) for some path r, then call p
a tail (resp. head) of q and denote by p ≤t q (resp. p ≤h q). Such an r is
unique for given p, q.

(c) A path p is called acyclic if h(p) 6= t(p). The set of acyclic paths is denoted
by PA.

(d) A quiver Γ is called acyclic if Γ has no oriented cycles, that is, if P\V = PA.

In this paper, we always assume that a quiver Γ is finite, that is, its vertex set
and arrow set are both finite. By the linearity of a derivation, we have:

Lemma 2.2. Let A be a k-algebra with a linear basis X. Then a linear operator
D : A → A is a derivation if and only if

(4) D(xy) = D(x)y + xD(y), ∀x, y ∈ X.

In particular, a linear operator D : kΓ → kΓ is a derivation if and only if Eq. (4)
holds for all x, y ∈ P.

2.3. Necessary and sufficient conditions for a derivation. We now char-
acterize a derivation on a path algebra kΓ in terms of the paths P of Γ. These
characterizations will be applied in the next section to determine all derivations on a
path algebra.

Let D : kΓ → kΓ be a linear operator. Then for any p ∈ P,

D(p) =
∑

q∈P

cpqq,

for unique cpq ∈ k. We will use this notation for the rest of this paper. We also use
the convention that, for the empty set ∅,

∑

q∈∅

cpqq = 0.

Theorem 2.3. Let Γ be a quiver. A linear operator D : kΓ → kΓ is a derivation
if and only if D satisfies the following conditions.
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(a) For v ∈ V ,

(5) D(v) =
∑

q∈PA,t(q)=v

cvqq +
∑

q∈PA,h(q)=v

cvqq =
∑

q∈PA,t(q)=v or h(q)=v

cvqq.

(b) For p ∈ P\V ,

(6) D(p) =
∑

q∈PA, h(q)=t(p)

ct(p)q qp+
∑

q‖p

cpqq +
∑

q∈PA, t(q)=h(p)

ch(p)q pq,

where the coefficients cpq are subject to the following conditions.
(i) For any path q ∈ PA,

(7) ch(q)q + ct(q)q = 0.

(ii) For any path p = p1p2 with p1, p2 ∈ P\V and q ‖ p, we have

(8)

cpq = cp1p2

q =







cp1

q1
+ cp2

q2
, if p2 ≤h q with q = q1p2 and p1 ≤t q with q = p1q2,

cp1

q1
, if p2 ≤h q with q = q1p2 and q1 6≤t p1,

cp2

q2
, if p1 ≤t q with q = p1q2 and q2 6≤h p2,

0, if p2 6≤h q and p1 6≤t q.

Proof. (=⇒) Let D : kΓ → kΓ be a linear operator. For a given v ∈ V , since
vv = v, we have D(v) = D(vv) = D(v)v + vD(v). Thus

(9)
∑

q∈P

cvqq =
(∑

q∈P

cvqq
)

v + v
(∑

q∈P

cvqq
)

=
∑

q∈P,h(q)=v

cvqq +
∑

q∈P,t(q)=v

cvq q

since qv = 0 unless h(q) = v and vq = 0 unless t(q) = v.
Similarly, from

D(v) = D(v3) = D(v)v2 + vD(v)v + v2D(v) = D(v)v + vD(v)v + vD(v),

we have
∑

q∈P

cvqq =
(∑

q∈P

cvqq
)

v + v
(∑

q∈P

cvqq
)

v + v
(∑

q∈P

cvqq
)

=
∑

q∈P,h(q)=v

cvqq +
∑

q∈P,h(q)=v,t(q)=v

cvqq +
∑

q∈P,t(q)=v

cvq q.

Comparing this with Eq. (9), we obtain
∑

q∈P,h(q)=v,t(q)=v

cvqq = 0. Then Eq. (5) follows

from Eq. (9).

Also, for a given path p ∈ P\V , we have

D(p) = D(t(p)ph(p))

= D(t(p))ph(p) + t(p)D(p)h(p) + t(p)pD(h(p))

= D(t(p))p+ t(p)D(p)h(p) + pD(h(p))

= D(t(p))p+
∑

q‖p

cpq q + pD(h(p)).
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By Eq. (5), we have

D(t(p))p =
( ∑

q∈PA,t(q)=t(p)

ct(p)q q +
∑

q∈PA,h(q)=t(p)

ct(p)q q
)

p =
∑

q∈PA,h(q)=t(p)

ct(p)q qp

since qp = 0 if h(q) 6= t(p). Similarly, pD(h(p)) =
∑

q∈PA,t(q)=h(p)

c
h(p)
q pq. This proves

Eq. (6).

Thus we only need to prove Eq. (7) and Eq. (8) in order to complete the proof of
(=⇒). For this purpose, we prove a lemma.

Lemma 2.4.

(a) Let p1, p2 ∈ P. Suppose p1p2 = 0 and Eq. (5) and Eq. (8) hold for p1 and
p2. Then D(p1p2) = D(p1)p2 + p1D(p2) if and only if, for every q ∈ P with
t(q) = p1 and h(q) = p2, Eq. (7) holds.

(b) Let p1, p2 ∈ P\V . Suppose p1p2 6= 0 and Eq. (6) holds for p1, p2 and p1p2.
Then D(p1p2) = D(p1)p2 + p1D(p2) if and only if, for every q ‖ p, Eq. (8)
holds.

Proof. (a). Since p1p2 = 0 and D is linear, we have D(p1p2) = 0. To compute
D(p1)p2 + p1D(p2), first consider the case when p1, p2 are in V .

D(p1)p2 + p1D(p2)

=




∑

q∈PA,h(q)=p1

cp1

q q +
∑

q∈PA,t(q)=p1

cp1

q q



 p2

+p1




∑

q∈PA,h(q)=p2

cp2

q q +
∑

q∈PA,t(q)=p2

cp2

q q



 (by Eq. (6))

=
∑

q∈PA,t(q)=p1,h(q)=p2

cp1

q q +
∑

q∈PA,t(q)=p1,h(q)=p2

cp2

q q (since p1 6= p2)

=
∑

q∈PA,t(q)=p1,h(q)=p2

(cp1

q + cp2

q )q.

Thus D(p1)p2+p1D(p2) = 0 if and only if all the coefficients in the last sum are zero.

That is, c
h(q)
q + c

t(q)
q = 0 for all q ∈ P with t(q) = p1, h(q) = p2. This proves (a).

Next consider the case when p1 and p2 are in P\V . By a similar computation1,
we have:

D(p1)p2 + p1D(p2) =
∑

t(q)=h(p1),h(q)=t(p2)

(ch(p1)
q + ct(p2)

q )p1qp2.

For any two distinct p1, p2 ∈ P with t(q) = h(p1) and h(q) = t(p2), the corresponding
p1qp2 are non-zero and are distinct paths in the basis P of kΓ. Thus D(p1)p2 +
p1D(p2) = 0 if and only if all the coefficients in the last sum are zero. That is,

c
h(p1)
q + c

t(p2)
q = 0 for all q ∈ P with t(q) = h(p1), h(q) = t(p2). This proves (a) in this

case.

1For details of this and latter computations, see the online version of the paper arXiv:1010.1980v2.
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The cases when one of p1, p2 is in V and the other one is in P\V can be verified
in the same way.

(b). By Eq. (6) we have

(10) D(p1p2) =
∑

q∈PA,h(q)=t(p1)

ct(p1)
q qp1p2 +

∑

q‖p1p2

cp1p2

q q +
∑

q∈A,t(q)=h(p2)

ch(p2)
p p1p2q

since t(p1p2) = t(p1) and h(p1p2) = h(p2). Similarly,

D(p1)p2 =
( ∑

q∈PA,h(q)=t(p1)

ct(p1)
q qp1 +

∑

q1‖p1

cp1

q1
q1 +

∑

q∈PA,t(q)=h(p1)

ch(p1)
q p1q

)
p2.

Since h(q) 6= t(q) = h(p1) = t(p2), we have qp2 = 0 for q in the last sum. Thus we
obtain

(11) D(p1)p2 =
∑

q∈PA,h(q)=t(p1)

ct(p1)
q qp1p2 +

∑

q1‖p1

cp1

q1
q1p2.

By the same argument, we have

(12) p1D(p2) =
∑

q2‖p2

cp2

q2
p1q2 +

∑

q∈PA,t(q)=h(p2)

ch(p2)
q p1p2q.

Thus by equations (10), (11) and (12), we see that D(p1p2) = D(p1)p2 + p1D(p2) if
and only if

(13)
∑

q‖p1p2

cp1p2

q q =
∑

q1‖p1

cp1

q1
q1p2 +

∑

q2‖p2

cp2

q2
p1q2.

In the sum on the left hand side, the paths q ‖ p1p2 can be divided into the
disjoint union of the following four subsets:

P1 := {q ∈ P | p ‖ p1p2, p1 ≤t q and p2 ≤h q},(14)

P2 := {q ∈ P | q ‖ p1p2, p1 ≤t q and p2 6≤h q},(15)

P3 := {q ∈ P | q ‖ p1p2, p1 6≤t q and p2 ≤h q},(16)

P4 := {q ∈ P | q ‖ p1p2, p1 6≤t q and p2 6≤h q}.(17)

Thus the left hand side of Eq. (13) becomes

(18)
∑

q‖p1p2

cp1p2

q q =
∑

q∈P1

cp1p2

q q +
∑

q∈P2

cp1p2

q q +
∑

q∈P3

cp1p2

q q +
∑

q∈P4

cp1p2

q q.

By the definitions of ≤t and ≤h, for the two sums on the right hand side of Eq. (13),
we have respectively

(19) {q1p2 | q1 ‖ p1} = P1 ∪ P3

and

{p1q2 | q2 ‖ p2} = P1 ∪ P2.
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Thus the right hand side of Eq. (13) becomes
(20)

∑

q∈P1 with q=q1p2=p1q2

(cp1

q1
+ cp2

q2
)q +

∑

q∈P3 with q=q1p2

cp1

q1
q1p2 +

∑

q∈P2 with q=p1q2

cp2

q2
p1q2.

Now comparing the coefficients on the two sides of Eq. (13) using Eq. (18) and Eq. (20),
we obtain Eq. (8).

Now we return to the proof of Theorem 2.3. For any path p ∈ P\V with t(p) 6=
h(p), we have t(p)h(p) = 0. So applying Lemma 2.4.(a) to p1 = t(p) and p2 = h(p) in
Eq. (5), we obtain Eq. (7).

Finally let p = p1p2 with p1, p2 ∈ P\V . Applying Lemma 2.4.(b) to p = p1p2, we
obtain Eq. (8).

(⇐=) Suppose a linear operator D : kΓ → kΓ is given by Eq. (5) and (6) subject to
the conditions Eq. (7) and (8). By Lemma 2.2, to show that D is a derivation we just
need to show that Eq. (4) holds for X = P. Thus we only need to verify Eq. (4) in
the following four cases.

(a) x, y ∈ V ;
(b) x ∈ V, y ∈ P\V ;
(c) x ∈ P\V, y ∈ V ;
(d) x, y ∈ P\V.

The checking of each case is routine and is omitted.

2.4. A variation of Theorem 2.3. For the convenience of later applications,
we give another formulation of Theorem 2.3 on the condition of a derivation on a path
algebra.

Corollary 2.5. Let Γ be a quiver. A linear operator D : kΓ → kΓ is a
derivation if and only if D is determined by its action on the basis P as follows.

(a) Let v ∈ V . Then

(21) D(v) =
∑

q∈PA,t(q)=v

ct(q)q q −
∑

q∈PA,h(q)=v

ct(q)q q.

(b) Let p ∈ P\V . Then

(22) D(p) =
∑

q∈PA,t(q)=h(p)

ct(q)q pq +
∑

q‖p

cpqq −
∑

q∈PA,h(q)=t(p)

ct(q)q qp,

where the coefficients cpq are subject to the following condition: For any path
p = p1p2 with p1, p2 ∈ P\V and q ‖ p, we have

cpq = cp1p2

q =







cp1

q1
+ cp2

q2
, if p2 ≤h q with q = q1p2 and p1 ≤t q with q = p1q2,

cp1

q1
, if p2 ≤h q with q = q1p2 and q1 6≤t p1,

cp2

q2
, if p1 ≤t q with q = p1q2 and q2 6≤h p2,

0, if p2 6≤h q and p1 6≤t q.

Proof. We only need to show that the condition Eq (7) imposed to Eq. (5) and
Eq. (6) in Theorem 2.3 amount to Eq. (21) and Eq. (22). First, applying Eq. (7), that

is c
h(p)
p = −c

t(p)
p for p ∈ P\V , to Eq. (5) gives us Eq. (21).
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Similarly apply Eq. (7) to Eq. (6). For the coefficients in the first sum, we have

c
h(p)
q = c

t(q)
q by the restriction of the sum. For the coefficients in the third sum of

Eq. (6) we have c
t(p)
q = c

h(q)
p = −c

t(q)
q . Thus the first and third sums in Eq. (6) agree

with the corresponding sums in Eq. (22). This is what we need.

3. The Structure of Lie algebra Der(kΓ) for a quiver Γ. In this section,
we apply the characterizations (Theorem 2.3 and Corollary 2.5) of a derivation on a
path algebra to study the Lie algebra Der(kΓ). We first display a canonical basis for
this Lie algebra and then use the basis to establish the multiplication structure of this
Lie algebra. As applications, basic properties of this Lie algebra are studies.

3.1. The derivation Dr,s. Let r ∈ E and s ‖ r. We construct a linear operator

Dr,s : kΓ → kΓ

by defining Dr,s(p) for p ∈ P by induction on the length ℓ(p) of p.
When ℓ(p) = 0, i.e., p ∈ V , we define

(23) Dr,s(p) = 0.

Assume that Dr,s(p) have been defined for p ∈ P with ℓ(p) = n ≥ 0. Consider p ∈ P

with ℓ(p) = n + 1. Then p = p1p̃ with p1 ∈ E and p̃ ∈ P with ℓ(p̃) = n. We then
define

(24) Dr,s(p) =

{
sp̃+ p1Dr,s(p̃), p1 = r,
p1Dr,s(p̃), p1 6= r.

Proposition 3.1. For a quiver Γ = (V,E), let r ∈ E and s ‖ r. The linear
operator Dr,s recursively defined by Eqs. (23) and (24) have the following explicit
formula. For any p ∈ P with the standard decomposition p = v0p1v1 · · · pkvk with
v0, · · · , vk ∈ V, p1, · · · , pk ∈ E, we have

(25) Dr,s(p) =







0, k = 0,
k∑

i=1

v0pi,1v1 · · · pi,kvk, k > 0,

where pi,j or, more precisely, p
(r,s)
i,j is defined by

(26) pi,j := p
(r,s)
i,j :=







s, i = j, pi = r,
0, i = j, pi 6= r,
pj , i 6= j.

For example, for p ∈ P with standard decomposition p = v0p1v1p2v2p3v3p4v4
where p1, p3 = r and p2, p4 6= r, we have

Dr,s(p) = v0sv1p2v2rv3p4v4 + v0rv1p2v2sv3p4v4.

Proof. Let D be defined by Eq. (25). We just need to show that Dr,s(p) = D(p)
for all p ∈ P. We prove this by induction on ℓ(p). When ℓ(p) = 0, then Dr,s(p) =
0 = D(p) by the definitions of Dr,s and D. Assume the equation holds for ℓ(p) = k
for k ≥ 0, and consider p ∈ P with ℓ(p) = k + 1. Then p = v0p1p̃ = p1p̃ with p1 ∈ E
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and p̃ ∈ P with ℓ(p̃) = k. Let p̃ = v1p2v2 · · · pk+1vk+1 be the standard decomposition
of p̃. Then by the induction hypothesis we have

Dr,s(p) =

{
sp̃+ p1Dr,s(p̃), p1 = r
p1Dr,s(p̃), p1 6= r

=

{

v0sv1p2v2 · · · pk+1vk+1 + v0p1
∑k+1

i=2 v1pi,2v2 · · · pi,k+1vk+1, p1 = r

v0p1
∑k+1

i=2 v1pi,2v2 · · · pi,k+1vk+1, p1 6= r

=

{

v0sv1p2v2 · · · pk+1vk+1 +
∑k+1

i=2 v0p1v1pi,2v2 · · · pi,k+1vk+1, p1 = r
∑k+1

i=2 v0p1v1pi,2v2 · · · pi,k+1vk+1, p1 6= r

=
k+1∑

i=1

v0pi,1v1 · · · pi,k+1vk+1,

where pi,j is defined by Eq. (26). Since this agrees with D(p), the induction is com-
pleted.

Theorem 3.2. For r ∈ E and s ‖ r, the linear operator Dr,s : kΓ → kΓ defined
by Eq. (23) and Eq. (24) is a derivation.

Proof. By Lemma 2.2, we only need to verify

(27) Dr,s(pq) = Dr,s(p)q + pDr,s(q), ∀p, q ∈ P.

We will prove this by induction on ℓ(p).

Let ℓ(p) = 0. Then pq = q if p = t(q) and pq = 0 if p 6= t(q). First consider the
case when Dr,s(q) = 0. Then both sides of Eq. (27) are zero. So we are done. Next
consider the case when Dr,s(q) 6= 0. Then we have t(Dr,s(q)) = t(q) by the definition
of Dr,s(q). Thus if t(q) 6= p, then both sides of Eq. (27) are zero and we are done
again. If t(q) = p, then both sides of Eq. (27) equal to Dr,s(q), as needed.

Next assume that Eq. (27) has been proved for p ∈ P with ℓ(p) = n ≥ 0 and
consider p ∈ P with ℓ(p) = n+ 1. Then we can write p = p1p̃ and obtain

Dr,s(pq) = Dr,s(p1p̃q)

=

{
sp̃q + p1Dr,s(p̃q), p1 = r,
p1Dr,s(p̃q), p1 6= r.

(by Eq. (24))

=

{
sp̃q + p1(Dr,s(p̃)q + p̃Dr,s(q)), p1 = r,
p1(Dr,s(p̃)q + p̃Dr,s(q)), p1 6= r.

(by induction hypothesis)

=

{
Dr,s(p)q + pDr,s(q), p1 = r,
Dr,s(p)q + pDr,s(q), p1 6= r.

(by Eq. (24))

This completes the induction.

As an immediate consequence of Theorem 2.3 and Theorem 3.2, we prove the
following existence theorem of derivations on path algebras. Note that the zero map
on any algebra is a derivation.

Corollary 3.3. There is a nonzero derivation on the path algebra kΓ of a quiver
Γ if and only if Γ is a non-trivial quiver, that is, Γ has at least one arrow. Equivalently,
Der(kΓ) is a non-zero Lie algebra if and only if Γ is a non-trivial quiver.
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Proof. Suppose Γ contains only vertices. Let D : kΓ → kΓ be a derivation.
Then by Eq. (5), we have D(v) =

∑

q∈PA,t(q)=v or h(q)=v

cvqq. Since PA = ∅ in this case,

D(v) = 0 for all v ∈ V . Since V is a basis of kΓ, D is the zero map.
Conversely, suppose Γ contains an arrow p0. Then we have the derivation Dp0,p0

by Theorem 3.2. Since Dp0,p0
(p0) = p0 is nonzero, we have obtained a non-zero

derivation on kΓ.

3.2. A canonical basis of Der(kΓ). We now display a canonical basis of the
Lie algebra Der(kΓ) for a quiver Γ. For a given s ∈ P, we have the inner derivation

Ds : kΓ → kΓ, Ds(q) = sq − qs, ∀q ∈ P.

Theorem 3.4. Let Γ be a quiver. A basis of the Lie algebra Der(kΓ) is given by
the set

B := B1 ∪B2

where

(28) B1 := {Ds | s ∈ PA} and B2 := {Dr,s | r ∈ E, s ‖ r}.

Thus Der(kΓ) = D1 ⊕D2 where Di are the k-linear space with bases Bi for i = 1, 2.

We will call B the canonical basis of Der(kΓ).
Proof. Since the operators in B are derivations by Theorem 3.2, we only need to

verify that the operators in B are linearly independent and that B spans the whole
space of derivations.

Step 1. B is linearly independent. Suppose there are cs, cr,s ∈ k such that

D :=
∑

s∈PA

csDs +
∑

r∈E,s‖r

cr,sDr,s = 0.

Then for any given s0 ∈ PA, by the definitions of Ds and Dr,s we have

0 = D(h(s0))

=
∑

s∈PA

csDs(h(s0))

=
∑

s∈PA

cs
(
s h(s0)− h(s0)s

)

=
∑

s∈PA, h(s)=h(s0)

css−
∑

s∈PA, t(s)=h(s0)

css.

Since h(s) 6= t(s) in the sums, the index sets of the two sums are disjoint. Thus both
of the sums equal to zero and hence cs = 0 for all s ∈ PA with h(s) = h(s0). In
particular, cs0 = 0. Thus,

D =
∑

r∈E,s‖r

cr,sDr,s.

Further, for any given r0 ∈ E and s0 ‖ r0, by the definitions of Ds and Dr,s we have
0 = D(r0) =

∑

s0 6=s∈P, s‖r0

cr0,ss+ cr0,s0s0, and hence cr0,s0 = 0.
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Thus we have proved that B is linearly independent.

Step 2. B is a spanning set of derivations on kΓ. Let D : kΓ → kΓ be a
given derivation. Then D is defined by Eq. (21) and Eq. (22) in Corollary 2.5. In
particular, for p ∈ E, by Eq. (22) we have

(29) D(p) =
∑

q∈PA,t(q)=h(p)

ct(q)q pq +
∑

q‖p

cpqq −
∑

q∈PA,h(q)=t(p)

ct(q)q qp

for certain coefficients c
t(q)
q ∈ k where q ∈ PA with t(q) = h(p) and cpq ∈ k where

q ‖ p.
We claim that D agrees with the operator D̄ defined by the linear combination

D̄ = −
∑

s∈PA

ct(s)s Ds +
∑

r∈E,s∈P, h(s)=h(r),t(s)=t(r)

crsDr,s,

obtained by the same coefficients appeared in Eq. (29). As a linear combination of
derivations, D̄ is also a derivation. Any path in P is either a vertex or a product of
arrows. Thus by the product rule of derivations, to show the equality of D and D̄,
we only need to verify that D(q) = D̄(q) for each q = v ∈ V and q = p ∈ E.

First let q = v ∈ V . Since Dr,s(v) = 0, we have

D̄(v) = −
∑

s∈PA

c
t(s)
s Ds(v) = −

∑

s∈PA

c
t(s)
s (sv−vs) = −

∑

s∈PA,h(s)=v

c
t(s)
s sv+

∑

s∈PA,t(s)=v

c
t(s)
s vs.

Here the last equality follows since, in the first sum, sv is s if h(s) = v and is zero
otherwise, and in the second sum, vs is s if t(s) = v and is zero otherwise. Thus D̄(v)
agrees with D(v) as defined in Eq. (21).

Next let q = p ∈ E. Then Dr,s(p) is s if r = p and is 0 otherwise. Thus we have

D̄(p) = −
∑

s∈PA

ct(s)s Ds(p) +
∑

r∈E,s‖r

crsDr,s(p)

= −
∑

s∈PA

ct(s)s (−ps+ sp) +
∑

s‖p

cpss

=
∑

s∈PA,t(s)=h(p)

ct(s)s ps−
∑

s∈PA,h(s)=t(p)

ct(s)s sp+
∑

s‖p

cpss.

This agrees with D(p) in Eq. (29). Thus D̄ = D, showing that B spans Der(kΓ).
The proof of Theorem 3.4 is completed.

3.3. A Structure theorem of Der(kΓ). Let p ∈ E and let
∑k

i=1 ciqi ∈ kΓ
where ci ∈ k and qi ∈ P with qi ‖ p. We denote

(30) Dp,
∑

k
i=1

ciqi
=

k∑

i=1,qi‖p

ciDp,qi .

Theorem 3.5. (Basis Theorem of Der(kΓ)) For derivations in Der(kΓ), the
following relations hold.

[Dp, Dr] = D[p,r], for p, r ∈ P,(31)

[Dp, Dr,s] = −DDr,s(p), for r ∈ E, p, s ∈ P, s ‖ r,(32)

[Dr,s, Dp,q] = Dp,Dr,s(q) −Dr,Dp,q(s), for r, p ∈ E, s ‖ r, q ‖ p.(33)
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Proof. Eq. (31) follows from the fact that the map in Eq. (2) is a Lie algebra
homomorphism.

Eq. (32) follows from a direct computation using the definitions of Dp and Dr,s.
Finally let r, p ∈ E and s ‖ r and q ‖ p. Since both sides of Eq. (33) are

derivations, by the product rule of derivations, we only need to prove that, for t ∈ E,
the following holds

(34) [Dr,s, Dp,q](t) = Dp,Dr,s(q)(t)−Dr,Dp,q(s)(t).

Let such a t be given. If t 6= r, p, then both sides of Eq. (34) are zero. If t = p, then
both sides of Eq. (34) equal to Dr,s(q)−Dp,q(s) if t = r and equal to Dr,s(q) if t 6= r.
If t = r, then both sides of Eq. (34) equal to Dr,s(q) −Dp,q(s) if t = p and equal to
−Dp,q(s) if t 6= p. This proves Eq. (33).

Note that we usually do not require Dp or Dr to be in B1. So h(p) = t(p) or
h(r) = t(r) are allowed. In fact, even when Dp and Dr are in B1, D[r,p] = Drp −Dpr

might not be in the linear space D1 spanned by B1. For example, if r is a path from
a vertex v1 to another vertex v2 6= v1 and p is a path from v2 to v1, then Dr and Dp

are in B1. But pr and rp are both oriented cycles, so Dpr and Drp are not in B1.

3.4. Ideals and nilpotency. We next apply Theorem 3.5 to study Lie algebra
properties of Der(kΓ).

Proposition 3.6. For any non-trivial quiver Γ, the Lie algebra Der(kΓ) is not
nilpotent.

Proof. By the well-known Engel theorem [12], a Lie algebra g is nilpotent if and
only if for all its elements g, the adjoint derivation

ad g : g → g, h 7→ [g, h], h ∈ g,

is nilpotent. Let p be an arrow in Γ. Then we have adDp,p(Dp) = Dp and thus for
any natural number n, (adDp,p)

n(Dp) = Dp. So adDp,p is not nilpotent.

Theorem 3.7. Let Γ be an acyclic quiver. Let B1,B2 ⊆ B and D1 = kB1,
D2 = kB2 be defined in Theorem 3.4. Then,

(a) D1 (resp. D2) is an ideal (resp. subalgebra) of the Lie algebra Der(kΓ);
(b) (Structure theorem of Der(kΓ)) Der(kΓ) is a semi-direct sum of the Lie

ideal D1 and the Lie subalgebra D2, that is,

Der(kΓ) = D1 ⋉D2;

(c) If Γ is also a finite quiver, then D1 is a nilpotent Lie algebra.

Proof. (a). Since Γ does not contain any oriented cycles, for any p, r ∈ PA, we
have rp ∈ PA unless rp = 0 and pr ∈ PA unless pr = 0. Thus by Eq. (31), D1 is
closed under the Lie bracket. Further, for p ∈ PA and r ∈ E, s ‖ r, by the acyclicity
of r and the definition of Dr,s in Eq. (24), Dr,s(p) =

∑

i ciqi for qi ∈ P\V . Since
P\V = PA by assumption, we see that DDr,s(p) =

∑

i ciDqi is in D1. Thus [Dr,s, Dp]
is in D1 by Eq. (32). Since Der(kΓ) = D1 ⊕D2 by Theorem 3.4, this proves that D1

is an ideal of Der(kΓ).
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By Eq. (33), D2 is a Lie subalgebra of Der(kΓ).

(b). This follows from Item (a) and Theorem 3.4.

(c). We first note that the minimal length of P′ := P\V is one. We then note that,
for

P
(2) := [P′,P′] := {[p, q] = pq − qp | p, q ∈ P

′},

the minimal length is two unless [P′,P′] = 0. Let g := k(P\V ). Since P(2) ⊆ g, g is
a Lie subalgebra of kΓ. By an inductive argument, we see that, for the recursively
defined P(n+1) := [P′,P(n)], its minimal length is n+ 1 unless P(n+1) = 0.

On the other hand, by our acyclicity and finiteness assumptions on Γ, the lengths
of paths in Γ is bounded by |V |: suppose there is a path p of length |V |+ 1 with its
standard decomposition p = v0p1v1 · · · v|V |p|V |+1v|V |+1. Then there are 0 ≤ i < j ≤
|V |+1 such that vi = vj . This shows that p contains an oriented cycle, contradicting
the acyclicity assumption.

Combining the above two points, we see that P(n) = 0 for large enough n. Thus
g is nilpotent.

Under the acyclic assumption, we have P\V = PA. So the Lie algebra homomor-
phism D : kΓ → Der(kΓ) from Eq. (2) sends the above Lie algebra g to DA = kB1

surjectively. Thus DA is nilpotent.

We note that when the restriction that Γ is acyclic is removed, the first statement
of Theorem 3.7 is no longer true. This is because in Eq. (31): [Dp, Dr] = D[p,r],
the right hand side might not be in B1 even if Dp and Dr are. See the remark and
example after Theorem 3.5.

3.5. Inner derivations and the canonical basis. We now express inner
derivations in InDerkΓ in terms of the canonical basis.

Proposition 3.8. Let q ∈ P be such that h(q) = t(q). Let v0 = h(q). We have

(35) Dq =
∑

p∈E,t(p)=v0

Dp,qp −
∑

r∈E,h(r)=v0

Dr,rq.

Proof. Note that both sides of the equation are derivations and kΓ is generated
by V ∪ E as a k-algebra. So by the product formula of derivations, we only need to
verify that the two sides agree when acting on V and E. This follows from a routine
computation.

4. Combinatorial derivations and their relations. In this section, we study
combinatorial derivations on a path algebra kΓ, namely derivations from the combi-
natorial objects of vertices, edges and faces of Γ. We define various relation matrices,
study their ranks and obtain dimensional formulas of these derivations. These dimen-
sional formula will be applied in the next section to give a strengthened form of Euler’s
polyhedron formula and to determine the structure of the Lie algebra HH1(kΓ) in
the context of combinatorics and topology.

4.1. Combinatorial derivations and their relation matrices. We will con-
sider a quiver Γ of genus g which is defined to be a quiver together with a fixed
embedding of Γ into an oriented surface S of genus g such that g is the smallest.
Such a quiver is called a topological quiver. Note that in this paper only oriented
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surfaces are considered since we will use Eulers Polyhedron Theorem (Theorem 5.1)
which is about a quiver embedded into an oriented surface.

A quiver Γ is called connected if the underlying set of Γ is connected. The set
F of faces of Γ is the set of connected components of S\Γ, or more precisely the
complement of the underlying set of Γ in S.

When the genus g is zero, we can take the oriented surface S to be the Riemann
sphere, through the stereographic projection from the Riemann sphere to R2.

4.1.1. Combinatorial derivations from a quiver. We put together various
combinatorially defined derivations on the path algebra of a quiver Γ = (V,E). We
recall the following notations.

(a) For v ∈ V , we call Dv a vertex derivation and let DV denote the linear
space spanned by {Dv | v ∈ V }, called the space of vertex derivations.

(b) For p ∈ E, we call Dp,p an edge derivation and let DE denote the linear
space spanned by {Dp,p | p ∈ E}, called the space of edge derivations.

For a face f ∈ F , let cf be the boundary of f . It is an unoriented cycle of
Γ consisting of arrows that are not necessarily in one direction, called a primitive
cycle of Γ. Thus the set C := CΓ of primitive cycles of Γ is in bijection with the
set F of faces of Γ. For a primitive cycle c = cf of a face f , we will define a face
derivation Dc := Dcf

on kΓ. First define

Dc(v) = 0, v ∈ V ; Dc(p) =







p, p is clockwise on c,
−p, p is counterclockwise on c,
0, p is not on c.

p ∈ E.

Here being clockwise or counterclockwise is viewed from inside the face for the prim-
itive cycle. We then expand Dc to kΓ by the product rule, noting that kΓ is the
algebra generated by V ∪ E.

If a cycle is shared by two faces, such as in the quiver of an oriented loop, there
will be two face derivations from the two faces. Also, if p is an edge in the interior of
c, then Dc(p) = 0. The name face derivation is justified by the following alternative
description of Dc.

Lemma 4.1. Suppose a primitive cycle c ∈ CΓ is comprised of an ordered list of
arrows p1, · · · , ps ∈ E. Then

(36) Dc = ±Dp1,p1
± · · · ±Dps,ps

,

where a ±Dpi,pi
is Dpi,pi

if pi is in clockwise direction when viewed from the interior
of the face of c and is −Dpi,pi

otherwise. In particular, Dc is a derivation.

Proof. We only need to check that the two operators agree on V ∪E. But this is
clear from the definition of Dc.

Let DF denote the linear span of {Dcf
| f ∈ F}, called the space of face deriva-

tions.
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Since the concept of a face derivation will be important for the rest of the paper,
we make the following remarks and illustrate their contents by the following quiver Γ.

(37) •

p1

����
��
��
��
��
��
��
��
�

p2

��=
==

==
==

==
==

==
==

==

p4

��
•

•
p3

// •

•

p5

77ppppppppppppp

The quiver Γ has two primitive cycles: the cycle c1 of the finite face of Γ and the cycle
c0 of the infinite face of Γ.

Remark 4.2.

(a) In the case a quiver Γ is planar, for the boundary c0 of the infinite face,
an arrow on c0 is in clockwise direction when viewed from the interior of
the infinite face means that the arrow is in counterclockwise direction when
viewed from the interior of the quiver. For the quiver in the diagram (37),
the arrow p2 is clockwise for the primitive cycle from the finite face, but is
counterclockwise for the primitive cycle from the infinite face.

(b) If an arrow p is on the boundary of two faces of Γ, then p will be in the
clockwise direction on one boundary and in the counterclockwise direction
on the other. Thus Dp,p will have a plus sign in Dc for the primitive cycle
c of one boundary and will have a minus sign in Dc for the other. For our
example of Γ, Dp1,p1

has a minus sign in c1 and a plus sign in c0.
(c) If an arrow p is not on the boundary of two faces of Γ, then both sides of the

arrow are in the same face of Γ. In other words, p will appear twice in Dc for
the primitive cycle c of this face, once in the clockwise direction, once in the
counterclockwise direct. As a result, Dp,p will appear exactly twice in Dc,
once with a positive sign and once with a negative sign. Consequently, there
will be no contribution of Dp,p in Dc. For our example of Γ, both sides of p4
are in the finite face of Γ. The primitive cycle c1 of this face gives

Dc1 = −Dp1,p1
+Dp4,p4

−Dp4,p4
+Dp2,p2

−Dp3,p3
= −Dp1,p1

+Dp2,p2
−Dp3,p3

.

So Dp4,p4
does not contribute to Dc1 . Likewise, Dp5,p5

does not contribute
to Dc0 from the infinite face.

(d) The previous remark applies in particular when a quiver contains only a
unique primitive cycle c0 (in the case the quiver is planar, the unique primitive
cycle is just the boundary of the infinite face, which is not proper). This is
because for such a quiver, no arrow can appear on the boundary of two faces.
Thus for such a quiver, we have Dc0 = 0.

(e) By Remark 4.2.(b) and (c), each arrow p ∈ E will appear in exactly one Dc

with a plus sign and in exactly another (or the same) Dc with a minus sign.
Consequently, we have

(38)

γ2∑

i=1

Dci = 0.
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(f) For an oriented cycle q of Γ, let c be the corresponding primitive cycle. Then
the Dc defined here is different with Dq given in Eq. (35).

4.1.2. Relation matrices. Denote γ0 = |V |, γ1 = |E|, γ2 = |F | = |C|. They
are all finite since Γ is finite. With these notations, we will use the following enumer-
ations of sets.

(39) V = {vi | 1 ≤ i ≤ γ0}, E = {pk | 1 ≤ k ≤ γ1}, C = {cj | 1 ≤ j ≤ γ2}.

When γ2 = 1, there are only a face and a primitive cycle in Γ. In this case, the
underlying non-oriented graph of Γ is a tree.

By Eq. (35) and Eq. (36), we have the following system of linear relations.

Dvi =

γ1∑

k=1

ci,kDpk,pk
=

∑

p∈E,t(p)=vi

Dp,p −
∑

r∈E,h(r)=vi

Dr,r, 1 ≤ i ≤ γ0,(40)

Dcj =

γ1∑

k=1

cγ0+1+j,kDpk,pk
=

γ1∑

k=1

dj,kDpk,pk
, 1 ≤ j ≤ γ2.(41)

where all dj,k = ±1, or = 0. Thus by Lemma 4.1, we find that DF is a subspace of
DE .

Definition 4.3.

(a) Define the (differential) vertex-arrow matrix Cva of Γ to be the coeffi-
cient matrix of the linear system in Eq. (40).

(b) Define the (differential) cycle-arrow matrix Cca of Γ to be the coefficient
matrix of the linear system in Eq. (41).

(c) Define the connection matrix of Γ to be the coefficient matrix CΓ of the
combined linear system in Eq. (40) and Eq. (41), that is, the (γ0 + γ2)× γ1-

matrix

[
Cva

Cca

]

.

(d) Define the boundary matrix of a quiver Γ to be the γ2 × γ2 matrix BΓ =
[ej,r]0≤j,r≤γ2−1 in which ej,j is the number of arrows on cj that are also on
cr for some r 6= j, and −ej,r for r 6= j is the number of arrows on cj that are
also on cr.

Remark 4.4.

(a) The matrix Cva encodes the relationship between the vertex derivations Dvi ,
1 ≤ i ≤ γ0 and the edge derivations Dpj ,pj

, 1 ≤ j ≤ γ1. Since the edge
derivations Dpk,pk

, 1 ≤ k ≤ γ1, are linearly independent the rank of the row
space of Cva is dimDV .

(b) The matrix Cca encodes the relationship between the primitive cycle deriva-
tions Dck

, 0 ≤ k ≤ γ2 − 1 and the arrow derivations Dpj ,pj
, 1 ≤ j ≤ γ1. The

rank of the row space of Cca is just dimDF .
(c) By the definition of ej,j and ej,r for r 6= j, the matrix BΓ is independent of

the direction of the quiver Γ and only depends on the underlying graph.

In order to study the rank of the boundary matrix, we recall preparatory concepts
and results of matrices.
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Definition 4.5.

(a) A square matrix M over a number field is called irreducible if M cannot be

written as a block matrix M =

[
M1 O
M3 M2

]

where O is a zero matrix and

M1 and M2 are both square matrices.
(b) An n × n-matrix M = [mi,j ] is called weakly diagonally dominant if

|mi,i| ≥
∑n

j=1,j 6=i |mi,j | for i = 1, · · · , n, with strict inequality for at least
one i.

Theorem 4.6. ([14, Section 10.7]) Let M = [mij ] be an n×n irreducible matrix
over a number field. If M is weakly diagonally dominant, then M is invertible.

Using of this fact, we prove the following

Lemma 4.7. Let M = [mij ] be an n × n irreducible matrix with entries in a
number field. If, for each i = 1, · · · , n,

∑n
j=1 mi,j = 0, mi,i > 0 and mi,j ≤ 0 for

j 6= i, then the rank of M is n− 1.

Proof. Since
∑n

j=1 mi,j = 0 for each i = 1, · · · , n, the sum of the n column vectors
of M is zero. Thus the rank of M is less than or equal to n− 1.

On the other hand, consider the (n− 1)× (n− 1)-submatrix M1 consisting of the
first n−1 rows and columns of M , that is M1 = [mi,j ]1≤i,j≤n−1. Since

∑n
j=1 mi,j = 0

for each i = 1, · · · , n− 1, we have

mi,i = −
n∑

j=1,j 6=i

mi,j = −
n−1∑

j=1,j 6=i

mi,j −mi,n ≥ −
n−1∑

j=1,j 6=i

mi,j =

n−1∑

j=1,j 6=i

|mi,j |.

Since M is irreducible and symmetric, there is at least one mi0,n 6= 0 in the last

column of M other than mn,n. Otherwise we would have M =

[

M1 ~0
M0 mn,n

]

for the

zero vector ~0, contradicting the irreducibility condition on M . Then, since mi,j ≤ 0
for i 6= j by assumption, we have mi0,n < 0. Therefore,

mi0,i0 = −
n−1∑

j=1,j 6=i0

mi0,j −mi0,n >

n−1∑

j=1,j 6=i0

|mi0,j |.

Thus, M1 is a weakly diagonally dominant matrix. Then by Theorem 4.6, M1 is
invertible. Together with the observation made at the beginning of the proof, we
conclude that rk(M) = n− 1.

4.1.3. Ranks of relation matrices.

Theorem 4.8. Let Γ be a connected finite quiver with no loops. Then the fol-
lowing statements hold:

(a) The vertex-arrow matrix Cva has rank γ0 − 1.
(b) The cycle-arrow matrix Cca has rank γ2 − 1.
(c) Suppose that the ground field k has characteristic 0. Then the rank of the

boundary matrix BΓ is γ2 − 1.

Proof. (a) Since e =
∑γ0

i=1 vi is the identity of kΓ, we have

(42) De =

γ0∑

i=1

Dvi = 0.
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If γ0 = 1, then V = {v1} and Dv1 = 0 by Eq. (42). Thus Cva = 0 and its rank is
0 = γ0 − 1.

If γ0 ≥ 2, then by Eq. (42), Dv1 is a linear combination of Dvi , 2 ≤ i ≤ γ0. Thus
rk(G) ≤ γ0 − 1. So we just need to prove rk(Cva) ≥ γ0 − 1. We will show this by
induction on γ0 ≥ 2.

First assume γ0 = 2. Since Γ is connected, by Eq. (40) the rows of Cva are
non-zero. Then rk(Cva) ≥ 1, as needed.

Next assume that the statement holds when γ0 = n for n ≥ 2 and consider a
connected acyclic quiver Γ with γ0 = n+ 1. By first listing the arrows p1, · · · , pr of
Γ that are connected to v1, we see that Cva is a block matrix of the form

Cva =

[
~e ~0
B G

]

,

where ~e is a row vector of dimension r with entries ±1, ~0 is a zero row vector of
dimension γ1 − r, B is a (γ0 × r)-matrix and G is in fact the vertex-arrow matrix GΓ

of the quiver Γ obtained by deleting the vertex v1 and its attached arrows from Γ.
Since Γ has n vertices, by the induction hypothesis, the rank of G is at least n − 1.
Thus there is a non-singular submatrix H of G of size (n− 1)× (n− 1). Adding back
the first row and first column of G to this submatrix H, we obtain a submatrix H of
Cva of size n× n. Since the added first row is (±1, 0, · · · , 0), the added first column
is not a linear combination of the other columns in H . Thus H is non-singular and
the rank of Cva is at least n. This completes the induction and hence the proof of
Item (a).

(b) We prove by induction on γ2, which is also the number of rows of Cca.
When γ2 = 1, c0 is the unique primitive cycle. In this case, Γ is topologically

homeomorphic to a point in the oriented surface S. By Remark 4.2(d), we have
Dc1 = 0. Thus, the unique row of Cca is zero. So, rk(Cca) = 0 = γ2 − 1.

When γ2 = 2, the rows of Cca are non-zero by definition and the sum of the only
two rows of Cca is zero by Eq. (38). Hence, rk(Cca) = 1 = γ2 − 1.

Assume that the statement is verified when γ2 = n ≥ 2 and consider Γ with
γ2 = n+1. By reordering the arrows p1, · · · , pγ1

of Γ if necessary, we can assume that
the arrows of c1 are p1, · · · , ps where s ≥ 2 since Γ has not loops. Thus the coefficients
cγ0+1,1, cγ0+1,2, · · · , cγ0+1,γ1

of c1 in Eq. (41) satisfy that cγ0+1,1, · · · , cγ0+1,s are all
±1 and cγ0+1,s+1 = · · · = cγ0+1,γ1

= 0. Then, since the sum of the row vectors of Cca

is zero by Eq. (38), by reordering the primitive cycles c1, · · · , cn if necessary, we can
also assume that the first coefficient of c1 satisfies cγ0+2,1 = −cγ0+1,1. Thus, there is
r between 1 and s such that cγ0+2,i = −cγ0+1,i for i = 1, · · · , r and cγ0+2,j = 0 for
j = r + 1, · · · , s. Then the first two rows of Cca are of the form





±1, · · · ,±1, ±1, · · · ,±1, 0, · · · , 0
∓1, · · · ,∓1
︸ ︷︷ ︸

r terms

, 0, · · · , 0
︸ ︷︷ ︸

s−r terms

, ∗, · · · , ∗
︸ ︷︷ ︸

γ1−r terms



 .

Here the signs in the second row for the first r terms are opposite to the signs in the
corresponding terms in the first row. Thus, the matrix Cca has the form

Cca =





~a1 ~b1
−~a1 ~b2
O K



 ,
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where ~a1 is a row vector of dimension r with entries ±1, O is a zero matrix of size
(n − 1) × r, ~b1, ~b2 are row vectors of dimension γ1 − r and K is a matrix of size
(n− 1)× (γ1 − r). We can write

~b1 = (cγ0+1,r+1 · · · cγ0+1,s 0 · · · 0) = (±1 · · · ± 1 0 · · · 0)

~b2 = (0 · · · 0 cγ0+2,s+1 · · · cγ0+2,γ1
) = ( 0 · · · 0 ∗ · · · ∗).

Deleting the arrows p1, · · · , pr, we get a quiver Γ with n primitive cycles
c′1, c3, · · · , cn where c′1 is obtained via amalgamating c1 and c2. Moreover, with

~b := ~b1 +~b2 = (cγ0+1,r+1 · · · cγ0+1,s cγ0+2,s+1 · · · cγ0+2,γ1
),

we find that the cycle-arrow matrix Cca,Γ of the quiver Γ is just

[
~b
K

]

.

By the induction hypothesis, rk(Cca,Γ) = n − 1. By Eq. (38), −~b is the sum of

all rows of K. Hence, rk(K) = n − 1, that is, K has full row rank. Since r ≥ 1,

the second row (−~e1 ~b2) of Cca is linearly independent from the last n − 1 rows of
Cca. So, rk(Cca) ≥ (n− 1) + 1 = n. By Eq. (38), the row vectors of Cca are linearly
dependent. Therefore, rk(Cca) = n = γ2 − 1, completing the induction.

(c) By definition, BΓ is a (γ2 × γ2)-matrix.
In the special case of γ2 = 1, there are no cycles on Γ except the boundary c1 for

the unique face. So all the arrows are on c1 only. Thus BΓ = 0 and hence its rank is
0.

For the case when γ2 > 1, we apply Lemma 4.7. For this we just need to verify
that BΓ satisfies the conditions for M in the lemma as follows.

• By definition, BΓ has entries in Z and hence in a number field, say Q.
• By Definition 4.3 on ei,j , BΓ is symmetric and ei,j ≤ 0 for i 6= j.
• BΓ is irreducible since Γ is connected.
• Since γ0 > 0, each cycle cj , 1 ≤ j ≤ γ2 shares at least one arrow with the
cycle of a neighboring face. Thus ej,j > 0.

• By the definition of ej,r, 1 ≤ j, r ≤ γ2, the sum of the entries of each row of
BΓ is zero. Thus the sum of the columns of BΓ is zero. Since BΓ is symmetric,
the sum of the rows of BΓ is also zero.

Thus Item (c) is proved.

4.2. Dimensions of combinatorial derivations. From Theorem 4.8, we have
the following dimensional formulas of combinatorial derivations.

Theorem 4.9. Let Γ be a connected finite acyclic quiver. Then,
(a) dimDV = |V | − 1;
(b) dimDF = |F | − 1;
(c) DV and DF are linearly disjoint subspaces of DE.

The following is a direct consequence of Theorem 4.9. More applications of the
theorem will be given in Section 5.

Corollary 4.10. The dimensions of the spaces of derivations DV , DE and DF

of a connected acyclic quiver Γ only depend on the underlying graph of Γ and not
depend on the choice of orientations of the edges.
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Proof. Item (a) follow directly from of Theorem 4.8.(a) by Eq. (40). Similarly,
Item (b) follows directly from Theorem 4.8.(b) by Eq. (41). So we just need to prove
Item (c).

Let D be in DV ∩DF . Then there are constants ai, 1 ≤ i ≤ γ0, and bj , 1 ≤ j ≤ γ2,
in k such that

(43)

γ0∑

i=1

aiDvi = D =

γ2∑

j=1

bjDcj .

To prove Proposition 4.9.(c), we just need to show D = 0.
We first rewrite the left sum in Eq. (43). By Eq. (40), we obtain

γ0∑

i=1

aiDvi =

γ0∑

i=1

ai

γ1∑

k=1

ci,kDpk,pk
=

γ1∑

k=1

(
γ0∑

i=1

ci,kai

)

Dpk,pk
.

Since by definition, ci,k =







1, t(pk) = vi,
−1, h(pk) = vi,
0, otherwise,

we obtain

(44)

γ0∑

i=1

aiDvi =

γ1∑

k=1

(at(pk) − ah(pk))Dpk,pk
.

On the other hand, by Eq. (41), the right sum of Eq. (43) can be written as

(45)

γ2∑

j=1

bjDcj =

γ2∑

j=1

bj

(
γ1∑

k=1

dj,kDpk,pk

)

=

γ1∑

k=1





γ2∑

j=1

bjdj,k



Dpk,pk
.

Here by Eq. (36), dj,k =







1, if pk is on cj in clockwise direction,
−1, if pk is on cj in counter clockwise direction,
0, if pk is not on cj .

By Remark 4.2.(e), any given arrow pk appears twice on the boundaries of the
cycles cj , 1 ≤ j ≤ γ2, once in clockwise direction and once in counter clockwise
direction. Let 1 ≤ x(pk) ≤ γ2 (resp. 1 ≤ y(pk) ≤ γ2) denote the label of the cycle
containing pk in the clockwise (resp. counter clockwise) direction. It is possible that
x(pk) = y(pk). Then we have dx(pk),k = 1 and dy(pk),k = −1. Then Eq. (45) becomes

(46)

γ2∑

j=1

bjDcj =

γ1∑

k=1

(bx(pk) − by(pk))Dpk,pk
.

Thus by Eq. (44) and (46), we find that Eq. (43) is equivalent to

(47) D =

γ1∑

k=1

(at(pk) − ah(pk))Dpk,pk
=

γ1∑

k=1

(bx(pk) − by(pk))Dpk,pk
.

Since the set {Dpk,pk
| 1 ≤ k ≤ γ1} of derivations is linearly independent, we thus

obtain the following system of linear equations:

(48) at(pk) − ah(pk) = bx(pk) − by(pk), 1 ≤ k ≤ γ1.
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Lemma 4.11. For 1 ≤ k ≤ γ1, a change of the direction of pk leads to a change
of signs on both sides of the k-th equation in Eq. (48), yielding an equivalent equation.

Proof. Let Γ′ be the quiver with pk replaced by qk in the opposite direction. Then
t(pk) = h(qk) and h(pk) = t(qk). Then the left hand side of Eq. (48) becomes

ah(qk) − at(qk) = −(at(qk) − ah(qk)).

Likewise, by the definition of x(pk) and y(pk) we have x(qk) = y(pk) and y(qk) =
x(pk). This reverses the sign on the right hand side of Eq. (48).

Lemma 4.12. Any set of solutions bj , 1 ≤ j ≤ γ2, in the system Eq. (48) satisfies
the following system of linear equations:

(49) ej,jbj +
∑

1≤r≤γ2,r 6=j

ej,rbr = 0, 1 ≤ j ≤ γ2,

where ei,j is defined in Definition 4.3.

Proof. Fix a 1 ≤ j ≤ γ2. Let pk1
, · · · , pks

be the arrows on cj that are also on
cr for some r 6= j, that is, these are the arrows on cj that are not in the interior
of cj . Because of Lemma 4.11, we can change the directions of some of the arrows
pk1

, · · · , pks
so that all the arrows in cj go clockwise, without changing the solution

set of the system in Eq. (48). After this is done, when we add the kℓ-th equations

at(pkℓ
) − ah(pkℓ

) = bx(pkℓ
) − by(pkℓ

), 1 ≤ ℓ ≤ s,

to the system (48), the left hand sides add up to zero. For the right hand side, we
have x(pkℓ

) = j, 1 ≤ ℓ ≤ s, and y(pkℓ
) is the label of the other cycle that pkℓ

is on.
Note that s = ej,j by definition. Thus the right hand sides add up to

ej,jbj +
∑

1≤r≤γ2,r 6=j

ej,rbr,

for ej,j and ej,r as defined in the lemma. This finishes the proof.

We can now complete the proof of Theorem 4.9.(c) as follows. Let D be in
DV ∩ DF . Then there are ai, 1 ≤ i ≤ γ0 and bj, 1 ≤ j ≤ γ2 such that they satisfy
Eq. (43). Then they satisfy the linear system in Eq. (48). Then by Lemma 4.12, bj
satisfies the system of linear equations in Eq. (49). Since the coefficient matrix of
this system is the boundary matrix BΓ by Lemma 4.12 and hence has rank γ2 − 1 by
Theorem 4.8.(c), the system in Eq. (49) has unique nonzero solutions bi up a constant.
But the choice of bx(pk) = by(pk), 1 ≤ k ≤ γ1 together with at(pk) = ah(pk), 1 ≤ i ≤ γ0
is already a nonzero solution of Eq. (48) and hence of Eq. (49). Thus this gives
the unique solution of Eq. (48). Hence by Eq. (47), we have D = 0. Therefore
DV ∩DF = 0, showing that DV and DF are linearly disjoint.

Now the proof of Theorem 4.9(c) is completed.

5. Euler’s formula and Hochschild cohomology. In this section we give
two applications of the dimensional formulas of combinatorial derivations in Theo-
rem 4.9. We first present a differential enrichment of Euler’s Polyhedron Theorem
(Theorem 5.1) by showing that the numerical relation in Euler’s formula among the
geometric objects of vertices, edges and faces of the underlying graph of a quiver
comes from an algebraic relation among the spaces of derivations associated to these
geometric objects.
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5.1. Euler’s polyhedron formula from a differential point of view. We
recall the following classical result from [4] and [8].

Theorem 5.1. (Euler’s Polyhedron Theorem) For any connected quiver Γ
of genus g, we have

(50) |V | − |E|+ |F | = 2− 2g.

Recall that the genus of a quiver Γ is defined to be the smallest genus of an
oriented surface in which the quiver can be embedded. This genus is used in Euler’s
Polyhedron Theorem (Theorem 5.1) by the theory of topological graphs [8]. Our
results in this paper, e.g. Theorem 5.2 and Proposition 5.4, are based on this Euler’s
theorem and will use the same genus.

We show that there is a strengthening of Euler’s numerical formula in the context
of derivations.

Theorem 5.2. (Differential Formulation of Euler’s Polyhedron
Theorem) For a connected finite acyclic quiver Γ of genus g, the spaces DV ,DE ,DF

of vertex derivations, arrow derivations and face derivations satisfy the following re-
lation.

(51) dimk DE/(DV ⊕DF ) = 2g,

where the direct sum is the interior sum of subspaces.

In particular, in the case the genus g = 0,

(52) DE = DV ⊕DF .

Proof. By Theorem 4.9, we have

dim(DV ⊕DF ) = dimDV + dimDF = |V | − 1 + |F | − 1.

But, dimDE = |E|. By Euler’s formula in Theorem 5.1,

(53) dimDE − dim(DV ⊕DF ) = |E| − (|V | − 1 + |F | − 1) = 2g.

This gives Eq. (51) since DV ⊕DF is a subspace of DE .

Remark 5.3. As we see above, Euler’s theorem is used in the proof of Theo-
rem 5.2. Conversely, the equation dimk DE/(DV ⊕ DF ) = 2g gives Euler’s formula
by Eq. (53). Thus, as its name suggests, Theorem 5.2 gives a strengthened form of
Euler’s theorem from the view point of derivations. It would be interesting to find a
proof of Theorem 5.2 without using Euler’s theorem.

5.2. The Structure of Lie algebra HH1(kΓ). We next apply Theorem 4.9 to
study HH1(kΓ). We first give a dimensional formula of HH1(kΓ). Then we obtain
a canonical basis of HH1(kΓ).
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5.2.1. A dimensional formula of HH1(kΓ). Denote

PL := {s ∈ P |h(s) = t(s)}, BL := {Ds | s ∈ PL}, DL := kBL = D(kPL).

Then on one hand we have the disjoint union P = PA⊔PL, and hence kΓ = kPA⊕kPL.
Since kerD = k ⊆ kPL for the linear map D : kΓ → Der(kΓ) in Eq. (2), we have

(54) InDer(kΓ) = D(kΓ) ∼= D1 ⊕DL.

On the other hand, since D1 ⊆ InDer(kΓ) and Der(kΓ) = D1 ⊕D2 from Theo-
rem 3.4, we have

(55) InDer(kΓ) = InDer(kΓ) ∩ (D1 ⊕D2) = D1 ⊕ (InDer(kΓ) ∩D2).

By Proposition 3.8, we have DL ⊆ InDer(kΓ)∩D2. Thus from Eq. (54) and Eq. (55)
we obtain

InDer(kΓ) ∩D2 = DL.

Therefore we have

HH1(kΓ) = Der(kΓ)/InDer(kΓ)

= (InDer(kΓ) +D2)/InDer(kΓ)
∼= D2/(InDer(kΓ) ∩D2)(56)

= D2/DL,

giving us the following commutative diagram of exact sequences of Lie algebras.

0 −−−−→ InDer(kΓ) −−−−→ Der(kΓ) −−−−→ HH1(kΓ) −−−−→ 0
x



x



∥
∥
∥

0 −−−−→ DL −−−−→ D2 −−−−→ D2/DL −−−−→ 0.

An almost oriented cycle in a quiver Γ is defined to be a pair (p, r) where
p ∈ E and r ∈ P with r 6= p and r ‖ p. It is so namely since p and r form an oriented
cycle by reversing the arrow p. Let ΓAL be the set of almost oriented cycles of Γ.
Denote

(57) BE := {Dp,p |p ∈ E}, BAL := {Dp,r |(p, r) ∈ ΓAL}, DAL = kBAL.

Then by the definition of B2 in Eq. (28), we have the disjoint union

(58) B2 = BE ⊔BAL and D2 = DE ⊕DAL.

From this and Eq.(56), we obtain

(59) HH1(kΓ) ∼= D2/DV
∼=
(
DE/DV

)
⊕DAL.

Proposition 5.4. Let Γ be a connected acyclic quiver. Then

dimk HH1(kΓ) = |F |+ |ΓAL| − 1 + 2g.

In the case g = 0, HH1(kΓ) 6= 0 if and only if Γ contains an unoriented cycle.
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Proof. By Eq. (59), Theorem 4.8 and Euler’s Theorem 5.1, we have

dimHH
1(kΓ) = dimDE −dimDV +dimDAL = |E|− |V |+1+ |ΓAL| = |F |+ |ΓAL|+2g−1.

Then the last statement follows easily.

Compare Proposition 5.4 with Happel’s formula [11], dimk HH1(kΓ) = 1− |V |+
∑

α∈E v(α), where v(α) = dimk t(α)kΓh(α). The two formulas can be easily derived
from each other. Our formula makes it easy to guess a canonical basis of HH1(kΓ).
Indeed, verifying that this guess actually works is the motivation behind the intro-
duction of the combinatorial derivations in Section 4.

5.2.2. A canonical basis of HH1(kΓ). Proposition 5.4 suggests that a canoni-
cal basis ofHH1(kΓ) can be obtained from derivations defined from the faces (through
their unoriented cycles) and ΓAL. We show that this is indeed the case.

Denote

(60) B−
F = {Dci | 2 ≤ i ≤ γ2},

then by Theorem 4.9.(b) and Eq. (38), we have DF = kB−
F . Our main result on outer

derivations is the following

Theorem 5.5. (Basis Theorem of the First Hochschild Cohomology) Let
Γ be a connected finite acyclic quiver over a ground field k of characteristic 0. Then
the disjoint union

BAL ⊔B−
F ⊔B∗

forms a basis of HH1(kΓ), where B∗ is any basis of DE/(DV ⊕DF ).

Proof. We have DE/(DV ⊕DF ) ∼= (DE/DV )/((DV ⊕DF )/DV ). It follows that

DE/DV
∼= DE/(DV ⊕DF )⊕ (DV ⊕DF )/DV

∼= DE/(DV ⊕DF )⊕DF .

Thus by Eq. (59), HH1(kΓ) ∼= (DE/DV )⊕DAL
∼= DE/(DV ⊕DF )⊕DF ⊕DAL.

DF has a basis B−
F by Theorem 4.9.(b) and DAL has a basis BAL. Since they are

disjoint by Eq. (58), we obtain Theorem 5.5 for any basis B∗ of DE/(DV ⊕DF ).

We have not found a canonical way to determine B∗ except when the genus is
zero, see the following Corollary 5.6.

We require that k is of characteristic 0 in Theorem 5.5 because its proof depends
on Theorem 4.6. When the genus g is 0, Γ is a planar quiver. In this case, by Euler’s
theorem, dimDE/(DV ⊕ DF ) = 0. Also, we can take c1 to be the primitive cycle
for the unique unbounded face. Thus we can make the choice of B−

F as well as BAL

completely canonical. Hence, we have

Corollary 5.6. (Basis Theorem for Planar Quiver) Let Γ be a connected
finite planar acyclic quiver and let the ground field k be of characteristic 0. Then the
disjoint union

BAL ∪ {Dc | c is a bounded primitive cycle}

forms a basis of HH1(kΓ).
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5.2.3. Lie algebra structure of HH1(kΓ). From the basisBAL∪B
−
F in Corol-

lary 5.6, the structural constants of the Lie algebra HH1(kΓ) can be computed ex-
plicitly by Eq. (33) since we have BAL ⊆ B2 and BF ⊆ kBE = DE ⊆ D2 = kB2.
Concretely, for Dc, Dq ∈ BF , let

Dc = a1Dp1,p1
+ a2Dp2,p2

+ · · ·+ aγ1
Dpγ1

,pγ1
,

Dq = b1Dp1,p1
+ b2Dp2,p2

+ · · ·+ bγ1
Dpγ1

,pγ1

for the arrow set E = {p1, p2, · · · , pγ1
}. Then by Eq. (33) we have

[Dc, Dq] =

γ1∑

i,j=1

aibj [Dpi,pi
, Dpj ,pj

]

=

γ1∑

i,j=1

aibj(Dpj ,Dpi,pi
(pj) −Dpi,Dpj,pj

(pi))

=

γ1∑

i=1

aibi(Dpi,pi
−Dpi,pi

)

= 0.

This means thatDF = kBF is an abelian Lie sub-algebra of the Lie algebraHH1(kΓ).
For Dr,s ∈ BAL, by Eq. (33) we have

[Dr,s, Dc] = a1[Dr,s, Dp1,p1
] + · · ·+ aγ1

[Dr,s, Dpγ1
,pγ1

]

= a1(Dp1,Dr,s(p1) −Dr,Dp1,p1
(s)) + · · ·+ aγ1

(Dpγ1
,Dr,s(pγ1

) −Dr,Dpγ1
,pγ1

(s))

= (a1Dp1,Dr,s(p1) + · · ·+ aγ1
Dpγ1

,Dr,s(pγ1
))

−(a1Dr,Dp1,p1
(s) + · · ·+ aγ1

Dr,Dpγ1
,pγ1

(s)).

Write r = pi0 for some 1 ≤ i0 ≤ γ1. Then a1Dp1,Dr,s(p1) + · · · + aγ1
Dpγ1

,Dr,s(pγ1
) =

ai0Dr,s. Also, write s = pi1 · · · pit for arrows pi1 , · · · , pit . Thus, a1Dr,Dp1,p1
(s) + · · ·+

aγ1
Dr,Dpγ1

,pγ1
(s) = (ai1 + · · ·+ ait)Dr,s. In summary,

[Dr,s, Dc] = (ai0 − ai1 − · · · − ait)Dr,s,

which means thatDr,s is the eigenvector under the adjoint action ofDc with eigenvalue
−ai0 + ai1 + · · · + air . It follows that DAL = kBAL is a Lie ideal of HH1(kΓ). We
have proved the following result.

Theorem 5.7. (Structure Theorem of the First Hochschild Cohomology)
Let Γ be a connected planar finite acyclic quiver and let the ground field k be of
characteristic 0. Then the Lie algebra HH1(kΓ) is the semi-direct sum of the Lie
ideal DAL and the abelian Lie subalgebra DF :

HH1(kΓ) = DAL ⋊ϕ DF .

Here the action ϕ of DF on DAL is given as follows. For each given Dc with c =
a1Dp1,p1

+a2Dp2,p2
+· · ·+aγ1

Dpγ1
,pγ1

and Dr,s ∈ DAL with r = pi0 and s = pi1 · · · pit ,
Dr,s is the eigenvector under the adjoint action of Dc with eigenvalue −ai0 + ai1 +
· · ·+ air .

As noted in the introduction, the basis and semidirect sum decomposition of the
first Hochschild cohomology in Theorem 5.5, Corollary 5.6 are Theorem 5.7, which
are different from the one in [24].
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From this proposition, we conclude that when two quivers are defined on the same
unoriented graph, their outer differential Lie algebras are not isomorphic in general
unless they have the same set of almost oriented cycles.
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