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NOETHER’S PROBLEM AND UNRAMIFIED BRAUER GROUPS∗

AKINARI HOSHI† , MING-CHANG KANG‡ , AND BORIS E. KUNYAVSKII§

Abstract. Let k be any field, G be a finite group acting on the rational function field k(xg : g ∈

G) by h ·xg = xhg for any h, g ∈ G. Define k(G) = k(xg : g ∈ G)G. Noether’s problem asks whether
k(G) is rational (= purely transcendental) over k. It is known that, if C(G) is rational over C, then
B0(G) = 0 where B0(G) is the unramified Brauer group of C(G) over C. Bogomolov showed that,
if G is a p-group of order p5, then B0(G) = 0. This result was disproved by Moravec for p = 3, 5, 7
by computer calculations. We will prove the following theorem. Theorem. Let p be any odd prime
number, G be a group of order p5. Then B0(G) 6= 0 if and only if G belongs to the isoclinism family
Φ10 in R. James’s classification of groups of order p5.
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1. Introduction. Let k be any field and G be a finite group. Let G act on the
rational function field k(xg : g ∈ G) by k-automorphisms so that g · xh = xgh for
any g, h ∈ G. Denote by k(G) the fixed field k(xg : g ∈ G)G. Noether’s problem
asks whether k(G) is rational (= purely transcendental) over k. It is related to the
inverse Galois problem, to the existence of generic G-Galois extensions over k, and to
the existence of versal G-torsors over k-rational field extensions [Sw; Sa1; GMS, 33.1,
p. 86]. Noether’s problem for abelian groups was studied by Swan, Voskresenskii,
Endo, Miyata and Lenstra, etc. The reader is referred to Swan’s paper for a survey
of this problem [Sw].

On the other hand, just a handful of results about Noether’s problem are obtained
when the groups are not abelian. It is the case even when G is a p-group.

Before stating the results on Noether’s problem for non-abelian p-groups, we recall
some relevant definitions.

Definition 1.1. Let k ⊂ K be an extension of fields. K is rational over k
(for short, k-rational) if K is purely transcendental over k. K is stably k-rational
if K(y1, . . . , ym) is rational over k for some y1, . . . , ym such that y1, . . . , ym are al-
gebraically independent over K. When k is an infinite field, K is said to be retract
k-rational if there is a k-algebra A contained in K such that (i) K is the quotient field
of A, (ii) there exist a non-zero polynomial f ∈ k[X1, . . . , Xn] (where k[X1, . . . , Xn] is
the polynomial ring) and k-algebra homomorphisms ϕ : A → k[X1, . . . , Xn][1/f ] and
ψ : k[X1, . . . , Xn][1/f ] → A satisfying ψ ◦ ϕ = 1A. (See [Sa2; Ka4] for details.) It is
not difficult to see that “k-rational” ⇒ “stably k-rational” ⇒ “retract k-rational”.
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Definition 1.2. Let k ⊂ K be an extension of fields. The notion of the un-
ramified Brauer group of K over k, denoted by Brv,k(K), was introduced by Saltman
[Sa3]. By definition, Brv,k(K) =

⋂
R Image{Br(R) → Br(K)} where Br(R) → Br(K)

is the natural map of Brauer groups and R runs over all the discrete valuation rings
R such that k ⊂ R ⊂ K and K is the quotient field of R.

Lemma 1.3 (Saltman [Sa3; Sa4]). If k is an infinite field and K is retract k-
rational, then the natural map Br(k) → Brv,k(K) is an isomorphism. In particular,

if k is an algebraically closed field and K is retract k-rational, then Brv,k(K) = 0.

Theorem 1.4 (Bogomolov, Saltman [Bo; Sa5, Theorem 12]). Let G be a finite

group, k be an algebraically closed field with gcd{|G|, chark} = 1. Let µ denote the

multiplicative subgroup of all roots of unity in k. Then Brv,k(k(G)) is isomorphic to

the group B0(G) defined by

B0(G) =
⋂

A

Ker{resAG : H2(G,µ) → H2(A, µ)}

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is

either a cyclic group or a direct product of two cyclic groups).

Note that B0(G) is a subgroup of H2(G,µ) (where gcd{|G|, chark} = 1). Since
H2(G,µ) ≃ H2(G), which is the Schur multiplier of G (see [Kar]), we will call B0(G)
the Bogomolov multiplier of G, following the convention in [Ku]. Because of Theorem
1.4 we will not distinguish B0(G) and Brv,k(k(G)) when k is algebraically closed
and gcd{|G|, chark} = 1. In this situation, B0(G) is canonically isomorphic to⋂
AKer{resAG : H2(G,Q/Z) → H2(A,Q/Z)}, i.e. we may replace the coefficient µ

by Q/Z in Theorem 1.4.
Using the unramified Brauer groups, Saltman and Bogomolov are able to establish

counter-examples to Noether’s problem for non-abelian p-groups.

Theorem 1.5. Let p be any prime number, k be any algebraically closed field

with char k 6= p.
(1) (Saltman [Sa3]) There is a group G of order p9 such that B0(G) 6= 0. In

particular, k(G) is not retract k-rational. Thus k(G) is not k-rational.
(2) (Bogomolov [Bo]) There is a group G of order p6 such that B0(G) 6= 0. Thus

k(G) is not k-rational.

For p-groups of small order, we have the following result.

Theorem 1.6 (Chu and Kang [CK]). Let p be any prime number, G be a p-group
of order ≤ p4 and of exponent e. If k is a field satisfying either (i) char k = p, or (ii)
k contains a primitive e-th root of unity, then k(G) is k-rational.

Because of the above Theorems 1.5 and 1.6, we may wonder what happens to
non-abelian p-groups of order p5.

Theorem 1.7 (Chu, Hu, Kang and Prokhorov [CHKP]). Let G be a group of

order 32 and of exponent e. If k is a field satisfying either (i) char k = 2, or (ii)
k contains a primitive e-th root of unity, then k(G) is k-rational. In particular,

B0(G) = 0.

Working on p-groups, Bogomolov developed a lot of techniques and interesting
results. Here is one of his results.
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Theorem 1.8. (1) [Bo, Lemma 4.11] If G is a p-group with B0(G) 6= 0 and

G/[G,G] ≃ Cp × Cp, then p ≥ 5 and |G| > p7.
(2) [Bo, Lemma 5.6; BMP, Corollary 2.11] If G is a p-group of order ≤ p5, then

B0(G) = 0.

Because of part (2) of the above theorem, Bogomolov proposed to classify all the
groups G with |G| = p6 satisfying B0(G) 6= 0 [Bo, page 479].

It came as a surprise that Moravec’s recent paper [Mo1] disproved the above
Theorem 1.8.

Theorem 1.9 (Moravec [Mo1, Section 5]). If G is a group of order 243, then
B0(G) 6= 0 if and only if G = G(243, i) with 28 ≤ i ≤ 30, where G(243, i) is the i-th
group among groups of order 243 in the database of GAP.

Moravec proves Theorem 1.9 by using computer calculations. No theoretic proof
is given. A file of the GAP functions and commands for computing B0(G) can be
found at Moravec’s website www.fmf.uni-1j.si/~moravec/b0g.g. Recently, using
this computer package, Moravec was able to classify all groups G of order 55 and 75

such that B0(G) 6= 0.
Before stating the main result of this paper, we recall the classification of p-groups

of order ≤ p6 and introduce the notion of isoclinism.
A list of groups of order 25 (resp. 35, 55, 75) can be found in the database of GAP.

However the classification of groups of order p5 dated back to Bagnera (1898), Bender
(1927), R. James (1980), etc. [Ba; Be; Ja], although some minor errors might occur
in the classification results finished before the computer-aided time. For example,
in Bender’s classification of groups of order 35, one group is missing, i.e. the group
∆10(2111)a2 which was pointed by [Ja, page 613]. A beautiful formula for the total
number of the groups of order p5, for p ≥ 3, was found by Bagnera [Ba] as

2p+ 61 + gcd{4, p− 1}+ 2 gcd{3, p− 1}.

Note that the above formula is correct only when p ≥ 5 (see the second paragraph
of Section 4).

On the other hand, groups of order 2n (n ≤ 6) were classified by M. Hall and
Senior [HaS]. There are 267 groups of order 26 in total. Groups of order 27 were
classified by R. James, Newman and O’Brien [JNOB].

Definition 1.10. Two p-groups G1 and G2 are called isoclinic if there exist
group isomorphisms θ : G1/Z(G1) → G2/Z(G2) and φ : [G1, G1] → [G2, G2] such that
φ([g, h]) = [g′, h′] for any g, h ∈ G1 with g′ ∈ θ(gZ(G1)), h

′ ∈ θ(hZ(G1)) (note that
Z(G) and [G,G] denote the center and the commutator subgroup of the group G
respectively).

For a prime number p and a fixed integer n, let Gn(p) be the set of all non-
isomorphic groups of order pn. In Gn(p) consider an equivalence relation: two groups
G1 and G2 are equivalent if and only if they are isoclinic. Each equivalence class of
Gn(p) is called an isoclinism family.

Question 1.11. Let G1 and G2 be isoclinic p-groups. Is it true that the fields
k(G1) and k(G2) are stably isomorphic ?

According to a private communication from Bogomolov, one should expect an
affirmative answer even within larger classes of groups. Our results for groups of
order p5 confirm many cases for these expectations.
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After this paper had been submitted, Bogomolov and Böhning posted a paper
solving the above question in the affirmative [BB, Theorem 3.2]. Their result makes
possible to shorten many proofs of this paper, but we choose to retain our “empirical”
proof.

Return to groups of order p5. If p is an odd prime number, then there are precisely
10 isoclinism families for groups of order p5; each family is denoted by Φi, 1 ≤ i ≤ 10
[Ja, pages 619–621]. As for groups of order 64, there are 27 isoclinism families [JNOB,
page 147].

The main result of the present paper is the following theorem.

Theorem 1.12. Let p be any odd prime number, G be a group of order p5. Then
B0(G) 6= 0 if and only if G belongs to the isoclinism family Φ10. Each group G in the

family Φ10 satisfies the condition G/[G,G] ≃ Cp × Cp. There are precisely 3 groups

in this family if p = 3. For p ≥ 5, the total number of non-isomorphic groups in this

family is

1 + gcd{4, p− 1}+ gcd{3, p− 1}.

Note that, for p = 3, the isoclinism family Φ10 consists of the groups Φ10(2111)ar
(where r = 0, 1) and Φ10(5) [Ja, page 621], which are just the groups G(35, i) with
28 ≤ i ≤ 30 in the GAP code numbers. This confirms the computation of Moravec
[Mo1]. Similarly, when p = 5, the isoclinism family Φ10 consists of the groups G(55, i)
with 33 ≤ i ≤ 38; when p = 7, the isoclinism family consists of the groups G(75, i)
with 37 ≤ i ≤ 42. They agree with Moravec’s computer results.

We use the computer package provided by Moravec to study groups of order 115.
We find that, for a group G of order 115, B0(G) 6= 0 if and only if G ≃ G(115, i) with
39 ≤ i ≤ 42, also confirming the above Theorem 1.12.

It may be interesting to record the computing time to determine B0(G) for all
p-groups of order p5 with p = 3, 5, 7, 11. When p = 3, 5, 7, it requires only 20 seconds,
one hour and two days respectively. When p = 11, it requires more than one month
by parallel computing at four cores.

As a corollary of Theorem 1.12, we record the following result.

Theorem 1.13. Let n be a positive integer and k be a field with gcd{|G|, chark} =
1. If 26 | n or p5 | n for some odd prime number p, then there is a group G of order

n such that B0(G) 6= 0. In particular, k(G) is not stably k-rational; when k is an

infinite field, k(G) is not even retract k-rational.

See Theorem 5.7 for another application of Theorem 1.12.
For completeness, we record the result for groups of order 26. Recall that there

are 267 non-isomorphic groups of order 26 and 27 isoclinism families in total [JNOB].

Theorem 1.14 (Chu, Hu, Kang and Kunyavskii [CHKK]). Let G be a group of

order 26.
(1) B0(G) 6= 0 if and only if G belongs to the 16th isoclinism family, i.e. G =

G(26, i) where 149 ≤ i ≤ 151, 170 ≤ i ≤ 172, 177 ≤ i ≤ 178, or i = 182.
(2) If B0(G) = 0 and k is an algebraically closed field with char k 6= 2, then k(G)

is rational over k except possibly for groups G belonging to the 13rd isoclinism family,

i.e. G = G(26, i) with 241 ≤ i ≤ 245.

Finally we mention a recent result which supplements Moravec’s result in Theorem
1.9.
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Theorem 1.15 (Chu, Hoshi, Hu and Kang [CHHK]). Let G be a group of order

35 and of exponent e. If k is a field containing a primitive e-th root of unity and

B0(G) = 0, then k(G) is rational over k except possibly for groups G ∈ Φ7, i.e.

G = G(35, i) with 56 ≤ i ≤ 60.

We explain briefly the idea of the proof of Theorem 1.12. Let G be a group
of order p5 where p is an odd prime number. To show that B0(G) = 0, we apply
Theorems 3.3–3.6 or some “standard” techniques. For the proof of B0(G) = 0 when
G belongs to the isoclinism family Φ6, we use the 7-term cohomology exact sequence
in [DHW] (see also [Hu1], [Hu2], [Hu3]), see Theorems 5.4 and 5.6. We remark that,
for many cases in Sections 4 and 5, we prove not only B0(G) = 0, but also k(G) is
retract k-rational or the k(G)’s are k-isomorphic for the groups G belonging to the
same isoclinism family. Moravec has another proof showing that B0(G) = 0 when G
is a group of order p5 not belonging to the isoclinism family Φ10 [Mo2].

On the other hand, to show that B0(G) 6= 0, we find suitable generators and
relations for G. It turns out that B0(G) 6= 0 if some relations are satisfied (see Lemma
2.2). All the groups in the isoclinism family Φ10 satisfy these relations. Lemma 2.2
relies on the 5-term exact sequence of Hochschild and Serre [HS]

0 → H1(G/N,Q/Z) → H1(G,Q/Z) → H1(N,Q/Z)G
→ H2(G/N,Q/Z) ψ

−→ H2(G,Q/Z)
where ψ is the inflation map. The crux of showing B0(G) 6= 0 is to prove that the
image of ψ is non-zero and is contained in B0(G).

The paper is organized as follows. In Section 2, we prove that B0(G) 6= 0 if G
belongs to the isoclinism family Φ10. Then we give a proof of Theorem 1.13. Section 3
contains some rationality criteria or previous results for showing B0(G) = 0. Section
4 is devoted to the proof of B0(G) = 0 if G belongs to the isoclinism family Φi where
1 ≤ i ≤ 9 and i 6= 6. The case of Φ6 is postponed till Section 5. In our proof, we check
all of the groups in every isoclinism family Φi for 1 ≤ i ≤ 10. The reader should be
aware that such a proof can be shortened, because it suffices to check only one group
in each isoclinism family by Bogomolov-Böhning’s Theorem [BB, Theorem 3.2].

Standing notations. Throughout this paper, k is a field, ζn denotes a primitive
n-th root of unity. Whenever we write ζn ∈ k (resp. gcd{n, chark} = 1), it is
understood that either chark = 0 or chark = l > 0 with l ∤ n. When k is an
algebraically closed field, µ denotes the set of all roots of unity, i.e. µ = {α ∈ k\{0} :
αn = 1 for some integer n depending on α}. If G is a group, Z(G) and [G,G] denote
the center and the commutator subgroup of G respectively. If g, h ∈ G, we define
[g, h] = g−1h−1gh ∈ G. When N is a normal subgroup of G and g ∈ G, the element
ḡ ∈ G/N denotes the image of g in the quotient group G/N . The exponent of G
is defined as lcm{ord(g) : g ∈ G} where ord(g) is the order of the element g. We
denote by Cn the cyclic group of order n. A group G is called a bicyclic group if
it is either a cyclic group or a direct product of two cyclic groups. When we write
cohomology groups Hq(G,µ) or Hq(G,Q/Z), it is understood that µ and Q/Z are
trivial G-modules.

For emphasis, recall that the field k(G) was defined in the first paragraph of this
section. The group G(n, i) is the i-th group among the groups of order n in GAP.
The version of GAP we refer to in this paper is GAP4, Version: 4.4.12 [GAP]. All the
groups G in this paper are finite.
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2. Groups in the isoclinism family Φ10. We start with a general lemma.

Lemma 2.1. Let G be a finite group, N be a normal subgroup of G. Assume that

(i) tr : H1(N,Q/Z)G → H2(G/N,Q/Z) is not surjective where tr is the transgression

map, and (ii) for any bicyclic subgroup A of G, the group AN/N is a cyclic subgroup

of G/N . Then B0(G) 6= 0.

Proof. Consider the Hochschild–Serre 5-term exact sequence

0 → H1(G/N,Q/Z) → H1(G,Q/Z) → H1(N,Q/Z)G
tr
−→ H2(G/N,Q/Z) ψ

−→ H2(G,Q/Z)
where ψ is the inflation map [HS].

Since tr is not surjective, we find that ψ is not the zero map. Thus Image(ψ) 6= 0.
We will show that Image(ψ) ⊂ B0(G). By definition, it suffices to show that, for

any bicyclic subgroupA ofG, the composite mapH2(G/N,Q/Z) ψ
−→ H2(G,Q/Z) res

−−→
H2(A,Q/Z) becomes the zero map where res is the restriction map. Consider the
following commutative diagram

H2(G/N,Q/Z) ψ
−→ H2(G,Q/Z) res

−−→ H2(A,Q/Z)
ψ0

y

x
ψ1

H2(AN/N,Q/Z) ψ̃≃ H2(A/A ∩N,Q/Z)
where ψ0 is the restriction map, ψ1 is the inflation map, ψ̃ is the natural isomorphism.

Since AN/N is cyclic, write AN/N ≃ Cm for some integer m. It is well-known
that H2(Cm,Q/Z) = 0 (see, e.g., [Kar, page 37, Corollary 2.2.12]). Hence ψ0 is the
zero map. Thus res ◦ ψ : H2(G/N,Q/Z) → H2(A,Q/Z) is also the zero map.

As Image(ψ) ⊂ B0(G) and Image(ψ) 6= 0, we find that B0(G) 6= 0.

Lemma 2.2. Let p ≥ 3 and G be a p-group of order p5 generated by fi where

1 ≤ i ≤ 5. Suppose that, besides other relations, the generators fi satisfy the following

conditions:

(i) fp4 = fp5 = 1, f5 ∈ Z(G),
(ii) [f2, f1] = f3, [f3, f1] = f4, [f4, f1] = [f3, f2] = f5, [f4, f2] = [f4, f3] = 1, and
(iii) 〈f4, f5〉 ≃ Cp × Cp, G/〈f4, f5〉 is a non-abelian group of order p3 and of

exponent p.
Then B0(G) 6= 0.

Remark. If p = 2 and G/N is a non-abelian group of order 8, then H2(G/N ,Q/Z) = 0 or C2 [Kar, page 138, Theorem 3.3.6]. Thus tr : H1(N,Q/Z)G → H2(G/N ,Q/Z) in Lemma 2.2 may become surjective. This is the reason why we assume p ≥ 3
in this lemma.

Proof. Choose N = 〈f4, f5〉. We will check the conditions in Lemma 2.1 are
satisfied. Thus B0(G) 6= 0.

Step 1. Since N ≃ Cp × Cp, we find that H1(N,Q/Z) ≃ Cp × Cp.
Define ϕ1, ϕ2 ∈ H1(N,Q/Z) = Hom(N,Q/Z) by ϕ1(f4) = 1/p, ϕ1(f5) = 0,

ϕ2(f4) = 0, ϕ2(f5) = 1/p. Clearly H1(N,Q/Z) = 〈ϕ1, ϕ2〉.
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The action of G on ϕ1, ϕ2 are given by f1ϕ1(f4) = ϕ1(f
−1
1 f4f1) = ϕ1(f4f5) =

ϕ1(f4) + ϕ1(f5) = 1/p, f1ϕ1(f5) = ϕ1(f
−1
1 f5f1) = ϕ1(f5) = 0. Thus f1ϕ1 = ϕ1.

Similarly, f1ϕ2(f4) = 1/p, f1ϕ2(f5) = 1/p and f1ϕ2 = ϕ1 + ϕ2.
For any ϕ ∈ H1(N,Q/Z) = 〈ϕ1, ϕ2〉 ≃ Cp ×Cp, write ϕ = a1ϕ1 + a2ϕ2 for some

integers a1, a2 ∈ Z (modulo p). Since f1ϕ = f1( a1ϕ1 + a2ϕ2) = a1(
f1ϕ1) + a2(

f1ϕ2) =
(a1 + a2)ϕ1 + a2ϕ2, we find that f1ϕ = ϕ if and only if a2 = 0, i.e. ϕ ∈ 〈ϕ1〉. On the
other hand, it is easy to see that f2ϕ1 = ϕ1 = f3ϕ1 and therefore ϕ1 ∈ H1(N,Q/Z)G.
We find H1(N,Q/Z)G = 〈ϕ1〉 ≃ Cp.

By [Le, Proposition 6.3; Kar, page 138, Theorem 3.3.6], since G/N is a non-
abelian group of order p3 and of exponent p, we find H2(G/N,Q/Z) ≃ Cp × Cp.
Thus tr : H1(N,Q/Z)G → H2(G/N,Q/Z) is not surjective. Hence the first condition
of Lemma 2.1 is verified.

Step 2. We will verify the second condition of Lemma 2.1, i.e. for any bicyclic
subgroup A of G, AN/N is a cyclic group.

Before the proof, we list the following formulae which are consequences of the
commutator relations, i.e. relations (ii) of this lemma. The proof of these formulae is
routine and is omitted.

For 1 ≤ i, j ≤ p− 1, f i4f
j
1 = f j1f

i
4f
ij
5 , f i3f

j
2 = f j2f

i
3f
ij
5 , and

f i3f
j
1 = f j1f

i
3f
ij
4 f

i·(j2)
5 , f i2f

j
1 = f j1f

i
2f
ij
3 f

i·(j2)
4 f

i·(j3)+(
i

2)·j
5

where
(
a
b

)
denotes the binomial coefficient when a ≥ b ≥ 1 and we adopt the conven-

tion
(
a
b

)
= 0 if 1 ≤ a < b.

Moreover, in G/N , (f̄ j1 f̄
i
2)
e = f̄ej1 f̄ei2 f̄

(e2)·ij
3 for 1 ≤ i, j ≤ p− 1, 1 ≤ e ≤ p.

Step 3. Let A = 〈h1, h2〉 be a bicyclic subgroup of G. We will show that AN/N
is cyclic in G/N .

Since AN/N is abelian and G/N is not abelian, we find that AN/N is a proper
subgroup of G/N which is of order p3.

If |AN/N | ≤ p, then AN/N is cyclic. From now on, we will assume AN/N is an
order p2 subgroup and try to find a contradiction.

In G/N , write h̄1 = f̄a11 f̄a22 f̄a33 , h̄2 = f̄ b11 f̄ b22 f̄
b3
3 for some integers aj , bj (recall

that G/N = 〈f̄1, f̄2, f̄3〉 and A = 〈h1, h2〉). After suitably changing the generators
h1 and h2, we will show that there are only three possibilities: (h̄1, h̄2) = (f̄2, f̄3),
(f̄1f̄

a3
3 , f̄2f̄

b3
3 ), (f̄1f̄

a2
2 , f̄3) for some integers a2, a3, b3.

Suppose h̄1 = f̄a11 f̄a22 f̄a33 and h̄2 = f̄ b11 f̄
b2
2 f̄

b3
3 as above. If a1 = b1 = 0, then

〈h̄1, h̄2〉 = 〈f̄2, f̄3〉. Thus after changing the generating elements h1, h2, we may
assume that h̄1 = f̄2, h̄2 = f̄3. This is the first possibility.

If a1 6≡ 0 or b1 6≡ 0 (mod p), we may assume 1 ≤ a1 ≤ p − 1. Find an integer e
such that 1 ≤ e ≤ p − 1 and a1e ≡ 1 (mod p). Use the formulae in Step 2, we get
h̄e1 = f̄1f̄

c2
2 f̄ c33 . Since 〈h1, h2〉 = 〈he1, h2〉, without loss of generality, we may assume

that h̄1 = f̄1f̄
a2
2 f̄a33 (i.e. a1 = 1 from the beginning).

Since 〈h1, h2〉 = 〈h1, (h
b1
1 )−1h2〉, we may assume h̄1 = f̄1f̄

a2
2 f̄a33 and h̄2 = f̄ b22 f̄ b33 .

In the case 1 ≤ b2 ≤ p − 1, take an integer e′ with 1 ≤ e′ ≤ p − 1 and b2e
′ ≡ 1

(mod p). Use the generating set 〈h1, h
e′

2 〉 for A. Thus we may assume h̄1 = f̄1f̄
a3
3 ,

h̄2 = f̄2f̄
b3
3 . This is the second possibility.

If b2 ≡ 0 (mod p), then h̄1 = f̄1f̄
a2
2 f̄a33 , h̄2 = f̄ b33 . If b3 = 0, then AN/N is cyclic.

Thus b3 6≡ 0 (mod p). Changing the generators again, we may assume h̄1 = f̄1f̄
a2
2 ,

h̄2 = f̄3. This is the third possibility.
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Step 4. We will show that all three possibilities in Step 3 lead to contradiction.
Suppose h̄1 = f̄2, h̄2 = f̄3. Write h1 = f2f

a4
4 fa55 , h2 = f3f

b4
4 f

b5
5 . Since h1h2 =

h2h1, we get f2f
a4
4 f3f

b4
4 = f3f

b4
4 f2f

a4
4 (because f5 ∈ Z(G)). Rewrite this equality

with the help of the formulae in Step 2. We get f2f3f
a4+b4
4 = f2f3f

a4+b4
4 f5, which is

a contradiction.
Suppose h̄1 = f̄1f̄

a3
3 , h̄2 = f̄2f̄

b3
3 . In G/N , we have h̄1h̄2 = h̄2h̄1, but it is obvious

the two elements f̄1f̄
a3
3 , f̄2f̄

b3
3 do not commute. Done.

Suppose h̄1 = f̄1f̄
a2
2 , h̄2 = f̄3. Write h1 = f1f

a2
2 fa44 fa55 , h2 = f3f

b4
4 f

b5
5 . Use the

fact h1h2 = h2h1. It is easy to find a contradiction.

Theorem 2.3. Let p be an odd prime number and G be a group of order p5

belonging to the isoclinism family Φ10. Then B0(G) 6= 0.

Proof. Apply Lemma 2.2. It suffices to show that G satisfies conditions (i), (ii),
(iii) in Lemma 2.2.

Case 1. p = 3.
It is routine to verify that the groups Φ10(1

5), Φ10(2111)a0, Φ10(2111)a1 in [Ja,
page 621] are isomorphic to G(35, 28), G(35, 29), G(35, 30) respectively. All these
three groups G(35, i) with 28 ≤ i ≤ 30 can be defined as

G(35, i) = 〈f1, f2, f3, f4, f5〉, Z(G(35, i)) = 〈f5〉,

[f2, f1] = f3, [f3, f1] = f4, [f4, f1] = [f3, f2] = f5, [f4, f2] = [f4, f3] = 1

with additional relations

f3
1 = f3

4 = f3
5 = 1, f3

2 = f−1
4 , f3

3 = f−1
5 for G(35, 28),

f3
4 = f3

5 = 1, f3
1 = f5, f

3
2 = f−1

4 , f3
3 = f−1

5 for G(35, 29),

f3
4 = f3

5 = 1, f3
1 = f−1

5 , f3
2 = f−1

4 , f3
3 = f−1

5 for G(35, 30).

Case 2. p ≥ 5.
The group G = Φ10(1

5) in [Ja, page 621] is defined as

G = 〈f1, f2, f3, f4, f5〉, Z(G) = 〈f5〉,

fpi = 1 for 1 ≤ i ≤ 5,

[f2, f1] = f3, [f3, f1] = f4, [f4, f1] = [f3, f2] = f5, [f4, f2] = [f4, f3] = 1.

The group G = Φ10(2111)ar in [Ja, page 621] is defined as

G = 〈f1, f2, f3, f4, f5〉, Z(G) = 〈f5〉,

fp1 = fα
r

5 , fpi = 1 for 2 ≤ i ≤ 5,

[f2, f1] = f3, [f3, f1] = f4, [f4, f1] = [f3, f2] = f5, [f4, f2] = [f4, f3] = 1

where α is the smallest positive integer which is a primitive root (mod p) and 0 ≤
r ≤ gcd{3, p− 1} − 1.

The group G = Φ10(2111)br in [Ja, page 621] is defined as

G = 〈f1, f2, f3, f4, f5〉, Z(G) = 〈f5〉,

fp2 = fα
r

5 , fp1 = fpi = 1 for 3 ≤ i ≤ 5,

[f2, f1] = f3, [f3, f1] = f4, [f4, f1] = [f3, f2] = f5, [f4, f2] = [f4, f3] = 1
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where α is the smallest positive integer which is a primitive root (mod p) and 0 ≤
r ≤ gcd{3, p− 1} − 1.

Remark. In the proof of [Bo, Lemma 5.6, page 478], Bogomolov tried to prove
that there do not exist p-groups G of order p5 with B0(G) 6= 0. He assumed that the
commutator group [G,G] was abelian and discussed three situations when the order of
G/[G,G] was p2, p3, or ≥ p4 (in general, if G is a non-abelian group of order p5, then
[G,G] is abelian, since G has an abelian normal subgroup of order p3 by a theorem of
Burnside). The case when G/[G,G] = p2 was reduced to [Bo, Lemma 4.11, page 478]
(see the first part of Theorem 2.3). But this lemma is disproved in the proof of the
above theorem.

Proof of Theorem 1.13. Suppose that p5 | n for some odd prime number p. Write
n = p5m. By Theorem 2.3 choose a group G0 of order p5 satisfying B0(G0) 6= 0.
Define G = G0 × Cm.

We will prove that k(G) is not stably k-rational (resp. not retract k-rational if k is
infinite). Suppose not. Assume that k(G) is stably k-rational (resp. retract k-rational
if k is infinite). Then so is k̄(G) over k̄ where k̄ is the algebraic closure of k. In
particular, k̄(G) is retract k̄-rational. Since G = G0 × Cm, by [Sa1, Theorem 1.5;
Ka4, Lemma 3.4], we find that k̄(G0) is retract k̄-rational. This implies B0(G) = 0
by Lemma 1.3. A contradiction.

In case 26 | n, the proof is similar by applying Theorem 1.5.

3. Some reduction theorems. We recall several known results in this section.

Theorem 3.1 (Ahmad, Hajja and Kang [AHK, Theorem 3.1]). Let L be any

field, L(x) the rational function field in one variable over L, and G a finite group

acting on L(x). Suppose that, for any σ ∈ G, σ(L) ⊂ L and σ(x) = aσ · x+ bσ where

aσ, bσ ∈ L and aσ 6= 0. Then L(x)G = LG(f) for some polynomial f ∈ L[x]. In fact,

if m = min{deg g(x) : g(x) ∈ L[x]G\LG}, any polynomial f ∈ L[x]G with deg f = m
satisfies the property L(x)G = LG(f).

Theorem 3.2 (Hajja and Kang [HK, Theorem 1]). Let G be a finite group acting

on L(x1, . . . , xn), the rational function field in n variables over a field L. Suppose that

(i) for any σ ∈ G, σ(L) ⊂ L,
(ii) the restriction of the action of G to L is faithful,

(iii) for any σ ∈ G,



σ(x1)
σ(x2)

...

σ(xn)


 = A(σ) ·




x1
x2
...

xn


 +B(σ)

where A(σ) ∈ GLn(L) and B(σ) is an n× 1 matrix over L.
Then there exist elements z1, . . . , zn ∈ L(x1, . . . , xn) so that L(x1, . . . , xn) = L(z1,

. . . , zn) and σ(zi) = zi for any σ ∈ G, any 1 ≤ i ≤ n.

Theorem 3.3 (Fischer [Sw, Theorem 6.1]). Let G be a finite abelian group of

exponent e, and let k be a field containing a primitive e-th root of unity. Then k(G)
is rational over k.

Theorem 3.4 (Kang and Plans [KP, Theorem 1.3]). Let k be any field, G1 and

G2 be two finite groups. If k(G1) and k(G2) are rational over k, then so is k(G1×G2)
over k.



698 A. HOSHI, M. KANG, AND B. E. KUNYAVSKII

Theorem 3.5. Let k be a field and G be a finite group. Assume that (i) G
contains an abelian normal subgroup H such that G/H is a cyclic group, and (ii) k
contains a primitive e-th root of unity where e = exp(G).

(1) (Bogomolov [Bo, Lemma 4.9]) If k is algebraically closed, then B0(G) = 0.
(2) (Kang [Ka4, Theorem 5.10]) If k is an infinite field, then k(G) is retract

k-rational. In particular, B0(G) = 0.
(3) (Kang [Ka2, Theorem 2.2]) If Z[ζn] is a unique factorization domain where

n = |G/H |, then k(G) is rational over k.

Theorem 3.6 (Kang [Ka3, Theorem 1.8]). Let n ≥ 3 and G be a non-abelian

group of order pn such that G has a cyclic subgroup of index p2. If k is a field

containing a primitive pn−2-th root of unity, then k(G) is rational over k.

Theorem 3.7. Let L be any field containing a field k, L(x) be the rational

function field of one variable over L.
(1) (Saltman [Sa2, Proposition 3.6; Ka4, Lemma 3.4]) If k is an infinite field,

then L is retract k-rational if and only if so is L(x) over k.
(2) (Saltman [Sa4, Section 2; Ka4, Theorem 3.2]) The natural map Brv,k(L) →

Brv,k(L(x)) is an isomorphism.

The following is an elementary result in group theory, whose proof is omitted.

Lemma 3.8. Let G be a finite p-group. If H is a normal subgroup of G and

H 6= {1}, then H ∩ Z(G) 6= {1}.

Lemma 3.9. Let G be a finite p-group, Z(G) be its center. Let θ : G → GL(W )
be a linear representation of G where W is a finite-dimensional vector space over

some field k. Assume that, for any g ∈ Z(G)\{1}, θ(g) 6= 1. Then θ is a faithful

representation of G, i.e. θ is injective.

Proof. Let N = Ker(θ). If N 6= {1}, then N ∩ Z(G) 6= {1} by Lemma 3.8. It
follows that there is some g ∈ Z(G)\{1} with θ(g) = 1. A contradiction.

We recall the definitions of G-lattices and purely monomial actions.

Definition 3.10. Let G be a finite group. A G-lattice M is a finitely generatedZ[G]-module which is Z-free as an abelian group, i.e. M =
⊕

1≤i≤n Z · xi with aZ[G]-module structure.
If k is a field and M =

⊕
1≤i≤n Z · xi is a G-lattice, define k(M) = k(x1, . . . , xn)

the rational function field over k with G acting by k-automorphisms defined as follows:
For any σ ∈ G, if σ · xj =

∑
1≤i≤n aijxi in M , then σ · xj =

∏
1≤i≤n x

aij
i in k(M).

The action of G on k(M) is called a purely monomial k-action [HKK, Definition 1.15].
The fixed field of k(M) under the G-action is denoted by k(M)G.

Theorem 3.11 (Barge [Bar]). Let G be a finite group, k be an algebraically

closed field with gcd{|G|, chark} = 1. The following two statements are equivalent,

(i) all the Sylow subgroups of G are bicyclic.

(ii) Brv,k(k(M)G) = 0 for all G-lattices M .

Proof. In [Bar], the above theorem is proved for the case k = C but the arguments
there work in the general case.

Here is an alternative proof for the direction “(i) ⇒ (ii)” of the above theorem:
apply [Sa5, Theorem 12].



NOETHER’S PROBLEM & UNRAMIFIED BRAUER GROUPS 699

4. B0(G) = 0 for the groups not belonging to Φ6 and Φ10. Let p be an
odd prime number and G be a group of order p5 belonging to the isoclinism family Φi
where 1 ≤ i ≤ 9. We will show that B0(G) = 0 in this section and the next section.

We adopt the classification of groups of order p5 by R. James [Ja]. For groups of
order p5, there are in total 10 isoclinism families Φi where 1 ≤ i ≤ 10 [Ja, pages 619–
621]. When p ≥ 5, the numbers of groups in the family Φi where 1 ≤ i ≤ 10 are

7, 15, 13, p+ 8, 2, p+ 7, 5, 1, gcd{3, p− 1}+ 2, gcd{4, p− 1}+ gcd{3, p− 1}+ 1

respectively. The same numbers hold true for groups of order 35 except for Φ6 and
Φ10. The numbers of groups of order 35 in Φ6 and Φ10 are 7 and 3 respectively.

We call the attention of the reader to two conventions of James’s paper

[Ja]. First the notation α
(p)
i+1 is not αpi+1 in general; it is defined as α

(p)
i+1 =

αpi+1α
(p2)
i+2 · · ·α

(pk)
i+k · · ·αi+p where αi+2, . . . , αi+p are suitably defined [Ja, p. 614, lines

8–10]. In particular, for the groups of order p5 with p ≥ 5 defined in [Ja, pages 619–

621], α
(p)
i+1 = αpi+1. On the other hand, when p = 3, the relations α

(3)
1 = α

(3)
2 = α

(3)
3 =

α
(3)
4 = 1 for the group Φ9(2111)a in [Ja, page 621] are equivalent to the relations
α3
1 = α−1

3 α4, α
3
2 = α−1

4 and α3
3 = α3

4 = 1. The second convention of [Ja] is that all
relations of the form [α, β] = 1 are omitted from the list [Ja, p. 614, lines 11–12].

Theorem 4.1. Let p be an odd prime number and G be a group of order p5 and

of exponent e. If k is an infinite field containing a primitive e-th root of unity and G
belongs to the isoclinism family Φi where 1 ≤ i ≤ 4 or 8 ≤ i ≤ 9, then k(G) is retract

rational over k. In particular, B0(G) = 0.

Proof. If G belongs to the isoclinism family Φi where 1 ≤ i ≤ 4 or 8 ≤ i ≤ 9,
it is not difficult (from the list of [Ja, pages 619–621]) to find an abelian normal
subgroup H such that G/H is cyclic. Thus k(G) is retract k-rational and B0(G) = 0
by Theorem 3.5. But we can say more about k(G).

Step 1. The groups in Φ1 are abelian groups. If G ∈ Φ1, then k(G) is k-rational
by Theorem 3.3.

Step 2. Some groups in Φ2 are direct products. If G ∈ Φ2 and G ≃ G1 ×G2 with
|G1|, |G2| < |G|, then both k(G1) and k(G2) are k-rational by Theorem 1.6. Thus
k(G) is k-rational by Theorem 3.4.

For the other groups G ∈ Φ2, it is easy to verify that G/Z(G) ≃ Cp×Cp. Let ḡ be
an element of order p in G/Z(G) and g be a preimage of ḡ in G. Then H = 〈Z(G), g〉 is
abelian and normal in G with G/H ≃ Cp. By Theorem 3.5, k(G) is retract k-rational.

Step 3. If G belongs to Φ3 or Φ4, it is not difficult to show that G contains an
abelian normal subgroup of index p by checking the list provided in [Ja, page 620].

Alternatively, we may use the fact asserted in Bender’s paper [Be, p.69]: If G is a
group of order p5 (where p ≥ 3) with |Z(G)| = p2 and |[G,G]| ≤ p2, then G contains an
abelian normal subgroup of index p. Assuming this fact, since |Z(G)| = |[G,G]| = p2

(if G ∈ Φ3 and G is not a direct product) and |Z(G)| = |[G,G]| = p2 (if G ∈ Φ4), we
are done.

In either case, apply Theorem 3.5. We find that k(G) is retract k-rational.

Step 4. If G ∈ Φ8, the family Φ8 consists of only one group G ≃ Cp3 ⋊Cp2 . Apply
Theorem 3.6. We find k(G) is k-rational.
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Step 5. If G ∈ Φ9, check the list of the generators and relations of these groups
in [Ja, p.621]. We find that these groups G are generated by elements f0, f1, f2, f3,
f4 and, besides other relations, they satisfy the relations

[fi, f0] = fi+1 for 1 ≤ i ≤ 3,

[fi, fj] = 1 for 1 ≤ i, j ≤ 4, and

{f1, f2, f3, f4} generates a subgroup of index p.

Define H = 〈f1, f2, f3, f4〉. It follows that H is an abelian normal subgroup of
index p. Apply Theorem 3.5.

The following theorem is essentially due to Barge [Bar]. We include a proof for
the convenience of the reader.

Theorem 4.2. Let G = A⋊G0 be a finite group where A and G0 are subgroups

of G such that (i) A is an abelian normal subgroup of G with G0 acting on A, and
(ii) all the Sylow subgroups of G0 are bicyclic. If k is an algebraically closed field with

gcd{|G|, chark} = 1, then Brv,k(k(G)) = 0.

Proof. Step 1. Let V =
⊕

g∈G k·x(g) with the G-action defined by g·x(h) = x(gh)

for any g, h ∈ G. Then k(G) = k(x(g) : g ∈ G)G by definition.
Consider a subspace W =

⊕
τ∈A k · x(τ). Since A is abelian, the action of A on

W can be diagonalized. Explicitly, there is a linear change of variables of W with
W =

⊕
1≤i≤n k ·xi (where n = |A|) such that, for all τ ∈ A, τ ·xi ∈ k ·xi for 1 ≤ i ≤ n.

Thus we may write τ · xi = χi(τ)xi where χi : A→ k× is a linear character of A.
For any h ∈ G0, define W (h) =

⊕
τ∈A k · x(hτ). Since x(hτ) = h · x(τ), we find

that W (h) = h(W ) = h(
⊕

1≤i≤n k · xi) =
⊕

1≤i≤n k · (h · xi). Note that τ · (h · xi) =

h(h−1τh) · xi = χi(h
−1τh)(h · xi) for any τ ∈ A, any h ∈ G0.

Write yi(g) = g · xi for any g ∈ G0, any 1 ≤ i ≤ n. It follows that k(x(g) : g ∈
G) = k(yi(g) : 1 ≤ i ≤ n, g ∈ G0). The action of G on yi(g) is given as follows: For
all τ ∈ A, g, h ∈ G0, 1 ≤ i ≤ n, we have

τ · yi(g) = χi(g
−1τg)yi(g), h · yi(g) = yi(hg).

It remains to show that Brv,k(k(yi(g) : 1 ≤ i ≤ n, g ∈ G0)
G) = 0.

Step 2. Define a G0-lattice N =
⊕

g∈G0,1≤i≤n
Z · yi(g) with

h · yi(g) = yi(hg)

for any h, g ∈ G0.
Let us choose τ1, . . . , τm ∈ A such that A = 〈τ1, . . . , τm〉. Let ζ be a root of unity

such that 〈χi(τ) : τ ∈ A, 1 ≤ i ≤ n〉 = 〈ζ〉. Regard 〈ζ〉m := 〈ζ〉 × · · · × 〈ζ〉 (the
direct product of m copies of 〈ζ〉) as a Z[G0]-module where the action of G0 is trivial.
Define a morphism Φ: N → 〈ζ〉m of Z[G0]-modules by Φ

(∑
g∈G0,1≤i≤n

ai,gyi(g)
)
=(

τ1(Y )
Y , τ2(Y )

Y , . . . , τm(Y )
Y

)
where Y =

∏
g∈G0,1≤i≤n

yi(g)
ai,g ∈ k(yi(g) : 1 ≤ i ≤ n, g ∈

G0).
Define M = Ker(Φ). Clearly M is a G0-lattice.
It is easy to see that k(yi(g) : 1 ≤ i ≤ n, g ∈ G0)

A = k(M), i.e. if M =⊕
1≤l≤e Z · zl, then k(yi(g) : 1 ≤ i ≤ n, g ∈ G0)

A = k(z1, z2, . . . , ze) where each zl is
a monomial in yi(g)’s.
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Moreover, k(yi(g) : 1 ≤ i ≤ n, g ∈ G0)
G = {k(yi(g) : 1 ≤ i ≤ n, g ∈ G0)

A}G0 =
k(M)G0 . The group G0 acts on k(M) by purely monomial k-automorphisms (see
Definition 3.10). Applying Theorem 3.11, we find that Brv,k(k(M)G0) = 0. Hence
the result.

Remark. Saltman shows that, if G = A ⋊ G0 where A is abelian normal such
that (i) gcd{|A|, |G0|} = 1, and (ii) both k(A) and k(G0) are retract k-rational, then
k(G) is also retract k-rational [Sa1, Theorem 3.5; Ka4, Theorem 3.5].

Now we turn to groups belonging to the isoclinism family Φ5 for groups of order
p5.

Definition 4.3. Let p be an odd prime number. The isoclinism family Φ5 for
groups of order p5 consists of two groups: Φ5(2111) and Φ5(1

5) (see [Ja, page 620]).
These two groups are defined as follows.

For G = Φ5(2111), G = 〈fi : 1 ≤ i ≤ 5〉 with Z(G) = 〈f5〉 and relations

[f1, f2] = [f3, f4] = f5, [f1, f3] = [f2, f3] = [f1, f4] = [f2, f4] = 1,

fp1 = f5, f
p
i = 1 for 2 ≤ i ≤ 5.

For G = Φ5(1
5), G = 〈fi : 1 ≤ i ≤ 5〉 with Z(G) = 〈f5〉 and relations

[f1, f2] = [f3, f4] = f5, [f1, f3] = [f2, f3] = [f1, f4] = [f2, f4] = 1,

fpi = 1 for 1 ≤ i ≤ 5.

Note that both Φ5(2111) and Φ5(1
5) are extra-special p-groups.

Theorem 4.4. Let p be an odd prime number and G belong to the isoclinism

family Φ5 for groups of order p5. Then B0(G) = 0.

Proof. Choose an algebraically closed field k with char k 6= p (in particular, we
may choose k = C). If Brv,k(k(G)) = 0, then B0(G) = 0 by Theorem 1.4. Hence we
will show that Brv,k(k(G)) = 0 by using Theorem 4.2.

For G = Φ5(2111) or Φ5(1
5), write G = A ⋊ G0 where A = 〈f1, f3, f5〉 and

G0 = 〈f2, f4〉. Conditions (i), (ii), (iii) in Theorem 4.2 are satisfied. Hence we may
apply Theorem 4.2. Done.

Now we consider groups in the isoclinism family Φ7. Since the relations for p = 3

and p ≥ 5 are not the same (due to the notation α
(p)
1 = 1), we define these groups

separately.

Definition 4.5. The isoclinism family Φ7 for groups of order 35 consists of five
groups: G = G(35, i) where 56 ≤ i ≤ 60 and G(35, i) is the GAP code number. These
groups G are defined by G = 〈fi : 1 ≤ i ≤ 5〉 with Z(G) = 〈f5〉, common relations

[f2, f1] = f4, [f3, f2] = [f4, f1] = f5, [f3, f1] = [f4, f2] = [f4, f3] = 1,

but with extra relations
(1) for G = G(35, 56) : f3

i = 1 for 1 ≤ i ≤ 5;
(2) for G = G(35, 57) : f3

2 = f5, f
3
1 = f3

i = 1 for 3 ≤ i ≤ 5;
(3) for G = G(35, 58) : f3

2 = f2
5 , f

3
1 = f3

i = 1 for 3 ≤ i ≤ 5;
(4) for G = G(35, 59) : f3

1 = f−3
2 = f5, f

3
i = 1 for 3 ≤ i ≤ 5;

(5) for G = G(35, 60) : f3
3 = f5, f

3
1 = f3

2 = f3
4 = f3

5 = 1.
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Note that, in the notation of [Ja, page 621], the GAP groupsG(35, i), 56 ≤ i ≤ 60,
correspond to Φ7(2111)b1, Φ7(2111)bν, Φ7(1

5), Φ7(2111)a and Φ7(2111)c respectively.

Theorem 4.6. If G is a group belonging to the isoclinism family Φ7 for groups

of order 35, then B0(G) = 0.

Proof. The proof is the same as that of Theorem 4.8 except for G = G(35, 59)
and G = G(35, 60). Write G = A⋊G0 where G0 ≃ C3 × C3, and

(i) if G = G(35, 56), A = 〈f2, f4, f5〉, G0 = 〈f1, f3〉;
(ii) if G = G(35, 57) or G(35, 58), A = 〈f2, f4〉, G0 = 〈f1, f3〉.
It can be shown as before that B0(G) = 0 when G = G(35, 56), G(35, 57) or

G(35, 58). It remains to prove that B0(G) = 0 for G = G(35, 59) and G = G(35, 60).
We will indicate only the proof for G = G(35, 59). The case G(35, 60) is almost the
same.

Step 1. Let η be a primitive 9th root of unity and ζ = η3. We will construct a
faithful 9-dimensional representation ofG = G(35, 59) over k, which may be embedded
into the regular representation of G. The method is similar to that of Step 1 in the
proof of Theorem 4.2.

Let A = 〈f1, f3〉 = 〈f1, f3, f5〉 ≃ C9 ×C3 act on the 1-dimensional space k ·X by
f1 ·X = ηX , f3 ·X = X . It follows that f5 ·X = ζX .

The above action defines a linear character ρ : A→ k×. The induced representa-
tion can be written explicitly as follows.

Define V =
⊕

1≤i≤9 k · xi where x1 = X , x2 = f4 ·X , x3 = f2
4 ·X , x4 = f2 ·X ,

x5 = f2f4 ·X , x6 = f2f
2
4 ·X , x7 = f2

2 ·X , x8 = f2
2f4 ·X , x9 = f2

2f
2
4 ·X . The action

of G on xi is given by

f1 : x1 7→ ηx1, x2 7→ η7x2, x3 7→ η4x3, x4 7→ η4x6, x5 7→ ηx4, x6 7→ η7x5,

x7 7→ η7x8, x8 7→ η4x9, x9 7→ ηx7,

f2 : x1 7→ x4 7→ x7 7→ ζ2x1, x2 7→ x5 7→ x8 7→ ζ2x2, x3 7→ x6 7→ x9 7→ ζ2x3,

f3 : x1 7→ x1, x2 7→ x2, x3 7→ x3, x4 7→ ζx4, x5 7→ ζx5, x6 7→ ζx6,

x7 7→ ζ2x7, x8 7→ ζ2x8, x9 7→ ζ2x9,

f4 : x1 7→ x2 7→ x3 7→ x1, x4 7→ x5 7→ x6 7→ x4, x7 7→ x8 7→ x9 7→ x7,

f5 : xi 7→ ζxi for 1 ≤ i ≤ 9.

By Lemma 3.9, it is a faithful representation of G. This representation can be em-
bedded into the regular representation of G, because it is an irreducible representation
of G.

Apply Theorem 3.2. We find that k(G) is rational over k(xi : 1 ≤ i ≤ 9)G.

Step 2. Define u1 = x4/x1, u2 = x7/x4, u3 = x2/x1, u4 = x3/x2, u5 = x5/x4,
u6 = x6/x5, u7 = x8/x7, u8 = x9/x8. Apply Theorem 3.1. We find that k(xi : 1 ≤
i ≤ 9)G = k(ui : 1 ≤ i ≤ 8)G(u0) for some element u0 fixed by the action of G.

We conclude that k(G) is rational over k(ui : 1 ≤ i ≤ 8)G.
By Theorem 3.7 and Theorem 1.4, it follows that B0(G) ≃ Brv,k(k(ui : 1 ≤ i ≤

8)G).

Step 3. Now consider the group H = G(35, 58). We will repeat the procedure of
Step 1 and Step 2 for H .
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Namely, define B = 〈f1, f3, f5〉 ≃ C3 × C3 × C3. Let B act on k · Y by f1 · Y =
f3 · Y = Y , f5 · Y = ζY .

Construct the induced representationW =
⊕

1≤i≤9 k·yi where y1 = Y , y2 = f4·Y ,

y3 = f2
4 · Y , y4 = f2 · Y , y5 = f2f4 · Y , y6 = f2f

2
4 · Y , y7 = f2

2 · Y , y8 = f2
2 f4 · Y ,

y9 = f2
2 f

2
4 · Y . The actions of f2, f3, f4, f5 on W are the same as those on V (just

replace xi’s by yi’s), but

f1 : x1 7→ x1, x2 7→ ζ2x2, x3 7→ ζx3, x4 7→ ζx6, x5 7→ x4, x6 7→ ζ2x5,

x7 7→ ζ2x8, x8 7→ ζx9, x9 7→ x7.

The coincidence of the group actions can be explained as follows. The relations
of G(35, 59) and G(35, 58) are almost the same except for f3

1 = f5 in G(35, 59) and
f3
1 = 1 in G(35, 58).

Step 4. Define v1 = y4/y1, v2 = y7/y4, v3 = y2/y1, v4 = y3/y2, v5 = y5/y4,
v6 = y6/y5, v7 = y8/y7, v8 = y9/y8. Similar to Step 2, we get that k(H) is rational
over k(vi : 1 ≤ i ≤ 8)H and B0(H) ≃ Brv,k(k(vi : 1 ≤ i ≤ 8)H).

Compare the actions of G on u1, . . . , u8 with the actions of H on v1, . . . , v8. We
find they are the same!

Thus k(ui : 1 ≤ i ≤ 8)G ≃ k(vi : 1 ≤ i ≤ 8)G over k.
Hence B0(G) ≃ Brv,k(k(ui : 1 ≤ i ≤ 8)G) ≃ Brv,k(k(vi : 1 ≤ i ≤ 8)H) ≃ B0(H).

But B0(H) = 0 has been proved at the beginning. Hence B0(G) = 0.

Definition 4.7. Let p be a prime number and p ≥ 5. The isoclinism family Φ7

for groups of order p5 consists of five groups: G = Φ7(2111)a, Φ7(2111)b1, Φ7(2111)bν
(where 2 ≤ ν ≤ p − 1 and ν is a fixed quadratic non-residue modulo p), Φ7(2111)c
and Φ7(1

5) (see [Ja, page 621]). These groups G are defined by G = 〈fi : 0 ≤ i ≤ 4〉
with Z(G) = 〈f3〉, common relations

[f1, f0] = f2, [f2, f0] = [f1, f4] = f3, [f4, f0] = [f2, f1] = [f4, f2] = 1,

but with extra relations
(1) for G = Φ7(2111)a : fp0 = f3, f

p
i = 1 for 1 ≤ i ≤ 4;

(2) for G = Φ7(2111)b1 : f
p
1 = f3, f

p
0 = fpi = 1 for 2 ≤ i ≤ 4;

(3) for G = Φ7(2111)bν : fp1 = fν3 , f
p
0 = fpi = 1 for 2 ≤ i ≤ 4;

(4) for G = Φ7(2111)c : f
p
4 = f3, f

p
i = 1 for 0 ≤ i ≤ 3;

(5) for G = Φ7(1
5) : fpi = 1 for 0 ≤ i ≤ 4.

Theorem 4.8. Let p be a prime number and p ≥ 5. If G belongs to the isoclinism

family Φ7 for groups of order p5, then B0(G) = 0.

Proof. The proof is similar to that of Theorem 4.4 by applying Theorem 4.2.
Except for groups G = Φ7(2111)a or Φ7(2111)c, we write G = A ⋊ G0 for suitable
subgroups A and G0. Here are the subgroups we choose.

If G = Φ7(2111)b1 or Φ7(2111)bν, A = 〈f1, f2〉, G0 = 〈f0, f4〉.
If G = Φ7(1

5), A = 〈f0, f3, f4〉, G0 = 〈f1, f2〉.
When G = Φ7(2111)a or Φ7(2111)c, it is not difficult to show that C(G) is

isomorphic to C(H) where H is any one of the groups H = Φ7(2111)b1, Φ7(2111)bν
or H = Φ7(1

5) by the same method as in the proof of Theorem 4.6. We outline the
case of G = Φ7(2111)a and H = Φ7(1

5) as follows. The situation for G = Φ7(2111)c
and H = Φ7(1

5) is almost the same.
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Step 1. Denote by η a primitive p2-th root of unity and ζ = ηp. We will construct
a faithful p2-dimensional representation of G = Φ7(2111)a over k.

In the group G, define A = 〈f0, f4〉 = 〈f0, f3, f4〉 ≃ Cp2 × Cp. Let it act on the
1-dimensional space k ·X by f0 ·X = ηX , f4 ·X = X . It follows that f3 ·X = ζX .

The above action defines a linear character ρ : A→ k×. The induced representa-
tion can be written as V =

⊕
0≤i,j≤p−1 k · xi,j where xi,j = f i1f

j
2 ·X .

Step 2. Similarly, in the groupH = Φ7(1
5), define B = 〈f0, f3, f4〉 ≃ C3×C3×C3.

Let B act on k · Y by f0 · Y = f4 · Y = Y , f3 · Y = ζY .
Construct the induced representationW =

⊕
0≤i,j≤p−1 k ·xi,j where xi,j = f i1f

j
2 ·

Y ; here we use the same notation xi,j as in Step 1 on purpose.

Step 3. It is easy to verify the actions of G and H on these xi,j . For both the
groups G and H , we have

f1 : xi,j 7→ xi+1,j , f2 : xi,j 7→ xi,j+1, f3 : xi,j 7→ ζxi,j , f4 : xi,j 7→ ζ−ixi,j .

The actions of f0 are different. For the group G, f0(xi,j) = ζi−jη xi,j−i; for the
group H , f0(xi,j) = ζi−j xi,j−i.

The action of G on P(V ) and that of H on P(W ) become the same. Hence the
result.

5. B0(G) = 0 for the groups belonging to Φ6. Let p be an odd prime
number. Throughout this section g is the smallest positive integer which is a primitive
root modulo p, and ν is the smallest positive integer which is a quadratic non-residue
modulo p.

Definition 5.1. Let p be an odd prime number. The isoclinism family Φ6 for
groups of order p5 consists of the groupsG = Φ6(221)a, Φ6(221)br (where 1 ≤ r ≤ (p−
1)/2), Φ6(221)cr (where r = 1 or ν), Φ6(221)d0, Φ6(221)dr (where 1 ≤ r ≤ (p−1)/2),
Φ6(2111)a (this group exists only for p ≥ 5), Φ6(2111)br (where r = 1 or ν; these
groups exist only for p ≥ 5), and Φ6(1

5). When p ≥ 5, there are p + 7 such groups;
when p = 3, there are 7 such groups (see [Ja, pages 620–621]). These groups G are
defined by G = 〈f1, f2, f0, h1, h2〉 with Z(G) = 〈h1, h2〉, common relations

[f1, f2] = f0, [f0, f1] = h1, [f0, f2] = h2, f
p
0 = hp1 = hp2 = 1,

but with extra relations
(1) for G = Φ6(221)a : fp1 = h1, f

p
2 = h2;

(2) for G = Φ6(221)br : f
p
1 = hk1 , f

p
2 = h2 where k = gr;

(3) for G = Φ6(221)cr : f
p
1 = h

−r/4
2 , fp2 = hr1h

r
2;

(4) for G = Φ6(221)d0 : fp1 = h2, f
p
2 = hν1 ;

(5) for G = Φ6(221)dr : f
p
1 = hk2 , f

p
2 = h1h2 where 4k = g2r+1 − 1;

(6) for G = Φ6(2111)a : fp1 = h1, f
p
2 = 1;

(7) for G = Φ6(2111)br : f
p
1 = 1, fp2 = hr1;

(8) for G = Φ6(1
5) : fp1 = 1, fp2 = 1.

(Note that whenever the exponent of h2 is fractional, it is understood that it is
taken modulo p, which is the order of h2.)

Before proving B0(G) = 0 for the groups G in Definition 5.1, we recall two results
in group cohomology.
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Theorem 5.2 (Dekimpe, Hartl and Wauters [DHW], Huebschmann [Hu1], [Hu2],
[Hu3]). Let G be a finite group, N a normal subgroup of G. Then the Hochschild–Serre

spectral sequence gives rise to the following 7-term exact sequence

0 → H1(G/N,Q/Z) → H1(G,Q/Z) → H1(N,Q/Z)G → H2(G/N,Q/Z)
→ H2(G,Q/Z)1 → H1(G/N,H1(N,Q/Z)) λ

−→ H3(G/N,Q/Z)
where H2(G,Q/Z)1 = Ker{H2(G,Q/Z) res

−−→ H2(N,Q/Z)} and λ is defined as fol-

lows. Choose a section u : G/N → G and define a 2-cocycle ε : G/N × G/N → N
satisfying u(τ)u(τ ′) = ε(τ, τ ′)u(ττ ′) for any τ, τ ′ ∈ G/N . For each 1-cocycle
γ : G/N → H1(N,Q/Z), the map λ is defined by

λ : H1(G/N,H1(N,Q/Z)) // H3(G/N,Q/Z)
γ �

// λ(γ) = c

where c : G/N × G/N × G/N → Q/Z is the 3-cocycle defined as c(τ1, τ2, τ3) =
(u(τ1τ2)γ(τ3))(ε(τ1, τ2)) for all τ1, τ2, τ3 ∈ G/N .

Proof. See [DHW] for details.

The formula for λ is summarized in [DHW, page 21, formula (6)]. If γ : G/N →
H1(N,M) is a 1-cocycle where M is a G-module, [γ] denotes its cohomology class
in H1(G/N,H1(N,M)) in the paper [DHW]. The image λ([γ]) ∈ H3(G/N,MN ) is
represented by a 3-cocycle c : G/N × G/N × G/N → MN which is given on [DHW,
page 21]. Note that the definition of −δ0 : M → Der(N,M) can be found on [DHW,
page 14].

When M is a trivial G-module, −δ0 is a zero map and therefore the map
F ′ : G/N × G/N → M on [DHW, page 21] can be chosen to be a zero map. Con-
sequently, c(q1, q2, q3) = (s1(q1q2)s2D(q3))(F1(q1, q2)) for any q1, q2, q3 ∈ G/N . This is
our formula when M = Q/Z.

Theorem 5.3. Let p be a prime number, Cp = 〈σ〉 and M be a Cp-module. For

any 1-cocycle β : Cp →M , the following map

Φ : H1(Cp,M) // H3(Cp,M)

β
�

// Φ(β) = γ

is a group isomorphism where γ : Cp × Cp × Cp →M is a 3-cocycle defined as

γ(σi, σj , σl) =

{
0 if 0 ≤ i+ j ≤ p− 1(
σi+j

β
)
(σl) if i+ j ≥ p

where 0 ≤ i, j, l ≤ p− 1.

Proof. By [Se, page 149, Theorem 14], the 2-cocycle α : Cp × Cp → Z defined as

α(σi, σj) =

{
0 if 0 ≤ i+ j ≤ p− 1

1 if i + j ≥ p
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represents a “fundamental” cohomology class in H2(Cp,Z) such that, for any Cp-
module M , the map

Φ : H1(Cp,M) // H3(Cp,M)

β
�

// Φ(β) = α ∪ β

is an isomorphism where α ∪ β is the cup product. It is easy to check that α ∪ β = γ
where γ is defined in the statement of this theorem.

Theorem 5.4. Let G be the group Φ6(221)a in Definition 5.1. Then B0(G) = 0.

Proof. Step 1. Write G = 〈f1, f2, f0, h1, h2〉. Choose N = 〈f1, f0, h1, h2〉; N is a
normal subgroup of G. We will apply Theorem 5.2 to the group extension 1 → N →
G→ G/N → 1.

Since G/N = 〈f̄2〉 ≃ Cp, we find that H2(G/N,Q/Z) = 0 [Kar, page 37, Corol-
lary 2.2.12]). By Theorem 5.2, we obtain the following exact sequence

0 → H2(G,Q/Z)1 → H1(G/N,H1(N,Q/Z)) λ
−→ H3(G/N,Q/Z).

Step 2. Note that B0(G) is a subgroup of H2(G,Q/Z)1.
For, consider the restriction map res : H2(G,Q/Z) → H2(N,Q/Z). It induces a

map res : B0(G) → B0(N) such that the following diagram commutes

B0(G) //

��

B0(N)

��

H2(G,Q/Z) res
// H2(N,Q/Z).

Since N is a p-group of order p4, k(N) is k-rational for any algebraically closed
field k with char k 6= p by Theorem 1.6. It follows that B0(N) ≃ Brv,k(k(N)) = 0
by Lemma 1.3 and Theorem 1.4. Hence B0(G) is contained in the kernel of the map
res : H2(G,Q/Z) → H2(N,Q/Z). That is, B0(G) is a subgroup of H2(G,Q/Z)1.

If we can show that H2(G,Q/Z)1 = 0, then B0(G) = 0 and the proof is finished.
Note that H2(G,Q/Z)1 = 0 if and only if λ is an injective map by the exact sequence
in Step 1.

Step 3. We recall a general fact about H1(Cn,M).
Let G = 〈σ〉 ≃ Cn and M be a G-module. Define the map Norm : M → M

by Norm (x) = x + σ · x + σ2 · x + · · · + σn−1 · x for any x ∈ M . It is well-known
that H1(G,M) ≃ Ker(Norm)/ Image(σ− 1). We will give an explicit correspondence
between these two groups. If x ∈ M satisfies Norm (x) = 0, define a normalized
1-cocycle βx : G → M by βx(σ) = x, βx(σ

i) = x + σ · x + σ2 · x + · · · + σi−1 · x for
0 ≤ i ≤ n−1. It is easy to see that x ∈ Image(σ−1) if and only βx is cohomologously
trivial.

Step 4. We will determine H1(G/N,H1(N,Q/Z)).
To keep the notations clean and transparent, we adopt the multiplicative notation

for Q/Z, i.e. we identify Q/Z with all the roots of unity in C\{0}. Thus a primitive



NOETHER’S PROBLEM & UNRAMIFIED BRAUER GROUPS 707

p-th root of unity is the element i/p (for some 1 ≤ i ≤ p− 1) in the additive notation
of Q/Z.

Let ζ be a primitive p-th root of unity. Since H1(N,Q/Z) ≃ Hom(N,Q/Z) ≃
Hom(N/[N,N ],Q/Z) and N/[N,N ] = 〈f̄1, f̄0, h̄2〉 ≃ Cp × Cp × Cp, we find that
H1(N,Q/Z) = 〈ϕ1, ϕ0, ψ〉 where these 1-cocycles ϕ1, ϕ0, ψ are defined as

ϕ1(f1) = ζ, ϕ1(f0) = ϕ1(h1) = ϕ1(h2) = 1,

ϕ0(f0) = ζ, ϕ0(f1) = ϕ0(h1) = ϕ0(h2) = 1,

ψ(h2) = ζ, ψ(f1) = ψ(f0) = ψ(h1) = 1.

The group G (resp. G/N = 〈f̄2〉) acts on H1(N,Q/Z) = 〈ϕ1, ϕ0, ψ〉. It is easy
to verify that

f̄2ϕ1 = ϕ1,
f̄2ϕ0 = ϕ1ϕ0,

f̄2ψ = ϕ0ψ.

Consider the norm map Norm : H1(N,Q/Z) → H1(N,Q/Z) defined by the ac-
tion of f̄2 (see Step 3).

We find that H1(G/N,H1(N,Q/Z)) ≃ Ker(Norm)/ Image(f̄2 − 1) =
〈ϕ1, ϕ0, ψ〉/〈ϕ1, ϕ0〉 if p ≥ 5. But, if p = 3, Ker(1 + f̄2 + f̄2

2 ) = 〈ϕ1, ϕ0〉.
It follows that

H1(G/N,H1(N,Q/Z)) = {
0, if p = 3;

〈ψ̄〉 ≃ Cp, if p ≥ 5.

When p = 3, we obtain H2(G,Q/Z)1 = 0 from the exact sequence in Step 1.
Hence B0(G) = 0.

From now on, we assume that p ≥ 5. By Step 3, the element ψ̄ ∈
Ker(Norm)/ Image (f̄2 − 1) corresponds to the 1-cocycle β : G/N → H1(N,Q/Z)
defined as

β(1) = 1, β(f̄2) = ψ,

β(f̄ i2) =
(
f̄2β(f̄ i−1

2 )
)
β(f̄2) = ϕ

(i3)
1 ϕ

(i2)
0 ψi

where 1 ≤ i ≤ p − 1 and
(
a
b

)
is the binomial coefficient with the convention that(

a
b

)
= 0 if 1 ≤ a < b.

Step 5. We will show that λ(β) 6= 0 and finish the proof of B0(G) = 0.
Follow the description of λ in Theorem 5.2. Choose a section u : G/N → G

by u(1) = 1, u(f̄ i2) = f i2 for 1 ≤ i ≤ p − 1. It is easy to find the 2-cocycle ε :
G/N ×G/N → N . In fact, if 0 ≤ i, j ≤ p− 1, then

ε(f̄ i2, f̄
j
2 ) =

{
1, if 0 ≤ i+ j ≤ p− 1;

h2, if i+ j ≥ p;

the second alternative follows from the fact fp2 = h2.
Now we will evaluate λ(β) where β is the 1-cocycle determined in Step 4. Write

c = λ(β). Then, for 0 ≤ i, j, l ≤ p− 1,

c(f̄ i2, f̄
j
2 , f̄

l
2) =

(
u(f̄i+j

2 )β(f̄ l2)
)
(ε(f̄ i2, f̄

j
2 ))
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by Theorem 5.2.

In particular, for 0 ≤ i ≤ p− 1, we have

c(f̄2, f̄
p−1
2 , f̄ i2) =

(
u(1)β(f̄ i2)

)
(ε(f̄2, f̄

p−1
2 )) = (β(f̄ i2))(h2)

=

(
ϕ
(i3)
1 ϕ

(i2)
0 ψi

)
(h2) = (ψ(h2))

i = ζi.

On the other hand, apply Theorem 5.3 for Φ : H1(G/N,Q/Z) → H3(G/N,Q/Z).
We will find a 1-cocycle β̃ : G/N → Q/Z such that Φ(β̃) = c ∈ H3(G/N,Q/Z). In
fact, from Theorem 5.3, c(f̄2, f̄

p−1
2 , f̄ i2) = β̃(f̄ i2). Thus β̃(f̄

i
2) = ζi for all 0 ≤ i ≤ p− 1.

By Step 3, the 1-cocycle β̃ ∈ H1(G/N,Q/Z) corresponds to the non-zero element
ζ̄ ∈ Ker(Norm)/ Image(f̄2 − 1), regarding ζ as an element in Ker(Norm) where
Norm : Q/Z → Q/Z is defined by the action of f̄2 (see Step 3). Hence β̃ 6= 0 and
Φ(β̃) = c 6= 0. Thus λ is injective.

The proof of the following lemma is routine and is omitted.

Lemma 5.5. Let G be a group in Definition 5.1. If 0 ≤ i, j ≤ p − 1, then

f j0f
i
1 = f i1f

j
0h

ij
1 , f

j
0f

i
2 = f i2f

j
0h

ij
2 , and

f i2f
j
1 = f j1f

i
2f

−ij
0 h

−i(j2)
1 h

−j(i2)
2 .

Theorem 5.6. Let p be an odd prime number. If G is a group belonging to the

isoclinism family Φ6 for groups of order p5, then B0(G) = 0.

Proof. Let k be an algebraically closed field with chark 6= p (in particular, we
may choose k = C). Let η ∈ k be a primitive p2-th root of unity and ζ = ηp. In the
following we adopt the notation in Definition 5.1. We will show that the fields k(G)
are isomorphic to one another over k for all groups G in the isoclinism family Φ6.
Thus they have isomorphic Brv,k(k(G)) ≃ B0(G) by Theorem 1.4. Since B0(G) = 0
if G = Φ6(221)a by Theorem 5.4, it follows that B0(G) = 0 for all other groups G.

Case 1. G = Φ6(221)a, Φ6(221)br (where 1 ≤ r ≤ (p−1)/2), Φ6(2111)a, Φ6(1
5).

Step 1. For these groups G, we have

fp1 = he11 , fp2 = he22

where 0 ≤ e1, e2 ≤ p− 1.

We will employ the same method as in Step 1 of the proof in Theorem 4.6.

Consider the subgroups H1 = 〈f1, f0, h1, h2〉 and H2 = 〈f2, f0, h1, h2〉 of G. Note
that H2 = 〈f2, f0, h2〉 × 〈h1〉 ≃ 〈f2, f0, h2〉 × Cp. Hence we get a linear character of
H2 so that 〈f2, f0, h2〉 is the kernel. Explicitly, we may define an action of H2 on k ·X
defined by

h1 ·X = ζX, f2 ·X = f0 ·X = h2 ·X = X.

Similarly, define an action of H1 on k · Y by

h2 · Y = ζY, f1 · Y = f0 · Y = h1 · Y = Y.
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Construct the induced representations of these linear characters by defining xi =
f i1 ·X , yi = f i2 ·Y for 0 ≤ i ≤ p−1. Thus we get an action of G on (

⊕
0≤i≤p−1 k ·xi)⊕

(
⊕

0≤i≤p−1 k · yi). With the aid of Lemma 5.5, the action of G is given as follows.

f1 : x0 7→ x1 7→ · · · 7→ xp−1 7→ ζe1x0, yi 7→ ζ(
i

2)yi,

f2 : xi 7→ ζ−(
i

2)xi, y0 7→ y1 7→ · · · 7→ yp−1 7→ ζe2y0,

f0 : xi 7→ ζixi, yi 7→ ζiyi,

h1 : xi 7→ ζxi, yi 7→ yi,

h2 : xi 7→ xi, yi 7→ ζyi.

By Lemma 3.9, G acts faithfully on (
⊕

0≤i≤p−1 k · xi)⊕ (
⊕

0≤i≤p−1 k · yi). More-
over, this representation may be embedded into the regular representation of G. By
Theorem 3.2, we find that k(G) is rational over k(xi, yi : 0 ≤ i ≤ p− 1)G.

Step 2. We will apply Theorem 3.1 to k(xi, yi : 0 ≤ i ≤ p − 1)G. Define ui =
xi/xi−1, Ui = yi/yi−1 for 1 ≤ i ≤ p − 1. By applying Theorem 3.1 twice, we get
k(xi, yi : 0 ≤ i ≤ p − 1)G = k(ui, Ui : 1 ≤ i ≤ p − 1)G(u0, U0) where u0, U0 are fixed
by the action of G. The action of G on ui, Ui is given by

f1 : u1 7→ u2 7→ · · · 7→ up−1 7→ ζe1/(u1u2 · · ·up−1), Ui 7→ ζi−1Ui,

f2 : ui 7→ ζ−(i−1)ui, U1 7→ U2 7→ · · · 7→ Up−1 7→ ζe2/(U1U2 · · ·Up−1),

f0 : ui 7→ ζui, Ui 7→ ζUi.

Note that h1(ui) = h2(ui) = ui, h1(Ui) = h2(Ui) = Ui for 1 ≤ i ≤ p− 1. Thus

k(ui, Ui : 1 ≤ i ≤ p− 1)G = k(ui, Ui : 1 ≤ i ≤ p− 1)G/〈h1,h2〉

= k(ui, Ui : 1 ≤ i ≤ p− 1)〈f0,f1,f2〉.

Step 3. Define u′i = ui/η
e1 , U ′

i = Ui/η
e2 for 1 ≤ i ≤ p− 1.

It follows that k(ui, Ui : 1 ≤ i ≤ p− 1) = k(u′i, U
′
i : 1 ≤ i ≤ p− 1) and

f1 : u′1 7→ u′2 7→ · · · 7→ u′p−1 7→ 1/(u′1u
′
2 · · ·u

′
p−1), U

′
i 7→ ζi−1U ′

i ,

f2 : u′i 7→ ζ−(i−1)u′i, U
′
1 7→ U ′

2 7→ · · · 7→ U ′
p−1 7→ 1/(U ′

1U
′
2 · · ·U

′
p−1),

f0 : u′i 7→ ζu′i, U
′
i 7→ ζU ′

i .

Note that the parameters e1, e2 of these groups G disappear in the above action.
In conclusion, for any group G in this case, k(G) is rational over k(u′i, U

′
i : 1 ≤ i ≤

p− 1)〈f1,f2,f0〉. Thus all these fields k(G) are isomorphic.

Case 2. G = Φ6(221)cr (where r = 1 or ν), Φ6(221)dr (where 1 ≤ r ≤ (p−1)/2).
For these groups G, we have

fp1 = he12 , fp2 = he21 h
e2
2

where 1 ≤ e1, e2 ≤ p− 1. The proof is similar to Step 1 and Step 2 of Case 1.
Find integers e′1, e

′
2 such that 1 ≤ e′1, e

′
2 ≤ p− 1 and e1e

′
1 ≡ e2e

′
2 ≡ 1 (mod p).
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Consider the subgroups H1 = 〈f1, f0, h1, h2〉, H2 = 〈f2, f0, h1, h2〉 of G. Since
H2/〈h2〉 = 〈f̄2, f̄0〉 ≃ Cp2 × Cp, we get a linear character of H2. Similarly for H1.
More precisely, we have actions of H2 on k ·X , and H1 on k · Y defined by

f2 ·X = ηe
′

2X, h1 ·X = ζX, f0 ·X = h2 ·X = X,

f1 · Y = ηe
′

1Y, h2 · Y = ζY, f0 · Y = h1 · Y = Y.

Find the induced representations of G from these two linear characters. Define
xi = f i1 ·X , yi = f i2 · Y where 0 ≤ i ≤ p− 1. Then G acts faithfully on (

⊕
0≤i≤p−1 k ·

xi)⊕ (
⊕

0≤i≤p−1 k · yi). Thus k(G) is rational over k(xi, yi : 1 ≤ i ≤ p− 1)G.

The action of G is given by

f1 : x0 7→ x1 7→ · · · 7→ xp−1 7→ x0, yi 7→ ηe
′

1+p(
i

2)yi,

f2 : xi 7→ ηe
′

2−p(
i

2)xi, y0 7→ y1 7→ · · · 7→ yp−1 7→ ζe2y0,

f0 : xi 7→ ζixi, yi 7→ ζiyi,

h1 : xi 7→ ζxi, yi 7→ yi,

h2 : xi 7→ xi, yi 7→ ζyi.

Define ui = xi/xi−1, Ui = yi/yi−1 for 1 ≤ i ≤ p − 1. We get k(xi, yi : 1 ≤ i ≤
p− 1)G = k(ui, Ui : 1 ≤ i ≤ p− 1)G(u0, U0) where u0, U0 are fixed by G by applying
Theorem 3.1 twice. The action of G is given by

f1 : u1 7→ u2 7→ · · · 7→ up−1 7→ 1/(u1u2 · · ·up−1), Ui 7→ ζi−1Ui,

f2 : ui 7→ ζ−(i−1)ui, U1 7→ U2 7→ · · · 7→ Up−1 7→ ζe2/(U1U2 · · ·Up−1),

f0 : ui 7→ ζui, Ui 7→ ζUi.

But the above action is just a special case of the action in Step 2 of Case 1. Hence
the result.

Case 3. G = Φ6(221)d0.

This group satisfies

fp1 = h2, fp2 = he1

where 1 ≤ e ≤ p− 1. In fact, e = ν.

The proof is the same as for Case 2. Choose an integer e′ such that 1 ≤ e′ ≤ p−1
and ee′ ≡ 1 (mod p).

Consider the subgroups H1 = 〈f1, f0, h1, h2〉, H2 = 〈f2, f0, h1, h2〉. Note that
H1/〈h1〉 ≃ Cp2 × Cp ≃ H2/〈h2〉. Hence we get vectors X and Y such that

f2 ·X = ηe
′

X, h1 ·X = X, f0 ·X = h2 ·X = X,

f1 · Y = ηY, h2 · Y = ζY, f0 · Y = h1 · Y = Y.

Construct the induced representation of G on (
⊕

0≤i≤p−1 k ·xi)⊕(
⊕

0≤i≤p−1 k ·yi)
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where xi = f i1 ·X , yi = f i2 · Y with 0 ≤ i ≤ p− 1. It follows that

f1 : x0 7→ x1 7→ · · · 7→ xp−1 7→ x0, yi 7→ η1+p(
i

2)yi,

f2 : xi 7→ ηe
′−p(i2)xi, y0 7→ y1 7→ · · · 7→ yp−1 7→ y0,

f0 : xi 7→ ζixi, yi 7→ ζiyi,

h1 : xi 7→ ζxi, yi 7→ yi,

h2 : xi 7→ xi, yi 7→ ζyi.

By the same arguments as in Case 2, we solve this case.

Case 4. G = Φ6(2111)br (where r = 1 or ν).
These two groups G satisfy

fp1 = 1 and fp2 = he1

where 1 ≤ e ≤ p− 1.
Choose an integer e′ such that 1 ≤ e′ ≤ p− 1 and ee′ ≡ 1 (mod p).
The proof is almost the same as for Case 2.

Consider H1 = 〈f1, f0, h1, h2〉 and H2 = 〈f2, f0, h1, h2〉. Note that H1/〈h1〉 ≃
Cp × Cp × Cp and H2/〈h2〉 ≃ Cp2 × Cp. Thus we get vectors X and Y such that

f2 ·X = ηe
′

X, h1 ·X = ζX, f0 ·X = h2 ·X = X,

h2 · Y = ζY, f1 · Y = f0 · Y = h1 · Y = Y.

Define xi = f i1 ·X , yi = f i2 · Y for 0 ≤ i ≤ p− 1. The action of G on k(xi, yi : 0 ≤
i ≤ p− 1) is given by

f1 : x0 7→ x1 7→ · · · 7→ xp−1 7→ x0, yi 7→ ζ(
i

2)yi,

f2 : xi 7→ ηe
′−p(i2)xi, y0 7→ y1 7→ · · · 7→ yp−1 7→ y0,

f0 : xi 7→ ζixi, yi 7→ ζiyi,

h1 : xi 7→ ζxi, yi 7→ yi,

h2 : xi 7→ xi, yi 7→ ζyi.

The remaining part is the same as in Case 2. Hence the result.

Proof of Theorem 1.12. Combine Theorems 2.3, 4.1, 4.4, 4.8, 4.6 and 5.6.

Theorem 5.7. Let p be an odd prime number and k be an algebraically closed

field with char k 6= p. If G is a group belonging to the isoclinism family Φ10 for groups

of order p5, then there is a linear representation G → GL(V ) over k satisfying (i)
dimkV = p2, and (ii) k(V )G is not k-rational. In particular, the quotient varietyP(V )/G is not k-rational where P(V ) is the projective space associated to V and the

action of G on P(V ) by projective linear automorphisms is induced from the linear

representation G→ GL(V ).
On the other hand, if k is an algebraically closed field with chark 6= 2 and G is a

group belonging to the 16th isoclinism family for groups of order 64, then there is a

linear representation G→ GL(V ) over k satisfying (i) dimkV = 8, and (ii) k(V )G is

not k-rational. In particular, the quotient variety P(V )/G is not k-rational.
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Proof. We will find a faithful representation of the required degree for the group
G.

In the first case, when p is odd and G is the group given in the theorem, look
into the proof of Theorem 2.3 for the generators and relations of G. The center of
G is 〈f5〉. Take H = 〈f3, f4, f5〉; H is an abelian group. Choose a linear character
χ : H → k× such that χ(f5) = ζp and χ(f3) = χ(f4) = 1. Designate the induced
representation of χ (from H to G) by G → GL(V ). It is of degree p2 and is faithful
by Lemma 3.9. Note that Brv,k(k(V )G) is isomorphic to Brv,k(k(G)) by the same
arguments as in the proof of Theorem 4.2.

For the projective variety P(V )/G, we use Theorem 3.1 and Lemma 1.3. In fact,
if k(V ) = k(xi : 1 ≤ i ≤ p2), then k(P(V )) = k(xi/x1 : 2 ≤ i ≤ p2). By Theorem 3.1,
k(xi : 1 ≤ i ≤ p2)G = k(xi/x1 : 2 ≤ i ≤ p2)G(x) for some element x. These two fixed
fields have isomorphic unramified Brauer groups by Lemma 1.3. Hence the result.

Let now G be of order 64. By [CHKK, Lemma 5.5], find the generators and
relations of G. We will discuss only the case G = G(149) and leave the other groups
to the reader. When G = G(149), take the abelian subgroup H = 〈f2, f5〉. Note
that Z(G) = 〈f4

2 , f5〉. Construct two linear characters of H , χ1 and χ2, by χ1(f2) =
ζ8, χ1(f5) = 1 and χ2(f2) = 1, χ2(f5) = −1. Let χ be the direct sum of χ1 and
χ2. The induced representation is of degree 8. The rest of the proof is the same as
above.
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