ASIAN J. MATH. (© 2013 International Press
Vol. 17, No. 4, pp. 689-714, December 2013 008

NOETHER’S PROBLEM AND UNRAMIFIED BRAUER GROUPS*

AKINARI HOSHIt, MING-CHANG KANG!, AND BORIS E. KUNYAVSKII$

Abstract. Let k be any field, G be a finite group acting on the rational function field k(x4 : g €
G) by h-zg = x4 for any h, g € G. Define k(G) = k(zg : g € G)©. Noether’s problem asks whether
k(QG) is rational (= purely transcendental) over k. It is known that, if C(G) is rational over C, then
By (@) = 0 where By(G) is the unramified Brauer group of C(G) over C. Bogomolov showed that,
if G is a p-group of order p°, then By(G) = 0. This result was disproved by Moravec for p = 3,5,7
by computer calculations. We will prove the following theorem. Theorem. Let p be any odd prime
number, G be a group of order p®. Then By(G) # 0 if and only if G belongs to the isoclinism family
®19 in R. James’s classification of groups of order p®.
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1. Introduction. Let k be any field and G be a finite group. Let G act on the
rational function field k(z, : ¢ € G) by k-automorphisms so that g - z, = x4, for
any g,h € G. Denote by k(G) the fixed field k(z, : g € G)®. Noether’s problem
asks whether k(G) is rational (= purely transcendental) over k. It is related to the
inverse Galois problem, to the existence of generic G-Galois extensions over k, and to
the existence of versal G-torsors over k-rational field extensions [Sw; Sal; GMS, 33.1,
p. 86]. Noether’s problem for abelian groups was studied by Swan, Voskresenskii,
Endo, Miyata and Lenstra, etc. The reader is referred to Swan’s paper for a survey
of this problem [Sw].

On the other hand, just a handful of results about Noether’s problem are obtained
when the groups are not abelian. It is the case even when G is a p-group.

Before stating the results on Noether’s problem for non-abelian p-groups, we recall
some relevant definitions.

DErFINITION 1.1. Let £ C K be an extension of fields. K is rational over k
(for short, k-rational) if K is purely transcendental over k. K is stably k-rational
if K(y1,...,Ym) is rational over k for some yi,...,¥yn such that y1,...,yn are al-
gebraically independent over K. When k is an infinite field, K is said to be retract
k-rational if there is a k-algebra A contained in K such that (i) K is the quotient field
of A, (ii) there exist a non-zero polynomial f € k[X1,..., X,] (where k[X1,..., X, ] is
the polynomial ring) and k-algebra homomorphisms ¢: A — k[X1,..., X,][1/f] and
¥ k[Xq,..., Xn][1/f] = A satisfying ¢ o o = 14. (See [Sa2; Kad] for details.) It is
not difficult to see that “k-rational” = “stably k-rational” =- “retract k-rational”.
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DEFINITION 1.2. Let £ C K be an extension of fields. The notion of the un-
ramified Brauer group of K over k, denoted by Br,, (K), was introduced by Saltman
[Sa3]. By definition, Br, x(K) = () Image{Br(R) — Br(K)} where Br(R) — Br(K)
is the natural map of Brauer groups and R runs over all the discrete valuation rings
R such that k C R C K and K is the quotient field of R.

LEMMA 1.3 (Saltman [Sa3; Sad]). If k is an infinite field and K is retract k-
rational, then the natural map Br(k) — Br, (K) is an isomorphism. In particular,
if k is an algebraically closed field and K is retract k-rational, then Br, ,(K) = 0.

THEOREM 1.4 (Bogomolov, Saltman [Bo; Sa5, Theorem 12]). Let G be a finite
group, k be an algebraically closed field with gcd{|G|,chark} = 1. Let u denote the
multiplicative subgroup of all roots of unity in k. Then Br, 1 (k(G)) is isomorphic to
the group Bo(G) defined by

By(G) = ﬂKer{resé cH*(G,p) — H*(A, p)}
A

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is
either a cyclic group or a direct product of two cyclic groups).

Note that Bo(G) is a subgroup of H?(G, i) (where ged{|G|, chark} = 1). Since
H?(G, u) ~ Hy(G), which is the Schur multiplier of G (see [Kar]), we will call By(G)
the Bogomolov multiplier of G, following the convention in [Ku]. Because of Theorem
1.4 we will not distinguish Bo(G) and Br, x(k(G)) when k is algebraically closed
and ged{|G|,chark} = 1. In this situation, Bo(G) is canonically isomorphic to
N4 Ker{resg : H*(G,Q/Z) — H?*(A,Q/7Z)}, i.e. we may replace the coefficient p
by Q/Z in Theorem 1.4.

Using the unramified Brauer groups, Saltman and Bogomolov are able to establish
counter-examples to Noether’s problem for non-abelian p-groups.

THEOREM 1.5. Let p be any prime number, k be any algebraically closed field
with char k # p.

(1) (Saltman [Sa3]) There is a group G of order p° such that Bo(G) # 0. In
particular, k(G) is not retract k-rational. Thus k(G) is not k-rational.

(2) (Bogomolov [Bo]) There is a group G of order p® such that By(G) # 0. Thus
k(G) is not k-rational.

For p-groups of small order, we have the following result.

THEOREM 1.6 (Chu and Kang [CK]). Let p be any prime number, G be a p-group
of order < p* and of exponent e. If k is a field satisfying either (i) chark = p, or (ii)
k contains a primitive e-th root of unity, then k(G) is k-rational.

Because of the above Theorems 1.5 and 1.6, we may wonder what happens to
non-abelian p-groups of order p°.

THEOREM 1.7 (Chu, Hu, Kang and Prokhorov [CHKP]). Let G be a group of
order 32 and of exponent e. If k is a field satisfying either (1) chark = 2, or (ii)
k contains a primitive e-th root of unity, then k(G) is k-rational. In particular,
By(G) =0.

Working on p-groups, Bogomolov developed a lot of techniques and interesting
results. Here is one of his results.
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THEOREM 1.8. (1) [Bo, Lemma 4.11] If G is a p-group with By(G) # 0 and
G/|G,G] ~ C, x Cp, then p >5 and |G| > p".

(2) [Bo, Lemma 5.6; BMP, Corollary 2.11] If G is a p-group of order < p°, then
Bo(G) = 0.

Because of part (2) of the above theorem, Bogomolov proposed to classify all the
groups G with |G| = pS satisfying Bo(G) # 0 [Bo, page 479].

It came as a surprise that Moravec’s recent paper [Mol] disproved the above
Theorem 1.8.

THEOREM 1.9 (Moravec [Mol, Section 5]). If G is a group of order 243, then
By(G) # 0 if and only if G = G(243,1) with 28 < i < 30, where G(243,1) is the i-th
group among groups of order 243 in the database of GAP.

Moravec proves Theorem 1.9 by using computer calculations. No theoretic proof
is given. A file of the GAP functions and commands for computing By(G) can be
found at Moravec’s website www.fmf.uni-1j.si/ moravec/b0Og.g. Recently, using
this computer package, Moravec was able to classify all groups G of order 5° and 7°
such that By(G) # 0.

Before stating the main result of this paper, we recall the classification of p-groups
of order < p® and introduce the notion of isoclinism.

A list of groups of order 2° (resp. 35, 5°, 75) can be found in the database of GAP.
However the classification of groups of order p® dated back to Bagnera (1898), Bender
(1927), R. James (1980), etc. [Ba; Be; Jal, although some minor errors might occur
in the classification results finished before the computer-aided time. For example,
in Bender’s classification of groups of order 3%, one group is missing, i.e. the group
A19(2111)as which was pointed by [Ja, page 613]. A beautiful formula for the total
number of the groups of order p°, for p > 3, was found by Bagnera [Ba] as

2p + 61 4 ged{4,p — 1} + 2ged{3,p — 1}.

Note that the above formula is correct only when p > 5 (see the second paragraph
of Section 4).

On the other hand, groups of order 2" (n < 6) were classified by M. Hall and
Senior [HaS]. There are 267 groups of order 2° in total. Groups of order 27 were
classified by R. James, Newman and O’Brien [JNOB].

DEFINITION 1.10. Two p-groups G; and G are called isoclinic if there exist
group isomorphisms 0: G1/Z(G1) — G2/Z(G2) and ¢: [G1, G1] — [G2, G2] such that
o(lg, h]) = [¢', '] for any g, h € G1 with ¢’ € 0(9Z(G1)), ' € 6(hZ(G1)) (note that
Z(@) and [G, G| denote the center and the commutator subgroup of the group G
respectively).

For a prime number p and a fixed integer n, let G, (p) be the set of all non-
isomorphic groups of order p™. In G,,(p) consider an equivalence relation: two groups
G1 and G5 are equivalent if and only if they are isoclinic. Each equivalence class of
G, (p) is called an isoclinism family.

QUESTION 1.11. Let G; and G2 be isoclinic p-groups. Is it true that the fields
k(G1) and k(G2) are stably isomorphic ?

According to a private communication from Bogomolov, one should expect an
affirmative answer even within larger classes of groups. Our results for groups of
order p° confirm many cases for these expectations.
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After this paper had been submitted, Bogomolov and Bohning posted a paper
solving the above question in the affirmative [BB, Theorem 3.2]. Their result makes
possible to shorten many proofs of this paper, but we choose to retain our “empirical”
proof.

Return to groups of order p°. If p is an odd prime number, then there are precisely
10 isoclinism families for groups of order p®; each family is denoted by ®;, 1 < i < 10
[Ja, pages 619-621]. As for groups of order 64, there are 27 isoclinism families [JNOB,
page 147].

The main result of the present paper is the following theorem.

THEOREM 1.12. Let p be any odd prime number, G be a group of order p°. Then
By(G) # 0 if and only if G belongs to the isoclinism family ®19. Fach group G in the
family ®1¢ satisfies the condition G/|G, G| ~ C, x Cp,. There are precisely 3 groups
in this family if p = 3. For p > 5, the total number of non-isomorphic groups in this
family is

1+ ged{4,p— 1} + ged{3,p — 1}.

Note that, for p = 3, the isoclinism family ®1¢ consists of the groups ®10(2111)a,
(where 7 = 0,1) and ®10(5) [Ja, page 621], which are just the groups G(3°,4) with
28 < i < 30 in the GAP code numbers. This confirms the computation of Moravec
[Mo1]. Similarly, when p = 5, the isoclinism family ®;( consists of the groups G(5°,1)
with 33 < i < 38; when p = 7, the isoclinism family consists of the groups G(7°,14)
with 37 < ¢ < 42. They agree with Moravec’s computer results.

We use the computer package provided by Moravec to study groups of order 11°.
We find that, for a group G of order 115, By(G) # 0 if and only if G ~ G(11°,i) with
39 <4 < 42, also confirming the above Theorem 1.12.

It may be interesting to record the computing time to determine By(G) for all
p-groups of order p° with p = 3,5,7,11. When p = 3,5, 7, it requires only 20 seconds,
one hour and two days respectively. When p = 11, it requires more than one month
by parallel computing at four cores.

As a corollary of Theorem 1.12, we record the following result.

THEOREM 1.13. Letn be a positive integer and k be a field with gcd{|G|, char k} =
1. If 25 | n or p° | n for some odd prime number p, then there is a group G of order
n such that Bo(G) # 0. In particular, k(G) is not stably k-rational; when k is an
infinite field, k(G) is not even retract k-rational.

See Theorem 5.7 for another application of Theorem 1.12.
For completeness, we record the result for groups of order 26. Recall that there
are 267 non-isomorphic groups of order 26 and 27 isoclinism families in total [JNOB].

THEOREM 1.14 (Chu, Hu, Kang and Kunyavskii [CHKK]). Let G be a group of
order 25.

(1) Bo(G) # 0 if and only if G belongs to the 16th isoclinism family, i.e. G =
G(2°,4) where 149 < i < 151, 170 < i < 172, 177 < i < 178, or i = 182.

(2) If Bo(G) =0 and k is an algebraically closed field with char k # 2, then k(G)
is rational over k except possibly for groups G belonging to the 13rd isoclinism family,
ie. G = G(25,1) with 241 < i < 245.

Finally we mention a recent result which supplements Moravec’s result in Theorem
1.9.
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THEOREM 1.15 (Chu, Hoshi, Hu and Kang [CHHK]). Let G be a group of order
3% and of exponent e. If k is a field containing a primitive e-th root of unity and
By(G) = 0, then k(G) is rational over k except possibly for groups G € ®7, i.e.
G = G(3°,i) with 56 < i < 60.

We explain briefly the idea of the proof of Theorem 1.12. Let G be a group
of order p® where p is an odd prime number. To show that By(G) = 0, we apply
Theorems 3.3-3.6 or some “standard” techniques. For the proof of By(G) = 0 when
G belongs to the isoclinism family ®g, we use the 7-term cohomology exact sequence
in [DHW] (see also [Hul], [Hu2], [Hu3]), see Theorems 5.4 and 5.6. We remark that,
for many cases in Sections 4 and 5, we prove not only By(G) = 0, but also k(G) is
retract k-rational or the k(G)’s are k-isomorphic for the groups G belonging to the
same isoclinism family. Moravec has another proof showing that Bo(G) = 0 when G
is a group of order p® not belonging to the isoclinism family ®19 [Mo2].

On the other hand, to show that By(G) # 0, we find suitable generators and
relations for G. It turns out that Bo(G) # 0 if some relations are satisfied (see Lemma
2.2). All the groups in the isoclinism family ®q( satisfy these relations. Lemma 2.2
relies on the 5-term exact sequence of Hochschild and Serre [HS]

0— H'(G/N,Q/7) - H'(G,Q/%Z) — H(N,Q/7%)¢
— H*(G/N,Q/Z) * H*(G,Q/7)

where 1 is the inflation map. The crux of showing By(G) # 0 is to prove that the
image of % is non-zero and is contained in By(G).

The paper is organized as follows. In Section 2, we prove that By(G) # 0 if G
belongs to the isoclinism family ®1y. Then we give a proof of Theorem 1.13. Section 3
contains some rationality criteria or previous results for showing By(G) = 0. Section
4 is devoted to the proof of By(G) = 0 if G belongs to the isoclinism family ®; where
1 <i<9andi# 6. The case of ®¢ is postponed till Section 5. In our proof, we check
all of the groups in every isoclinism family ®; for 1 < ¢ < 10. The reader should be
aware that such a proof can be shortened, because it suffices to check only one group
in each isoclinism family by Bogomolov-Béhning’s Theorem [BB, Theorem 3.2].

STANDING NOTATIONS. Throughout this paper, k is a field, ¢,, denotes a primitive
n-th root of unity. Whenever we write (, € k (resp. ged{n,chark} = 1), it is
understood that either chark = 0 or chark = [ > 0 with [ { n. When k£ is an
algebraically closed field, p denotes the set of all roots of unity, i.e. u = {a € k\{0} :
a™ =1 for some integer n depending on «}. If G is a group, Z(G) and [G, G] denote
the center and the commutator subgroup of G respectively. If g,h € G, we define
[9,h] = g~th~lgh € G. When N is a normal subgroup of G and g € G, the element
g € G/N denotes the image of g in the quotient group G/N. The exponent of G
is defined as lem{ord(g) : ¢ € G} where ord(g) is the order of the element g. We
denote by C,, the cyclic group of order n. A group G is called a bicyclic group if
it is either a cyclic group or a direct product of two cyclic groups. When we write
cohomology groups HY(G, u) or HY(G, Q/Z), it is understood that p and Q/Z are
trivial G-modules.

For emphasis, recall that the field k(G) was defined in the first paragraph of this
section. The group G(n,i) is the i-th group among the groups of order n in GAP.
The version of GAP we refer to in this paper is GAP4, Version: 4.4.12 [GAP]. All the
groups G in this paper are finite.
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2. Groups in the isoclinism family ®19. We start with a general lemma.

LEMMA 2.1. Let G be a finite group, N be a normal subgroup of G. Assume that
(i) tr: HY(N,Q/Z)¢ — H*(G/N,Q/Z) is not surjective where tr is the transgression
map, and (ii) for any bicyclic subgroup A of G, the group AN/N is a cyclic subgroup
of G/N. Then By(G) # 0.

Proof. Consider the Hochschild—Serre 5-term exact sequence
0— H'(G/N,Q/Z) —» H'(G,Q/Z) — H'(N,Q/Z)"
% HA(G/N,Q/7) 2 H*(G, Q/Z)

where ¢ is the inflation map [HS].
Since tr is not surjective, we find that ¢ is not the zero map. Thus Image(v)) # 0.
We will show that Image(v) C Bo(G). By definition, it suffices to show that, for
any bicyclic subgroup A of G, the composite map H?(G/N, Q/7Z) 2, H?*(G,Q/7) =
H?(A,Q/Z) becomes the zero map where res is the restriction map. Consider the
following commutative diagram

H(G/N,Q/Z) % H2(G,Q/T) %= H*(A,Q/T)

wol Pm
H2(AN/N,Q/Z) £ H*(A/AN N,Q/Z)
where 1) is the restriction map, v is the inflation map, 1; is the natural isomorphism.
Since AN/N is cyclic, write AN/N ~ C,, for some integer m. It is well-known
that H?(C,,, Q/Z) = 0 (see, e.g., [Kar, page 37, Corollary 2.2.12]). Hence 1)y is the
zero map. Thus reso¢: H?(G/N,Q/Z) — H?*(A,Q/Z) is also the zero map.
As Image(y)) C Byo(G) and Image(y)) # 0, we find that Bo(G) # 0. O

LEMMA 2.2. Letp > 3 and G be a p-group of order p® generated by f; where
1 < i < 5. Suppose that, besides other relations, the generators f; satisfy the following
conditions:

() 2= 2 =1, fs € Z(G),

(i) [fo. il = f3, [fs: il = fa, [fa, il = (5. fol = f5, [fa, o] = [fas f3] = 1, and

(i) (fa,f5) =~ Cp x Cp, G/{fs, f5) is a non-abelian group of order p> and of

exponent p.

Then Bo(G) # 0.

REMARK. If p = 2 and G//N is a non-abelian group of order 8, then H?(G/N,
Q/7) = 0 or Cy [Kar, page 138, Theorem 3.3.6]. Thustr: H'(N,Q/Z)¢ — H?(G/N,
Q/7Z) in Lemma 2.2 may become surjective. This is the reason why we assume p > 3
in this lemma.

Proof. Choose N = (fu, f5). We will check the conditions in Lemma 2.1 are
satisfied. Thus By(G) # 0.

Step 1. Since N ~ C), x Cp, we find that H*(N,Q/Z) ~ Cp, x C).
Define Y1, P2 S Hl(Na(Q/Z) = HOII](N,Q/Z) by @1(.]04) = 1/pa @1(.]05) = 0;
©2(fa) =0, p2(fs) = 1/p. Clearly HI(N7 QR/Z) = (p1,¢2)-
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The action of G on @1, @ are given by fip1(fs) = o1(f; ' faf1) = o1(fafs) =
e1(fa) + e1(fs) = 1/p, Poi(fs) = e1(fi fsf1) = ¢1(fs) = 0. Thus fpr = o1
Similarly, "s(f1) = 1/p, 1oa(f5) = 1/p and o2 = 1 + 2.

For any ¢ € HY(N,Q/Z) = (1, p2) ~ C}, x Cyp, write p = a1¢p1 + azps for some
integers a1, az € Z (modulo p). Since f1p = N1(ay1p1 + aspa) = a1 (Me1) + az(F1p2) =
(a1 + a2)@1 + aspa, we find that f1p = ¢ if and only if az = 0, i.e. € (p1). On the
other hand, it is easy to see that f2¢; = ¢; = 2p; and therefore ¢, € H' (N, Q/Z)¢
We find HY(N, Q/Z)% = {¢1) ~ C,.

By [Le, Proposition 6.3; Kar, page 138, Theorem 3.3.6], since G/N is a non-
abelian group of order p® and of exponent p, we find H*(G/N,Q/Z) ~ Cp x Cp.
Thus tr: H'(N,Q/Z)¢ — H*(G/N,Q/Z) is not surjective. Hence the first condition
of Lemma 2.1 is verified.

Step 2. We will verify the second condition of Lemma 2.1, i.e. for any bicyclic
subgroup A of G, AN/N is a cyclic group.

Before the proof, we list the following formulae which are consequences of the
commutator relations, i.e. relations (ii) of this lemma. The proof of these formulae is
routine and is omitted. ' _ B ' _ N

For 1< Za] <p- ]-a fif{ = f{fi gja féfg = fgf:)f EZ)ja and

il = i 9 g = g @O0
where (Z) denotes the binomial coefficient when ¢ > b > 1 and we adopt the conven-
tion (Z):Oif1§a<b.

Moreover, in G/N, (f fi)¢ = _fjffif&).ij for1<i,j<p-—1,1<e<p.

Step 3. Let A = (hy, h2) be a bicyclic subgroup of G. We will show that AN/N
is cyclic in G/N.

Since AN/N is abelian and G/N is not abelian, we find that AN/N is a proper
subgroup of G/N which is of order p3.

If |AN/N| < p, then AN/N is cyclic. From now on, we will assume AN/N is an
order p? subgroup and try to ﬁnd a contradlctlon

In G/N, write hy = f{* f32f3%, hy = f f§3 for some integers a;, b; (recall
that G/N = (f1, f2, f3) and A = <h1,h2>). After suitably changing the generators
hy and hg, we will show that there are only three possibilities: (hi,h2) = (fa, f3),
(FLf33, faf2®), (fLf32, f3) for some 1ntegers az, a3, bs.

Suppose hy = fi ;2 fa3 and he = f 2 b3 as above. If a; = b; = 0, then
(h1,h2) = (f2, f3). Thus after changing the generating elements hy, he, we may
assume that hy = fa, ho = f3. This is the first possibility.

If a1 £ 0 or by #Z 0 (mod p), we may assume 1 < a7 < p— 1. Find an integer e
such that 1 < e <p-—1and aje =1 (mod p). Use the formulae in Step 2, we get
h$ = fifs2f53. Since (hi,ha) = (h$, ha), without loss of generality, we may assume
that hy = flf a3 (i.e. a; =1 from the beginning).

Since (hl,h2> (hq, (hbl) 1hy), we may assume h; = flf fa' and hy = _b _§3.

In the case 1 < by < p — 1, take an 1nteger e withl<e <p-1and b2€ =1
(mod p). Use the generating set (hy,hS ) for A. Thus we may assume hy = s,
ha = fa f3 This is the second possibility.

If b, = 0 (mod p), then hy = f1 f5 f , ho = . If b3 = 0, then AN/N is cyclic.
T hus b3 #Z 0 (mod p). Changing the generators agaln we may assume hy = fi f2 ,

= f3. This is the third possibility.
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Step 4. We will show that all three possibilities in Step 3 lead to contradiction.

Suppose hy = fa, hy = f3. Write hy = fofitfs3, he = f3f£4 5b5. Since hihy =
hohy, we get fofd fafit = faf2 fof 4 (because fs € Z(G)). Rewrite this equality
with the help of the formulae in Step 2. We get fofs f4T04 = fo fa 24704 £ which is
a contradiction.

Suppose hy = flfgs, hy = fgfé’g. In G/N, we have hihy = hahy, but it is obvious
the two elements f1f§’3, fgf§3 do not commute. Done.

Suppose hi = fi1f5?, ha = f3. Write hy = fifs> fi*f55, ho = f3f£4 5b5. Use the
fact hihy = hohy. It is easy to find a contradiction. O

THEOREM 2.3. Let p be an odd prime number and G be a group of order p°
belonging to the isoclinism family ®19. Then Bo(G) # 0.

Proof. Apply Lemma 2.2. It suffices to show that G satisfies conditions (i), (ii),
(iil) in Lemma 2.2.

Case 1. p=3.

It is routine to verify that the groups ®10(1°), ®10(2111)ag, ®10(2111)a; in [Ja,
page 621] are isomorphic to G(3°,28), G(35,29), G(3°,30) respectively. All these
three groups G(3°,i) with 28 < i < 30 can be defined as

G(35ai):<f17f27f3;f47f5>) Z(G(3571)):<f5>a
[f2, Al = fs; [fs, [l = fa, [fa, ol = [f3, fol = s, [fas fol = [fas f5] = 1

with additional relations

f=f=fp=168=rn" =" for G(3°,28),
fB=rr=1fi=f =" f=f" forG@3°29),
fB=rr=1 f=f" 5= 5= f"for G3°,30).

Case 2. p > 5.
The group G = ®10(1°) in [Ja, page 621] is defined as

G:<f17f27f3)f47f5>’ Z(G):<f5>7
fP=1for1<i<5,

[fo, il = f3, [fss il = fa, [fas il = [fss fol = f5, [fas fo] = [fas f5] = 1.
The group G = ®10(2111)a, in [Ja, page 621] is defined as

G:<f17f27f3)f47f5>’ Z(G):<f5>7
P— fo" fP=1for2<i<5,

[f2, fi] = f3, [fs: f1] = fa, [fa, il = [fs, fol = fo, [fa, o] = [fas f5] = 1

where « is the smallest positive integer which is a primitive root (mod p) and 0 <
r<ged{3,p—1} — 1.
The group G = ®10(2111)b, in [Ja, page 621] is defined as
G:<f17f27f3af47f5>5 Z(G):<f5>7
B=1" f=fr=1for3<i<s,
[anfl] = f3a [f37f1] - f4a [f47f1] - [f37f2] - f57 [f47f2] - [f4af3] =1
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where « is the smallest positive integer which is a primitive root (mod p) and 0 <
r<ged{3,p—1}—-1.0

REMARK. In the proof of [Bo, Lemma 5.6, page 478], Bogomolov tried to prove
that there do not exist p-groups G of order p® with By(G) # 0. He assumed that the
commutator group [G, G] was abelian and discussed three situations when the order of
G/|G,G] was p?, p3, or > p* (in general, if G is a non-abelian group of order p°, then
[G, G] is abelian, since G has an abelian normal subgroup of order p* by a theorem of
Burnside). The case when G/[G, G| = p? was reduced to [Bo, Lemma 4.11, page 478]
(see the first part of Theorem 2.3). But this lemma is disproved in the proof of the
above theorem.

Proof of Theorem 1.13. Suppose that p° | n for some odd prime number p. Write
n = p>m. By Theorem 2.3 choose a group Gg of order p° satisfying Bo(Gg) # 0.
Define G = Gy x Cy,.

We will prove that k(G) is not stably k-rational (resp. not retract k-rational if & is
infinite). Suppose not. Assume that k(G) is stably k-rational (resp. retract k-rational
if k is infinite). Then so is k(G) over k where k is the algebraic closure of k. In
particular, k(G) is retract k-rational. Since G = Go x C,,, by [Sal, Theorem 1.5;
Ka4, Lemma 3.4], we find that k(Gy) is retract k-rational. This implies Bo(G) = 0
by Lemma 1.3. A contradiction.

In case 2° | n, the proof is similar by applying Theorem 1.5. O

3. Some reduction theorems. We recall several known results in this section.

THEOREM 3.1 (Ahmad, Hajja and Kang [AHK, Theorem 3.1]). Let L be any
field, L(x) the rational function field in one variable over L, and G a finite group
acting on L(zx). Suppose that, for any o € G, o(L) C L and o(z) = a, - * + b, where
g, by € L and ay #0. Then L(z)¢ = LE(f) for some polynomial f € L{z]. In fact,
if m = min{deg g(x) : g(x) € L[z]9\L%}, any polynomial f € L[x]® with deg f =m
satisfies the property L(z)¢ = LY (f).

THEOREM 3.2 (Hajja and Kang [HK, Theorem 1]). Let G be a finite group acting
on L(x1,...,xy,), the rational function field in n variables over a field L. Suppose that
(i) for anyo € G, o(L) C L,
(ii) the restriction of the action of G to L is faithful,
(iii) for any o € G,

o(z1) Z1
0(.%2) = A(o) - 93:2 + B(o)
o(zy) T

where A(o) € GL,(L) and B(o) is an n x 1 matriz over L.
Then there exist elements z1, ..., zn € L(21,...,2y) so that L(x1,...,2,) = L(z,
cooy2n) and o(z;) = z; for any o € G, any 1 <i < n.
THEOREM 3.3 (Fischer [Sw, Theorem 6.1]). Let G be a finite abelian group of

exponent e, and let k be a field containing a primitive e-th root of unity. Then k(G)
is rational over k.

THEOREM 3.4 (Kang and Plans [KP, Theorem 1.3]). Let k be any field, Gy and
G2 be two finite groups. If k(G1) and k(Gz) are rational over k, then so is k(G1 x G2)
over k.
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THEOREM 3.5. Let k be a field and G be a finite group. Assume that (i) G
contains an abelian normal subgroup H such that G/H is a cyclic group, and (ii) k
contains a primitive e-th root of unity where e = exp(G).

(1) (Bogomolov [Bo, Lemma 4.9]) If k is algebraically closed, then By(G) = 0.

(2) (Kang [Ka4, Theorem 5.10]) If k is an infinite field, then k(G) is retract
k-rational. In particular, By(G) = 0.

(3) (Kang [Ka2, Theorem 2.2]) If Z[(,] is a unique factorization domain where
n = |G/H|, then k(G) is rational over k.

THEOREM 3.6 (Kang [Ka3, Theorem 1.8]). Let n > 3 and G be a non-abelian
group of order p™ such that G has a cyclic subgroup of index p®. If k is a field
containing a primitive p"~2-th root of unity, then k(G) is rational over k.

THEOREM 3.7. Let L be any field containing a field k, L(x) be the rational
function field of one variable over L.

(1) (Saltman [Sa2, Proposition 3.6; Kad, Lemma 3.4]) If k is an infinite field,
then L is retract k-rational if and only if so is L(x) over k.

(2) (Saltman [Sad, Section 2; Ka4, Theorem 3.2]) The natural map Br, x(L) —
Bry k(L(x)) is an isomorphism.

The following is an elementary result in group theory, whose proof is omitted.

LEMMA 3.8. Let G be a finite p-group. If H is a mormal subgroup of G and
H # {1}, then HN Z(G) # {1}.

LEMMA 3.9. Let G be a finite p-group, Z(Q) be its center. Let 0 : G — GL(W)
be a linear representation of G where W is a finite-dimensional vector space over
some field k. Assume that, for any g € Z(G)\{1}, 0(g) # 1. Then 0 is a faithful
representation of G, i.e. 0 is injective.

Proof. Let N = Ker(6). If N # {1}, then NN Z(G) # {1} by Lemma 3.8. Tt
follows that there is some g € Z(G)\{1} with 0(g) = 1. A contradiction. O

We recall the definitions of G-lattices and purely monomial actions.

DEFINITION 3.10. Let G be a finite group. A G-lattice M is a finitely generated
Z|G]-module which is Z-free as an abelian group, i.e. M = @,_,.,, Z - x; with a
Z|G]-module structure. o

If kis a field and M = @, .,.,, % - z; is a G-lattice, define k(M) = k(x1,...,xn)
the rational function field over k with G acting by k-automorphisms defined as follows:
For any 0 € G, if 0 -2j = >, i, @ijai in M, then o - 25 = [[1o,c,, ;" in k(M).
The action of G on k(M) is called a purely monomial k-action [HKK, Definition 1.15].
The fixed field of k(M) under the G-action is denoted by k(M)%.

THEOREM 3.11 (Barge [Bar]). Let G be a finite group, k be an algebraically
closed field with gcd{|G|,chark} = 1. The following two statements are equivalent,

(i) all the Sylow subgroups of G are bicyclic.

(ii) Bryx(k(M)) = 0 for all G-lattices M.

Proof. In [Bar], the above theorem is proved for the case k = C but the arguments
there work in the general case.

Here is an alternative proof for the direction “(i) = (ii)” of the above theorem:
apply [Sab, Theorem 12]. O
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4. Bo(G) = 0 for the groups not belonging to &g and ®19. Let p be an
odd prime number and G be a group of order p° belonging to the isoclinism family ®;
where 1 < ¢ < 9. We will show that By(G) = 0 in this section and the next section.

We adopt the classification of groups of order p® by R. James [Ja]. For groups of
order p°, there are in total 10 isoclinism families ®; where 1 < i < 10 [Ja, pages 619
621]. When p > 5, the numbers of groups in the family ®; where 1 < ¢ < 10 are

7; 15; 137 p+87 27 p+7a 5; ]-7 ng{Sap71}+2a ng{4ap71}+ng{3ap7 1}+1

respectively. The same numbers hold true for groups of order 3° except for ®¢ and
®19. The numbers of groups of order 3° in ®¢ and ®,¢ are 7 and 3 respectively.
We call the attention of the reader to two conventions of James’s paper

Ja]. First the notation o'” is not o?,, in general; it is defined as P =
i+1 i+1 1+1

p (5) ()

Q10 e iy Where aiga, ..., @iy are suitably defined [Ja, p. 614, lines
8-10]. In particular, for the groups of order p> with p > 5 defined in [Ja, pages 619

621], g_)l = a}, ;. On the other hand, when p = 3, the relations a(3) = (3) = ,(3) =

(3) = 1 for the group (1)9(2111)a in [Ja, page 621] are equivalent to the relations
a? = Q5 slag, o = oyt and a3 = o = 1. The second convention of [Ja] is that all

relations of the form [, 8] = 1 are omitted from the list [Ja, p. 614, lines 11-12].

THEOREM 4.1. Let p be an odd prime number and G be a group of order p° and
of exponent e. If k is an infinite field containing a primitive e-th root of unity and G
belongs to the isoclinism family ®; where 1 <i <4 or 8 <i <9, then k(G) is retract
rational over k. In particular, Bo(G) = 0.

Proof. If G belongs to the isoclinism family ®; where 1 < ¢ < 4 or 8 < i <9,
it is not difficult (from the list of [Ja, pages 619-621]) to find an abelian normal
subgroup H such that G/H is cyclic. Thus k(G) is retract k-rational and Bo(G) =0
by Theorem 3.5. But we can say more about k(G).

Step 1. The groups in ®; are abelian groups. If G € @4, then k(G) is k-rational
by Theorem 3.3.

Step 2. Some groups in @5 are direct products. If G € ®5 and G ~ G; x G2 with
|G1l,|G2] < |G|, then both k(G1) and k(Gs) are k-rational by Theorem 1.6. Thus
k(G) is k-rational by Theorem 3.4.

For the other groups G € ®9, it is easy to verify that G/Z(G) ~ C, x Cp. Let g be
an element of order p in G/Z(G) and g be a preimage of g in G. Then H = (Z(G), g) is
abelian and normal in G with G/H ~ C,. By Theorem 3.5, k(G) is retract k-rational.

Step 3. If G belongs to ®3 or @4, it is not difficult to show that G contains an
abelian normal subgroup of index p by checking the list provided in [Ja, page 620].

Alternatively, we may use the fact asserted in Bender’s paper [Be, p.69]: If G is a
group of order p® (where p > 3) with | Z(G)| = p? and |[G, G]| < p?, then G contains an
abelian normal subgroup of index p. Assuming this fact, since |Z(G)| = |[G, G]| = p?
(if G € @3 and G is not a direct product) and |Z(G)| = |[G, G]| = p* (if G € ®4), we
are done.

In either case, apply Theorem 3.5. We find that k(G) is retract k-rational.

Step 4. If G € ®g, the family ®g consists of only one group G ~ Cps x Cp2. Apply
Theorem 3.6. We find k(G) is k-rational.
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Step 5. If G € ®g, check the list of the generators and relations of these groups
in [Ja, p.621]. We find that these groups G are generated by elements fo, f1, fo2, f3,
f4 and, besides other relations, they satisfy the relations

[fi, fo] = fig1 for 1 <i <3,
[fl)f]]zl fOI’lS’L’,jSLL, and
{f1, f2, f3, fa} generates a subgroup of index p.

Define H = (f1, fo, f3, fa). It follows that H is an abelian normal subgroup of
index p. Apply Theorem 3.5. O

The following theorem is essentially due to Barge [Bar]. We include a proof for
the convenience of the reader.

THEOREM 4.2. Let G = A x Gy be a finite group where A and Gy are subgroups
of G such that () A is an abelian normal subgroup of G with Gy acting on A, and
(ii) all the Sylow subgroups of G are bicyclic. If k is an algebraically closed field with
ged{|G|, chark} = 1, then Br, x(k(G)) = 0.

Proof. Step 1. Let V = P g k-2(g) with the G-action defined by g-z(h) = z(gh)
for any g,h € G. Then k(G) = k(x(g) : g € G)€ by definition.

Consider a subspace W = @, k- x(7). Since A is abelian, the action of A on
W can be diagonalized. Explicitly, there is a linear change of variables of W with
W =@, <<, k-2i (where n = |A]|) such that, forall 7 € A, 7-2; € k-x; for 1 <i < n.
Thus we may write 7 - 2; = x;(7)z; where x; : A — k™ is a linear character of A.

For any h € Gy, define W(h) = @, k- x(h7). Since z(h7) = h - (1), we find
that W(h) = h(W) = h(B <<, k- 7i) = Pi<i<p k- (h-x;). Note that 7- (h-2;) =
h(h=trh) - z; = x;(h~t7h)(h - x;) for any 7 € A, any h € Gj.

Write y;(g) = g - x; for any g € Gy, any 1 < i < n. It follows that k(z(g) : g €
G) =k(yi(9) : 1 <i<n,g € Gy). The action of G on y;(g) is given as follows: For
allT € A, g,h € Gy, 1 <i<n, we have

7-yi(9) = xi(g7 ' 79)wi(9),  h-yi(g) = yi(hg).

It remains to show that Br, x(k(yi(g) : 1 <i<n,g € Go)¢) = 0.
Step 2. Define a Go-lattice N = @, 1<i<n Z - yi(g9) With

h-yi(g) = yi(hg)

for any h, g € Gy.

Let us choose 711, ..., Tm € A such that A = (71,..., 7). Let { be a root of unity
such that (x;(7) : 7 € A,1 < i < n) = (¢). Regard ({)™ := (¢) x -+ x (¢) (the
direct product of m copies of (¢)) as a Z[Gp]-module where the action of Gy is trivial.
Define a morphism ®: N — ({)™ of Z[Go]-modules by @(296G0,1<i<n aigyi(9)) =

(ﬁ‘(/Y)’ St Tmi(/Y)) where Y =[] cq, 1<i<n ¥i(9)* € k(yi(9) : 1 <i<mn,g€
Go).

Define M = Ker(®). Clearly M is a Go-lattice.

It is easy to see that k(yi(g) : 1 < i < n,g € Go)* = k(M), ie. if M =
Di<i<.Z- 2, then k(yi(g) : 1 <i<n,ge Go)* = k(z1,22,..., %) where each z is
a monomial in y;(g)’s.
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Moreover, k(yi(g) : 1 <i < n,g € Go)¢ = {k(yi(g) : 1 <i < n,g € Go)A}% =
k(M)%. The group Gy acts on k(M) by purely monomial k-automorphisms (see
Definition 3.10). Applying Theorem 3.11, we find that Br, ;(k(M)%°) = 0. Hence
the result. O

REMARK. Saltman shows that, if G = A x Gy where A is abelian normal such
that (i) ged{|Al, |Go|} =1, and (ii) both k(A) and k(Go) are retract k-rational, then
k(G) is also retract k-rational [Sal, Theorem 3.5; Kad, Theorem 3.5].

Now we turn to groups belonging to the isoclinism family ®5 for groups of order
5

p°.

DEFINITION 4.3. Let p be an odd prime number. The isoclinism family ®5 for
groups of order p° consists of two groups: ®5(2111) and ®5(1°) (see [Ja, page 620]).
These two groups are defined as follows.

For G = ®5(2111), G = (f; : 1 <i < 5) with Z(G) = (f5) and relations

[flaf2] = [f3af4] = f5a [flaf&] = [f27f3] = [f17f4] = [f2af4] = ]-7

V=15 fl=1for2<i<5.
For G = ®5(1%), G = (f; : 1 <4 <5) with Z(G) = (f5) and relations

[flaf2] = [f3af4] = f5a [flaf&] = [f27f3] = [f17f4] = [f2af4] = ]-7
ff:lforlgigf).

Note that both ®5(2111) and ®5(1°) are extra-special p-groups.

THEOREM 4.4. Let p be an odd prime number and G belong to the isoclinism
family ®5 for groups of order p°. Then By(G) = 0.

Proof. Choose an algebraically closed field k& with chark # p (in particular, we
may choose k = C). If Br, x(k(G)) = 0, then By(G) = 0 by Theorem 1.4. Hence we
will show that Br, ;(k(G)) = 0 by using Theorem 4.2.

For G = ®5(2111) or ®5(1%), write G = A x Gy where A = (fi, f3, f5) and
Go = (f2, fa). Conditions (i), (ii), (ili) in Theorem 4.2 are satisfied. Hence we may
apply Theorem 4.2. Done. O

Now we consider groups in the isoclinism family ®7. Since the relations for p = 3
and p > 5 are not the same (due to the notation agp) =1

separately.

), we define these groups

DEFINITION 4.5. The isoclinism family ®; for groups of order 3° consists of five
groups: G = G(3%,4) where 56 < i < 60 and G(3%,4) is the GAP code number. These
groups G are defined by G = (f; : 1 < ¢ < 5) with Z(G) = (f5), common relations

[f2, fil = fa, [fs: fo] = [fa, il = f5, [f3, fi] = [fa, fo] = [fa, f3] = 1,

but with extra relations
(1) for G = G(3%,56
(2) for G = G(3%,57
(
(
(

)i f2=1for1<i<5;

) (3%,57): f3 = f5, [E = f2 =1 for 3<i<5;
3) for G=G(3%58): f3 = f3, fi = [} =1for3<i<5;
4) for G = G(3°,59) : fi = fy° = f5, f = 1 for 3 <i <5;
5) ( ) :

for G=G(3%60): fS=fs, fi=fi=fi=fi=1
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Note that, in the notation of [Ja, page 621], the GAP groups G(3°,i), 56 < i < 60,
correspond to ®7(2111)by, ®7(2111)b,, ®7(1°), ®7(2111)a and ®7(2111)c respectively.

THEOREM 4.6. If G is a group belonging to the isoclinism family ®7 for groups
of order 3°, then By(G) = 0.

Proof. The proof is the same as that of Theorem 4.8 except for G = G(3°,59)
and G = G(3°,60). Write G = A x Gy where Gy ~ C3 x C3, and

() it G = G(37,56), A = (f, fu, f5), Go = (1, fo)

(ii) if G = G(35, 57) or G(35, 58)7 A= <f2, f4>7 GO = <f1, f3>

It can be shown as before that By(G) = 0 when G = G(3°,56),G(3%,57) or
G(3%,58). It remains to prove that Bo(G) = 0 for G = G(3°,59) and G = G(3°,60).
We will indicate only the proof for G = G(3°,59). The case G(3°,60) is almost the

same.

Step 1. Let 1 be a primitive 9th root of unity and ¢ = 3. We will construct a
faithful 9-dimensional representation of G = G(3°,59) over k, which may be embedded
into the regular representation of G. The method is similar to that of Step 1 in the
proof of Theorem 4.2.

Let A = (f1, f3) = {f1, f3, f5) = Cy x C5 act on the 1-dimensional space k- X by
fi- X =nX, f3- X = X. It follows that f5 - X = (X.

The above action defines a linear character p : A — k*. The induced representa-
tion can be written explicitly as follows.

Define V.=, c,cok -2 where 21 = X, 20 = fu- X, 23 = f§ - X, 24 = fo- X,
r5 = fofs - X, xg = foZ - X, xr = f22 - X, xg = f22f4 - X, x9g = f%ffX The action
of G on x; is given by

friwy =z, xp o 0 @, w3 s, T4 ntTe, T > T4, T6 N TS,
Ty > 7]71'8, Trg —r 7]41‘9, X9 — N7,
fglxl l—>$4l—>$7'—>C2I1, IQI—>$5l—>$8l—>C2$2, $3»—>$6H$9|—>C2x3,
f3 a1 — 21, T2 T2, T3> T3, T4 — (Tg, T5 — (T5, T — (Tg,
xr = Cag, x5 — (Cas, 29 > (Cao,
f41$1l—>$2l—>$3'—>$1, Ty > Ty — T > Tya, T7 > T8 > T9 — Ty,
fsraxi—Cx;for 1 < <9,

By Lemma 3.9, it is a faithful representation of G. This representation can be em-
bedded into the regular representation of G, because it is an irreducible representation
of G.

Apply Theorem 3.2. We find that k(G) is rational over k(x; : 1 <i < 9)%.

Step 2. Define u; = z4/x1, us = x7/24, us = Ta/x1, Ug = T3/T2, Uy = T5/x4,
ug = Tg/x5, ur = xg/w7, ug = 9/xs. Apply Theorem 3.1. We find that k(z; : 1 <
i <9)% =k(u; : 1 <14 <8)%(ug) for some element ug fixed by the action of G.

We conclude that k(G) is rational over k(u; : 1 < i < 8)¢.

By Theorem 3.7 and Theorem 1.4, it follows that Bo(G) ~ Bry k(k(u; : 1 < i <
8)%).

Step 3. Now consider the group H = G(3°,58). We will repeat the procedure of
Step 1 and Step 2 for H.



NOETHER’S PROBLEM & UNRAMIFIED BRAUER GROUPS 703

Namely, define B = (f1, f3, f5) ~ C3 x C3 x C3. Let Bacton k-Y by f1-Y =
f3-Y =Y, f5-Y =(Y.
Construct the induced representation W = @199 k-y; wherey; =Y,y = f4'Y
ys=f1-Y,ya=fo Y, us = fofa Y,y = fof Y, yr = f3-Y, ys = f5fa-Y
= f2f2-Y. The actions of fa, f3, f1, f5 on W are the same as those on V' (just
replace z;’s by y;’s), but

fiix1 e 21, w2 Cag, x5 - (as, 14— (X6, T3 > T4, T6 > (s,

2
Ty > C rg, Tg (:acg, Tg — T7.

The coincidence of the group actions can be explained as follows. The relations
of G(3%,59) and G(3°,58) are almost the same except for f{ = f5 in G(3°,59) and
2 =1in G(3°,58).

Step 4. Define v1 = ya/y1, v2 = y7/ya, v3 = Y2/y1, va = Y3/Y2, Vs = Ys5/Ya,
Ve = Y6/Ys, U7 = Ys/Y7, Vs = Yo/ys. Similar to Step 2, we get that k(H) is rational
over k(v; : 1 <i < 8) and By(H) ~ Brygp(k(v; 11 <4< 8)H).

Compare the actions of G on uy,...,ug with the actions of H on vy,...,vs. We
find they are the same!

Thus k(u; : 1 <i <8)F ~k(v; : 1 <1i <8)% over k.

Hence Bo(G) =~ Bry 4 (k(u; : 1 <i < 8)%) ~ Br, x(k(v; : 1 <i < 8)) ~ By(H).
But By(H) = 0 has been proved at the beginning. Hence By (G) =0.

DEFINITION 4.7. Let p be a prime number and p > 5. The isoclinism family ®7
for groups of order p° consists of five groups: G = ®7(2111)a, ®7(2111)by, ®7(2111)b,
(where 2 < v < p—1 and v is a fixed quadratic non-residue modulo p), ®7(2111)c
and ®7(1°) (see [Ja, page 621]). These groups G are defined by G = (f; : 0 < i < 4)
with Z(G) = (f3), common relations

[flafO] = f2a [f27f0] = [f17f4] = f37 [f47f0] = [f?afl] = [f4af2] =1

but with extra relations

(1) for G = P7(2111)a fo—fg,f—1f0r1<z<4

(2) for G = ®7(2111)by f3,f0—ff’—1f0r2<z<4

(3) for G = ®7(2111)b, =[S =fr=1for2<i<4
4) forG:<I>7(2111) f4 7f3, fpflfor()gzg?)
(5) for G=®7(15): fF=1for 0<i <4.

THEOREM 4.8. Let p be a prime number and p > 5. If G belongs to the isoclinism
family ®7 for groups of order p°, then Bo(G) = 0.

Proof. The proof is similar to that of Theorem 4.4 by applying Theorem 4.2.
Except for groups G = ®7(2111)a or ®7(2111)c, we write G = A x Gy for suitable
subgroups A and Gg. Here are the subgroups we choose.

If G = ®7(2111)by or ®7(2111)b,, A = (f1, f2), Go = (fo, fa).

ItG= @7(]_5)7 A = (fo, f3, fa), Go = (f1, fa)-

When G = ®7(2111)a or ®7(2111)c, it is not difficult to show that C(G) is
isomorphic to C(H) where H is any one of the groups H = ®7(2111)by, ®7(2111)b,
or H = ®(1%) by the same method as in the proof of Theorem 4.6. We outline the
case of G = ®7(2111)a and H = ®7(1°) as follows. The situation for G = ®7(2111)c
and H = ®7(1°) is almost the same.
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Step 1. Denote by 1 a primitive p?-th root of unity and ¢ = n?. We will construct
a faithful p?-dimensional representation of G = ®7(2111)a over k.

In the group G, define A = (fo, fa) = (fo, f3, f1) = Cp2 X Cp. Let it act on the
1-dimensional space k- X by fo- X =nX, fs- X = X. It follows that f3 - X = (X.

The above action defines a linear character p : A — k. The induced representa-
tion can be written as V =@, j<, 1 k- i where z; ; = fifs- X

Step 2. Similarly, in the group H = ®7(1°), define B = (fo, f3, f4) ~ C3xC3x C3.
Let Bactonk-Y by fo-Y=f,- Y=Y, f3-Y =Y. _

Construct the induced representation W = @<, ;«,, 1 k-2 where z; ; = fifs-
Y'; here we use the same notation z; ; as in Step 1 on purpose.

Step 3. It is easy to verify the actions of G and H on these z; ;. For both the
groups G and H, we have

fii@ig e Tivng, foi @i o g, fai @iy o (g, farxig e (Clmg

The actions of fy are different. For the group G, fo(mi ;) = ¢"Inax; j—y; for the
group H, fo(wi;) = "7 wij—i.

The action of G on IP(V') and that of H on IP(W) become the same. Hence the
result. O

5. Bo(G) = 0 for the groups belonging to ®g. Let p be an odd prime
number. Throughout this section g is the smallest positive integer which is a primitive
root modulo p, and v is the smallest positive integer which is a quadratic non-residue
modulo p.

DEFINITION 5.1. Let p be an odd prime number. The isoclinism family ®¢ for
groups of order p° consists of the groups G = ®4(221)a, ®4(221)b, (where 1 < r < (p—
1)/2), ®6(221)c, (where r =1 or v), $6(221)dy, Ps(221)d, (where 1 < r < (p—1)/2),
®6(2111)a (this group exists only for p > 5), ®4(2111)b, (where r = 1 or v; these
groups exist only for p > 5), and ®¢(1°). When p > 5, there are p + 7 such groups;
when p = 3, there are 7 such groups (see [Ja, pages 620-621]). These groups G are
defined by G = (f1, f2, fo, h1, he) with Z(G) = (h1, h2), common relations

[f1, fo] = fo, [fo, il = ha, [fo, fo] = ho, [ =h) =h5 =1,

but with extra relations

(1) for G = ®g(221)a: fF = hy, £ = ho;

Ja
(2) for G = ®6(221)b,. : f7 = h¥, fY = hy where k = g";
(3) for G = ®(221)c, : fF = hy"/*, f2 = hrhi;
(4) for G = ®4(221)dy : f7 = ha, f7 = h¥;
(5) for G = ®6(221)d, : f¥ = h%, f} = hihy where 4k = g**+1 — 1;
(6) for G = @g(2111)a: ff = ha, f = 1;
(7) for G = @o(2L11)b,: fF = 1, fF = hi;
(8) for G = ®g(1°) : f7 1f2—1

(Note that whenever the exponent of hs is fractional, it is understood that it is
taken modulo p, which is the order of hs.)

Before proving By(G) = 0 for the groups G in Definition 5.1, we recall two results
in group cohomology.
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THEOREM 5.2 (Dekimpe, Hartl and Wauters [DHW], Huebschmann [Hul], [Hu2],
[Hu3]). Let G be a finite group, N a normal subgroup of G. Then the Hochschild—-Serre
spectral sequence gives rise to the following 7-term exract sequence

0— H'(G/N,Q/Z) — H'(G,Q/Z) — H'(N,Q/Z)" — H*(G/N,Q/Z)
— H*(G,Q/Z)y ~ H'(G/N. H'(N.Q/Z)) > HYG/N,Q/Z)
where H*(G,Q/7); = Ker{H?*(G,Q/Z) *= H?*(N,Q/7)} and X is defined as fol-
lows. Choose a section u: G/N — G and define a 2-cocycle e: G/N x G/IN — N
satisfying u(T)u(t") = e(r,7")u(rr’) for any 7,7 € G/N. For each 1-cocycle
v: G/N — HY(N,Q/Z), the map X\ is defined by
\: H(G/N, H'(N, Q7)) —— HY(G/N, Q/7)

Vi Ay)=c

where ¢ : G/N x G/N x G/N — Q/Z is the 3-cocycle defined as c(t1,72,73) =
(“m1m2)y(13)) (e(71, 7)) for all 71,79, 73 € G/N.

Proof. See [DHW] for details.

The formula for A is summarized in [DHW, page 21, formula (6)]. If v: G/N —
HY(N, M) is a 1-cocycle where M is a G-module, [y] denotes its cohomology class
in HY(G/N,H'(N, M)) in the paper [DHW]. The image \([y]) € H3(G/N, M) is
represented by a 3-cocycle ¢: G/N x G/N x G/N — MY which is given on [DHW,
page 21]. Note that the definition of —6°: M — Der(N, M) can be found on [DHW,
page 14].

When M is a trivial G-module, —¢° is a zero map and therefore the map
F': G/IN x G/N — M on [DHW, page 21] can be chosen to be a zero map. Con-

sequently, c(q1, 2, q3) = (**(1%)s,D(q3))(Fi(q1,q2)) for any q1,q2,q3 € G/N. This is
our formula when M = Q/Z. O

THEOREM 5.3. Let p be a prime number, C, = (o) and M be a C,-module. For
any 1-cocycle 5: C, — M, the following map

®: HY(Cp, M) —— H3*(Cp, M)
fr—"——2(8) =~
is a group isomorphism where v : Cp, x C, x Cp, = M 1is a 3-cocycle defined as

o 0 fO0<it+j<p—1
v@ﬂo%&)={

(a7r+jﬂ) (O’l) ZfZJerp
where 0 < 4,75, <p—1.
Proof. By [Se, page 149, Theorem 14], the 2-cocycle « : Cp, x C}, — Z defined as

i o) = 0 if0<i+j<p-1
)1 ifi+i>p
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represents a “fundamental” cohomology class in H?(C),7Z) such that, for any C,-
module M, the map

& : HY(C,, M) — H3(C,, M)
B ®(8) =aUp

is an isomorphism where oo U 3 is the cup product. It is easy to check that a U8 =~y
where v is defined in the statement of this theorem. O

THEOREM 5.4. Let G be the group ®s(221)a in Definition 5.1. Then By(G) = 0.

Proof. Step 1. Write G = (f1, f2, fo, b1, h2). Choose N = (f1, fo,h1,h2); N is a
normal subgroup of G. We will apply Theorem 5.2 to the group extension 1 - N —
G — G/N — 1.

Since G/N = (f2) ~ C,, we find that H*(G/N,Q/Z) = 0 [Kar, page 37, Corol-
lary 2.2.12]). By Theorem 5.2, we obtain the following exact sequence

0 — H%(G,Q/7), — H'(G/N,H(N,Q/7)) 2 H*(G/N,Q/7Z).

Step 2. Note that Bo(G) is a subgroup of H?(G, Q/Z);.
For, consider the restriction map res : H?(G, Q/Z) — H*(N,Q/Z). It induces a
map res : Byo(G) — Bo(N) such that the following diagram commutes

| J

H*(G,Q/7) — H*(N,Q/ 7).

Since N is a p-group of order p*, k() is k-rational for any algebraically closed
field k with chark # p by Theorem 1.6. It follows that Bo(N) ~ Br, x(k(N)) = 0
by Lemma 1.3 and Theorem 1.4. Hence By(G) is contained in the kernel of the map
res : H2(G,Q/Z) — H?(N,Q/Z). That is, Bo(G) is a subgroup of H*(G,Q/Z);.

If we can show that H(G, Q/Z); = 0, then By(G) = 0 and the proof is finished.
Note that H2(G, Q/Z)1 = 0 if and only if ) is an injective map by the exact sequence
in Step 1.

Step 3. We recall a general fact about H(C,,, M).

Let G = (o) ~ C, and M be a G-module. Define the map Norm : M — M
by Norm (z) =x+o-x+0? -2+ +0" L.z for any 2 € M. It is well-known
that H'(G, M) ~ Ker(Norm)/Image(c —1). We will give an explicit correspondence
between these two groups. If © € M satisfies Norm (z) = 0, define a normalized
l-cocycle B, : G — M by B.(0) = z,B:(c") =x+0-x+0% -2+ -+ 01z for
0 <i<n-—1. It is easy to see that x € Image(c — 1) if and only 3, is cohomologously
trivial.

Step 4. We will determine H'(G/N, H' (N, Q/Z)).
To keep the notations clean and transparent, we adopt the multiplicative notation
for Q/Z, i.e. we identify Q/Z with all the roots of unity in C\{0}. Thus a primitive
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p-th root of unity is the element i/p (for some 1 <i < p— 1) in the additive notation

of Q/Z.

Let ¢ be a primitive p-th root of unity. Since HY(N,Q/Z) ~ Hom(N,Q/7Z) ~
Hom(N/[N,N],Q/Z) and N/[N,N] = {(f1, fo,h2) ~ Cp x C, x Cp, we find that
HY(N,Q/Z) = {¢1, @0, %) where these 1-cocycles 1, @o, ¥ are defined as

¢ p1(fo) = @1(h1) = @1(h2) =1,
vo(fo) = ¢, @ol(f1) = po(h1) = po(h2) = 1,
Y(he) = ¢, (1) =9v(fo) = ¢ (h1) = 1.

The group G (resp. G/N = (f2)) acts on HY (N, Q/Z) = (1, po, ). It is easy
to verify that

S
-
~—
=~
n
=
I

Ppy =01, Po0 = oi00, T = 0.

Consider the norm map Norm: HY(N,Q/Z) — H*(N,Q/Z) defined by the ac-
tion of fy (see Step 3).

We find that H'(G/N,H'(N,Q/Z)) =~ Ker(Norm)/Image(fa — 1) =
<901ﬂ 800,¢>/<<P1, 300> 1fp > 5. BUta 1fp =3, Ker(l + f2 + f22) - <5017900>'

It follows that

1 1 0, if p=3;
H(G/N, B (N, Q/2) { G, Homs
When p = 3, we obtain H?(G,Q/7Z); = 0 from the exact sequence in Step 1.
Hence By(G) = 0.
From now on, we assume that p > 5. By Step 3, the element ) €
Ker(Norm)/Image (f2 — 1) corresponds to the 1-cocycle 8 : G/N — H'(N,Q/Z)
defined as

ﬂ(]‘):]-a 5(f_2):1/%
BUE) = (P8(™) B(F) = ooy

where 1 < i < p—1 and (‘;) is the binomial coefficient with the convention that
() =0if1<a<b.

Step 5. We will show that A(5) # 0 and finish the proof of By(G) = 0.

Follow the description of A in Theorem 5.2. Choose a section v : G/N — G
by w(l) = 1, u(fi) = fifor 1 <i < p—1. It is easy to find the 2-cocycle ¢ :
G/N x G/N — N. In fact, if 0 < 4,5 < p — 1, then

1, fo0<i+ji<p-1,;
ho, ifi+j>p;

R = {

the second alternative follows from the fact fJ = hs.
Now we will evaluate A(5) where § is the 1-cocycle determined in Step 4. Write
¢ = A(B). Then, for 0 <i,5,l <p—1,

o(f . 15 = ("ETB() (=3 )
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by Theorem 5.2.
In particular, for 0 < ¢ < p — 1, we have

(fos F5 13 = (OB (e(fos ) = (B h2)
(0 () = w01y = ¢

On the other hand, apply Theorem 5.3 for ® : H*(G/N, Q/7Z) — H3(G/N,Q/7Z).
We will find a 1-cocycle 5 : G/N — Q/Z such that ®(3) = ¢ € H*(G/N,Q/Z). In
fact, from Theorem 5.3, ¢(fa, f271, fi) = B(f4). Thus B(fi) = ¢’ forall 0 <i < p—1.

By Step 3, the 1-cocycle € H'(G/N, Q/Z) corresponds to the non-zero element
¢ € Ker(Norm)/Image(fs — 1), regarding ¢ as an element in Ker(Norm) where
Norm : Q/Z — Q/Z is defined by the action of f2 (see Step 3). Hence B # 0 and
®(f8) = ¢ #0. Thus A is injective. O

The proof of the following lemma is routine and is omitted.

' 4LEMMA_ 5.9. _Llet Glbe' a group in Definition 5.1. If 0 < 4,5 < p — 1, then
fofi= iRy, f3fs = fafghs', and

BiH = F s ny W76,

THEOREM 5.6. Let p be an odd prime number. If G is a group belonging to the
isoclinism family ®¢ for groups of order p°, then By(G) = 0.

Proof. Let k be an algebraically closed field with chark # p (in particular, we
may choose k = C). Let n € k be a primitive p?>-th root of unity and ¢ = n?. In the
following we adopt the notation in Definition 5.1. We will show that the fields k(G)
are isomorphic to one another over k£ for all groups G in the isoclinism family ®g.
Thus they have isomorphic Bry, (k(G)) ~ Bo(G) by Theorem 1.4. Since By(G) =0
if G = ®4(221)a by Theorem 5.4, it follows that By(G) = 0 for all other groups G.

Case 1. G = ®g(221)a, D6(221)b, (where 1 <7 < (p—1)/2), ®s(2111)a, Pe(1°).
Step 1. For these groups GG, we have

ff=h1, f=h

where 0 < eq,eq < p—1.
We will employ the same method as in Step 1 of the proof in Theorem 4.6.
Consider the subgroups Hy = (f1, fo, h1, he) and Ha = (fa, fo, h1, ha) of G. Note
that Hy = (f2, fo, h2) % (h1) =~ (f2, fo, h2) x Cp. Hence we get a linear character of
H, so that (fa, fo, ha) is the kernel. Explicitly, we may define an action of Hy on k- X
defined by

h1 - X=(X, fo-X=fo-X=hy-X=X.
Similarly, define an action of Hy on k-Y by

ho Y =CY, fi-Y=fo-Y=h Y=Y
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Construct the induced representations of these linear characters by defining x; =
fi-X,yi=f5Y for 0 <i <p—1. Thus we get an action of G on (o<, 1 k- 7i)®
(®O<i<p—1 k-y;). With the aid of Lemma 5.5, the action of G is given as follows.

frim s aer e apy o (g, e (Bly,
o ¢ Gay g myn ey o (o,
fo iz Caiy oy Cys,
hy: @i = Qi yi = yi,
ho : @i = xi, yi = QY
By Lemma 3.9, G acts faithfully on (Po<;<, 1 k- 7i) ® (Bo<i<p1 k- i) More-

over, this representation may be embedded into the regular representation of G. By
Theorem 3.2, we find that k(G) is rational over k(x;,y; : 0 <i < p—1)%.

Step 2. We will apply Theorem 3.1 to k(z;,y; : 0 < i < p— 1)¢. Define u; =
xi/xi—1, Ui = y;/yi—1 for 1 < i < p— 1. By applying Theorem 3.1 twice, we get
k(xiyi :0<i<p—1)% =k(u;,U; : 1 <i <p—1)%ug,Up) where ug, Uy are fixed
by the action of G. The action of G on u;, U; is given by

friur = us = upog = (O (uaug - up1), U (MU,
f2 UG (j_(i_l)ui, U1 — U2 = e = Up_l — geQ/(UlUQ N Up_l),
Jo tui = Qui, Ui — (U

Note that hl(ui) = hg(ul) = Uy;, h1 (Uz) = hQ(UrL) = Ui for 1 S ) S p— 1. Thus

k(us, Uy : 1 <i<p—1)% = k(u;, U; : 1 < i < p—1)G/(hh2)
=k(u;,U; : 1 <i<p-— 1)<f0,f17f2>'

Step 3. Define u} = u;/n°, Ul = U;/n® for 1 <i<p—1.

It follows that k(u;,U; : 1 <i<p—1)=k(u,,U]:1<i<p-—1)and
Fuo oy sl o 1ty ), UL s GO,
forufs O UL = U o= ULy = 1/(UIU - ULy,

p—1
forul— Cul, Ul CU;.

2

Note that the parameters e, eo of these groups G disappear in the above action.
In conclusion, for any group G in this case, k(G) is rational over k(u}, U/ : 1 < i <
p — 1)41:f2:00)  Thus all these fields k(G) are isomorphic.

Case 2. G = ®4(221)¢, (where r =1 or v), ®s(221)d, (where 1 <r < (p—1)/2).
For these groups G, we have
f=h3", f5=hhy

where 1 < ej,es < p— 1. The proof is similar to Step 1 and Step 2 of Case 1.
Find integers €}, e, such that 1 <e},el, <p—1 and eje] = ezel, = 1 (mod p).
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Consider the subgroups Hy = (f1, fo, h1, h2), Ha = (fa, fo, h1,h2) of G. Since
Hy/(h2) = (f2, fo) = Cp2 x Cp, we get a linear character of Hy. Similarly for H;.
More precisely, we have actions of Hs on k- X, and H; on k- Y defined by

fo- X =1%2X, hi-X=CX, fo-X=hy X=X,
foY =09Y, hy Y =CY, fo Y =h Y=Y

Find the induced representations of G from these two linear characters. Define
z; = fi-X,y; = f3-Y where 0 <i < p—1. Then G acts faithfully on (By<,<, 1 k-
;) @ (Bo<i<p_1 k- ¥i)- Thus k(G) is rational over k(z;,y;: 1 <i<p— 1)¢.

The action of G is given by

i

frimo oy e @y o 3o, yi e PRy
formi P& gy g oo o gl o R,
fo @i = Caiy yi = Cuis

ha @i = Cuiy yi = i,

ho : @i = xiy yi = QY-

Define u; = x;/x;-1, U; = y;/yi—1 for 1 < i < p—1. We get k(x;,y; : 1 <i <
p— 1) =k(u;,U; : 1 <i<p—1)%ug, Uy) where ug, Uy are fixed by G by applying
Theorem 3.1 twice. The action of G is given by

f1 UL > U e Up—1 — 1/(U1U2 ce -up,l), Uz — CiilUi,
f2 UG (j_(i_l)ui, U1 — U2 = e = Up_l — geQ/(UlUQ s Up_l),
Jo tui = Qui, Ui — (U,

But the above action is just a special case of the action in Step 2 of Case 1. Hence
the result.

Case 3. G = ®g(221)dp.
This group satisfies

fl=ha, f3=hi

where 1 <e <p—1. In fact, e = v.
The proof is the same as for Case 2. Choose an integer €’ such that 1 < e’ <p-—1
and e¢’ =1 (mod p).

Consider the subgroups Hy = (f1, fo, h1,h2), Ha = (fo, fo, h1,h2). Note that
Hy/(h1) ~ Cp2 x C, ~ Hy/(hy). Hence we get vectors X and Y such that

forX=0"X, hi- X=X, fo-X=hy X=X,
f1Y=’I7Y, hQYZC;Y, fQY:h1Y:Y

Construct the induced representation of G on (Dg<;<, 1 k2:)®(Do<;<,1 K ¥i)
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where x; = fi- X, y; = f4-Y with 0 <i < p— 1. It follows that

. 1+p(E
fitzor i > Xy > X0, Yi N p(Z)yi,

o "B yo g Y1 o,
fo @i = Caiy yi = Cyis

hy i = Criy yi v Y,

ho :xi = xi, yi = Cyie

By the same arguments as in Case 2, we solve this case.

Case 4. G = (2111)b, (where r =1 or v).
These two groups G satisfy

f=1 and f§=h

where 1 <e<p-—1.
Choose an integer €’ such that 1 < e’ <p—1and ee’ =1 (mod p).
The proof is almost the same as for Case 2.

Consider H; = <f1,f0,h1,h2> and Hy = <f2,f0,h1,h2>. Note that H1/<h1> ~
Cp x Cp x Cp and Hy/(ha) ~ Cp2 x Cp. Thus we get vectors X and Y such that

forX=0"X, hi-X=CX, fo-X=hy X=X,
he Y =CY, fi-Y=Ff-Y=h Y=Y

Define z; = fi- X, y; = f&-Y for 0 <i < p— 1. The action of G on k(z;,y; : 0 <
it <p—1)is given by

J1imo = Ty - Ty > T, Y ¢y,
forxi—=n° 7p(2)93i7 Yo > Y1 > - > Ypo1 > Yo,
forai— Cayy yi = Cys,

hi:xi = Coyy yi = Yiy

ho sz = Ty yi = QY

The remaining part is the same as in Case 2. Hence the result. 0
Proof of Theorem 1.12. Combine Theorems 2.3, 4.1, 4.4, 4.8, 4.6 and 5.6. O

THEOREM 5.7. Let p be an odd prime number and k be an algebraically closed
field with char k # p. If G is a group belonging to the isoclinism family ®19 for groups
of order p°, then there is a linear representation G — GL(V) over k satisfying (i)
dimipV = p?, and (i) k(V)9 is not k-rational. In particular, the quotient variety
P(V)/G is not k-rational where P(V') is the projective space associated to V' and the
action of G on IP(V') by projective linear automorphisms is induced from the linear
representation G — GL(V).

On the other hand, if k is an algebraically closed field with chark # 2 and G is a
group belonging to the 16th isoclinism family for groups of order 64, then there is a
linear representation G — GL(V) over k satisfying (i) dimV =8, and (ii) k(V)% is
not k-rational. In particular, the quotient variety P(V)/G is not k-rational.
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Proof. We will find a faithful representation of the required degree for the group
G.

In the first case, when p is odd and G is the group given in the theorem, look
into the proof of Theorem 2.3 for the generators and relations of G. The center of
G is (fs). Take H = (fs, fa, f5); H is an abelian group. Choose a linear character
X : H — k* such that x(fs) = ¢, and x(fs) = x(fs) = 1. Designate the induced
representation of y (from H to G) by G — GL(V). It is of degree p? and is faithful
by Lemma 3.9. Note that Br, x(k(V)%) is isomorphic to Br, x(k(G)) by the same
arguments as in the proof of Theorem 4.2.

For the projective variety P(V)/G, we use Theorem 3.1 and Lemma 1.3. In fact,
if (V) =k(x;:1<i<p?), then k(P(V)) = k(x;/x1 : 2 < i < p?). By Theorem 3.1,
k(z;:1<i<p?)¥=k(xi/r1:2<i<p?)%@=) for some element x. These two fixed
fields have isomorphic unramified Brauer groups by Lemma 1.3. Hence the result.

Let now G be of order 64. By [CHKK, Lemma 5.5], find the generators and
relations of G. We will discuss only the case G = G(149) and leave the other groups
to the reader. When G = G(149), take the abelian subgroup H = (fa, f5). Note
that Z(G) = (fs, f5). Construct two linear characters of H, x1 and xa, by x1(f2) =
Cs,x1(fs5) = 1 and x2(f2) = 1,x2(f5) = —1. Let x be the direct sum of x; and
x2- The induced representation is of degree 8. The rest of the proof is the same as
above. U
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