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MANIFOLDS WITH NEF COTANGENT BUNDLE∗
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Abstract. Generalising a classical theorem by Ueno, we prove structure results for manifolds
with nef or semiample cotangent bundle.
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1. Introduction. If X is a submanifold of a complex torus, then by a classical
result of Ueno [Uen75, Thm.10.9] the manifold X is an analytic fibre bundle with
fibre a torus T over a manifold Y with ample canonical bundle. Moreover if X is
projective, then it decomposes (after finite étale cover) as a product Y ×T . Since for
a submanifold of a complex torus the cotangent bundle ΩX is globally generated, it is
natural to ask if there are analogues of Ueno’s result under a weaker positivity assump-
tion. Generalising a conjecture by Yau on compact Kähler manifolds with nonpositive
bisectional curvature, Wu und Zheng [WZ02] proposed the following problem.

Conjecture 1.1. Let X be a compact Kähler manifold with nef cotangent bun-
dle. Then there exists a finite étale cover X ′ → X such that the Iitaka fibration
X ′ → Y ′ is a smooth fibration onto a projective manifold Y with ample canonical
bundle and all the fibres are complex tori.

In this note we prove this conjecture for projective manifolds with semiample
canonical bundle, i.e. some positive multiple mKX is generated by its global sections.

Theorem 1.2. Let X be a projective manifold with nef cotangent bundle ΩX and
semiample canonical bundle KX. Then Conjecture 1.1 holds for X.

Since KX = detΩX is nef, the abundance conjecture [Rei87, Sec.2] claims that
the semiampleness condition is redundant. So far this conjecture is known to hold if
dimX ≤ 3; see [Kwc92]. Note however that a projective manifold with nef cotangent
bundle does not contain any rational curves, so the abundance conjecture reduces to
the weaker nonvanishing conjecture [HPR11, Thm.1.5]. In particular our statement
holds for fourfolds with κ(X) ≥ 0.

For manifolds with nonpositive bisectional curvature one expects the torus fibra-
tion to be locally trivial [WZ02, p.264]. This is no longer true if we assume only that
ΩX is nef: universal families over compact curves in the moduli space of abelian vari-
eties (polarised and with level three structure) provide immediate counter-examples.
However if we assume that the cotangent bundle ΩX itself is semiample we obtain a
precise analogue of Ueno’s theorem:

Theorem 1.3. Let X be a projective manifold with semiample cotangent bundle,
i.e. for some positive integer m ∈ N, the symmetric product SmΩX is globally gener-
ated. Then there exists a finite étale cover X ′ → X such that X ′ ≃ Y × A where Y
has ample canonical bundle and A is an abelian variety.
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This generalises a theorem of Fujiwara [Fuj92, Thm.II].
While many of our arguments also work for compact Kähler manifolds, a crucial

tool is a theorem of Kawamata [Kaw91, Thm.2] which allows us to exclude the exis-
tence of higher-dimensional fibres. In low dimension an elementary argument works
also in the Kähler case (cf. Lemma 3.1), so we obtain:

Theorem 1.4. Let X be a compact Kähler manifold with nef cotangent bundle.
If dimX ≤ 3, then Conjecture 1.1 holds for X.

This improves a result of Kratz [Kra97, Thm.1].
On a technical level the key point is that in our situation the tangent bundle is

numerically flat with respect to the Iitaka fibration. This allows to combine techniques
used by Demailly, Peternell and Schneider in the study of manifolds with nef tangent
bundles [DPS94] with those introduced by Kollár [Kol93] and Nakayama [Nak99] to
understand torus fibrations.

Acknowledgements. I want to thank Simone Diverio, Noburo Nakayama,
Thomas Peternell and Maxime Wolff for helpful discussions.

Notation. We work over the complex field C. For positivity notions of vector
bundles on compact Kähler and projective varieties we refer to [DPS94] and [Laz04].

A fibration is a proper surjective morphism ϕ : X → Y with connected fibres from
a complex manifold onto a normal complex variety Y . We say that the fibration ϕ

• is almost smooth if for every y ∈ Y the reduction Fred of the fibre F := ϕ−1(y)
is smooth and has the expected dimension;

• is smooth in codimension one if there exists an analytic subset Z ⊂ Y of
codimension at least two such that (X \ ϕ−1(Z)) → (Y \ Z) is a smooth
fibration;

• has generically constant moduli if there exists a manifold F0 such that every
generic fibre F is isomorphic to F0. By a theorem of Fischer and Grauert
[FG65] this is equivalent to the property that ϕ is locally trivial over some
Zariski open set.

If ϕ : X → Y is a fibration and µ : X ′ → X a finite étale cover, there exists a
fibration ϕ′ : X ′ → Y ′ and a finite map µ′ : Y ′ → Y such that ϕ◦µ = µ′◦ϕ′. Since we
never consider µ′ : Y ′ → Y we call the fibration ϕ′ : X ′ → Y ′ the Stein factorisation
(of ϕ and µ).

2. A structure result for fibrations. Recall that a vector bundle E on a
compact Kähler variety is numerically flat [DPS94, Defn.1.17] if both E and E∗ are
nef. This is equivalent to the property that E is nef and detE is numerically trivial,
i.e. c1(E) = 0.

If ϕ : X → Y is a fibration from a Kähler manifold onto a normal variety and E a
vector bundle on X , we say that E is ϕ-nef (resp. ϕ-numerically flat) if this property
holds for any variety Z ⊂ Y that is contracted by ϕ, i.e. such that ϕ(Z) = pt.
We note that if the cotangent bundle ΩX is ϕ-nef, then any subvariety Z ⊂ X

contracted by ϕ has nef cotangent sheaf: indeed ΩZ is a quotient of ΩX |Z , so it is
nef. Moreover in this case ϕ does not contract any rational curves: if f : P1 → X is a
non-constant morphism such that ϕ ◦ f is constant, the tangent map gives a non-zero
map f∗ΩX → ΩP1 ≃ OP1(−2), which violates the nefness assumption.

Lemma 2.1. Let X be a Kähler manifold that admits an equidimensional fibration
ϕ : X → Y onto a normal variety Y such that the tangent bundle TX is ϕ-numerically
flat. Then the following holds:
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1.) The fibration ϕ is almost smooth. Moreover every set-theoretical fibre Fred is
a finite étale quotient T → Fred of a torus T .

2.) There exists a finite étale cover X ′ → X such that the Stein factorisation
ϕ′ : X ′ → Y ′ is smooth in codimension one and the smooth fibres are tori.

3.) If moreover X is projective, there exists a finite étale cover X ′ → X such
that the Stein factorisation ϕ′ : X ′ → Y ′ is an abelian group scheme.

4.) If X is compact and ϕ has generically constant moduli, there exists a finite
étale cover X ′ → X such that the Stein factorisation ϕ′ : X ′ → Y ′ is smooth
and locally trivial. If moreover X is projective, then (after finite étale cover)
one has X ′ ≃ Y ′ ×A with A an abelian variety.

Remark. The statement does not generalise to non-Kähler manifolds. In fact
there are examples of compact non-Kähler surfaces X admitting an elliptic fibration
onto P1 that is almost smooth with a unique singular fibre. Arguing as in [BHPVdV04,
V.13.2] one sees that one cannot remove the multiple fibre by an étale coverX ′ → X .

Proof. Step 1: ϕ almost smooth in codimension one, i.e. there exists a
subvariety Z ⊂ Y of codimension at least two such that (X\ϕ−1(Z)) → (Y \Z)
is almost smooth.

We argue by contradiction. Choosing a generic disc that meets a codimension
one component of the ϕ-singular locus in a generic point, we reduce the problem to
the case where Y is a curve. Let F be a fibre such that the reduction Fred is not
smooth. We decompose the divisor F =

∑k
i=1 aiFi where the Fi are pairwise distinct

prime divisors. Since F1 is contained in a ϕ-fibre, the bundle ΩX |F1
is numerically

flat. Thus its quotient ΩF1
is nef, so on the one hand the dualising sheaf ωF1

is nef.
On the other hand by adjunction one has ωF1

≃ (ωX ⊗OX(F1))|F1
. Since ωX |F1

and
OX(F )|F1

are numerically trivial, we see that

ωF1
∼Q OF1

(−
k∑

i=2

ai

a1
(Fi ∩ F1)).

Thus ωF1
is nef and anti-effective, hence trivial. By connectedness of the fibre, we

have k = 1, i.e. F is irreducible. Since TX is ϕ-nef, a result of Demailly-Peternell-
Schneider [DPS94, Prop.5.1] (see also Remark 2.5) now shows that Fred is smooth, a
contradiction.

Thus ϕ is almost smooth in codimension one, and if F is a fibre such that Fred is
smooth, its normal bundle NFred/X is numerically flat [DPS94, Prop.5.1]. In particular
by adjunction KFred

≡ 0 and as we have seen above, the cotangent bundle ΩFred
is

nef. The Chern class inequalities [DPS94, Thm.2.5.]

0 = c21(ΩFred
) ≥ c2(ΩFred

) ≥ 0

show that c2(Fred) = 0. Thus a classical result of Bieberbach [Kob87, Cor.4.15] shows
that Fred is a finite étale quotient of a torus.

Step 2: Proof of Statement 2). Let N ⊂ Y be a subvariety of codimension at
least two. Since ϕ is equidimensional, ϕ−1(N) has codimension at least two. Hence
we have an isomorphism of fundamental groups π1(X) ≃ π1(X \ ϕ−1(N)) and any
étale cover (X \ ϕ−1(N))′ → (X \ ϕ−1(N)) extends to an étale cover X ′ → X . Thus
by Step 1) we can suppose without loss of generality that we are in the situation of
the following lemma.
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Lemma 2.2. Let ϕ : X → Y be an almost smooth fibration from a Kähler
manifold X onto a manifold Y . Suppose that ϕ is smooth in the complement of a
smooth divisor D ⊂ Y . Suppose moreover that for every fibre F , the set-theoretical
fibre Fred is a finite étale quotient T → Fred of a torus T . Then there exists a finite
étale cover X ′ → X such that the Stein factorisation ϕ′ : X ′ → Y ′ is smooth in
codimension one and the smooth fibres are tori.

Remark. This result is certainly well-known to experts. In fact the fibration
being almost smooth, the local monodromies of the variation of Hodge structures
around D are finite. The existence of the cover X ′ → X then follows analogously
to the proof of [Kol93, Thm.6.3]. For the convenience of the reader we follow an
argument indicated by Noburo Nakayama.

Proof of Lemma 2.2. We can cover Y by polydiscs ∆ of dimension m := dimY

such that

∆ ∩D = {(w1, . . . , wm) ∈ ∆ | wm = 0}

and for y ∈ ∆ ∩D and x ∈ ϕ−1(∆) there exist local coordinates z1, . . . , zn around x
such that ϕ is given by (z1, . . . , zn) → (z1, . . . , zm−1, z

k
m), where k is the multiplicity

of the fibre F . Let ∆′ → ∆ be a finite map from some m-dimensional disc ∆′ that
ramifies exactly along ∆∩D with multiplicity k. Let X∆′ be the normalisation of the
fibre product ∆′ ×∆ X , then a local computation shows that X∆′ → ϕ−1(∆) ⊂ X is
étale and the fibration X∆′ → ∆′ is smooth. Since ∆′ retracts onto a point we have
an isomorphism π1(F ) ≃ π1(X∆′), where F is any fibre. The cover X∆′ → ϕ−1(∆)
being étale and surjective this shows that we have an injection

π1(F ) →֒ π1(ϕ
−1(∆)).

By [Nak99, Thm.7.8] this implies that ϕ is bimeromorphically equivalent to a fibration
ϕ̃ : X̃ → Ỹ which becomes smooth after a finite étale cover. As we have just seen
for such a fibration the natural morphism π1(F̃ ) → π1(X̃) is injective. Since the
fibrations ϕ and ϕ̃ are bimeromorphic, this shows that

π1(F ) → π1(X)

is injective. Thus by [Nak99, Thm.8.6] (which is the analogue of [Kol93, Thm.6.3]
for the Kähler case) there exists a finite étale cover X ′ → X such that the Stein
factorisation ϕ′ : X ′ → Y ′ is bimeromorphically equivalent to a smooth torus fibration
ϕ̃ : X̃ → Ỹ . Up to blowing up Ỹ and excluding the image of the exceptional locus we
can suppose without loss of generality that Ỹ = Y ′. Since in codimension one the ϕ′-
fibres do not contain any rational curves, there exists a codimension two set B ⊂ Y ′

such that the restriction of the bimeromorphic map µ : X̃ 99K X ′ to X̃ \ ϕ̃−1(B) is
a morphism and an isomorphism onto its image. Since ϕ̃ is smooth, this proves the
statement.

Step 3: ϕ is almost smooth. This property does not change under finite étale
cover, so we can assume by Step 2) that ϕ is smooth in codimension one. Moreover ϕ
is equidimensional, so the relative cotangent sheaf ΩX/Y is locally free in codimension
one and has determinant OX(KX/Y ). We consider the foliation F ⊂ TX defined by
the reduction of every ϕ-fibre F , i.e. on the non-singular locus Fred,nons ⊂ Fred we
have

(∗) TFred,nons
= F|Fred,nons

.
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Since ϕ is smooth in codimension one, the sheaves TX/Y := Ω∗
X/Y and F coincide

in codimension one, hence detF ≃ OX(−KX/Y ). We claim that the foliation F is
regular which obviously implies that the reduction of every fibre is smooth.

Proof of the claim. The inclusion F ⊂ TX induces a map α : detF →
∧rkF

TX
and by [DPS94, Lemma 1.20] it is sufficient to show that α has rank one in ev-
ery point. By (∗) the restriction of α to Fred,nons identifies to the map induced by
TFred,nons

⊂ TX |Fred,nons
, hence α|Fred

is not zero on any irreducible component of Fred.

Since detF ≃ OX(−KX/Y ) and
∧rkF

TX are ϕ-numerically flat, we know by [CP91,
Prop.1.2(12)] that α|Fred

does not vanish in any point of Fred. Thus α does not vanish
in any point of X .

Step 4: Proof of Statement 3). By what precedes we know that ϕ is almost
smooth and (after finite étale cover) smooth in codimension one. Since X is projective
we know by [Kol93, Thm.6.3] that (after finite étale cover) the fibration ϕ is birational
to an abelian group scheme ϕ̃ : X̃ → Ỹ . Since ϕ̃ is a group scheme, there exists a
section s : Ỹ → X̃. Let Z be the strict transform of s(Ỹ ) under the birational map
X̃ 99K X . Then ϕ|Z : Z → Y is birational, i.e. Z is generically a section of ϕ. In
particular for a general fibre F we have F · Z = 1. Since for any fibre F0 we have
[F0] = m[F ] with m the multiplicity of the fibre F0, we see that all the fibres are
reduced. Thus the almost smooth fibration ϕ is smooth.

Step 5: Proof of Statement 4). By Statements 1) and 2) we know that
(after finite étale cover) the almost smooth fibration ϕ has tori as general fibres.
If ϕ has generically constant moduli, we have (after finite étale cover) that q(X) =
q(Y )+dimF [CP00, Prop.6.7]. Since the reduction of every ϕ-fibre is an étale quotient
of a torus, the Albanese map αX : X → Alb(X) maps each ϕ-fibre isomorphically
onto a fibre of the locally trivial fibration ϕ∗ : Alb(X) → Alb(Y ). By the universal
property of the fibre product we have a commutative diagram

Alb(X)×Alb(Y ) Y

ψ

X
αX

ϕ

Alb(X)

ϕ∗

Y
αY

Alb(Y )

The map ψ is the pull-back of ϕ∗ by the fibre product, so it is a locally trivial
fibration. The base Y is normal, so the total space Alb(X)×Alb(Y ) Y is normal. By
what precedes the morphism X → Alb(X) ×Alb(Y ) Y is bimeromorphic and finite,
hence an isomorphism by Zariski’s main theorem. In particular ϕ = ψ is smooth and
locally trivial.

If X is projective, the Albanese torus is an abelian variety. Thus we know by
Poincaré’s reducibility theorem [BL04, Thm.5.3.5] that (after finite étale cover) one
has Alb(X) ≃ Alb(Y ) × F , hence the fibre product Alb(X)×Alb(Y ) Y is isomorphic
to Y × F .

As a corollary of the proof we obtain the following statement.

Corollary 2.3. Let X be a Kähler manifold that admits an equidimensional
almost smooth fibration ϕ : X → Y onto a normal variety Y such that the general fibre
F is a finite étale quotient T → F of a torus T . Then there exists a finite étale cover
X ′ → X such that the Stein factorisation ϕ′ : X ′ → Y ′ is smooth in codimension one
and the smooth fibres are tori.
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Note that by [Cla10, Lemme 2.3] for a torus fibration that is smooth in codimen-
sion one the map π1(F ) → π1(X) is injective. Thus in the situation above ϕ has
generically large fundamental group along the general fibre [Kol93, Defn.6.1], i.e. the
statement is a natural inverse to [Kol93, Thm.6.3].

We can also deduce a simplified version of [DPS94, Prop.5.1]:

Corollary 2.4. Let X be a quasi-projective manifold that admits a fibration
ϕ : X → Y onto a normal variety Y such that the tangent bundle TX is ϕ-nef. Then
ϕ is equidimensional and almost smooth. If X is projective, there exists a finite étale
cover X ′ → X such that the Stein factorisation ϕ′ : X ′ → Y ′ is smooth.

Remark 2.5. Solá Conde and Wísniewski [SCW04, Ch.4.2] point out that the
proof of the “First case” of [DPS94, Prop.5.1] has a gap and give a completely different
proof under the additional condition that ϕ is a Mori contraction [SCW04, Thm.4.4].
Note that we used [DPS94, Prop.5.1] in the proof of Lemma 2.1, but only for a fibration
over a curve which corresponds to the “Second case” of their proof.

Proof. If KX is not ϕ-nef, we know by the relative contraction theorem [KM98,
Thm.3.25] that there exists an elementary Mori contraction µ : X → Z that factors
ϕ, i.e. there exists a fibration ψ : Z → Y such that ϕ = ψ ◦ µ. Applying [SCW04,
Thm.4.4] to µ we see that µ and Z are smooth, in particular TZ is ψ-nef. Since a
composition of equidimensional and almost smooth fibrations is equidimensional and
almost smooth, we can argue inductively and suppose without loss of generality that
KX is ϕ-nef. Since TX is also ϕ-nef, it is ϕ-numerically flat. Hence ΩX is also ϕ-nef, so
the ϕ-fibres do not contain any rational curves. By a theorem of Kawamata [Kaw91,
Thm.2] this shows that ϕ is equidimensional. Conclude by Lemma 2.1,1) and 3).

3. Proofs of the main statements.

Proof of Theorem 1.2. Since KX is semiample we can consider the Iitaka fibration
ϕ : X → Y . Note that the anticanonical divisor −KX is ϕ-numerically trivial. Since
ΩX is nef, hence ϕ-nef, the tangent bundle TX is ϕ-numerically flat. By Corollary 2.4
the fibration ϕ is equidimensional. We conclude by Lemma 2.1,3) that there exists a
finite étale cover such that the Iitaka fibration is an abelian group scheme. By [Kol93,
5.9.1] the projective manifold Y is of general type, so in order to see that KY is ample
it is sufficient to show that Y does not contain any rational curves1. Yet the abelian
group scheme X → Y has a section, so any rational curve P1 → Y would lift to X .
This is excluded by the nefness of ΩX .

Proof of Theorem 1.3. By Theorem 1.2 we can suppose (after finite étale cover)
that the Iitaka fibration ϕ : X → Y is smooth with abelian fibres. Let F = ϕ−1(y)
be any smooth fibre, then we have an exact sequence

0 → (ϕ∗ΩY )|F → ΩX |F → ΩF ≃ O⊕ dimF
F → 0.

Since ΩX |F is semiample and detΩF is trivial we know by [Fuj92, Cor.4] that the
exact sequence splits. In particular the Kodaira spencer map is zero in y. Since this
holds for all y we see that ϕ has constant moduli. Conclude by Lemma 2.1,4).

Before we can prove Theorem 1.4 we need a technical lemma which is a first step
towards a generalisation of [Kaw91, Thm.2] to the Kähler case.

1This is a well-known consequence of cone theorem, base-point free theorem and [Kaw91, Thm.2].
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Lemma 3.1. Let X be a compact Kähler threefold and let ϕ : X → S be a fibration
onto a projective surface such that −KX is ϕ-nef. Let D ⊂ X be a divisor that is
contracted by ϕ. Then D is uniruled.

Remark. The proof is based on the fact that a compact Kähler surface D with
Gorenstein singularities is uniruled if the canonical sheaf ωD is not pseudoeffective.
This is well-known if D is smooth and standard arguments (cf. the proof of [HPR11,
Lemma 4.2]) allow to generalise to singular D. Note that for projective manifolds the
implication

KD not pseudoeffective ⇒ D uniruled

is a famous theorem [BDPP04], but for Kähler manifolds this is only known up to
dimension three [Bru06].

Proof. We fix a Kähler form α on X . Let H be an effective divisor passing
through ϕ(D), then we can write ϕ∗H = H ′ +mD with m ∈ N and D 6⊂ suppH ′ but
D ∩H ′ 6= 0. Since ϕ∗H ·D = 0 we have

α · (ϕ∗H)2 = α · ϕ∗H · (H ′ +mD) = α · (H ′)2 + α ·H ′ ·mD,

and developing the left hand side implies α · H ′ · mD = −α ·m2D2. Since H ′ ∩ D
is an effective non-zero cycle, we see that α ·D2 < 0. By the adjunction formula we
have ωD ≃ OD(KX +D), so our computation shows that

ωD · α|D = (KX +D) ·D · α < 0.

Therefore ωD is not pseudoeffective, hence D is uniruled.

Proof of Theorem 1.4. Since KX is nef and dimX ≤ 3, it is semiample [Pet01,
Thm.1], [DP03]. Let ϕ : X → Y be the Iitaka fibration, then the anticanonical
divisor −KX is ϕ-trivial. Since ΩX is nef, hence ϕ-nef and −KX is ϕ-trivial, the
tangent bundle TX is ϕ-trivial. If dimY = 1 we conclude by Lemma 2.1,2). The
cases dimY = 0 or 3 being trivial, we are left with case dimY = 2:

By Lemma 3.1, the fibration ϕ is equidimensional. Thus it is almost smooth and
(after finite étale cover) smooth in codimension one by Lemma 2.1,2). Since every
complete family of elliptic curves is isotrivial, ϕ has generically constant moduli. We
conclude by Lemma 2.1,4).
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[CP00] F. Campana and T. Peternell, Complex threefolds with non-trivial holomorphic

2-forms, J. Algebraic Geom., 9:2 (2000), pp. 223–264.
[DP03] J.-P. Demailly and T. Peternell, A Kawamata-Viehweg vanishing theorem on

compact Kähler manifolds, J. Differential Geom., 63:2 (2003), pp. 231–277.
[DPS94] J.-P. Demailly, T. Peternell, and M. Schneider, Compact complex manifolds

with numerically effective tangent bundles, J. Algebraic Geom., 3:2 (1994),
pp. 295–345.

[FG65] W. Fischer and H. Grauert, Lokal-triviale Familien kompakter komplexer Man-

nigfaltigkeiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1965 (1965),
pp. 89–94.

[Fuj92] T. Fujiwara, Varieties of small Kodaira dimension whose cotangent bundles are

semiample, Compositio Math., 84:1 (1992), pp. 43–52.
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