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HIGHER BERS MAPS∗

GUY BUSS†

Abstract. The Bers embebbing realizes the Teichmüller space of a Fuchsian group G as a open,
bounded and contractible subset of the complex Banach space of bounded quadratic differentials for
G. It utilizes the schlicht model of Teichmüller space, where each point is represented by an injective
holomorphic function on the disc, and the map is constructed via the Schwarzian differential operator.

In this paper we prove that a certain class of differential operators acting on functions of the disc
induce holomorphic mappings of Teichmüller spaces, and we also obtain a general formula for the
differential of the induced mappings at the origin. The main focus of this work, however, is on two
particular series of such mappings, dubbed higher Bers maps, because they are induced by so-called
higher Schwarzians – generalizations of the classical Schwarzian operator. For these maps, we prove
several further results.

The last section contains a discussion of possible applications, open questions and speculations.

Key words. Teichmüller spaces, quasiconformal mappings, higher Schwarzians, univalent func-
tions.
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1. Introduction. Teichmüller spaces are central objects in geometry today, with
deep connections to various other seemingly unrelated topics. There are several ways
to represent them, of which three will come up in this paper. One of the most useful
representations of Teichmüller spaces is via the Bers embedding, which realizes the
Teichmüller space of a Fuchsian groupG as an open contractibe domain in the complex
Banach space B2(D, G) of bounded quadratic differentials for G. The Bers embedding
relies on a different representation of Teichmüller space, the so-called schlicht model
(see Section 2.1), where each point is represented by a schlicht (or univalent) function
on the disc, and is constructed with the help of the classical Schwarzian differential
operator.

In the present paper we investigate as to whether other differential operators yield
holomorphic maps of Teichmüller spaces into other complex Banach spaces. The main
result on which the rest of the work builds upon is the following theorem (for a more
precise and technical version, see Thm. 3.1).

Theorem. Let Q be a differential operator that maps schlicht functions to holo-
morphic functions and that satisfies

Q[f ◦ g] = (Q[f ] ◦ g)(g′)m ∀g ∈ PSL(2,C) ,
for some m ∈ N. Further, suppose Q[f ] is a polynomial in f ′′, . . . , f (N) and (f ′)−1

with complex coefficients. Then Q induces a holomorphic map of any Teichmüller
space into the complex Banach space of m-differentials.

All necessary concepts and notations are explained in Section 2. This section
also contains a considerable amount of background information concerning the Bers
embedding, so that the results of this paper can be viewed with the right perspective.

Section 3 contains the aforementioned theorem and its proof, as well as Theorem
3.4, describing the derivatives at the origin of the maps βQ, for any admissibe Q (i.e.,
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104 G. BUSS

Q satisfies the assumptions of the above theorem), as bounded operators between
Banach spaces.

In Section 4, we show that there do exist admissible operators. We focus on
two series of maps, βAn and βBn , n ≥ 3, which we call higher Bers maps because
they are constructed with the help of the A and B series of higher Schwarzians –
generalizations of the Schwarzian derivative that are discussed in Section 4.1.

For these higher Bers maps, we prove several results. First of all, we establish the
surjectivity of the differential at the origin (Thm. 4.14). Then we study the kernel,
for which we derive a precise expression in Thm. 4.18. This description implies, in
particular, that the differential is injective when restricted to the tangent space of all
Teichmüller spaces except the universal one (Cor. 4.22).

Subsection 4.3 contains two results (Thm. 4.27 and Thm. 4.28) that are not
infinitesimal in nature and state that the fibre of the higher Bers maps at the origin
consists of a single point.

Of course, the main question is whether the higher Bers maps are embeddings,
and the results of this paper hint that this might be the case. Yet there are still
several technical difficulties to overcome. This, as well as several other interesting
questions and other possible applications of the higher Bers maps, are discussed in
the last section.
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2. Models of Teichmüller spaces and the Bers embedding. The purpose
of this section is to set up terminology and introduce some notation, as well as to
cast the later work in the right perspective. The material in this section is completely
standard and can be found in any reference on Teichmüller theory, e.g., [22].

For the rest of the paper, let Ĉ denote the Riemann sphere, D the unit disc andDc the interior of its complement in Ĉ. If A is a Banach space, let Br(A, p) denote
the open ball of radius r around p ∈ A. If p is not specified, it is assumed to be
the origin. For a function defined on a domain in D ⊂ C we write ∂f or f ′ for its
holomorphic derivative and ∂̄f for the anti-holomorphic derivative.

2.1. Models of Teichmüller space. Let G be an arbitrary Fuchsian group
acting on the unit disc D. The Teichmüller space of G can be realized in several
ways, one of which being the Beltrami model TB(G). To this end, let L∞

(−1,1)(D, G)
denote the Banach space of measurable complex valued functions on D that satisfy

µ(z) = µ(gz) · ∂̄g(z)/∂g(z) , for almost all z ∈ D, ∀ g ∈ G .

The Banach norm used here is the usual sup-norm. Points of the Beltrami model
are given by equivalence classes of these functions of norm less than one, denoted by
Belt(Dc, G),

TB(G) ∼= B1

(

L∞
(−1,1)(Dc, G)

)

/∼ = Belt(Dc, G)/∼ .
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The equivalence relation utilizes the solution of the Beltrami equation. More precisely,
given µ ∈ B1(L

∞(C)). Then there exists a solution w[µ] to the Beltrami equation,

∂̄w[µ](z) = µ(z)∂w[µ](z) for almost all z ∈ C ,

which is necessarily quasiconformal, and this solution is unique up to post-composition
by Möbius transformations (see, e.g., [4], [3] or [19]).

It is also crucial for Teichmüller theory that if we have a family of Beltrami dif-
ferentials depending on some parameters ti, the reqularity of the solutions in ti is ‘at
least as good’ as the regularity of the family itself (for a more precise statement, see
[3]). In particular, if we have a family of Beltrami differentials depending holomor-
phically on a paramater t, then the properly normalized solutions are holomorphic in
t. For small t we can hence write

wtν(z) = wν0 (z) + twν1 (z) + t2wν2 (z) + . . . .

There is a closed expression for the first order approximation wν1 (see again, e.g., [3]),
which we will use in the proof of Thm. 3.4,

wν1 (z) = −
z(z − 1)

π

∫C ν(w)

w(w − 1)(w − z)
d2w .(1)

Now, in order to use the theorem on the existence of a solution to define an equivalence
relation, one has to choose an extension of the elements in L∞

(−1,1)(Dc, G) ⊂ L∞(Dc)

to elements of L∞(C). There are two canonical choices of which we use the one where
the function is set equal to zero outside of Dc. We denote the solution to the Beltrami
equation by wµ. Observe that wµ is an injective holomorphic function on the unit
disc, and thus we can get rid of the Möbius degree of freedom by 1-point normalizing
wµ, i.e. we require wµ(0) = 0, (wµ)′(0) = 1 and (wµ)′′(0) = 0. This is implicitly
assumed in the symbol wµ. One can see that the family Fδ of all quasiconformal
homeomorphisms normalized in this way and with dilatation bounded by δ < 1 is a
normal family as in the case of the more common 3-point normalization.

Now we are in position to describe the equivalence relation: µ, ν ∈ B1(L
∞(Dc))

are called equivalent iff wµ|∂D = wν|∂D.
The second model we will utilize is the schlicht model TS(G), which is defined by

TS(G) :=







f ∈ S0(D) : ∃ an or.-pres. quasiconf. homeo.

w : Ĉ→ Ĉ such that w|D = f and which is
compatible with G, i.e., wGw−1 is again Kleinian







Here S0(D) denotes the schlicht functions on the disc that are 1-point normalized at
the origin. The map

πBS : TB(G) → TS(G) , πBS [µ] = wµ|D ,

mapping the Beltrami model to the schlich model is a bijection. First of all, µ ∼ ν
implies wµ|D ≡ wν|D, since if two holomorphic functions on the disc agree on ∂D
they agree on the whole disc. By definition, the restrictions are quasiconformally
extendable. The last ingredient is the fact that the restriction of the dilatation µ̂(w) :=
∂̄w/∂w of a quasiconformal homeomorphism w of the Riemann sphere to Dc is in
Belt(Dc, G) iff wGw−1 is Kleinian (see, e.g., [22] or [18]).
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The reason these two models are of importance is the following: In the Beltrami
model, points of Teichmüller space are quite hard to handle, since they are equiv-
alence classes of measurable functions where the equivalence is defined utilizing the
solution of a non-linear PDE. On the other hand, the Beltrami model induces a com-
plex structure on Teichmüller space from the complex structure of the Banach space
L∞
(−1,1)(Dc, G). In contrast, the points of the schlicht model are schlicht functions

on the disc, and so all the machinery from complex analysis and geometric function
theory is available to them. The price to pay is that there is no way of directly seeing
the complex structure on Teichmüller space in this model.

2.2. The Schwarzian derivative. The Bers embedding utilizes the schlicht
model of Teichmüller space, where points are given by schlicht functions. Bers’ idea
was to map Teichmüller space into another function space by applying a particular
non-linear differential operator to the individual functions, namely the Schwarzian
derivative.

In order to define the Schwarzian, let f : D → C be locally injective and thrice
differentiable on a domain D ⊂ C, and set

Sf (z) :=

(

f ′′(z)

f ′(z)

)′

−
1

2

(

f ′′(z)

f ′(z)

)2

.

A simple computation shows that Sf (z) ≡ 0 on an open set iff f ∈ PSL(2,C), and
that the chain rule for the Schwarzian of a composition is given by

Sf◦g = (Sf ◦ g)(g
′)2 + Sg .(2)

Hence Sf = S1/f since 1/f is of the formM ◦f with M ∈ PSL(2,C), so we can define
the Schwarzian derivative on the set of locally injective meromorphic functions, which
we denote by Mli(D). To do so, for f ∈ Mli(D), set

Sf (p) = S 1
f
(p) ,

for all poles p of f . Observe that local injectivity forces the pole to be simple. The
chain rule also allows us to define the Schwarzian acting on domains in Ĉ containing
∞ as follows: We set φ(z) = f(1/z) and define

Sf (∞) = lim
z→0

z4Sφ(z) .

A very nice fact about the Schwarzian is the fact that the solution theory is understood
very well (see, e.g., [18], Thm. II.1.1).

Proposition 2.1. For any simply connected domain D ⊂ Ĉ, the Schwarzian
derivative is a surjective operator S : Mli(D) → O(D). Moreover, the solution f to
the equation Sf = φ is unique up to post-composition by Möbius transformations.

In fact, a solution f to the equation Sf = φ can be written as f = h1/h2, where
hi are two linearly independent solutions to the linear equation s′′+1/2φs = 0, and a
change of basis in the solution space corresponds precisely to post-composing f with
a Möbius transformation.

Let S(D) ⊂ Mli(D) denote the set of injective holomorphic functions. Elements
of S(D) are called schlicht functions, or by some authors also univalent functions. A
famous result on schlicht functions that we need later is the following.
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Theorem 2.2 (Koebe’s 1
4 -theorem). Let f be a schlicht function on the disc D

that fixes the origin and with f ′(0) = 1. Then the image f(D) contains the disc D 1
4
.

To understand the image of the schlicht functions under the Schwarzian, we need
to introduce some Banach spaces of holomorphic functions. Recall that any domain
D ⊂ Ĉ such that the complement Ĉ\D has at least three points admits a complete
metric of constant negative curvature given by λ2D|dz|

2 and called the Poincaré metric.
For example, for the unit disc, λ2D(z) = (1− |z|2)−2.

Definition 2.3. Let D ⊂ Ĉ be a domain that admits a Poincaré density λD.
Then the space of bounded n-differentials, denoted Bn(D), is given by the holomorphic
functions on D for which the hyperbolic sup-norm

‖f‖Bn(D) := supz∈D|f(z)|λ
−n
D (z)

is finite.

It is easy to see that this is a complex Banach space. A famous theorem by Kraus
(rediscovered and often attributed to Nehari) bounds the B2-norm of the Schwarzian
of schlicht functions on the disc.

Theorem 2.4 (Kraus-Nehari Theorem). Let f be a schlicht function on D. Then

|Sf (z)|(1− |z|2)2 ≤ 6 ,

In particular, ‖Sf‖B2(D) ≤ 6. This bound is sharp.

It is easy to obtain a bound for any simply-connected hyperbolic domain D ⊂ Ĉ
via a Riemann mapping ψ : D → D. Let f ∈ S(D), so f ◦ ψ−1 is schlicht on D and

Sf◦ψ−1 = (Sf ◦ ψ
−1)(∂zψ

−1)2 + Sψ−1

=
(

(Sf − Sψ) ◦ ψ
−1

)

(∂zψ
−1)2 ,

where the last step is due to the fact that the Schwarzian of an inverse can expressed
by the Schwarzian of the map itself with the help of the chain rule (2) as follows:

0 = Sψ◦ψ−1 = (Sψ ◦ ψ−1)(∂zψ
−1)2 + Sψ−1 .

Now, multiplying by the Poincaré density, using its transformation behaviour and
taking absolute values, we get

‖Sf‖B2(D) ≤ 12 ∀ f ∈ S(D) .

There is a converse statement to this fact for a class of domains called quasidiscs,
which are images of the unit disc under a quasiconformal homeomorphism Ĉ, and in
fact, this property characterizes quasidiscs.

Theorem 2.5 (Gehring). Let D ⊂ Ĉ be a simply-connected hyperbolic domain.
Then D is a quasidisc iff there exists a constant δ > 0 such that for all f ∈ Mli(D),
‖Sf‖B2(D) ≤ δ implies that f ∈ S(D).

A proof can be found in [18], Section II.4.6.

Recall that in the previous section we defined a model of the Teichmüller space
of a Fuchsian group G within the space of schlicht functions. If G = 1, TS(1) is called
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the universal Teichmüller space, and its image under the Schwarzain in B2(D) will be
denoted by T (1). Also, let us denote the image of all schlicht functions on the disk
under the Schwarzian by S. The following highly interesting theorem can be found in
[22].

Theorem 2.6 (Gehring). The interior of S is precisely T (1), but the closure of
T (1) is a proper subset of S.

Let us only remark that the first claim follows quite easily from Theorem 2.5 while
the second, more surprising statement is much harder. Gehring succeeded in the proof
by explicitly constructing domains D given by Ĉ\γ, where γ are special spiral arcs
which have in some sense the opposite property: there exists a δ > 0 such that for
all schlicht functions f on D with ‖Sf‖B2(D) < δ, f(D) is not a Jordan domain. The
theorem then follows easily.

2.3. The Bers embedding. The schlicht model of Teichmüller space is a model
in the the category of sets, which is yet not very satisfactory. The Bers embedding
realizes this model as a domain in a complex Banach space.

Definition 2.7. Let G be a Fuchsian group acting on D. The Bers embedding
β of Teichmüller space is given by

β : TB(G) → B2(D, G) , β = S ◦ πBS .

The image β(TB(G)) will be denoted by T (G). The lift of this map,

β̃ : B1

(

L∞
(−1,1)(Dc, G)

)

→ B2(D, G) , β̃ := β ◦ πT ,

is called the Bers projection.

The target spaces in the theorem have not been introduced yet. As the notation
suggests, Bn(D, G) is a subset of Bn(D). It consists of precisely those functions that
satisfy

(f ◦ g)(z)(g′)n(z) = f(z) ∀g ∈ G, z ∈ D .

That this indeed is the target is a special case of Proposition 2.11 below. Geometri-
cally, this space can be identified with the space of holomorphic sections of the n-th
tensor power of the canonical bundle of the surface Σ ∼= D/G in the cocompact case.
In the case of a punctured surface Σ of type (g, p) one has to consider twisting the
canonical bundle with a divisor coming from the punctures. The dimension of this
space is well-known to be (see, e.g., [15])

dimCBn(D, G) = (2n− 1)(g − 1) + pn .

These cases correspond to Fuchsian groups of first kind (in case the group of first kind
and has elliptic elements there is a further finite term coming from the ramifications,
but we don’t need the explicit formula in what follows). For Fuchsian groups of second
kind, so in particular for G = 1, the space is infinite dimensional.

But we still need to justify calling the map β an embedding. The following beau-
tiful theorem is due to Bers.

Theorem 2.8. Let G be a Fuchsian group acting on D. The Bers projection β̃
is a holomorphic submersion and factors precisely through πT yielding a holomorphic
embedding of TB(G) into B2(D, G) as an open, bounded and contractible domain.
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For a detailed exposition and full proof we refer to the textbook [22]. On the
other hand, the proofs of our main theorems later, which generalize this theorem
considerably, reprove everything except the injectivity and contactibility.

The theorem has a wealth of consequences. Recall that by Theorem 2.5, there
exists a constant δ such that the δ-ball in B2(D) around the origin is contained inS, hence the δ-ball around the origin in B2(D, G) is also contained in S ∩B2(D, G).
Further, by Theorem 2.6,

T (G) = T (1) ∩B2(D, G) = int(S) ∩B2(D, G) ⊃ Dδ ,

so dimCT (G) = dimCB2(D, G).
Let us say a few more words about the geometry of images T (G) for they are very

intriguing and not yet fully understood. First of all, the constant δ in Theorem 2.5
depends on the quasidisc D; for D = D it is well-known to have the value 2. In fact,
for bounded differentials of norm less than two, one can write down the inverse of the
lifted Bers embedding explicitly. This goes by the name of the Ahlfors-Weill section
(see below).

However, observe that if we restrict to the intersection S ∩B2(D, G) there could
be a bigger ball around the origin. In general, let us define the two quantities,

i(G) := sup
δ∈R{Dδ ⊂ T (G)} , o(G) := inf

δ∈R{Dδ ⊃ T (G)} ,

called the inradius resp. the outradius of the Teichmüller space T (G). By the facts on
schlicht functions, we have i(G) ≥ 2 and o(G) ≤ 6. The following facts concerning the
in- resp. outradius can be found in [24] resp. [23]: i(G) is strictly greater than two
for any finitely generated Fuchsian group G of first kind but there exists a sequence
of quasiconformal deformations1 {Gi} of G such that i(Gi) → 2 for i → ∞. o(G)
equals 6 for Fuchsian groups of second kind and o(G) is strictly less than 6 for finitely
generated Fuchsian groups of first kind. Yet given a finitely generated Fuchsian group
of first kind G, there exists a sequence {Gi} of quasiconformal deformations of G
such that o(Gi) → 6 for i → ∞. Beware, however, that these facts don’t give much
information on S(G) := S ∩B2(D, G) since cl (T (G)) 6= S(G).

Now although the inradii of Teichmüller spaces are always greater or equal to
two, it is perhaps a little bit surprising that a quasiconformal homeomorphism in the
equivalence class corresponding to any φ ∈ B2(D, G) of norm < 2 can be constructed
explicitly. By taking its dilatation we obtain the so-called Ahlfors-Weill section s,
which is a section of the projection β̃ = β ◦ πT .

Theorem 2.9. The map

s : B2(D, G) → L∞
(−1,1)(Dc, G) , φ(z) 7→ −

1

2
φ(1/z̄)(1− |z|2)2z̄4 ,

is a holomorphic right inverse of the Bers projection when restricted to the open ball
of radius 2 in B2(D, G).

Let us point out here that this section is real-analytic. This implies in particular
that the normalized solutions ws(φ) are real analytic in D and Dc. Also, as one would
expect at this point, there exists an Ahlfors-Weill section for any quasidisc D (see,
e.g., [22], Sect. 3.8.3)

1A quasiconformal deformation of a group G is given by G′ := wGw−1 where w is a quasicon-
formal homeomorphism of Ĉ the dilatation of which (restricted to D) is in L∞

(−1,1)
(D, G).
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Maybe the most important feature of the Bers embedding (or more precisely, of
the images of Teichmüller spaces under the Bers embedding) is that boundary points of
Teichmüller space have extrinsic meaning, and this leads to a geometric understanding
of degenerations of Riemann surfaces resp. Fuchsian groups. Since this is a further
motivation for our construction of holomorphic mappings in the spirit of the Bers
embedding, we want to present this enlarged framework briefly. The notion of the
deformation space of a Fuchsian group was introduced by Kra in [16], [17].

Definition 2.10. Let G be a Fuchsian group acting on D. A deformation of

G is a pair (χ, f) where χ : G → PSL(2,C) is a homomorphism and f : D → Ĉ a
locally injective meromorphic function that satisfies the compatibility equation

f ◦ g = χ(g) ◦ f , ∀g ∈ G .

Two deformations (χ1, f1) and (χ2, f2) are called equivalent iff

∃M ∈ PSL(2,C) : f2 =M ◦ f1 , χ2(g) =M ◦ χ1(g) ◦M
−1 .

The set of all equivalence classes of deformations of G is denoted by Def(G) and is
called the deformation space of the Fuchsian group G.

Observe also that the data of the definition is somewhat redundant: f determines
χ, since by local injectivity, for any point z ∈ f(D) there is a neighborhood Uz where
f is invertible. Hence

χ(g)(w) = (f ◦ g ◦ f−1)(w) ∀ w ∈ Uz ,

and this determines χ(g) completely, since a Möbius transformation is characterized
by its value on three points. But also conversely, any f ∈ Mli(D) is the developing
map of a deformation as we will see in the proof of 2.11. With this in mind, we will
often identify functions in Mli(D) with the corresponding deformations (f, χ) they
induce. For clarity in later use we will denote the forgetful maps by

dev : Def(G) → M0
li(D) , dev([f, χ]) = f̃

hom : Def(G) → Hom(G,PSL(2,C)) , hom([f, χ]) = χ̃ .

Let’s return to the deformation spaces of Fuchsian groups. These will now be given
the structure of a complex vector space.

Proposition 2.11. There following map is bijective and hence induces a 1 − 1
correspondence,

cG : Def(G) → Q(G) := {f ∈ O(D) : f = (f ◦ g)(g′)2 ∀ g ∈ G} cG := S ◦ dev ,

between the equivalence classes of deformations of G and the quadratic differentials
Q(G) for G.

Proof. In Theorem 2.1 we established the correspondence Def(1) ∼= M0
li(D) with

Q(1) ∼= O(D). As a next step, we show that cG([f, χ]) = Sdev([f,χ]) is a quadratic
differential for G whenever [f, χ] ∈ Def(G). Recall the transformation behaviour (2)
for g ∈ PSL(2,C),

Sf◦g = (Sf ◦ g)(g
′)2 , Sg◦f = Sf .
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If g ∈ G we have f ◦ g = χ(g) ◦ f so altogether we get

Sf = (Sf ◦ g)(g
′)2 ,

i.e. the Schwarzian of the developing map behaves like a quadratic differential for G.
Now let f ∈ Mli(D) be a funcion such that Sf = φ is a quadratic differential for the
group G. Then for all g ∈ G,

Sf◦g = (Sf ◦ g)(g
′)2 = (φ ◦ g)(g′)2 = φ ,

and hence by the uniqueness part of the solution theorem of the Schwarzian differential
equation there exists a Möbius transformation χ(g) such that χ(g) ◦ f = f ◦ g. This
association is a homomorphism,

χ(g1g2) ◦ f = f ◦ (g1g2) = (f ◦ g1) ◦ g2 = χ(g1) ◦ f ◦ g2 = χ(g1)χ(g2) ◦ f ,

and the pair (χ, f) therefore a deformation of G.

Observe that one can consider TS(G) naturally as a subset of Def(G) by identify-
ing f with dev−1(f). But to emphasize once more, any point in Q(G), and hence any
point in B2(D, G), corresponds to a Fuchsian group by Proposition 2.11. In particu-
lar, points on ∂T (G). The Fuchsian groups on ∂T (G) consist of (partially) degenerate
groups and regular b-groups, the latter corresponding geometrically to noded Riemann
surfaces (see [7], [20] and [2]). Including only the latter, one arrives at a nice partial
completion of Teichmüller space called augmented Teichmüller space [1] on which the
mapping class group operates by homeomorphisms and the quotient is homeomorphic
to the Deligne-Mumford compactification of moduli space. All of this should consti-
tute enough motivation to study other holomorphic maps of Teichmüller spaces as we
do from Section 3 onward.

2.4. Banach spaces of holomorphic functions. At several points later we
will need Banach spaces of automorphic forms. And also, in the proof of Theorem
4.18 we need several of the main results from this theory. In this section we briefly
give the definitions and state the theorems we need later on. All material can be
found, e.g., in [15].

Lp(D) will as usual denote the space of p-integrable measurable functions on
D, which can be any hyperbolic open set of Ĉ, and ‖ · ‖p will denote the p-norm.
If a group G acts on D, a factor of automorphy for the G-action on D is a map
ρs : G × D → C∗ such that for fixed g ∈ G, ρs(g, ·) : D → C∗ is holomorphic and
that for all gi ∈ G, ρs(g1g2, z) = ρs(g1, g2(z)) · ρs(g2, z). A factor is an s-factor,
iff |ρs(g, z)| = |g′(z)|−s. For an s factor ρs of a Kleinian group G acting properly
discontinuously on D, Lρs(D,G) will denote the space of measurable automorphic
forms, i.e., functions that satisfy (f ◦g)(z) = f(z)ρs(g, z). On Lρs(D,G) the following
expressions are well-defined norms,

‖f‖Lp
s(D,G) :=

(∫

F

λ2−psD (z)|f(z)|pd2z

)1/p

, 1 ≤ p <∞ ,

‖f‖L∞

s (D,G) := ess sup
z∈F

{

λ−sD (z)|f(z)|
}

.

and the set of functions for which the norm is finite is denoted by Lpρs(D,G). These
are Banach spaces. Note that the integrals are not performed over D but only over
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a fundamental domain F for the action of G on D. The subspace of holomorphic
automorphic forms is denoted by

Apρs(D,G) := O(D) ∩ Lpρs(D,G) .

In case ∞ ∈ D we will have to add the extra assumption2 that f ∈ O(|z|−2s).
Also, since Lp-convergence of holomorphic functions implies local uniform conver-
gence, these subspaces are closed and hence Banach spaces themselves.

We follow the tradition of denoting the spaces A∞
ρs(D,G) by Bρs(D,G) and the

spaces A1
ρs(D,G) by Aρs(D,G). Also, if we are dealing with an integer power n of

the canonical factor of automorphy, i.e., the factor ρn(g, z) = g′(z)−n, we will use the
subscript n instead of ρn. And finally, when G = {1} is the trivial group, we simplify
the notation and write Lps(D) instead of Lpρs(D,1), and similarily for the holomorphic
subspaces.

These complex Banach spaces are of course independent of the chosen uniformiza-
tion or, so to speak, invariant under conjugation. More precisely, let D be a simply-
connected hyperbolic domain and φ : D → φ(D) be a biholomorphism. Then φ
induces norm preserving isomorphisms for 1 ≤ p ≤ ∞, called the pull-back,

φ∗s : L
p
ρs(φ(D), φGφ−1) → Lpρs(D,G) , (φ∗sf)(z) = (f ◦ φ)(z)φ′(z)s ,

which respect the subspaces Apρs of holomorphic functions.
For conjugate numbers, i.e., 1/p+1/p′ = 1, we can introduce the product, called

the Weil-Petersson pairing,

Lpρs(D,G) × Lp
′

ρs(D,G) → C , 〈f, g〉Gs :=

∫

F

f(z)g(z)λ2−2s
D (z)d2z .

The integral is seen to converge by rewriting the integrand as follows,

f(z)g(z)λ2−2s
D (z) =

(

f(z)λ
−sp
p

D (z)

)

·

(

g(z)λ
−sp′

p′

D (z)

)

· λ2D(z) ,

and then applying Hölder’s inequality with respect to the measure λ2D(z)d
2z. This also

establishes the fact that the Weil-Petersson pairing induces an isometric isomorphism

Lp
′

ρs(D,G)
∼=

(

Lpρs(D,G)
)∗

(3)

for any 1 ≤ p <∞ and any group G acting on D. It is remarkable that the subspaces
of holomorphic automorphic forms respect this duality, albeit not isometrically.

Theorem 2.12 ([15]). For 1 ≤ p <∞ the anti-linear map

Ap
′

ρs(D,G) →
(

Apρs(D,G)
)∗

, ψ 7→ lψ := 〈·, ψ〉Gs ,

is an isomorphism which satisfies the norm inequality

c−1
s ‖ψ‖

Lp′

s (D,G)
≤ ‖lψ‖ ≤ ‖ψ‖

Lp′

s (D,G)
.

2Otherwise the constructions will not be independent of the domain, e.g., the operation of pull-
back introduced below would map functions holomorphic around ∞ to meromorphic functions at
the origin (see [15] for details).
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The projection operator from the space of measurable automorphic forms to the
holomorphic automorphic forms can be written down quite explicitly. For this, let

kD : D×D→ C , kD(z, w) := 1

π(1 − zw̄)2
.

be the well-known Bergman kernel on the disc. On any other domain related to D
related to D via a biholomorphism ψ : D → ψ(D), the kernel is given by

kψ(D)(ψ(z), ψ(w))ψ
′(z)ψ′(w) = kD(z, w) .

Now let us define a related function,

KD,s(z, w) := (2s− 1)πs−1 (kD(z, w))
s
, cs :=

2s− 1

s− 1
,(4)

which we call the s-Bergman kernel.

Theorem 2.13. The operator defined by the expression

f 7→ (βρsf)(z) :=

∫

D

λ2−2s
D (w)KD,s(z, w)f(w)d

2w ,

is a well-defined projection operator Lpρs(D,G) → Apρs(D,G) of norm at most cs.
Moreover it is symmetric with respect to the Weil-Petersson pairing, i.e.,

〈βρsf, g〉
G
s = 〈f, βρsg〉

G
s .

The final theorem we need later on concerns the normal convergence of the fol-
lowing series called the Poincaré series,

Θρs [f ](z) :=
∑

g∈G

f(gz)ρg(z)
−1 ,

for given s-factor of automorphy ρs.

Theorem 2.14. If ‖f‖L1
s(D) < ∞, the series Θρs [f ] converges normally. More-

over Θρs [f ] ∈ L1
ρs(D,G) and

‖Θρs [f ]‖L1
ρs

(D,G) ≤ ‖f‖L1
s(D) .

This means that the Poincaré operator Θρs is a bounded linear operator L1
s(D) →

L1
ρs(D,G). By normal convergence its restriction to A1

s(D) maps into A1
ρs(D,G). The

Poincaré operator is compatible with the Weil-Petersson product in the following way,
which can be checked by straight-forward calculation.

Lemma 2.15. Let f ∈ L∞
ρs(D,G), g ∈ L1

ρs(D,G) and g = Θρs [h] for some
function h ∈ L1

s(D). Then the scalar product can be computed by

〈f, g〉Gs =

∫

D

f(w)h(w)λ2−2s
D (w)d2w = 〈f, h〉1s .
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3. Holomorphic maps of Teichmüller spaces. Now that we have introduced
all the needed background, we immediately come to the main theorem, which is the
starting point of all investigations in this paper, in its precise formulation.

Theorem 3.1. Let Q : S(D) → O(D) be a differential operator that satisfies

Q[f ◦ g] = (Q[f ] ◦ g)(g′)m ∀g ∈ PSL(2,C) ,
for some m ∈ N and such that Q[f ] is a polynomial in f ′′, . . . , f (N) and (f ′)−1 with
complex coefficients. Then Q induces a holomorphic map

βQ : TB(G) → Bm(D) , βQ([µ]) = Q(πBS([µ])) ,

for any Fuchsian group G.

Proof. The map is well-defined, since wµ only depends on the class [µ]. Recall also
that πBS([µ]) is given by the 1-point normalization at the origin of wµ|D. To prove
holomorphicity for all G it clearly suffices to prove it for G = 1 since all T (G) ⊂ T (1)
are complex submanifolds.

The complex structure on TB(1) is inherited from the one on L∞(Dc), so if we
lift the map βQ to

β̃Q := βQ ◦ πT , β̃Q(µ) = βQ([µ]) ,

then βQ is holomorphic iff β̃Q is. In general, a map from C into a complex Banach
space is said to be holomorphic iff the Gateaux derivative exists and is finite. A map
from an infinite-dimensional complex Banach space into a complex Banach space is
holomorphic iff it is locally bounded and it is holomorphic when restricted to any
finite-dimensional subspace, which again is true iff it is holomorphic when restricted
to any one-dimensional subspace by Hartog’s theorem. Hence we have to show that
β̃Q is locally bounded and that

lim
t→0

‖β̃Q(µ+ tν)− β̃Q(µ)‖Bm(D)

t

exists and is finite for all µ ∈ Belt(Dc,1) and ν ∈ L∞(Dc), which we do in two
separate lemmas.

Lemma 3.2. The function β̃Q(µ+ tν)(z0 + z), viewed as a function of (z, t) in a
small neighborhood of the origin in C2, is locally bounded for any z0 ∈ D, µ ∈ Belt(Dc)
and ν ∈ L∞(Dc).

Proof. The function is well defined on

{z : |z + z0| < 1} ×
{

t : |t| < (1− ‖µ‖∞)‖ν‖−1
∞

}

.

We restrict it to a product of discs, or more precisely to Dr(z0) × Dǫ where r :=
dist(z0, ∂D) and ǫ is any real number such that the norm of µ + tν is bounded by
K < 1 for t ∈ Dǫ. Let M be the Möbius transformation obtained by composing the
translation z 7→ z− z0 with the dilatation z 7→ r−1z. The disc Dr(z0) is mapped onto
the unit disc by M . Define the compositions

µ• := µ ◦M , ν• := ν ◦M .
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Now in general, the Beltrami differential of a composition is given by

µ̂(g ◦ f) =
µ̂(f) + (µ̂(g) ◦ f) · (∂f/∂f)

1 + (µ̂(g) ◦ f) · µ̂(f) · (∂f/∂f)
,

and hence, because µ̂(M) = 0, we have

µ̂(wµ+tν ◦M) = µ̂(wµ+tν ) ◦M
M ′

M ′
= (µ+ tν) ◦M

M ′

M ′
.

On the other hand,

∂̄(wµ+tν ◦M) = ∂̄wµ+tν ◦M ·M ′

∂(wµ+tν ◦M) = ∂wµ+tν ◦M ·M ′ ,

so wµ+tν◦M =: wµ
•+tν•

solves the Beltrami equation (this is a slight abuse of notation
which will only be used in this proof: By previous conventions, wµ

•+tν•

should be used
to denote the 1-point normalized solution of the Beltrami equation for the coefficient
µ•+ tν•, and in general, this is not the same as wµ+tν ◦M) for the coefficient µ•+ tν•.
We remarked in Section 2 that the family

Fν := {wµ+tν : t ∈ Dǫ}

is a normal family of K-qc mappings. Such a family is also equi-Hölder continuous on
compact sets ([19], Ch. II.5),

|f(z1)− f(z2)| ≤ C|z1 − z2|
1/k , ∀z1, z2 ∈ K ⊂ C and f ∈ Fν ,

which results in a bound

|f(z)| ≤ C′ ∀ z ∈ Dr(z0) .

This also implies the same bound on the values of the functions of the family F•
ν :=

{wµ
•+tν•

: t ∈ Dǫ}, and this bound on the family on the boundary ∂D of the unit
disc yields a bound on all the derivatives at the origin by the Cauchy estimates:

∣

∣

∣

∣

dm

dzm
wµ

•+tν•

(0)

∣

∣

∣

∣

≤ Cm , ∀ t ∈ Dǫ .

Now because Q[f ] is a polynomial in the first N derivatives of f and (f ′)−1, the
bounds Cm induce a bound on the value of the image of the operator Q applied to f
at the origin,

|Q[f ](0)| ≤ Nm , ∀f ∈ Fν .

By the transformation behaviour with respect to precomposition with a disc auto-
morphism,

Q[wµ
•+tν•

](0) = Q[wµ+tν ◦M ](0) = Q[wµ+tν ](z0) · r
m ,

so we get a pointwise estimate for the expression in the Bm(D)-norm,

λ−mD (z0)|β̃
Q(µ+ tν)(z0)| ≤ λ−mD (z0)r

−mNn .
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If we combine this with a well-known and fundamental estimate on the Poincaré
density [15],

(5) 1 ≥ λD(z0)dist(z0,D) ≥
1

4
,

(where the latter one is only valid for domains not containing infinity) and r ≤
dist(z0,D) we arrive at

λ−mD (z0)|β̃
Q(µ+ tν)(z0)| ≤ 4mNm ,

i.e., the norm of β̃Q is a locally bounded function. Observe that this works because
the power of r and λD are precisely the same. In any other case, there would be no
uniform bound.

Lemma 3.3. The Gateaux derivative of β̃Q(µ + tν) as a function of t exists at
t = 0 and is finite for all µ ∈ Belt(Dc,1) and ν ∈ L∞(Dc).

Proof. Let us abbreviate the function β̃Q(µ + tν)(z) by φ(t, z), and let ǫ be as
in the proof of the previous lemma. For fixed z, this is a holomorphic function of t,
since wµ+tν (z) is holomorphic in t and Q leaves the regularity of the t-dependence
unaltered because of its polynomial structure. By Cauchy’s integral formula we can
estimate for |t| < ǫ

|φ(t, z)− φ(0, z)| ≤
1

2π
sup|η|=ǫ|φ(η, z)|

∫

|η|=ǫ

∣

∣

∣

∣

1

η − t
−

1

η

∣

∣

∣

∣

dη .

Now, by Lemma 3.2 the quantity sup|η|=ǫ|φ(η, z)| is locally (independent of z) ma-
jorized by 4mNm. Moreover, we are interested in φ(t, z) near the origin, so we can
restrict t to the disc D ǫ

2
. The following estimate,

∫

|η|=ǫ

∣

∣

∣

∣

1

η − t1
−

1

η − t2

∣

∣

∣

∣

dη ≤
8π

ǫ
|t1 − t2| ,

is straightforward for ti ∈ D ǫ
2
, and we use it to obtain

|φ(t, z)− φ(0, z)| ≤ 2 · 4m+1Nm
|t|

ǫ2
,(6)

which in other words says that β̃n is locally Lipschitz. But we want a little more. For
this, let us denote the difference quotient of φ(t, z) at t = 0 by ψ(t, z). This can be
estimated in the same way with the help of (6),

|ψ(t1, z)− ψ(t2, z)| ≤
1

2π

∫

|η|=ǫ

|ψ(η, z)|

∣

∣

∣

∣

1

η − t1
−

1

η − t2

∣

∣

∣

∣

dη

≤
2 · 4m+2Nm

ǫ3
|t1 − t2| .

Hence taking a sequence ti → 0, the sequence

t−1
i

(

β̃Q(µ+ tiν)− β̃Q(µ)
)

,

is a Cauchy sequence in the Banach space Bm(D) and therefore converges to a unique
definite element in Bm(D). This proves the lemma and concludes the proof of the
theorem.



IGHER BERS MAPS 117

One might wonder at this point if there really exist differential operators satisfying
the prerequisites of the theorem. We will see in Section 4 that there indeed are, and we
will study the holomorphic maps they induce in quite some detail. We also remark that
[11] contains a rather complete classification of operators satisfying the prerequisites
of the theorem.

To understand the mappings in more detail, the next step is to look at their
infinitesimal behaviour. To this end, let us determine a general formula for their
differential at the origin.

Theorem 3.4. Let Q be as in Thm. 3.1, and let

M1(Q[f ]) =
∑

k,l

ak,l
f (k)

(f ′)l
,

be the part of the polynomial Q[f ] which consists of monomials of degree one in
f ′′, . . . , f (N). Then the derivative D0β̃

Q at the origin of L∞(Dc) is given by the
bounded linear operator

D0β̃
Q : L∞(Dc) → Bm(D) , ν 7→

∑

ak,l
(−1)kk!

π

∫Dc

ν(η)

(z − η)k+1
d2η .

Proof. Let w be the coordinate on D. The quasiconformal solution to the trivial
Beltrami differential 1-point-normalized at 0 is f(w, 0) = w, which we will simply
denote by f(w). Fix ν ∈ L∞(Dc). The 1-point-normalized solutions to the Beltrami
equation for tν with t ∈ D1/‖ν‖ will be denoted by f(w, t). Further, let φ(w, t) :=
Q[f(w, t)] denote the image in Bm(D). We are interested in the derivative of φ with
respect to t at t = 0. We denote t-derivation by a dot, w-derivation by a prime and
p-th order w derivatives by (p). Now since f (p)(w) ≡ 0 for p ≥ 2 and f(w)′ ≡ 1, we
get for p ≥ 2 and q ≥ 1

d

dt

(

f(w, t)(p)

(f(w, t)′)q

)

|t=0

=
ḟ (p)(f ′)q − q(f ′)q−1ḟ ′f (p)

(f ′)2q |t=0

= ḟ (p)(w) .

while when the numerator contains products of derivatives of order ≥ 2,

d

dt

(

f(w, t)(k)f(w, t)(l)

(f(w, t)′)q

)

|t=0

=

(

ḟ (k)f (l) + f (k)ḟ (l)
)

(f ′)q − q(f ′)q−1ḟ ′f (k)f (l)

(f ′)2q |t=0

≡ 0 .

Hence only the monomial terms in the numerator survive, and the t-derivative of such
a monomial at t = 0 yields

d

dt
φ(w, t)|t=0 =

∑

ak,lḟ
(k)(w) .

Now since f(w, t) is holomorphic in t, we can expand it as we did in Section 2,

f(w, t) = f(w) + tf1(w) +O(t2) ,
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from which of course follows that ḟ(w, 0) = f1(w). We have an explicit representation
for the term f1 (see equation (1)) given by

(7) f1(w) = −
w(w − 1)

π

∫C ν(η)

η(η − 1)(η − w)
d2η .

The integral converges absolutely since the modulus of the integrand is of order
O(|η|−3) for |η| → ∞, hence the w-derivation can be moved inside the integral. The
part depending on w can be rewritten conveniently as

(8)
w(w − 1)

η(η − 1)(η − w)
=

1

η − w
−

w

η − 1
+
w − 1

η
.

Since the last two terms are linear in w, they don’t contribute to derivatives of order
higher than one, and we can read off the k-th w-derivative of ḟ ,

ḟ (k)(w) =
(−1)kk!

π

∫Dc

ν(η)

(η − w)k+1
d2η ,

which then implies that

d

dt
φ(z, t)|t=0 =

∑

ak,l
(−1)kk!

π

∫Dc

ν(η)

(z − η)k+1
d2η ,

which, of course, is exactly D0β̃
Q(ν), since we know the Gateaux derivative exists.

4. Higher Schwarzian derivatives and higher Bers maps. We remarked
above that there do exist operators satisfying the prerequisites of our main Theorem
3.1. In this section we introduce two series of such operators in particular, which we
call the A and B series of higher Schwarzians (Def. 4.1), as well as their induced holo-
morphic mappings, which we call higher Bers maps because of their close analogy to
the Bers embedding. These operators are good novel examples of non-homogeneous
operators that nevertheless induce mappings of Teichmüller space. We go into this
point more precisely in Section 4.4.4, where we also review results known on homo-
geneous operators.

4.1. Higher Schwarzian derivatives. There are several generalizations of
Schwarzian derivatives defined in the literature. We will consider two particular series
of such generalizations, which we call the A and B series. The former are quite recent
and were introduced by Eric Schippers in [25], while the latter have been known for
longer time and can be found, for instance, in [8] and [11].

Definition 4.1. For any interger n ≥ 3, the A and B series of higher
Schwarzians σ•

n : Mli(D) → O(D) are defined by

(9)

σA3 [f ] := Sf , σAn+1[f ] := σAn [f ]
′ − (n− 1)

f ′′

f ′
σAn [f ]

σBn [f ] := −2(f ′)
n
2 −1 d

n−1

dzn−1

(

(f ′)1−
n
2

)

,

where the same branch of the square root of f is assumed in both appearances in the
definition of σBn [f ] for odd n.

They are indeed well defined on the space of meromorphic locally injective func-
tions, since one easily can convince oneself that only powers of the first derivative of f
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appear in the denominator of the expression for σ•
n[f ] (see also Lemma 4.2 below). In

general, if we refer to an operator of either series, we will write σ•
n. Many statements

can be obtained for both types of operators simultaneously. However, to do so we in-
troduced slightly different conventions for the σBn than the ones in [8] and [11], where
the operators are denoted by Sn. More precisely, they are related by σBn = −2Sn−1.
Let us write down the first few operators of both series explicitly. For σA, one obtains
via the recursion formula

σA4 [f ] =
f ′′′′

f ′
− 6

f ′′′f ′′

(f ′)2
+ 6

(

f ′′

f ′

)3

σA5 [f ] =
f ′′′′′

f ′
− 10

f ′′′′f ′′

(f ′)2
− 6

(

f ′′′

f ′

)2

+ 48
f ′′′(f ′′)2

(f ′)3
− 36

(

f ′′

f ′

)4

.

We warn the reader that there are two typos in the expression for σA5 [f ] in the original
paper [25]. The first operators of the B-series are given by

σB3 [f ] =
f ′′′

f ′
−

3

2

(

f ′′

f ′

)2

σB4 [f ] = 2
f

′′′′

f ′
+ 12

f ′′′f ′′

(f ′)2
+ 12

(f ′′)2

(f ′)3

σB5 [f ] = 3
f

′′′′′

f ′
−

15

2

(

(f ′′′)2 + 4f ′′′′f ′′
)

(f ′)2
+

315

4

f ′′′(f ′′)2

(f ′)3
−

945

8

(

f ′′

f ′

)4

.

In particular, σ•
3 [f ] = Sf , so calling them higher Schwarzians is justified.

For the derivative of the higher Bers maps, which are holomorphic maps of
Teichmüller spaces constructed with the help of the higher Schwarzians and will be
introduced in a moment, we need the following structural statement about the higher
Schwarzians.

Lemma 4.2. The expressions σ•
n[f ] are polynomials in f ′′, . . . , f (n) and (f ′)−1,

with rational coefficients. The only term of σ•
n[f ] where the numerator is a monomial

of degree one in f ′′, . . . , f (n) is c•(n) · f (n)/f ′ where cA(n) = 1 and cB(n) = n− 2.

Proof. Let us first consider σAn [f ]. The lemma is certainly true for n ≤ 5 by
the explicit formulas above. Now σAn+1[f ] is a sum of the derivative of σAn [f ] and the
product f ′′/f ′ ·σAn . By induction, the latter term being a product of two polynomials
in f ′′, . . . , f (n) and (f ′)−1 is again a polynomial in these variables, and since each of
the polynomials has no constant term, this product cannot contain a monomial of
degree one. Also, the derivative of σAn [f ] is of this structure by the quotient rule of
differentiation and a monomial of degree one can only be obtained by differentiating
the term f (n)/f ′. The monomial obtained in this way is f (n+1)/f ′. Since σA4 [f ] has
integer coefficients only, all σAn [f ] with n ≥ 4 have rational coefficients.

Let us now consider the σBn . Let us compute the first derivatives in the definition
of σBn [f ],

dn−1

dzn−1

(

(f ′)1−
n
2

)

=
(

1−
n

2

) dn−2

dzn−2

(

(f ′)1−
n
2 −1f ′′

)

=
(

1−
n

2

) dn−3

dzn−3

(

(1− n
2 − 1)(f ′)1−

n
2 −2(f ′′)2 + (f ′)−

n
2 f ′′′

)

,
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from which we see what happens in general. Namely, the result of taking all derivatives
will be a sum of terms, each of which is a product of f ′′, . . . , f (n) and (f ′)−

n
2 −k with

0 ≤ k ≤ n − 2. Hence, after multiplying through with (f ′)
n
2 −1, the summands are

products of f ′′, . . . , f (n) and (f ′)−(k+1). Moreover, the only term with numerator a
monomial of degree 1 in f ′′, . . . , f (n) is the second summand obtained by the product
rule of differentiation applied to the term (f ′)−

n
2 f (k). The resulting term after n− 1

derivatives in σBn [f ] is then

(−2) · (1 − n
2 )(f

′)
n
2 −1(f ′)−

n
2 f (n) = (n− 2)

f (n)

f ′
.

The coefficients in both series are indeed rational and not integer. Our examples
above already show this for the B series. The first non-integer coefficient in the A
series appears in σA6 [f ].

There is a very useful reformulation of the recursion relation for σAn , which we
want to consider next. It will be used several times later on.

Lemma 4.3. The defining relation (9) for the operators in the A series of higher
Schwarzians can be rewritten as follows

σAn+1[f ]

(f ′)n−1
=

(

σAn [f ]

(f ′)n−1

)′

.(10)

Moreover, if f is schlicht, this is equivalent to

σAn [f ] =

(

dn−3

dzn−3
Sf−1

)

◦ f · (f ′)n−1 .(11)

Proof. By applying the quotient rule to (10) we immediately get (9) and
thereby the first statement is proven. The second statement follows from writing
the Schwarzian of the inverse function in terms of the Schwarzian of the function
itself by applying the chain rule for Schwarzians to f−1 ◦ f ,

−Sf−1 ◦ f = Sf · (f
′)−2 .

If we take the derivative of this equation, we get

−

(

d

dz
Sf−1

)

◦ f · f ′ =

(

Sf
(f ′)2

)′

=
σA4 [f ]

(f ′)2
,

and this proves (11) for n = 4. Inductively, we assume (11) to be true for n, divide it
by (f ′)n−1 and take the derivative of it,

(

σAn [f ]

(f ′)n−1

)′

=

(

dn+1−3

dzn+1−3
Sf−1

)

◦ f · f ′ .

If we now multiply through with (f ′)n−1, the left hand side equals σAn+1[f ] by equation
(10) whereas the right hand side is the same as the right hand side of (11) for the
value n+ 1.

Neither series of higher Schwarzian derivatives has a nice chain rule, i.e., a closed
formula for the value of the operator applied to a composition of functions. However,
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they do behave nicely when precomposed with Möbius transformations. Observe that
this is precisely the required formula in the main Theorem 3.1

Lemma 4.4. The higher-order Schwarzian derivatives behave in the following way
under precomposition with a Möbius transformation g,

σ•
n+1[f ◦ g] = (σ•

n+1[f ] ◦ g)(g
′)n .(12)

Proof. The formula is proved by induction for the A series. By (2) we know it is
true for σA3 [f ] = Sf . For the induction step we compute,

σAn+1[f ◦ g] =
(

σAn [f ] ◦ g · (g
′)n−1

)′
− (n− 1)

(f ◦ g)′′

(f ◦ g)′
σAn [f ◦ g]

=
(

σAn [f ]
′ ◦ g

)

· (g′)n + (n− 1)σAn [f ] ◦ g · (g
′)n−2 · g′′

− (n− 1)
(f ◦ g)′′

(f ◦ g)′
(g′)n−1σAn [f ] ◦ g .

Comparing this with the desired result written out explicitly,

(σAn+1[f ] ◦ g) · (g
′)n =

(

σAn [f ]
′ ◦ g − (n− 1)

f ′′ ◦ g

f ′ ◦ g
σAn [f ] ◦ g

)

· (g′)n ,

we find that the first term matches up fine while the second matches up, if

g′′ −
(f ◦ g)′′

(f ◦ g)′
g′ = −(g′)2

f ′′ ◦ g

f ′ ◦ g
.

But this is easily seen to be true, since

(f ◦ g)′′

(f ◦ g)′
=
f ′′ ◦ g · (g′)2 + f ′ ◦ g · g′′

f ′ ◦ g · g′
.

This concludes the proof for the A series. As for the proof of the transformation
behaviour of the B series we reproduce the elegant proof of this fact contained in [8].
This proof uses a well-known lemma due to Bol [9].

Lemma 4.5. Let fi ∈ O(D) be related via f2 = (f1 ◦ g)(g′)1−
n
2 for some g ∈

PSL(2,C). Then their (n− 1)st derivatives are related by

f
(n−1)
2 = (f

(n−1)
1 ◦ g)(g′)

n
2 .

We apply this lemma to the functions

f1 = (f ′)
n
2 −1 , f2 = ((f ◦ g)′)

1−n
2 = (f ′ ◦ g · g′)

1−n
2 ,

where g is any Möbius transformation. Observe that their quotient is precisely
σBn [f ◦ g], which then immediately yields the desired transformation behaviour,

σBn [f ◦ g] = ((f ◦ g)′)
n
2 −1 dn−1

dzn−1

(

(f ◦ g)′)
n
2 −1

)

=
f
(n−1)
2

f2
=
f
(n−1)
1 ◦ g

f1 ◦ g
(g′)n−1 = (σBn [f ] ◦ g)(g

′)n−1 .
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But what happens under postcompositions with Möbius transformations? Neither
series of operators has an invariance property with respect to postcompositions, but
for certain Möbius transformations, the A series behaves invariantly. Namely, observe
that the inductive formula (9) can be written with the help of the pre-Schwarzian,
i.e., the operator given by PS[f ] := f ′′/f ′,

σAn+1[f ] := σAn [f ]
′ − (n− 1)PS[f ]σAn [f ] .

Hence the σAn will be invariant under the postcomposition with those maps that
leave both the Schwarzian and the pre-Schwarzian invariant. These are necessarily
Möbius transformations because of the required invariance of the Schwarzian; a simple
computation further shows that the pre-Schwarzian is only left invariant by affine
transformations,

PS[M ] =
M ′′

M ′
= (cz + d)2 · (−2)

c

(cz + d)3
=

−2c

cz + d
,

which vanishes only for c = 0. This proves the following lemma.

Lemma 4.6. Let M be an affine transformation, i.e., M(z) = az + b. Then
σAn [M ◦ f ] = σAn [f ].

Both series of higher Schwarzians map meromorphic locally injective functions to
holomorphic functions. We equipped the target space O(D) with various norms which
induce Banach space structures in Section 2.4. There are deep relations between the
higher Schwarzians and the hyperbolic sup-norms, which yield analogous versions of
the Kraus-Nehari Theorem. These results are a further motivation for the study of
higher Bers maps.

Proposition 4.7 ([25]). If f is schlicht, then

‖σAn [f ]‖Bn−1(D) ≤ 4n−3(n− 2)!6 ,

and this bound is sharp.

We will not reproduce the proof here, because it is quite involved and instead
refer the interested reader to the original paper. The author of [25], Eric Schippers,
has communicated to me that this estimate is already implicitly contained in [14], of
which he was not aware at the time of writing [25].

The analogous result for the B-series follows; neither will we reproduce this proof
here.

Proposition 4.8 ([8], Thm. 2). If f is schlicht, then

‖σBn [f ]‖Bn−1(D) ≤ 2(n− 2) · n · (n+ 2) · . . . · (3n− 6) ,

and this bound is sharp.

Both formulas of course reproduce the constant 6 for n = 3 and, in both cases,
the functions which realize the bounds are related to the Koebe function.

4.2. Higher Bers maps: Definition and infinitesimal properties. We now
begin to tie the higher Schwarzians to the geometry of Teichmüller space in precise
analogy to the Bers embedding.
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Definition 4.9. The higher Bers maps β•
n are given by,

β•
n : TB(G) → Bn−1(D) , β•

n([µ]) = σ•
n(πBS([µ])) .

Moreover, the lift of β•
n to L∞(Dc) will be denoted by β̃•

n and the image of TB(G) in
Bn−1(D) will be denoted by T •

n(G).

The main theorem 3.1 applies to these maps because of Lemma 4.4 and hence we
get the following corollary.

Corollary 4.10. The higher Bers maps β•
n are holomorphic maps.

The remainder of this section focusses on the infinitesimal behaviour of the higher
Bers maps. Many results from the classical case of the Bers embedding generalize in
some sense for the differential at the origin, which we have obtained in general in
Theorem 3.4. We determine its surjectivity (Thm. 4.14), explicitly describe its kernel
(Thm. 4.18), and obtain several other results along the way.

Indeed, almost all crucial properties of the Bers embedding are deduced from the
differential at the origin, since it can be related to the differential at an arbitrary point
of TB(G) by taking ‘the derivative of the chain rule’. The lack of a good chain rule
for higher Schwarzians therefore makes it difficult to obtain infinitesimal statements
at other points. We will comment on generalizations and further ideas to circumvent
this problem in the next section.

Let us now specialize Theorem 3.4 to the higher Bers maps.

Proposition 4.11. The differentials of the higher Bers maps at the origin are
given by

D0β̃
•
n : L∞(Dc) → Bn−1(D) , ν 7→

(−1)nn!c•(n)

π

∫Dc

ν(η)

(z − η)n+1
d2η .

The operator norm of D0β̃
•
n is bounded by 2·4n−1n!c•(n)

n−1

Proof. By Lemma 4.2, the monomial part of σ•
n[f ] is given by c•(n) f

(n)

f ′
, and this

proves the formula for the differential together with Theorem 3.4. The norm estimate
follows easily from the integral estimate,

∫Dc

1

|η − w|n+1
d2η ≤

∫

|η−w|≥1−|w|

1

|η − w|n+1
d2η

= 2π

∫ 1−|w|

∞

1

rn+1
rdr =

2π

(n− 1)(1− |w|)n−1
.

together with the observation that (1− |w|) = dist(w, ∂D). Therefore, by the funda-
mental inequality (5) for the Poincaré density, we get

|D0β̃
•
n(ν)(w)λ

1−nD (w)| ≤ ‖ν‖∞
2 · n!λ1−nD (w)c•(n)

(n− 1)(1− |w|)n−1

≤
2 · 4n−1n!c•(n)

n− 1
‖ν‖∞ .

Since the differentials at the origin of the two series of higher Bers maps are
proportional, we begin to study this important linear operator in more detail. In fact,
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Bers’ proof that β•
3 is an embedding consists of two parts: First of all, Bers established

the necessary properties of the differential at the origin, and as second step he showed
that the differential at an arbitrary µ ∈ Belt(Dc) is related to the differential at the
origin by composition with isomorphisms, which are obtained from considering the
chain rule for Schwarzians and the translation maps in Belt(Dc), very similarly to a
computation we do later in (15).

The first part, studying the differntial at the origin, however, is more involved.
Bers accomplished the proof of surjectivity (amongst many other results) in the beau-
tiful paper [6]. At the heart of the surjectivity proof lies the following reproducing
formula.

Theorem 4.12 (Bers). Let D1 be a quasidisc with ∞ ∈ ∂D1, h : D1 → D2 a
uniform Lipschitz reflection across ∂D1 and q ≥ 2 an integer. Then the following
reproducing formula holds:

φ(z) =

∫

D1

νqφ(η)

(z − η)2q
d2η , ∀φ ∈ Bq(D2) ,(13)

where νqφ is given by

νqφ(z) := −
2q − 1

π
(φ ◦ h)(z) · ∂z̄h(z) ·

(

z − h(z)
)2q−2

.

What one should notice here is that νq is not a continuous linear operator from
Bq(D2) to L∞(D1), because the norm of νqφ cannot be uniformly estimated by the
Bq-norm of φ. The best one achieves is

|νqφ(z)| ≤ C‖φ‖Bq(D2)λ
q−2
D1

(z) .

The unsatisfactory point is the appearance of the unbounded quantity λD1 , which
enters due to the term |h(z)− z|. The Bq-norm is only capable of absorbing a power
q of the Poincaré density, and hence a power of q − 2 cannot be taken care of. For
convenience, let us introduce a slightly different quantity,

µqφ(z) := ν
q+2
2

φ (z) = Cq(φ ◦ h)(z) · ∂z̄h(z) ·
(

z − h(z)
)q
.

in terms of which the reproducing formula reads

φ(z) =

∫

D1

µqφ(η)

(z − η)q+2
d2η , ∀φ ∈ B q+2

2
(D2) .(14)

By rewriting, we have obtained a reproducing formula with different domain (i.e.,
B q+2

2
instead of Bq), but with the structure we need. In Proposition 4.13 below, we

will show that this formula is verbatim valid on Bq. Observe, however, that for q = 2
the two agree, i.e., µ2

φ = ν2φ, so if one looks at the case of the Bers embedding this
difference is not seen.

The reproducing formula proves the surjectivity of the differential of the Bers
embedding (say, modeled on the upper half-plane instead of the disc for simplicity)
directly:

D0β̃3(ν
2
φ)(z) = −

6

π

∫

ν2φ(w)

(z − w)4
d2w = −

6

π
φ(z) ,
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so in other words φ 7→ −π
6 ν

2
φ is a section of the map D0β̃3.

To see that the original reproducing formula is not sufficient for the differential
of the n-th higher Bers map, observe that this contains the term (z − w)n+1. The
appropriate q(n) in the reproducing formula (14) is given by

n+ 1
!
= q + 2 =⇒ q(n) =

n− 1

2
.

However, the formula with this q(n) is only valid on B q(n)+2
2

, whereas we would need

it on Bn−1. This is unfortunately not the case, however, since

q(n) + 2

2
=
n+ 1

2
6= n− 1 ∀ n ≥ 4 .

So (14) only proves the surjectivity of the differential for n = 3. But fortunately the
argument of Bers’ original proof goes through with some modification for the setting
in which we need it and a version of the same fomula holds, which we give now.

Proposition 4.13. Let D1, D2, h and q be as in Theorem 4.12. Then

φ(z) =

∫

D1

µqφ(η)

(z − η)q+2
d2η , ∀φ ∈ Bq(D2) .

Proof. We won’t reproduce the whole proof here but rather sketch it. One starts
by proving it for holomorphically extendable functions

ψ ∈ Ã1
q(D2) :=

{

f ∈ A1
q(D

′
f ) for someD′

f ⊃ D2

}

.

Holomorphicity at ∞ implies f ∈ O(|z|−2) which is satisfied anyway, since f ∈
A1
q(D

′
f ), which implies f ∈ O(|z|−2q) for z → ∞. In the same way, the existence

of the j-th derivative at infinity requires f ∈ O(|z|−(j+1)). Hence for ψ ∈ Ã1
q(D2), we

know there is a function Fj ∈ O(D′
ψ) such that

F
(j+1)
j (z) = ψ(z) ∀N ∋ j ≤ 2q − 1 .

Then define the function

Gj(z) :=

{

Fj(z) z ∈ D2
∑j
k=0

1
k! (z − h(z))kF

(k)
j (h(z)) z ∈ D1

If we compute ∂̄Gj , which of course vanishes on D2, some nice cancellations occur,
since the derivative of a summand in Gj is given by

∂̄
(

(z − h(z))kF
(k)
j (h(z))

)

=

− ∂̄h(z) · k(z − h(z))k−1 · F
(k)
j (h(z)) + (z − h(z))kF

(k+1)
j (h(z))∂̄h(z) ,

where if summed up the first part of the k-th summand cancels the second part of
the (k − 1)-st summand, so that only the second part of the derivative of the last
summand remains, namely

∂̄Gj(z) =
1

j!
(z − h(z))j ∂̄h(z)F

(j+1)
j (h(z)) = −

π

(j + 1)!
µjψ(z) ∀ z ∈ D1 .
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On the other hand, Gj has the required regularity for Green’s formula to hold,

Gj(z) = −
1

π

∫DR

∂̄Gj(w)d
2w

w − z
+

1

2πi

∫

∂DR

Gj(w)dw

w − z
,

which we differentiate j + 1 times with respect to z. By construction, the left-hand
side is ψ whereas on the right-hand side, differentiation produces a factor of (j + 1)!
so we get

dj+1

dzj+1
Gj(z) = ψ(z) =

∫DR

µjψ(w)d
2w

(w − z)j+2
+

(j + 1)!

2πi

∫

∂DR

G(w)dw

(w − z)j+2
,

In the first term we can write the integral overDR := DR∩D1 since else the integrand
is zero. If we now take the limit R → ∞, the second term vanishes and the first
term becomes the desired reproducing formula. Finally the proof concludes by an
approximation argument of functions in Bq by functions in Ã1

q which is exactly the
same as in [6].

With this modified version of the reproducing formula, we can proceed similarily
to Bers’ original proof of the surjectivity of the differential of the Bers mapping. We
want to remark that the operator which is given by the derivative of the higher Bers
maps already appears in [12] and there also the surjectivity is established.

Theorem 4.14. The differentials of the higher Bers maps at the origin, D0β
•
n,

are surjective operators.

Proof. Of course D0β
•
n will be surjective iff D0β̃

•
n is. We observe that formally

the reproducing formula already does the job: Set q = n− 1, then

φ(z) =

∫

D1

µn−1
φ (w)

(z − w)n+1
d2w = (−1)n

n!c•(n)

π
D0β̃

•
n(µ

n−1
φ ) .

However, recall that the formula required ∞ ∈ ∂D2, e.g., D2 = Hc. In order to apply
the formula on Bn−1(D), let g : H→ D be a Möbius transformation. It acts on S(D)
by pull-back, and hence also on TS(1). Now

µ̂(g∗f) = µ̂(f) ◦ g ·
ḡ′

g′
= g∗(−1,1)µ̂(f) ,

and since

σ•
n[g

∗f ] = σ•
n[f ◦ g] = (σ•

n[f ] ◦ g)(g
′)n−1 ∀ g ∈ Möb(Ĉ) ,

we have the following commutative diagram:

T HS (1) µ̂- L∞(Hc) β̃•,H
n- Bn−1(H)

T DS (1)g∗6

µ̂- L∞(Dc)

g∗(−1,1)

6

β̃•
n- Bn−1(D)

g∗n−1

6

For the time being we have attached the superscripts D resp. H to distinguish the
different spaces resulting from a different model domain. Now, if we look at the proof
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of Theorem 3.4, no use whatsoever was made of the fact (see remark below) that the
Beltrami differentials were supported on Dc. Hence the differential

D0β̃
•,H
n : L∞(Hc) → Bn−1(H) ,

is given by

D0β̃
•,H
n (ν) =

(−1)nn!

π

∫Hc

ν(w)

(w − z)n+1
d2w .

Now we can utilize the reproducing formula. By rewriting it in terms of the differential
we see that it states

φ =
π

(−1)nn!

(

D0β̃
•,H
n ◦ µn−1

)

(φ) , ∀ φ ∈ Bn−1(H) ,

which especially implies that D0β̃
•,H
n is a surjective operator. The proof concludes by

relating the two differentials. By taking the derivative in the commutative diagram
we obtain

D0β̃
•
n = (g∗n−1)

−1 ◦D0β̃
•,H
n ◦ g∗(−1,1) ,(15)

where the operators to the left and right of D0β̃
•,H
n are isomorphisms. Hence D0β̃

•
n

is surjective as well.

Remark 4.15. In the proof we have used the explicit expression for f1 given in
(7). This expression depends on the normalization, i.e., on the fact that f(z, 0) = z,
or equivalently, on the fact that f0 = z. However, the general formula for f1 without
any assumption on the normalization is obtained by inserting coefficients A,B in front
of the two last summands (see (8)) on the right hand side of

w(w − 1)

η(η − 1)(η − w)
=

1

η − w
−

w

η − 1
+
w − 1

η
.

These, however, do not enter into the differntial D0β
•
n because this is always at least

the third derivative of f1. By the same argument, the same structural term for D0β
•,H
n

is justified. Indeed, the differential of the higher Bers maps is independent of the
chosen normalization, in contrast to the maps themselves.

The next step in the infinitesimal study of the higher Bers maps is to identify the
kernel of the differential. For this we observe that we can rewrite

D0β̃
•
n(ν)(z) ∼

∫Dc

ν(w)

(w − z)n+1
d2w =

∫Dc

ν(w)λ2q−2Dc (w)

(w − z)n+1
λ2−2qDc (w)d2w ,

so if we define the functions

ωlz(w) :=
1

(w − z)l
∀z ∈ D ,

we formally get the identity

D0β̃
•
n(ν)(z) ∼

〈

ωlz, νω
l′
z λ

2q−2Dc

〉1
q
, for l+ l′ = n+ 1 .(16)
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We say formally, because in order for the Weil-Petersson pairing to be defined and
finite, we need the pair of paired functions to satisfy

(

ωlz, νω
l′
z λ

2q−2Dc

)

∈ Lpq(Dc)× Lp
′

q (Dc) , with
1

p
+

1

p′
= 1 .

The reason we split up the terms in this way in (16) is that we want to keep one of
the factors holomorphic. We clarify the possibilities in the following technical lemma.

Lemma 4.16. The following statements hold for fixed q ≥ 2:

‖ωlz‖Ap
q(Dc) <∞ ⇐⇒

{

1 ≤ p <∞ and l > q

or p = ∞ and l ≥ q

‖νωl′z λ
2q−2Dc ‖

Lp′

q (Dc)
<∞ ⇐⇒

{

2 ≤ p′ <∞ and l′ > 2 + (p′ − 2)q

or p′ = ∞ and l′ ≥ q − 2 .

Proof. We start by proving the first statement. This is a simple estimate,

‖ωlz‖
p
Ap

q(Dc)
=

∫Dc

|ωz(w)|
lpλ2−pqDc (w)d2w

≤ C

∫Dc

1

|w − z|(l−q)p+2|w − z|pq−2λpq−2Dc (w)
d2w

≤ 2πC′

∫ ∞

R

1

r(l−q)p+1
dr <∞ ⇔ (l − q)p+ 1 > 1 ,

which is the same as l > q. The second step in the estimate follows by estimating
|z−w| ≥ dist(z, ∂D) and once again using the asymptotic property λD(z)dist(z, ∂D) ∈
O(1) g for z → ∞ (see Eq. (5)). R is chosen such that 0 < R < dist(z, ∂D). The case
p = ∞ follows similarly by the same ingredients, but there we only need l ≥ q since
|w− z|α is bounded for α ≤ 0. For the second statement, a very similar computation
yields the requirements p′ ≥ 2 and l′ > 2 + (p′ − 2)q, where the first one comes
from the fact that the total power of the Poincaré density in the integral this time
is 2q − 2 + 2 − qp′ = (2 − p′)q, which should be ≤ 0 for the factor to possibly
be compensated as in the case above. So we get p′ ≥ 2. After compensating the
powers of λDc , the integrability requirement yields the second inequality. The p′ = ∞
estimate again uses the boundedness of |ν| and |z − w|−1, the power of which is l′,
which has to compensate the power q − 2 of λDc , so l′ ≥ q − 2.

Beware however, as finiteness of the Lpq(D)-norm does not always mean that the
function belongs to Lpq(D): It also has to be of order O(|z|−2q) for |z| → ∞ if ∞ ∈ D.
This condition is vacuous if ∞ /∈ D, of course, and that is the reason we stated the
lemma that way above. For our applications we will need the following special case,
namely l′ = 0 and l = n + 1. But then necessarily p′ = ∞, hence p = 1, and then
0 = l′ ≥ q − 2 implies that q = 2. Then in addition the decay condition at infinity
implies the following corollary.

Corollary 4.17. We have for q ≥ 2,

ωlz ∈ A1
q(Dc) ⇔ l ≥ 2q , νλ2q−2Dc ∈ L∞

q (Dc) ⇔ q = 2 .
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So returning to our point in (16) and using the previous corollary, we get the
following criterion for a measurable function to be in the kernel of the derivative of
the higher Bers mappings:

Dβ̃•
n(ν) ≡ 0 ⇐⇒

〈

ωn+1
z , ν̄λ2Dc

〉1
2
= 0 ∀ z ∈ D .

We can optimize this further by using the projection operator βq : Lpq(D,G) →
Apq(D,G), which is symmetric with respect to the Weil-Petersson pairing (see Theorem
2.13), in particular implying that

〈βq(f), ν〉
G
q = 〈f, ν〉

G
q = 〈f, βq(ν)〉

G
q if f ∈ A1

q(D,G), ν ∈ L∞
q (D,G).

Hence we get the following criterion for the kernel:

D0β̃
•
n(ν) ≡ 0 ⇐⇒

〈

ωn+1
z , β2

(

ν̄λ2Dc

)〉1
2
= 0 ∀ z ∈ D .(17)

Since both entries are now holomorphic, we can use the fact that the pairing restricted
to Apq ×Ap

′

q is non-degenerate (Thm. 2.12). Moreover, the following map, known as
the (generalized) Bers differential,

ψ2 : L∞(Dc) → L∞
2 (Dc) , ψq(ν) = ν̄λ2Dc ,

is obviously an isometric isomorphism which induces isometric isomorphisms for any
Fuchsian group G by restriction,

ψq : L
∞
(−1,1)(Dc, G) → L∞

2 (Dc, G) .

Since β2 is a projection, the right entry of the pairing (17) generates all of B2(Dc), and
likewise, it generates all of B2(Dc, G) iff β2 is restricted to L∞

(−1,1)(Dc, G). Now by
Lemma 2.15, if one of the entries, say f , in the Weil-Petersson pairing is q-automorphic
for the group G, then we can rewrite the product using the Poincaré series operator,

〈f, g〉1q = 〈f,Θq[g]〉
G
q .

So if we define the following spaces for integer l ≥ 2q,

A1
q(Dc, G) ⊃ Al

q(G) := clA1
q(Dc,G)

(

spanC {

Θq[ω
l
z], z ∈ D})

,

and as usual drop the group G from the notation if G = 1, then we have proven the
following theorem:

Theorem 4.18. Let G be a Fuchsian group. The kernel of the differential of the
higher Bers maps at the origin is given by

KerD0β̃
•
n

∣

∣

L∞

(−1,1)
(Dc,G)

= ψ−1
2

(

An+1
2 (G)

)⊥
,

where ⊥ denotes the orthogonal subspace for the pairing 〈· , ·〉G2 .

The theorem, however, gains true content only after a more explicit description
of the spaces Al

q(G) and the inclusion Al
q(G) ⊂ A1

q(Dc, G).
We first start with the case G = 1. Reinterpreting Lemma 3 from [6] in this

notation, it says that A2q
q = A1

q(Dc). Observe that for q = 2 this characterizes the
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kernel of the Bers embedding since then 2q = n+ 1. In general, however, Al
q will be

a proper subspace of codimension l − 2q, as the following proposition shows.

Theorem 4.19. For any l ≥ 2q we have

A1
q(Dc) = Al

q ⊕C[1/w]deg<l−2q · w
−2q .

Proof. Let us again simplify things by the Möbius transformation γ : D → Dc

and denote the coordinate on the disc by η. γ∗q induces an isomorphism of the ambient

space as usual; let’s see what the elements of γ∗qA
l
q look like:

ω̃lz(η) := γ∗qω
l
z(w) =

η−2q

( 1η − z)l
=

ηl−2q

(1− ηz)l
.

Our strategy will be to compare power series expansions of functions. A sequence
{fj} ∈ O(D) converges uniformly to f iff the coefficients of their power series ex-
pansions converge to those of f , and uniform convergence of course implies L1-
convergence. Moreover, since we are working on the disc, for which λ2−qD is uniformly
bounded (for q ≥ 2), Lq-convergence implies L1

q-convergence. Hence we are done if we
can show that the coefficients of the power series converge to each other. The power
series expansion of a function φ ∈ γ∗qA

l
q is given by

ηl−2q

(1 − ηz)l
= ηl−2q

∞
∑

j=0

(−1)j(l − 1 + j)!

(l − 1)!
zjηj := ηl−2q

∞
∑

j=0

cjz
jηj ,

so in particular the coefficients of order less than l − 2q are identically zero. Let us
denote the truncated version of this series by

ω̃lz,N(η) := ηl−2q
N−1
∑

j=0

cjz
jηj .

Now let f ∈ Ã1
q(D) be a function, f =

∑

bi+2q−lη
i its power series, which converges

uniformly on D since f is holomorphic in some larger domain D ⊃ D̄, and split it as
follows,

f = f0 + fN + rN ,

where f0 is the part of the expansion of order less than l−2q, fN the next N terms and
rN the remainder. By choosing N points in zk(N) ∈ D and N numbers bk(N) ∈ C
appropriately we claim that we can achieve

0 =
N−1
∑

k=0

bk(N)ω̃lzk(N),N(η) − fN .

This amounts solving the following linear system for bk,

al =
N−1
∑

k=0

ckz
l
kbk , l = 0 . . .N − 1 ,
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which is of course possible iff the determinant of the matrix














c0 c1 . . . cN−1

c0z0 c1z1 . . . cN−1zN−1

c0z
2
0 c1z

2
1 . . . cN−1z

2
N−1

...
...

. . .
...

c0z
N−1
0 c1z

N−1
1 . . . cN−1z

N−1
N−1















does not vanish. But the determinant is just a polynomial function on the productDN

which doesn’t vanish identically, hence such choices are possible. Make such a choice
for all N and call the resulting functions φN :=

∑N−1
k=0 bkω̃

l
zk,N

(η). The sequence φN
obviously converges uniformly to f − f0 and to an element of γ∗qA

l
q since it is just the

truncation of the power series of such a function. On the other hand, it is obvious that
the term f0 can not be approximated by elements of γ∗qA

l
q because of the vanishing

of the first coefficients. The proof concludes with the fact that any g ∈ A1
q(D) can be

approximated by elements of Ãq(D) in the A1
q-norm (see, e.g., Lemma 3 of [6]), so we

have established

A1
q(D) = γ∗qA

l
q ⊕C[η]degP<l−2q ,(18)

which immediately implies the statement of the proposition.

The G-version of this theorem is obtained as follows: Since Θq is a bounded
operator it commutes with closure because of the closed graph theorem, so

clA1
q(Dc,G)

{

Θq[ω
l
z], z ∈ D}

= Θq

[

clA1
q(Dc){ω

l
z, z ∈ D}

]

,

which can also be written as

Al
q(G) = Θq[A

l
q] .

Of course, Θq does not respect the direct sum decomposition (18), so after applying
Θq we merely get (observe that the action of γ∗q commutes with Θq)

A1
q(D, G) = γ∗qA

l
q(G) + Θq (C[η]degP<l−2q) .

So in order to understand the mapping property of the differential in the G-setting
we need to understand the intersection

I lq(G) := γ∗qA
l
q(G) ∩Θq (C[η]degP<l−2q) .

We will attack I lq(G) with the help of a nice representation of the kernel of Θq given by
Metzger. To determine the kernel of the Poincaré operator is a very old and very hard
problem, especially if one considers the problem for general factors of automorphy.
To the best of the author’s knowledge, there is no general theorem or even algorithm
to determine whether a given function belongs to the kernel of Θρq for an arbitrary
factor of automorphy ρq. Nevertheless, the following theorem does yield information
on the kernel of the Poincaré operator for the q-canonical factor and is enough for our
purpose.

Theorem 4.20 (Metzger, [21]). Let G be a Fuchsian group acting on D, q ≥ 2 an
integer and Θq the Poincaré series operator of the q-canonical factor of automorphy
for the group G. Let p(z; k, g) := zk − g(z)k(g′(z))q. Then

kerΘq = clA1
q(D) (spanC {p(z; k, g), k ∈ N, g ∈ G}) .
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We can now state:

Theorem 4.21. Let G 6= 1 be Fuchsian. Then Al
q(G) = A1

q(Dc, G).

Proof. We need to write the functions p(z; k, g) := zk − g(z)k(g′(z))q as power
series,

p(z; k, g) := zk − g(z)k(g′(z))q = zk −
(az + b)k

ck+2q(z + d/c)k+2q

= zk −

∞
∑

j=0

(−1)j(k + 2q + j)!

(k + 2q)!

( c

d

)k+2q+j

zj

= p̃(z; k, g)−R(z; k, g) ,

where p̃(z; k, g) only contains terms up to the power < l− 2q in z and R(z; k, g) is the
remainder. By linearity of Θq and the fact that p(z; k, g) is in the kernel we get,

Θq[p̃(z; k, g)] = Θq[R(z; k, g)] ,

and evidently, p̃(z; k, g) ∈ C[z]<l−2q and R(z; k, g) ∈ γ∗qA
l
q, so we know that

P̃ (G) := spanC{p̃(z; k, g), k ∈ N, g ∈ G} ⊂ I lq(G) .

The remaining thing to understand is under which conditions P̃ (G) = C[z]<l−2q.
A first observation is that the kernel of the Poincaré series operator is infinite-
dimensional if G 6= 1, because of the different choices of k ∈ N. Each choice of
k also affects the truncated series p̃(z; k, g), so for any non-trivial group G we already
have infinitely many polynomials p̃(z; k, g). We only have to make sure that this set
contains a basis of C[z]<l−2q. But this is rather easy to see: First of all, for any
non-trivial g ∈ G thought of as an element of SL(2,C), the quantity A := |c/d| 6= 1
has non-unit modulus. Then this implies that it is possible to choose l − 2q =: N
natural numbers kn such that the equation

λn
∑

p̃(z; kn, g)− zd = 0

has a solution {λn(d)} ∈ CN for all d < N , by writing this equation as a matrix
equation λnBnlz

l = 0 with coefficient matrix obtained from the matrix

B̃ :=









Ak1 . . . (−1)j (k1+2q+j)!
(k1+2q)! A

k1+j . . .
...

. . .
...

AkN . . . (−1)j (kN+2q+j)!
(kN+2q)! A

kN+j . . .









by subtracting 1 from the d-th column. But it is obvious by looking at the matrix that
no two columns are linearly dependent even if 1 should be subtracted from any of them
as long as all kn are mutually different. Hence we have shown that P̃ (G) = C[z]<l−2q,
and therefore the proposition.

Corollary 4.22. D0β
•
n is injective when restricted to the tangent space of TB(G)

for any G 6= 1.
Proof. By the above considerations we know that for any G 6= 1,

KerD0β̃
•
n

∣

∣

L∞

(−1,1)
(Dc,G)

= KerD0β̃
•
3

∣

∣

L∞

(−1,1)
(Dc,G)

= A1
2(Dc, G)⊥ .

Hence, though the dimension of the kernel of the differential of β•
n ‘grows linearly

with n’, the new null directions are all ‘strictly universal’.
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4.3. Higher Bers maps: A semi-global result. In this section we will prove
results about the higher Bers maps that are of a different flavor, since they do not deal
with the differential but with the map itself, and because of this, they also have to be
proven separately for both series. The proof for the A series a little bit more involved,
since there we have to obtain information about the solution from information about
the ‘inverse of the solution’, whereas for the B series this is more direct.

The results characterize all preimages of the origin of the maps β•
n, and hence

are not local results, but on the other hand they are not global either, becuse we can
only prove them for a single fiber of the mapping - therefore we call them semi-global.
They should be seen as the first step to proving the (conjectured) injectivity of higher
Bers maps.

As already noted already, it is very hard to solve the higher Schwarzian differential
equation explicitly for given φ ∈ Bn−1(D, G). The situation simplifies a little bit for
the homogeneous equation, i.e., σ•

n[f ] ≡ 0, which we will study first.
Recall Lemma 4.3, which gave us the following representation of the higher

Schwarzian derivative,

σAn [f ] =

(

dn−3

dzn−3
S[f−1]

)

◦ f · (f ′)n−1 .

Hence σAn [f ] ≡ 0 implies

0 ≡

(

dn−3

dzn−3
S[f−1]

)

◦ f .

Now a holomorphic function whose (n− 3)th derivative vanishes identically must be
a polynomial of degree ≤ n− 4, hence:

Lemma 4.23. f is a solution to σAn [f ] ≡ 0 iff the Schwarzian of its inverse
function is a polynomial of degree at most n− 4.

This implies, in contrast to the ordinary Schwarzian, which is zero only for Möbius
transformations, that the higher Schwarzians kill many schlicht functions, and indeed
many elements of TS(1). We state this in the form of a lemma.

Lemma 4.24. For any integer n ≥ 4, there exist non-trivial elements f ∈ TS(1)
such that σAn (f) ≡ 0.

Proof. Fix n, then pick a polynomial P of degree N ≤ n − 4 and a quasidisc
D ⊂ C such that

‖P‖B2(D) < δ(D) ,

where δ(D) is the constant from Theorem 2.5, i.e., the constant such that any function
with B2 norm less than δ(D) is schlicht in D. This is of course possibe, e.g., choose
D = D,

‖P‖B2(D) = supz∈D|P (z)|λ−2D (z) ≤ supz∈D|P (z)| · supz∈Dλ−2D (z)

≤ supz∈∂D∣∣ N
∑

i=0

aiz
i
∣

∣ ≤

N
∑

i=0

|ai| ,

so any polynomial for which the sum of the moduli of the coefficients is less than
δ(D) = 2 will do. Pick a function g ∈ Mli(D) such that Sg = P . Then g is schlicht
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and moreover has a quasiconformal extension to the Riemann sphere3 by Theorem
2.5. Finally, pick a Möbius transformation M such that for gM := M ◦ g, we have
gM (D) ⊃ D. By construction, g−1

M |D ∈ TS(D) and S(g−1
M

)−1 = SgM = P , hence

σAn (g
−1
M ) ≡ 0.

Surprisingly, the σAn and hence the higher Bers maps have an injectivity property
when they are restricted to any finite-dimensional Teichmüller space. Theorem 4.27
below makes this precise. But before we come to the theorem we will state two other
theorems which will be needed in the proof.

First, we remind the reader of the classical theorem on the uniform convergence
of normalized Riemann mappings for converging domains.

Theorem 4.25. Let {Dj} be a sequence of sc-hyp domains containing a common
point z0 converging to D0 in the sense that

Dj+1 ⊂ Dj and int
(

⋂

j

Dj

)

= D0 ,

and let ψj : D→ Dj be the Riemann mappings normalized by ψj(0) = z0, ψ
′(0) > 0.

Then the ψj converge uniformly to a normalized Riemann mapping ψ0 : D→ D0.

The second and crucial theorem we need concerns the geometry of the limit set
of a quasi-Fuchsian group.

Theorem 4.26 ([18], Thm. IV.4.2). Let G′ be a quasi-Fuchsian group of first
kind. Then Λ(G′) is either a circle on Ĉ or it is not differentiable on a dense subset.

Finally, having these we can state and prove the following.

Theorem 4.27. Let G be Fuchsian of first kind. Then
(

σAn
)−1

(0) ∩ TS(G) =
{1D}.

Proof. First of all, it is clear that the function w 7→ w is mapped to the origin in
Bn−1(D) since it is a Möbius transformation. So for the rest of the proof we assume
f ∈ TS(G) and σ

A
n [f ] ≡ 0. According to Lemma 4.23,

σAn [f ] ≡ 0 ⇐⇒ Sf−1 ∈ C[w]≤n−4 .

In particular Sf−1 is an entire function and so it extends to any domain D ⊃ f(D).
Hence we know that f−1 extends to a meromorphic locally injective function on any
such domain D. The rest of the proof consists of finding a simply-connected domain
D ⊃ f(D) such that the extension is holomorphic and schlicht. For suppose we have
such a domain; then by taking the inverse we have a schlicht extension of f to a
domain containing the unit disc. In particular, this domain contains an open arc of
∂D and so the corresponding part of ∂f(D) is a holomorphically embedded curve.
But this contradicts the assumption that f ∈ TS(G) since limit sets of quasi-Fuchsian
groups of first kind are known to be either circles or nowhere rectifiable curves (see
Theorem 4.26).

In case f(D) is starlike with respect to some p ∈ f(D), the argument is direct.
Without loss of generality assume p = 0, else we can acheive this by composing back
and forth by translations. Then define

Dδ := {(1 + δ)z , z ∈ f(D)} ,

3This follows from a modified version of the Ahlfors-Weil section, which also exists for any
quasidisc D.
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which of course is nothing else than the image of f(D) under the Möbius transfor-
mation Eδ(z) = (1+ δ)z and is a simply-connected domain containing f(D). Let f−1

δ

denote the extension of f−1 to Dδ. We pull back the extension to f(D) and observe
that

E∗
δ f

−1
δ ∈ S(D) ⇔ f−1

δ ∈ S(Dδ) .(19)

But the first statement can be verified by means of the norm of the Schwarzian
derivative. We know that S is closed in B2(f(D)) and that Sf−1 is an interior point
since f was assumed to be in TS(G) ⊂ TS(1) and T (1) = int S. Now

SE∗

δ
f−1
δ

= Sf−1
δ

◦Eδ
=

(

Sf−1
δ

◦ Eδ

)

(E ′
δ)

2 + SEδ

=
(

Sf−1
δ

◦ Eδ

)

(1 + δ)2 .

Hence

‖SE∗

δ
f−1
δ

− Sf−1‖B2(f(D)) = sup
z∈f(D)

(

|P (1 + δz)(1 + δ)2 − P (z)|λ−2
f(D)(z)

)

≤ C · sup
z∈f(D)

|P ((1 + δ)z)− P (z)|+O(δ) ,

which can be made smaller than any given ǫ since a polynomial is of course uniformly
continuous. This means that for small enough δ, E∗

δ f
−1
δ is also an interior point of

S(f(D)), hence schlicht. By (19), f−1
δ is then a schlicht extension of f−1.

In general, f(D) is a Jordan domain for f ∈ TS(1). We now choose a sequence
of domains {Dj} approximating f(D) in the sense that

Dj+1 ⊂ Dj and
⋂

j

Dj = f(D) ,

and denote by ψj : D → Dj the Riemann mapping fixing the origin with ψ′(0) > 0.
By Theorem 4.25, the sequence {ψj} converges uniformly to the normalized Riemann
mapping of f(D), which by our normalization is f itself. Denote by f−1

j the extension

of f−1 to Dj . We now obtain a sequence of functions {(ψj ◦ f
−1)∗f−1

j } on f(D); we
claim that they are schlicht for big enough j. We show this in the same way as before,
namely by estimating the differences of B2-norms,

‖S(ψj◦f−1)∗f−1
j

− Sf−1‖B2(f(D)) =

‖Sf−1 ◦ (ψj ◦ f
−1)((ψj ◦ f

−1)′)2 + Sψj◦f−1 − Sf−1‖B2(f(D)) .

Now, by construction, (ψj ◦ f
−1) converges uniformly to the identity function, hence

its Schwarzian derivative converges uniformly to zero, and so

‖S(ψj◦f−1)∗f−1
j

− Sf−1‖ ≤ C · sup
z∈f(D)

|P ((ψj ◦ f
−1)(z))− P (z)|+O(j) .

O(j) is, by slight abuse of notation, an expression which goes to zero as j goes to ∞.
Therefore the same conclusion as in the starlike case is valid.

Let us now look at the B series. Here one can actually write down the explicit
solution to the equation σBn [f ] ≡ 0. In fact,

0 = σBn [f ] = −2(f ′)
n
2 −1 d

n−1

dzn−1

(

(f ′)1−
n
2

)

,
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immediately implies

(20) f ′ =
(

α0 + . . .+ αn−2z
n−2

)−2 1
n−2 ,

for arbitrary coefficients αi ∈ C. This equation can of course be integrated easily,
and hence we see that the operators of the B series also always have non-trivial
homogeneous solutions for n ≥ 4. Now, by some minor modifications, the second
half of the proof of Thm. 4.27 also yields a proof of the analogous theorem for the
B series, because all that was needed for the contradiction was that there is some
arc on ∂D over which the function extends holomorphically. Obviously, the solutions
given in (20) satisfy this for almost all of ∂D, except for possible isolated zeroes of
the polynomial α0 + . . .+ αn−1z

n−2.

Theorem 4.28. Let G be Fuchsian of first kind. Then
(

σBn
)−1

(0) ∩ TS(G) =
{1D}.

Of course both of the theorems in this section can be extended to such Fuchsian
groups of second kind, for which similar facts about the fractal nature of their limit
sets is known.

4.4. Higher Bers maps: Further remarks, questions and future work.

In this section we remark on the implications of the previous results and comment
on difficulties as well as pose questions which naturally come to mind and constitute
potential future research.

4.4.1. Dependence on the base point and chain rule of higher

Schwarzians. By this we of course mean that we only succeeded in studying the
differential of the higher Bers maps at the origin. As mentioned earlier, this is pre-
cisely the way Bers proceeded in his study of the Bers embedding, only that in that
case he had the chain rule

Sf◦g = (Sf ◦ g) · (g
′)2 + Sg

at his disposal, which after taking the derivative of this equation produced a relation
between the differentials at different points (similarly to Equation (15)). Of course,
by iterative use of the chain rule for functions, a similar thing can in principle be
written down for the σ•

n for fixed n, but the shape of the equation will depend heavily
on n. Some closed form of the chain rule would be nice, although highly unlikely to
exist because of the non-homogenity of σ•

n (see Section 4.4.4).

Question 1. Is there a good formulation of a chain rule for higher Schwarzians?

Philosophically thinking, however, the maps should only quantitatively depend
on the base point, not qualitatively, since it does not matter how we uniformize the
Riemann surface in the beginning, so there is strong reason to believe that β•

n is an
embedding of TS(G) into Bn−1(D). Also the semi-global result (Thm. 4.27) gives
further reason to hope that this is the case. On the other hand, observe that any
complex linear combination ασAn + βσBn also induces a holomorphic map (which also
should be called a higher Bers map), and certainly injectivity is not a phenomenon
that is necessarily well-behaved under addition.

Question 2. Are (some of) the higher Bers maps β•
n embeddings?
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4.4.2. Solution theory of higher Bers maps. The second major difference
in the theory for n > 3 as opposed to n = 3 is the solution theory of the equation
σ•
n[f ] = φ. For n = 3, although this is still a complicated, non-linear, 3rd-order

differential equation, we have full control over the solutions as described in Theorem
2.1 due to the fact that there is an associated linear ODE. This solution is a great
tool; e.g., this is needed in the explicit construction of the Ahlfors-Weill section, which
again has great theoretical impact on Teichmüller theory.

We want to point out briefly the difficulties of a straight-forward generalization of
the solution scheme to higher Schwarzians: First of all, let there be a linear equation
of order k with holomorphic non-vanishing leading coefficient in analogy to the linear
ODE for the Schwarzian. Such an equation would then have k independent solutions
φi, out of which we would have to construct a locally injective function f in such a
way that a change of basis φ̃i = Λjiφj produces a new solution f̃ with same value

under the higher Schwarzian, i.e., σ•
n[f̃ ] = σ•

n[f ]. This alone, i.e., to describe the
fibres of the operators σ•

n is a very difficult.

Question 3. Is there a nice, explicit and useful solution theory for the higher
Schwarzians which gives more insight on the geometry of the higher Bers maps?

As a side note: Although not satisfying the last requirement, Kim does something
very interesting in [13]. He treats the general holomorphic ODE of degree d with non-
vanishing leading coefficient,

y(d) + pd−2y
(d−2) + . . .+ p0y = 0 ,

and defines fi = φi/φd, for i = 1, . . . , d− 1, where the φi are the linearly independent
solutions. He is then able to find general expressions for the coefficients

pl = Φl(f1, . . . , fd−1)

in terms of the quantities fi ([13], Thm. 2.1). These are quite involved so we won’t
reproduce them here. For d = 2, Φ0 is precisely the Schwarzian, of course. For d = 3,
the expression for Φ0 and Φ1 are also given explicitly in the paper (p. 4, middle). A
quick glance at them, however, reveals that they have nothing to do with the higher
Schwarzian derivatives, because they have second order derivatives of the fi in the
denominator.

4.4.3. The space B∞(D) and out-resp. inradii of T •
n(G). Recall that for a

bounded domain D, Bq(D) ⊂ Bq′ (D) for q ≤ q′, so let us denote the inclusion by iq
′

q .
This data defines an inductive system. We will denote the corresponding inductive
limit space by

B∞(D) :=

∞
⋃

j=2

Bj(D) .

This space naturally carries the final topology, sometimes also called the inductive
topology, which is by definition the finest topology such that all the induced maps
i∞q : Bq(D) → B∞(D) are continuous. This inductive system is, however, not strict
in the sense of ([10], Def. IV.5.12), since the topology of Bq induced by the norm
‖ · ‖Bq′

, i.e., the induced topology on Bq viewed as a subspace of Bq′ , does not agree
with the norm topology of Bq, and under this circumstance it is hard to say something
about the limit space in general, even when the sequence consists of Banach spaces.
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As a first observation, the norms of the inclusions are uniformly bounded.

Lemma 4.29. For any f ∈ BN (D), the sequence ‖inNf‖Bn(D) converges to f(0)
for n→ ∞.

Proof. If f is constant the statement is trivial. Else as a nonconstant holomorphic
function, |f | approaches its supremum as z → ∂D. Since f is in BN (D), |f |λ−N :=M
is bounded, and so since 1/λD < 1 except at the origin,

|f(z)|λ−N−jD (z) → 0 for j → ∞ and z ∈ D\{0} .

On the other hand, λD(0) = 1 so there the above sequence equals |f(0)|.

So far nothing really interesting has happened. It becomes more interesting if we
look at a more interesting sequence in B∞(D) induced by the higher Schwarzians.
Any f ∈ S(D) induces two sequences

s•j (f) := σ•
j [f ] ⊂ Bj−1(D) ,

which can of course also be viewed as a sequence {S•
j := i∞j s

•
j (f)} in B∞(D).

Question 4. For which f does such a sequence converge resp. diverge? If
f ∈ TS(G), does the behaviour depend on the group G? Can one reasonaby define
T •
∞(G) ⊂ B∞(D) for some Fuchsian groups?

Recall that although the images Sn in Bn(D) are bounded, the sharp bound
is given by cAn := 4n−3(n − 2)!6 and cBn := 2(n− 2)n . . . (3n− 6) by Proposition 4.7
resp. 4.8, which grow (very) quickly with n. A related question is the following.

Question 5. How do the outradii o•n(G) of T
•
n(G),

o•n(G) := supf∈TS(G)‖s
•
n(f)‖Bn−1(D) ,

behave, and how do they depend on the nature of the group G?

Of course o•n(1) = c•n, but recall for the Bers embedding there exist groups G for
which o3(G) < o3(1), e.g., finitely generated Fuchsian groups. One could expect that
some similar behaviour is reflected in the higher outradii.

Similarily one can define the n-th inradius of T •
n(G) as

i•n(G) := sup
δ∈R{Dδ ⊂ T •

n(G)} .

Note that i•n(G) = 0 for groups of first kind by dimensional reasons and that i•n(1) >
0 by the implicit function theorem. An estimate for this number would yield as
a corollary a new criterion for univalence resp. quasiconformal extendability of a
function f ∈ O(D).

One approach to this question is to study the n-th Ahlfors-Weill sets AW •
n ⊂

Bn−1(D), which are defined to be the images

AW •
n := (β•

n ◦ s) (B2(B2(D)))

of the ball of radius two under the Ahlfors-Weill section composed with an n-th higher
Bers map. As mentioned previously, the AW •

n have non-empty interior.

Question 6. Are the Ahlfors-Weill sets domains?
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4.4.4. Other operators. As we showed in Theorem 3.1, there are a wealth of
operators that lead to holomorphic mappings of Teichmüller space into the Banach
spaces Bm(D). More precisely, any differential operator Q which maps schlicht func-
tions to holomorphic functions, for which the expression Q[f ] is a polynomial over C
in f ′′, . . . , f (N) and (f ′)−1 and which satisfies

(21) Q[f ◦ g] = (Q[f ] ◦ g)(g′)m ,

induces a holomorphic map βQ : TB(G) → Bm(D).
In Theorem 3.4 we proved that a large subclass of these operators have the same

differential at the origin and this differential is surjective by Theorem 4.14. Any
estimate on the inradius of iQ(1) for such an operator Q yields a criterion for quasi-
conformal extendability, and in particular, for schlichtness of functions.

Question 7. Can one obtain a general theorem on the universal inradii iQ(1)
of the class of operators satisfying the prerequisites of Theorem 3.4 in terms of the
coefficients of the operators? Does this yield a set of new and systematic criteria for
schlichtness?

The paper [11] should be consulted here, since it contains a rather complete
classification of operators satisfying (21).

There is one class of operators we want to mention here that has been studied
previously by Harmelin in [12], which he called homogeneous operators or homoge-
neous higher Schwarzians. They don’t satisfy the crucial requirement (21), which
entered many proofs in the present paper, yet still lead to holomorphic mappings.
The holomorphicity is estabilshed with the help of the homogenity of the operators.
Let us give a more precise definition: A differential operator is called a homogeneous
higher Schwarzian, iff it is a polynomial,

PN [f ] =
∑

aIφI(f) , φI(f) = φi1(f) . . . φij(I) (f) ,

where φn(f) := (Sf )
(n−2) and I is a multiindex where each index has values in

{0, 2, 3, . . . , N} and each of the monomials φI has the same total number of derivatives
of the Schwarzian, i.e., |I| =

∑

ni = N for all I in the sum. Since the derivative of an
element of Bn(D) is an element of Bn+1(D), PN (f) is a bounded N -differential. And
because of this homogenity in the Schwarzian, these operators are Möbius invariant
with respect to postcomposition, i.e., P [g ◦ f ] = P [f ].

For to be applicable in Teichmüller theory, however, it is clear that the operators
have to incorporate the group G in some meaningful way, as for example equation
(21), and hence the homogeneous higher Schwarzians are not interesting from the
point of view of Teichmüller theory. The only point these operators have in commom
with the class of operators described in Theorem 3.4 is the differential at the origin.
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