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THE tt∗ STRUCTURE OF THE QUANTUM COHOMOLOGY OF CP 1
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1. Introduction. The quantum cohomology of CP 1 provides a distinguished
solution of the third Painlevé (PIII) equation. S. Cecotti and C. Vafa discovered this
from a physical viewpoint (see [4], [5]). We shall derive this from a differential geo-
metric viewpoint, using the theory of harmonic maps and in particular the generalized
Weierstrass representation (DPW representation) for surfaces of constant mean cur-
vature. The nontrivial aspects are the characterization of the solution, and its global
behaviour. As yet, no treatment (including ours) could be described as completely
satisfactory, but we hope that our viewpoint provides additional insight.

Mirror symmetry provides the context for this example: whereas the quantum
cohomology of a Calabi-Yau manifold corresponds to a variation of Hodge structure,
the quantum cohomology of a Fano manifold (such as CP 1) should correspond to a
variation of “semi-infinite Hodge structure” or “non-commutative Hodge structure”
(see [1], [18], [24]). In both cases, the variation of Hodge structure can be described as
a “tt∗ structure”. This originates from the physical notion of the ground state metric
(Zamolodchikov metric) on a moduli space of supersymmetric field theories. It rep-
resents a fusion of topological (holomorphic) and anti-topological (anti-holomorphic)
objects. In differential geometric terms, a tt∗ structure can be described as a certain
kind of pluriharmonic map.

In the language introduced by C. Hertling (see [18] and sections 10 and 11 of [19])
the essential point is that the quantum cohomology of CP 1 gives rise to a TERP-
structure which is pure and polarized. Such structures arise naturally in singularity
theory, and an independent approach to the pure and polarized property for the
mirror partner of CP 1 (and other Fano manifolds) has been given by C. Sabbah in
[29]. H. Iritani ([22]) described the result of Cecotti and Vafa for CP 1 much more
explicitly, from the mirror symmetry viewpoint. Our approach constitutes yet another
formulation: it says that the extended harmonic map remains entirely within a single
Iwasawa orbit of the loop group ΛSU1,1.

We shall now sketch in more concrete terms the necessary background informa-
tion. First of all, it is well known that the (small) quantum cohomology of CP 1 is
a commutative algebra C[b, q]/(b2 − q) which specializes to the ordinary cohomology
algebra C[b]/(b2) of CP 1 when the value of the complex parameter q is set equal to
zero. The quantum differential equation of CP 1 is that given by the linear ordinary
differential operator (λ∂)2 − q, where λ (often denoted by ~) is a complex parameter
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and ∂ = q∂/∂q. This can be regarded as a (consistent) linear system of two first-order
operators, which in turn can be regarded as a flat connection in the trivial bundle

C × C
2 ∼= H2(CP 1; C) × H∗(CP 1; C) → H2(CP 1; C) ∼= C

(with a singularity at q = 0). In a suitable gauge, this can be identified with a
connection whose flatness expresses the classical Gauss-Codazzi equations of a surface
in (real) 3-space; to be precise, a spacelike surface of constant mean curvature (CMC)
in Minkowski space R2,1. Thus, the quantum cohomology of CP 1 corresponds to a
surface, and we shall explain what this surface is.

Of course this particular relation between the quantum cohomology of CP 1 and
a CMC surface in R2,1 is very special. But it is a general principle (see [15]) that
the quantum cohomology of any manifold corresponds to a pluriharmonic map into
a symmetric space, and pluriharmonic maps into symmetric spaces may be treated
by the same loop group formalism. The fact that a tt∗ structure is a particular
kind of pluriharmonic map was first observed by B. Dubrovin ([12]); this was well
known from the work of P. Griffiths for those tt∗ structures given by variations of
polarized Hodge structure. Thus, pluriharmonic maps are the fundamental differential
geometric objects here. In the case of CP 1, the pluriharmonic map is the Gauss map
of the surface, and this Gauss map is a harmonic map into the hyperbolic disk.

The quantum cohomology data mentioned above is holomorphic. In the theory of
pluriharmonic maps it appears as the (normalized) potential in the DPW generalized
Weierstrass representation, which is a holomorphic 1-form with values in a complex
loop algebra. An appropriate choice of (non-holomorphic) gauge is necessary in order
to obtain the Gauss-Codazzi equations of a surface. This amounts to a choice of a
real form of the loop algebra, and the obvious choice is the one associated to quantum
cohomology with real coefficients. However, there is still some ambiguity in the asso-
ciated surface; one obtains a family of surfaces related by “dressing transformations”.
(This point is explained somewhat differently in section 11 of [19] and in [22]. From
the loop group point of view there is a natural real structure of quantum cohomology.
However, from the variation of Hodge structure point of view, the dressing transfor-
mation ambiguity can be interpreted as an ambiguity of real structure. This will be
discussed more precisely in section 6.)

The existence of a family of local tt∗ structures for the quantum cohomology of
CP 1 follows easily from the Iwasawa decomposition. However, the observation of
Cecotti and Vafa is that there is a distinguished global tt∗ structure whose domain
of definition is maximal. From a mathematical point of view this is surprising and
nontrivial, but it can be established by brute force in the case of CP 1, because the
Gauss-Codazzi equations reduce to the PIII equation, whose solutions have been
studied deeply (see1 [28], [13]). Cecotti and Vafa single out this solution by physical
arguments, and Iritani obtains it by using K-theory and mirror symmetry. It seems
likely that a complete explanation of this phenomenon will be of equal interest in
surface theory, as the relation between the global properties of a CMC surface and its
DPW potential is an active area of research.

For general background information on the DPW representation in surface theory
we refer to [10], [7]. A survey of the loop group approach to harmonic maps can be
found in [14], and its relation to quantum cohomology in [15].

1A more direct proof has been given recently in [17]. This method also applies to the quantum
cohomology of CP n for 1 ≤ n ≤ 4 and several weighted projective spaces.



THE tt∗ STRUCTURE OF CP 1 419

The authors are very grateful to Claus Hertling and Hiroshi Iritani for discussing
and explaining their work. They thank Alexander Its for supplying the isomonodromy
deformation arguments referred to in the proof of Theorem 5.1, and for informing
them about the paper [23]. They thank Nick Schmitt for his guidance in creating
the images in section 5. All three authors were partially supported by grants from
the Japan Society for the Promotion of Science, and the second author also by the
Alexander von Humboldt Foundation, at various stages of this research. Comments
from the referee were also very much appreciated.

2. Spacelike CMC surfaces in R2,1. In this section we review the integrable
systems approach to classical surface theory. First we sketch some standard surface
theory and the DPW generalized Weierstrass representation. The case of spacelike
CMC surfaces in R2,1 which we need here (see [21], [27], [3]) is almost identical to the
better known version for CMC surfaces in R3 (which can be found, for example, in
[7]).

Classical surface theory and the DPW representation. We use the nota-
tion of section 3 of [3]. Let f : U → R2,1 be a spacelike surface, where U denotes
an open subset of R

2 = C and R
2,1 denotes R

3 with the Minkowski inner product
(a, b) = a1b1 + a2b2 − a3b3. Spacelike means that the induced metric on U is positive
definite.

In conformal coordinates z = x + iy, the classical surface data can be written

g = 4e2u(dx2 + dy2)

H = 1
8e−2u(fxx + fyy, N)

Q = (N, fzz)

where N is a unit normal field; g is the induced metric, H the mean curvature, and
Qdz2 the Hopf differential. This data satisfies the Gauss-Codazzi equations

uzz̄ − H2e2u + 1
4 |Q|2e−2u = 0

Qz̄ − 2e2uHz = 0.

Conversely, it is known that any solution of these equations defines a surface, up to
rigid motion.

The CMC condition is H = constant, and then the second equation just says
that Q is holomorphic. The first equation has two remarkable properties: (a) when
H 6= 0, it can be transformed (away from umbilic points, i.e. zeros of Q) into the
sinh-Gordon equation; (b) from any spacelike CMC surface we obtain an S1-family of
spacelike CMC surfaces, because the first equation is the same when Q is multiplied
by a unit complex number. The appearance of this “spectral parameter”, and “soliton
equations” such as the sinh-Gordon equation, leads to the modern approach to surface
theory which emphasizes loop groups as infinite-dimensional symmetry groups.

The zero curvature formulation. Given a spacelike surface f : U → R2,1, we
obtain at each point of U an element of the natural symmetry group SO2,1 by choosing
a framing consisting of two orthonormal tangent vectors (by definition, spacelike) and
a unit normal vector (timelike). For calculations it is convenient to replace SO2,1

by the locally isomorphic group SU1,1. We can regard the S1-family of framings
described above as a map F : U → ΛSU1,1 (called an extended frame), where ΛSU1,1
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(the loop group of SU1,1) is the set of all smooth maps from S1 to SU1,1. Using the
notation of [3], direct calculation gives F−1dF = Adz + Bdz̄, where

(2.1) A = 1
2

(

uz − 1
λ2iHeu

1
λ iQe−u −uz

)

, B = 1
2

(

−uz̄ −λiQ̄e−u

2iλHeu uz̄

)

,

and λ ∈ S1. Given a basepoint z0 ∈ U , we can normalize F (pre-multiply by an
element of ΛSU1,1) so that F (z0) = I.

We are regarding SU1,1 as the real form of SL2C given by the conjugate-linear
involution

C(A) = D (Āt)−1 D, D = diag(1,−1),

that is, SU1,1 = (SL2C)C = {A ∈ SL2C | C(A) = A}. Similarly, ΛSU1,1 =
(ΛSL2C)C where

C(γ)(λ) = D(γ(1/λ̄)
t
)−1D.

The twisted loop groups (ΛSL2C)σ, (ΛSU1,1)σ are the subgroups of the loop groups
ΛSL2C, ΛSU1,1 defined by imposing the condition σ(γ)(λ) = γ(−λ), i.e. they are the
fixed points of the involution

σ(γ)(λ) = D γ(−λ) D.

With this terminology, the map F takes values in (ΛSU1,1)σ, and F−1dF is a 1-form
with values in the twisted real loop algebra (Λsu1,1)σ.

Conversely, let α = Adz + Bdz̄ be any 1-form on a simply-connected domain U0

with values in (Λsu1,1)σ such that A is linear in 1/λ and B is linear in λ, and such
that dα + α ∧ α = 0. The zero curvature condition dα + α ∧ α = 0 implies that there
exists a map F : U0 → (ΛSU1,1)σ such that α = F−1dF . This F is unique if we insist
that F (z0) = I. The other conditions imply (see the end of this section) that A,B
can be expressed in the above explicit form, for some u, Q, H . By regarding F |λ=1 as
an orthonormal frame, and then integrating, we obtain a spacelike CMC surface in
R2,1.

There is a direct way to obtain the surface f from F :

(2.2) f = − i
2H

(

FDF−1 + 2λ(∂λF )F−1
)

λ=1

where R2,1 is regarded as the Lie algebra su1,1. This is known as the Sym-Bobenko
formula.

The discussion above is the “zero curvature formulation” of the equations for
spacelike CMC surfaces in R2,1. It is also the zero curvature formulation of the
equations for harmonic maps from U0 to the symmetric space SU1,1/(SU1,1)σ, where
(SU1,1)σ

∼= S(U1×U1) is the diagonal subgroup of SU1,1. (This symmetric space may
be identified with the open unit disk in C with its hyperbolic metric.) Such harmonic
maps may be regarded as the Gauss maps of spacelike CMC surfaces. The Gauss map
determines the surface up to translation in R2,1, when H 6= 0.

The generalized Weierstrass (DPW) representation. The main benefit of
the zero curvature formulation is that it leads directly to the local solution of the
equations. The definition of F implies that it gives a holomorphic map [F ] from U0

to

(ΛSU1,1)σ/(SU1,1)σ,
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which is an open subset of the infinite-dimensional generalized flag manifold

(ΛSL2C)σ/(Λ+SL2C)σ.

Here, Λ+SL2C denotes the subset of ΛSL2C consisting of maps S1 → SL2C which
extend holomorphically to the interior of S1. The flag manifold has an open dense
subset (the “big cell”) represented by the similarly defined2 complex affine space
(Λ−SL2C)σ. Since F (z0) = I, on some (possibly smaller) open neighbourhood U0 of
z0 we can write F = F−F+ (the Birkhoff factorization of F ). The map F− : U0 →
(Λ−SL2C)σ is a holomorphic function of z which represents the holomorphic map to
the flag manifold (ΛSL2C)σ/(Λ+SL2C)σ, i.e. [F−] = [F ]. From

F−1dF = F−1
+ (F−1

− dF−)F+ + F−1
+ dF+

we see that the expansion of F−1
− dF− contains no terms of the form λi with i < −1;

on the other hand it contains only terms of the form λi with i ≤ −1 because F− =
I + O(1/λ). Therefore,

F−1
− dF− = 1

λ

(

p1

p2

)

dz

for some holomorphic functions p1, p2 on U0. We call F− the complex extended frame,
and F−1

− dF− the DPW potential.
Conversely, let p1, p2 be holomorphic functions on a simply-connected open neigh-

bourhood U0 of z0. Then there exists a unique holomorphic map L : U0 → (Λ−SL2C)σ

such that

L−1dL = 1
λ

(

p1

p2

)

dz

and L(z0) = I. Since L(z0) ∈ (ΛSU1,1)σ and (ΛSU1,1)σ/(SU1,1)σ is an open subset
of (ΛSL2C)σ/(Λ+SL2C)σ, on some open neighbourhood of z0 we can write L = FB
(the Iwasawa factorization of L), where F, B take values, respectively, in (ΛSU1,1)σ,
(Λ+SL2C)σ. Then F is an extended frame in the above sense with L = F−, B−1 =
F+.

This is the DPW generalized Weierstrass representation for spacelike CMC sur-
faces in R2,1: on sufficiently small domains, such surfaces correspond to pairs (p1, p2)
of holomorphic functions.

Summary. The reader who is not familiar with surface theory (or who prefers
different conventions to those of [3]) may regard the above discussion purely as moti-
vation, as we shall now summarize the formulae that will actually be used.

For this, we need more information about the orbits of the action of (ΛSU1,1)σ on
(ΛSL2C)σ/(Λ+SL2C)σ. These orbits (see [25]) may be parametrized by a discrete set
of elements w of (ΛSL2C)σ. If L takes values in the orbit of w, we have an Iwasawa
factorization of the form L = FwB. So far we have used only the (open) orbit of
w = I. It turns out (section 4.5 of [25]) that there are precisely two open orbits, given
by w = I and

w =

(

λ
−1/λ

)

.

2In this article Λ−SL2C denotes the subset of ΛSL2C consisting of maps S1 → SL2C which
extend holomorphically to the exterior of S1 in the Riemann sphere, and which are of the form
I + O(1/λ).
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For these two values of w, the Iwasawa factors F, B are unique if we take B to be of
the form diag(k, k−1) + O(λ) with k = k(z, z̄) > 0.

Let us consider any smooth (Λsu1,1)σ-valued connection form

(2.3) α =

(

a 1
λb

1
λc −a

)

dz +

(

−ā λc̄
λb̄ ā

)

dz̄,

where a, b, c are smooth functions which do not depend on λ. This satisfies dα+α∧α =
0 if and only if the functions a, b, c satisfy

cz̄ + 2āc = 0

bz̄ − 2āb = 0

az̄ + āz − bb̄ + cc̄ = 0.

These equations may be interpreted as the Gauss-Codazzi equations of a spacelike
CMC surface, in the following way.

First, let us suppose3 that α arises as α = (Fw)−1d(Fw), for an Iwasawa factor-
ization

L = FwB, w ∈ {I,
(

λ
−1/λ

)

}

of an (ΛSL2C)σ-valued map L such that

L−1dL = 1
λ

(

p1

p2

)

dz,

for some given holomorphic functions p1, p2. By comparing coefficients of 1/λ in the
formula

L−1dL = B−1(Fw)−1d(Fw)B + B−1dB,

we see that b = p1k
2 and c = p2/k2 (in particular, bc = p1p2), where B =

diag(k, k−1) + O(λ) with k > 0. By substituting a = b̄z/(2b̄) and c = p1p2/b into
az̄ + āz − bb̄ + cc̄ = 0, we obtain

(log |b|)zz̄ − |b|2 + |p1p2|2|b|−2 = 0.

These are the Gauss-Codazzi equations of a surface whose metric g = 4e2u(dx2 +dy2),
(positive) constant mean curvature H , and Hopf differential Qdz2 satisfy

|b| = euH, Q = 2p1p2/H

(as well as b = p1k
2 and c = p2/k2).

In the next section we shall take p1 = 1, p2 = 1/z. For this case, we may define
u and Q by

eu = k2/H, Q = 2/(zH).

(Later on, for convenience, we shall choose the specific value H = 1
2 .) We obtain,

therefore, a specific spacelike CMC surface.

3Note that w−1(Λsu1,1)σw ⊆ (Λsu1,1)σ , so (Fw)−1d(Fw) takes values in (Λsu1,1)σ , as F−1dF
does.
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In order to match this with the previous discussion, we note that, with our choice
of u, H, Q, the connection form (2.3) becomes

α = 1
2

(

uz
1
λ2Heu

1
λQe−u −uz

)

dz + 1
2

(

−uz̄ λQ̄e−u

2λHeu uz̄

)

dz̄.

This is diag(1,−i)(Adz + Bdz̄) diag(1,−i)−1 where A,B are given in (2.1). Our
surface is given explicitly by replacing F in the Sym-Bobenko formula (2.2) by
diag(1, i)Fw diag(1, i)−1.

Remark. The 1-form α in (2.3) does not agree exactly with that in (2.1) because
various arbitrary choices were made in (2.1). To obtain an exact match we can replace
the condition “k > 0” in the Iwasawa factorization by the condition “ip1k

2/H > 0”;
then we may introduce a real-valued function u and a holomorphic function Q by
defining ip1k

2 = Heu, Q = 2p1p2/H .

3. Quantum cohomology. The simplest Fano manifold is CP 1, and its (small)
quantum cohomology was one of the first examples to be computed. With respect to
the standard basis 1, b of H∗(CP 1; C) ∼= C2, the known quantum products b ◦ 1 = b,
b ◦ b = q give rise to the Dubrovin/Givental connection

d + 1
λ

(

q
1

)

dq
q = d + 1

λ

(

1
1/q

)

dq

in the trivial bundle C∗ × C2.
Thus, the main purpose of this article will be to investigate the harmonic map

(or spacelike CMC surface) corresponding to the DPW potential

η = 1
λ

(

1
1/z

)

dz.

No knowledge of quantum cohomology is required for this, but we shall indicate in
this section how quantum cohomology provides the appropriate Lie-theoretic context.

The matrix of the Poincaré intersection form ( , ) on H∗(CP 1; C) is

P =

(

1
1

)

.

The quantum product satisfies (a ◦ b, c) = (b, a ◦ c), which says that η takes values
in the twisted loop algebra (Λsl2C)σ, where4 σ is the involution of sl2C given by
σ(A) = −PAtP = DAD and D = diag(1,−1). The corresponding involution of
SL2C is σ(A) = P (At)−1P = DAD.

The quantum product is weighted homogeneous, in the sense that |a◦b| = |a|+|b|,
with respect to the degrees |1| = 0, |b| = 2, |q| = 4. This is responsible for the following
“homogeneity property” of η:

η(ǫ2z, ǫλ) = T (ǫ)−1 η(z, λ) T (ǫ), T (ǫ) = diag(1, ǫ)

for all unit complex numbers ǫ ∈ U1 = S1.

4The expressions involving D here follow from the fact that, for 2 × 2 matrices A, we have
(At)−1 = (DP )A(DP )−1 if det A = 1 and −At = (DP )A(DP )−1 if tr A = 0.
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We take U = C∗ = C − {0}. To find a complex extended frame we have to solve
the complex o.d.e. L−1dL = η. The point z = 0 plays an important role in quantum
cohomology, but we cannot expect L to be single-valued on C∗, and we cannot expect
it to satisfy L(0) = I. However, there is a canonical solution of the form

L = exp 1
λ

(

0 0
log z 0

)

L0

= etN/λL0, with N =

(

0 0
1 0

)

and t = log z,

where L0(0) = I. (This L0 has a natural interpretation in terms of Gromov-Witten
invariants; see section 5.4 of [15].)

An explicit formula for L0 can be obtained as follows. Since dLt(Lt)−1 = ηt, Lt

is a fundamental solution matrix for the system

λ∂

(

φ0

φ1

)

=

(

1
z

) (

φ0

φ1

)

where ∂ = zd/dz. The equivalent second-order o.d.e. satisfied by φ0 is (λ∂)2φ0 = zφ0.
The Frobenius method gives a natural basis φ, φ̃ of solutions near the regular singular
point z = 0 of this o.d.e. of the form

φ = f0, f0(0) = 1

φ̃ = 1
λf0 log z + f1, f1(0) = 0

where

f0(z) =
∑

i≥0

zi

(i!)2λ2i
, f1(z) = − 2

λ

∑

i≥1

(1 + · · · + 1

i
)

zi

(i!)2λ2i
.

This gives

L =

(

φ λ∂φ

φ̃ λ∂φ̃

)

=

(

1 0
1
λ log z 1

) (

f0 λ∂f0

f1 f0 + λ∂f1

)

def
= etN/λ L0,

from which the stated properties of L0 follow. Furthermore, it can be seen that the
series for L0 converges everywhere in C.

In order to construct a harmonic map, we need a real form of the loop group
ΛSL2C. We choose that given by the conjugate-linear involution

(3.1) C(A) = PĀP = D (Āt)−1 D

of SL2C, where the bar denotes complex conjugation with respect to the real form
H∗(CP 1, R) of H∗(CP 1, C). Thus, the relevant loop group is (ΛSU1,1)σ, and the
theory of the previous section applies. We obtain a harmonic map to the symmetric
space SU1,1/S(U1 × U1), and a spacelike CMC surface in R2,1, whose Gauss map is
this harmonic map.

Now, a (metric) tt∗ structure on a domain in Cr is simply a pluriharmonic map
from that domain to the symmetric space GL2rR/O2r. We refer to [12], [6], [30],
[16] for a full explanation of this, and in particular the relation with variations of
polarized Hodge structure. We have SU1,1/S(U1 × U1) ∼= SL2R/SO2 (the unit disk
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can be identified with the upper half plane), and SL2R/SO2 is a totally geodesic
submanifold of GL2R/O2, so the quantum cohomology of CP 1 gives a tt∗ structure
on some domain U ⊆ C.

The nontrivial aspect of this tt∗ structure, and the main content of this paper,
concerns the nature of the domain U , which should surround the singular point z = 0
and be as large as possible. In particular, on this domain, L should map into just
one orbit of the Iwasawa decomposition. The general theory (so far) does not say
anything about this, as L contains log z and cannot be normalized as I at z = 0.
However, Cecotti and Vafa argued ([4], [5]) that

(i) it is possible to take U = C∗, and

(ii) on this domain the (multi-valued) harmonic map has the same homogeneity prop-
erty as quantum cohomology.

To be precise, these apply not to L but to a translate γ−1
0 L of L, where γ0 is a constant

loop (L−1dL is unaffected by this).
We shall give precise statements and proofs of (i), (ii) in the next two sections.

Our main results are Theorem 4.1, which produces a family of loops γ0 (depending on
a parameter a) such that the Iwasawa factorization γ−1

0 L = FwB is possible “locally”,
and Theorem 5.1, which says that the factorization is possible “globally” for a certain
specific value of a. This value of a gives the required tt∗ structure.

Let us outline here the plan of the proofs of these theorems. It is convenient to
write

γ−1
0 L = EL0, E = γ−1

0 etN/λ

because the local problem turns out to depend only on E.

First step: The Iwasawa factorization of E may be carried out easily and explicitly.
We use this to find γ0: assuming the existence of a homogeneous Iwasawa factorization
of E near z = 0 imposes strong conditions on γ0 (Lemma 4.2). For such γ0 we give
the Iwasawa factorization of E in Proposition 4.3. Since E is a good approximation
to EL0 near z = 0, this allows us to deduce the existence of a homogeneous Iwasawa
factorization of EL0 near z = 0 (Theorem 4.1).

Second step: To prove the existence of a “global” homogeneous Iwasawa factorization
of EL0 for a particular value of the parameter a (Theorem 5.1), we appeal to a
uniqueness result from the theory of Painlevé equations. This argument is made
possible by two fortuitous observations. First, under the homogeneity assumption,
the Gauss-Codazzi equations (of which our CMC surface is a solution) reduce to
the Painlevé III equation. The family of solutions to this equation given by γ0 has
already been studied in great detail, and it contains a certain global solution which
is characterized by its asymptotic behaviour as z → 0. This asymptotic behaviour is
known explicitly for our family of solutions, so we can identify one of our solutions
with the known global solution.

4. First step: A family of CMC surfaces. Recall that L = etN/λL0 where L0

is holomorphic for all z ∈ C and satisfies L0(0) = I, and where t = log z, N = ( 0 0
1 0 ).

Theorem 4.1. For any a > 0, consider the following element γ0 of (ΛSL2C)σ:

γ0(λ) =

(

1/
√

a −λ/
√

a

0
√

a

)

=

(

1
λ

)−1 (

1/
√

a −1/
√

a

0
√

a

) (

1
λ

)

.



426 J. F. DORFMEISTER, M. A. GUEST AND W. ROSSMAN

Then
(a) γ−1

0 L admits an Iwasawa factorization

γ−1
0 L = F

(

λ
−1/λ

)

B

on some domain U = V ∩ (C − (−∞, 0]), where V is a neighbourhood of z = 0 in C,
and

(b) B is homogeneous, i.e. B(ǫ2z, ǫλ) = T (ǫ)−1B(z, λ)T (ǫ) for all ǫ ∈ S1. (This
implies that α = (Fw)−1d(Fw) is homogeneous.)

(c) B = diag(k, k−1) + O(λ), where k is equal to
p

−a − t − t̄ times a function which
approaches 1 as z → 0.

To prove the theorem, we focus on property (b), which will be sufficient to deter-
mine a family of loops γ0. Then we shall show that properties (a) and (c) are satisfied
for all such γ0.

Notation. For any map f = f(z, z̄, λ), we shall write f̃(z, z̄, λ) = f(ǫ2z, ǫ−2z̄, ǫλ).
Thus, a map f is homogeneous if and only if f̃ = T−1fT . To simplify notation,
however, we shall omit z̄ and just write f(z, λ), as in the case of the smooth function
B in part (b) of the above theorem.

As a preliminary step, we consider

E = γ−1
0 etN/λ.

This satisfies E−1dE = 1
λNdt. Since Ẽ and T−1ET satisfy the same equation, there

exists some δ = δ(ǫ) ∈ (ΛSL2C)σ such that

Ẽ = δT−1ET.

Lemma 4.2.

(a) If E admits an Iwasawa factorization of the form E = FEwBE with w = I or
(

λ
−1/λ

)

and B̃E = T−1BET , then δ ∈ (ΛSU1,1)σ.

(b) δ ∈ (ΛSU1,1)σ if and only if

C(γ0)γ
−1
0 = ±

(

a λ
−1/λ 0

)

for some a ∈ R.

(c) There exists a loop γ0 satisfying the condition

C(γ0)γ
−1
0 = ρ

(

a λ
−1/λ 0

)

, ρ = ±1

if the (1, 1) entry of C(γ0)γ
−1
0 is positive, i.e. ρa > 0. When this condition holds, a

suitable γ0 is given by:

(1) If a > 0, ρ > 0, then γ0 =

(

1/
√

a −λ/
√

a

0
√

a

)

(2) If a < 0, ρ < 0, then γ0 =

(

1/
√
−a λ/

√
−a

0
√
−a

)

.
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Proof. (a) From δ(T−1FEwT )(T−1BET ) = δT−1ET = Ẽ = F̃Ew̃B̃E and the as-
sumption T−1BET = B̃E , we have δ(T−1FEwT ) = F̃Ew̃, so δ = F̃Ew̃T−1w−1F−1

E T .

Now, w̃T−1w−1 = T−1, so δ = F̃ET−1F−1
E T ∈ (ΛSU1,1)σ.

(b) We have

δ = ẼT−1E−1T

= γ̃−1
0 e(log ǫ2z)N/(λǫ)T−1e−(log z)N/λγ0T

= γ̃−1
0 T−1e(log ǫ2)N/λγ0T.

Here, and elsewhere, we write log ǫ2z = log ǫ2 +log z even though ǫ and z are complex
numbers. This is justifiable as it suffices (for our arguments) to work locally with a
fixed branch of log.

Thus, the required condition δ ∈ (ΛSU1,1)σ, i.e. δ = C(δ), is

γ̃−1
0 T−1e(log ǫ2)N/λγ0T = C(γ̃0)

−1T−1De−(log ǫ−2)NtλD C(γ0)T

= C(γ̃0)
−1T−1e−(log ǫ2)Ntλ C(γ0)T,

in other words

C(γ̃0)γ̃
−1
0 = T−1

(

e−(log ǫ2)NtλC(γ0)γ
−1
0 e−(log ǫ2)N/λ

)

T.

Let us assume now that δ ∈ (ΛSU1,1)σ. Putting λ = 1 in the above equation gives

C(γ0(ǫ))γ0(ǫ)
−1 = T−1

(

1 − log ǫ2

0 1

)

C(γ0(1))γ0(1)−1

(

1 0
− log ǫ2 1

)

T.

The right hand side is, a priori, a polynomial in log ǫ2. Since γ0 is single-valued, log ǫ2

cannot occur, so we must obtain the same result if we replace log ǫ2 by zero. This
gives

(4.1) C(γ0(ǫ))γ0(ǫ)
−1 = T−1C(γ0(1))γ0(1)−1T,

where the matrix

C(γ0(1))γ0(1)−1 def
=

(

a b
c d

)

satisfies
(

a b
c d

)

=

(

1 − log ǫ2

0 1

) (

a b
c d

) (

1 0
− log ǫ2 1

)

;

this implies that b + c = 0 and d = 0. Moreover, from the fact that

C
(

C(γ0(1))γ0(1)−1
)

=
(

C(γ0(1))γ0(1)−1
)−1

, we have a = ā and c = −b̄. Fi-

nally, since det
(

C(γ0(1))γ0(1)−1
)

= 1, we must have b = ±1. This shows that
C(γ0(λ))γ0(λ)−1 has the stated form.

Conversely, if C(γ0(λ))γ0(λ)−1 has this form, from the explicit formula (4.1) for
C(γ0)γ

−1
0 it is easy to verify that C(δ) = δ.

(c) If a > 0 we have

(4.2)

(

a 1
−1 0

)

=

( √
a 0

−1/
√

a 1/
√

a

) (√
a 1/

√
a

0 1/
√

a

)

,
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and if a < 0 we have

(4.3) −
(

a 1
−1 0

)

=

( √
−a 0

1/
√−a 1/

√−a

) (√
−a −1/

√
−a

0 1/
√−a

)

.

Conjugating by the matrix diag(1, λ), we obtain the stated results.
We can now give the Iwasawa factorization E = FEwBE , which is the “model

case” for our main goal, the Iwasawa factorization of EL0.

Proposition 4.3. Let E = γ−1
0 etN/λ where γ0 is as in part (c) of Lemma 4.2

with ρa > 0. Then the Iwasawa factorization E = FEwBE is given by:
(1) If a > 0, ρ > 0, then:

(1a) w = I, BE =

(p
a + t + t̄ λ/

p
a + t + t̄

0 1/
p

a + t + t̄

)

if a + t + t̄ > 0.

(1b) w =
(

λ
−1/λ

)

, BE =

(p
−a − t − t̄ −λ/

p
−a − t − t̄

0 1/
p

−a − t − t̄

)

if a + t + t̄ < 0.

(2) If a < 0, ρ < 0, then:

(2a) w =
(

λ
−1/λ

)

, BE =

(p
a + t + t̄ λ/

p
a + t + t̄

0 1/
p

a + t + t̄

)

if a + t + t̄ > 0.

(2b) w = I, BE =

(p
−a − t − t̄ −λ/

p
−a − t − t̄

0 1/
p

−a − t − t̄

)

if a + t + t̄ < 0.

Of these, (1b) and (2b) are valid for z = et in a domain U = V ∩ (C − (−∞, 0]),
where V is some neighbourhood of z = 0 in C.

Proof. Let

(4.4) Z = C(E)−1E = C(etN/λ)−1C(γ0)γ
−1
0 etN/λ = ρ

(

a + t + t̄ λ
−1/λ 0

)

,

where we have used the formula for C(γ0)γ
−1
0 from part (c) of Lemma 4.2. We

compare this with

Z = C(E)−1E = C(BE)−1C(w)−1wBE ,

in order to read off the expressions for w and BE (the factors C(BE)−1, BE are unique
when the middle factor C(w)−1w is ±I). Parts (1a), (2b) follow directly from (4.2),
(4.3) respectively (replace a by a + t + t̄). For part (1b), let us rewrite (4.3) as

(

a 1
−1 0

)

=

( √
−a 0

1/
√
−a 1/

√
−a

)

C
(

λ
−1/λ

)−1 (

λ
−1/λ

)

(√
−a −1/

√
−a

0 1/
√
−a

)

.

If we now replace a by a + t + t̄ we obtain the desired result. The proof of part (2a)
is similar.

Remark. Proposition 4.3 (and its proof, given by formulae (4.2), (4.3)) is con-
cerned essentially only with the Iwasawa decomposition of the flag manifold CP 1 of
the finite-dimensional Lie group SL2C with respect to its real form SU1,1. If we
regard CP 1 as the orbit of the point [ 1

0 ] under SL2C, then the orbits of SU1,1 on
CP 1 are the upper hemisphere, the equator, and the lower hemisphere. If we regard
[ z0

z1
] ∈ CP 1 as the point z1/z0 of C∪∞, then these three orbits are given, respectively,

by the conditions |z1/z0| < 1, |z1/z0| = 1, |z1/z0| > 1. Now, we have

E [ 1
0 ] = γ−1

0 etN/λ [ 1
0 ] =











[ a+t
t ] in case (1)

[−a−t
t ] in case (2).
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In case (1),

1 −
∣

∣

∣

t
a+t

∣

∣

∣

2

= a
|a+t|2 (a + t + t̄),

so cases (1a) or (1b) correspond exactly to whether the “curve”

E [ 1
0 ] : z 7→ [ a+t

t ] =
[

a+log z
log z

]

∈ CP 1 ∼= C ∪∞

takes values in the interior or exterior of the unit disk. In both cases the curve
approaches the boundary point 1 ∈ S1 as z → 0. A similar observation holds for (2a),
(2b).

Proof of Theorem 4.1. (a) To prove the existence of an Iwasawa factoriza-
tion EL0 = FwB, it suffices to prove the existence of a Birkhoff factorization of
C(EL0)

−1EL0, just as we did for the Iwasawa factorization of E in Proposition 4.3.
Thus, we aim to find B in

C(L0)
−1ZL0 = C(EL0)

−1EL0 = C(B)−1C(w)−1wB,

where Z is given by equation (4.4).
The map Z−1C(L0)

−1ZL0 extends continuously to z = 0 and takes the value
I there, because L0 = I + O(z) and limz→0 z log |z|2 = 0. Therefore there exists a
Birkhoff factorization

Z−1C(L0)
−1ZL0 = U−U+

in a neighbourhood of z = 0, with U−(0) = U+(0) = I. We obtain

C(L0)
−1ZL0 = ZU−U+

= −C(BE)−1BEU−U+ (Proposition 4.3 (1b))

so it suffices to obtain a Birkhoff factorization of BEU−. Now,

BE =

(p
−a − t − t̄ −λ/

p
−a − t − t̄

0 1/
p

−a − t − t̄

)

= B
(1)
E B

(2)
E ,

where

B
(1)
E =

(p
−a − t − t̄ 0

0 1/
p

−a − t − t̄

)

, B
(2)
E =

(

1 λ/(a + t + t̄)

0 1

)

.

Since B
(2)
E extends continuously to z = 0 and takes the value I there, and U−(0) = I,

there exists a Birkhoff factorization of B
(2)
E U− near z = 0, and hence of BEU−.

(b) First we show that L0 is homogeneous. We use the fact that L0 is determined
uniquely by the o.d.e.

L−1
0 dL0 + 1

λL−1
0 NL0

dz
z = L−1dL = 1

λ

(

1
1/z

)

dz

and the initial condition L0(0) = I (the point z = 0 is a removable singular point of
this o.d.e.). It is easy to verify that T L̃0T

−1 also satisfies these conditions, so it must
be equal to L0. Thus L̃0 = T−1L0T , as required.
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Next, we have Ẽ = δT−1ET , where (by Lemma 4.2) δ ∈ (ΛSU1,1)σ. Hence

(F̃ w̃)B̃ = ẼL̃0 = δT−1ET T−1L0T = (δT−1FwT )T−1BT,

i.e.

T−1BTB̃−1 = (δT−1FwT )−1(F̃ w̃).

We have w̃ = T−1wT , so (δT−1FwT )−1(F̃ w̃) takes values in (ΛSU1,1)σ. Since

T−1BTB̃−1 takes values in (Λ+SL2C)σ, and its constant term is diagonal with posi-
tive entries, both sides of this equation must be I. Hence B is homogeneous.

(c) This follows from the formula for B
(1)
E in the proof of (a) above.

5. Second step: A distinguished CMC surface.

Theorem 5.1. If a = 4γ in Theorem 4.1, where γ is the Euler constant
limn→∞

(

1 + 1
2 + · · · + 1

n − log n
)

≈ 0.577, then the Iwasawa factorization of γ−1
0 L

is defined on5
C − (−∞, 0].

In order to prove this, we focus on the CMC surface interpretation of γ−1
0 L. That

is, we focus on the corresponding u, Q, H as defined at the end of section 2. We have
eu = k2/H and Q = 2/(zH), where H is a nonzero constant (to be fixed shortly).
The existence of the Iwasawa factorization is equivalent to the existence of u; the
latter is what we shall investigate in this section.

Proposition 5.2. If the map B satisfies B̃ = T−1BT , then u depends only on
|z| (i.e. the metric is radially symmetric).

Proof. Since B = diag(k, k−1) + O(λ), the condition B̃ = T−1BT implies that
k(ǫ2z) = k(z) for all ǫ ∈ S1, i.e. u(ǫ2z) = u(z).

Thus, the Gauss-Codazzi equations reduce to an o.d.e. in the real variable r = |z|:
1
4

(

urr + 1
r ur

)

− H2e2u + 1
H2r2

e−2u = 0.

The transformation

v = u − 1
2 log |Q| = u − 1

2 log 2
H + 1

2 log r

converts this to

1
4

(

vrr + 1
r vr

)

− 2H
r e2v + 1

2Hr e−2v = 0.

If we choose H = 1
2 we obtain

vrr + 1
r vr = 8

r sinh 2v.

A further transformation x = 4r1/2 converts this to the radial sinh-Gordon equation

vxx + 1
xvx = 2 sinh 2v.

Finally, it is easily verified that the function y = ev satisfies

y′′ = 1
y (y′)

2 − 1
xy′ + y3 − 1

y .

5(and on any other simply connected subset of C∗)
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This is the special case α = β = 0, γ = 1, δ = −1 of the Painlevé III equation

y′′ = 1
y (y′)

2 − 1
xy′ + 1

x (αy2 + β) + γy3 + δ
y .

(see section 14.4 of [20]).

Corollary 5.3. The family of solutions of the PIII equation given by Theorem
4.1 satisfies the asymptotic condition

y ∼ − 1
4x(a + 4 log x − 4 log 4)

as x → 0.

Proof. Recall (from Theorem 4.1) that k ∼ p
−a − t − t̄ =

p
−a − 2 log r as x (=

4r1/2) → 0. Since k =
√

Heu/2 and H = 1
2 , we have eu ∼ −2(a + 2 log r), hence

y = ev = 1
2eur1/2 ∼ − 1

4x(a + 4 logx − 4 log 4).

Proof of Theorem 5.1. The proof depends upon the analysis in [28] of smooth
solutions to the PIII equation. In the notation of formula (4.121) of that paper,
there is a solution denoted by y = η(x, 0, 1/π) which is smooth on (0,∞) and satisfies
y ∼ −x(γ+log x−log 4) as x → 0. We wish to deduce that our solution from Corollary
5.3 with a = 4γ is the same as this solution, hence must extend to a (smooth) solution
on (0,∞). For this we appeal to the theory of isomonodromic deformations, and in
particular the method of Chapters 13-15 of [13].

First, we recall that the PIII equation can be regarded as an isomonodromy
equation for a family of flat connections (formulae (13.1.1) and (15.1.1) of [13]). This
is equivalent to the family of flat connections in sections 2 and 3, but regarded as an
r-family of λ-connections rather than a λ-family of r-connections; each λ-connection
has an irregular singularity at λ = 0 and λ = ∞. Solutions of PIII are parametrized
by their monodromy data (Stokes data) at these singular points, and the exponential
of any solution is known to be meromorphic on C− (−∞, 0]. For solutions which are
real on a nonempty open subset of (0,∞), this monodromy data amounts to (i) a
complex number p, with 1 < |p| < ∞, or (ii) a pair (±1, a) where a is a real number.
The second case may be regarded as the limit p → ∞ of the first case.

In case (i), which is treated in detail in chapter 15 of [13], the monodromy data p
is equivalent to the asymptotic data (r, s) at x = 0, where 2v(x) ∼ r log x+s as x → 0.
This follows from the explicit formulae (15.1.9)-(15.1.11). Thus the asymptotic data
at x = 0 determines the solution. A similar result holds in case (ii), which will be
treated in detail in [23]. In case (i) one always has |r| < 2, and case (ii) may be
regarded as the limit |r| → 2 (r → 2 for our solution). Case (ii) includes the above
solution with asymptotics 2v(x) ∼ 2 log[−x(γ + log x− log 4)] as x → 0. We conclude
that our solution from Corollary 5.3 with a = 4γ agrees with the solution of [28], and
is therefore smooth on (0,∞).

It follows that the frame F (and the Iwasawa factorization of γ−1
0 L0) is defined

on any simply-connected subset of C∗, in particular on C − (−∞, 0].

The above argument shows that the Iwasawa factorization exists on the universal
covering C̃∗ = C. The image of F (or the CMC surface) consists of infinitely many
pieces, obtained by analytic continuation from the piece with domain C − (−∞, 0].
Images6 of the piece with domain {z ∈ C − (−∞, 0] | |z| < 0.5} are shown in Figure
1. The edges of the “slit” (−0.5, 0] are mapped to the short (lighter) edge at the top

6The images shown here were made with the software XLAB created by N. Schmitt. The timelike
axis of R2,1 lies in the plane of reflectional symmetry.



432 J. F. DORFMEISTER, M. A. GUEST AND W. ROSSMAN

Fig. 1. Two views of the surface given by a = 4γ

right of the first picture (bottom of the second picture); the singularity at the origin
is clearly visible in the middle of this edge.

We conclude with some observations about this surface.

Global smoothness. This is the most important property predicted by mirror
symmetry (and confirmed by our analysis): when a = 4γ, the complex extended
solution γ−1

0 L lies entirely within a single Iwasawa orbit of the loop group ΛSU1,1, and
therefore the extended frame (and the surface) has no singularities. In contrast, Figure
2 illustrates what happens for other values of a. In general one expects singularities
where the complex extended solution crosses from one open Iwasawa orbit to the
other. According to Theorem 4.2 of [3], there are situations where the surface remains
continuous but has cuspidal edges at the singular points. It seems likely that the
surfaces in Figure 2 are of this type.

Fig. 2. The surfaces given by a = 1 (left) and a = 4 (right)

All of these surfaces have a reflective symmetry, due to the fact that the coefficients

of γ−1
0 L are real, i.e. γ−1

0 (λ)L(z, λ) = γ−1
0 (λ̄)L(z̄, λ̄). The timelike axis lies in the plane

of this reflection.

Non-completeness. From the proof of Corollary 5.3, we know that eu ∼ −2(a+
2 log r) for r close to zero. Consider the curve in the surface parametrized by the curve
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(e−t, 0), t ∈ (t0,∞) in the domain. Taking t0 sufficiently large, we find that the length
of the curve is

∫ ∞

t0

√

(−e−t)2 + 02 2eudt ∼
∫ ∞

t0

2e−t(−2a + 4t)dt,

which is finite. It follows that the surface is not complete.

Non-closing. The graphics (and the presence of the logarithm in L) suggest that
none of the surfaces, for any value of a, are likely to be well-defined on any annulus
of the form 0 < |z| < ǫ. In fact, it can be proved (see [11]) that no surface in the
dressing orbit of the surface associated to L can be well-defined on any annulus of
this form.

6. Related results and generalizations.

The Grassmannian model interpretation of Iritani. From our discussion
at the end of section 3, it is clear that the quantum cohomology of any manifold
possesses a local tt∗ structure in a neighbourhood of any point where the map L
is defined (and, more generally, this holds for any Frobenius manifold). This is an
immediate consequence of the Iwasawa decomposition. However, the existence of a tt∗

structure near the “large radius limit point” z = 0 is not immediately obvious. Our
Theorem 4.1 gives such structures for CP 1, and the proof gives a general criterion for
the existence of such structures; cf. the criterion given by Iritani (Theorem 1.1 and
Proposition 3.5 of [22]).

Iritani uses the infinite dimensional “Grassmannian model” of the homogeneous
space (ΛSL2C)σ/(Λ+SL2C)σ. As mentioned in the introduction, this exhibits the tt∗

structure as an infinite dimensional generalization of a variation of polarized Hodge
structure. The Grassmannian (or, more precisely, flag manifold) is constructed using
“semi-infinite” subspaces of the Hilbert space H(2) = L2(S1, C2). Iritani considers
real structures on this complex Hilbert space, given by conjugate-linear involutions
κ : H(2) → H(2) satisfying certain properties. The involution singled out by Iritani
(using K-theory) in section 5 of [22] is given by

κH(x) =

(

λ 0
−4γ −1/λ

)

x̄

on elements x ∈ H(2). This induces the following involution on the loop group
(ΛSL2C)σ:

κH(A)(λ) =

(

λ 0
−4γ −1/λ

)

Ā(1/λ̄)

(

λ 0
−4γ −1/λ

)−1

=

(

λ 0
−4γ −1/λ

)

P C(A)(λ)P

(

λ 0
−4γ −1/λ

)−1

, P =

(

0 1
1 0

)

=

(

4γ λ
−1/λ 0

)−1

C(A)(λ)

(

4γ λ
−1/λ 0

)

where C is the involution (given earlier in formula (3.1)) which defines the real form
(ΛSU1,1)σ. The involution κτ

H of [22] is then given in our notation by κτ
H = Z−1CZ,

where Z was defined in formula (4.4). Thus, Iritani’s modification of the standard
real structure C is equivalent to our modification of L by γ0.
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CMC surfaces in R3. Although they do not arise from quantum cohomology,
the surfaces with holomorphic data p1 = 1, p2 = zn, n ∈ Z, are natural generalizations
of the case n = −1 that we have studied here, and we shall discuss them elsewhere.
We just make some brief comments here on the analogous CMC surfaces in R3, i.e.
with the same holomorphic data but using SU2 instead of SU1,1.

For n ≥ 0, these are the well known Smyth surfaces, and they are also “globally
smooth” (see [31]). It was shown in [2] that the Iwasawa factorization method greatly
simplifies the original differential equation arguments of [31]. In fact no differential
equation arguments are needed at all: the Iwasawa decomposition has only one orbit,
as SU2 is compact, so the Iwasawa factorization L = FB is possible on the whole
domain of L. Moreover, the frame and surface are smooth at z = 0. It follows that
the holomorphic data p1 = 1, p2 = zn gives (for n ≥ 0) a CMC surface in R3 which
is globally smooth on C.

Bobenko and Its point out that the Gauss-Codazzi equations in this case reduce
to a version of the sinh-Gordon equation (wzz̄ = − sinhw instead of wzz̄ = sinhw),
whose radially invariant reduction is again a special case of the PIII equation. They
use the Iwasawa factorization to deduce explicit connection formulae for this PIII
equation. In contrast, in the case SU1,1, we must use results on the PIII equation to
show that our Iwasawa factorization can be carried out globally.

The CMC surfaces in R3 with n < 0 have so far not been considered by differential
geometers. However, it is interesting to note that, in the case n = −1, it is not possible
to find any γ0 for which the analogue of Theorem 4.1 holds (the conditions on the
coefficients a, b, c, d of the matrix in the proof of Lemma 4.2 cannot be satisfied).

The quantum cohomology of T 2. There is one other manifold whose quantum
cohomology gives rise to a spacelike CMC surface in R2,1, namely the torus T 2 = S1×
S1. The appropriate quantum cohomology algebra is that part of the small quantum
cohomology algebra which is generated by H2T 2, and this is simply C[b, q]/(b2) (the
quantum product is equal to the cup product). The quantum differential operator is
simply the operator (λ∂)2. This gives the DPW potential

1
λN dq

q = 1
λ

(

0 0
1 0

)

dq
q ,

which has canonical extended solution L = etN/λ. The calculations of section 4 apply
to this case, but are much easier. Apart from the very simple nature of L, there are two
further simplifying factors: (i) the homogeneity condition f̃ = T−1fT is vacuous, as
T (ǫ) = diag(1, 1), and (ii) the generalized Weierstrass representation of section 2 does
not apply directly when H = 0, but it can be replaced by the ordinary Weierstrass
representation. (Spacelike surfaces in R2,1 with H = 0 are called maximal surfaces.
A Weierstrass representation for such surfaces was given in [26]; this is analogous to
the usual one for minimal surfaces, i.e. surfaces in R3 with H = 0. For treatments
of minimal surfaces in the loop group context we refer to [9] and section 4.5 of [15].
Maximal surfaces may be dealt with in the same way.)

A CMC surface is determined by its Gauss map only when H 6= 0, so the quantum
cohomology of T 2 does not determine a canonical maximal surface, but rather the set
of all such surfaces which have the Gauss map z 7→ etN [ 1

0 ] =
[

1
log z

]

. This is a
holomorphic map into CP 1, but it does not define a “global” tt∗ structure because
the image of the map is not contained in the unit disk.

There is another aspect of the quantum cohomology of T 2, which does lead to a tt∗

structure, and this should be regarded as the correct analogue of what we did for the
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quantum cohomology of CP 1. Namely, because of the mirror symmetry phenomenon,
the quantum differential operator (λq∂/∂q)2 arises from the operator

(λ∂)2 − 3zλ2(3∂ + 2)(3∂ + 1), ∂ = z ∂
∂z

after a certain change of variable q = q(z) known as the mirror transformation. This
can be analyzed in the same way as the operator (λq∂/∂q)2 − q (in the latter case the
mirror transformation is trivial: q = z). We shall just state the results here, referring
to Examples 10.11, 10.14, 10.16 of [15] (and the references listed there) for the details.

First, the DPW potential turns out to be

1
λ

(

0 0

∂(φ̃/φ) 0

)

dz
z ,

where φ, φ̃ are the natural solutions given by the Frobenius method of the above o.d.e.
in a neighbourhood of the regular singular point z = 0. We have

φ = f0, f0(0) = 1,

φ̃ = 1
λf0 log z + f1, f1(0) = 0,

where f0, f1 are holomorphic in a neighbourhood of z = 0. This gives

L =

(

φ λ∂φ

φ̃ λ∂φ̃

)

=

(

1 0
1
λ log z 1

) (

f0 λ∂f0

f1 f0 + λ∂f1

)

def
= etN/λ L0,

which is similar to the case of CP 1, except that the formulae for f0, f1 (hence L0)
are different. The mirror transformation which converts back to the trivial potential
1
λN dq

q is q = eφ̃(z)/φ(z).
The Gauss map of any associated maximal surface is the multi-valued holomorphic

map φ̃/φ, and it is well known that the image of this map is the unit disk (actually a
hemisphere of the Riemann sphere). Thus we obtain a tt∗ structure defined globally
on the universal cover of C∗. This is the well known variation of Hodge structure of
an elliptic curve.

The quantum cohomology of projective spaces and weighted projective
spaces. According to Cecotti and Vafa, the quantum cohomology of any complex
projective space CPn is expected to behave in a similar way to the case n = 1;
it gives a solution of the radially symmetric affine Toda equations (a system of n
ordinary differential equations). Our method certainly applies to this case, and more
generally to the orbifold quantum cohomology of any weighted complex projective
space P (w0, . . . , wn), and in every case it gives a local tt∗ structure near z = 0.
However, we do not know7 of any global result for CPn, except in the case n = 2
where the o.d.e. reduces to a PIII equation as in the case n = 1. The harmonic map
given by CPn or P (w0, . . . , wn) can be described more appropriately as a primitive
map into a k-symmetric space (for some k). It is well known (see, for example, chapter
21 of [14]) that such maps correspond to solutions of affine Toda equations. However,
the particular solutions which arise here apparently have not been considered by
differential geometers.

7We have mentioned the recent results of [17] for the cases CP 3, CP 4 in an earlier footnote. As
will be shown in a future publication, the methods of [17] can, in fact, be extended to verify the
prediction of Cecotti and Vafa for any CP n.
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