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HARMONIC DIFFEOMORPHISMS BETWEEN COMPLETE
RIEMANN SURFACES OF NEGATIVE CURVATURE*

QUN CHEN' AND JURGEN EICHHORN?

Abstract. Consider two open Riemannian surfaces (M2, go), (M?,g1), a curve {gt}o<i<1 in
the Sobolev topology, Ky, = —1, info(Aog(gt)) > 0, Tinj(g¢) > 0,0 <t < 1. We prove that there
exists a unique harmonic diffeomorphism fy : (M2, go) — (M?,g1) which is moreover isotopic by
harmonic diffeomorphisms to id : (M?, go) — (M2, go) in the unit component D6+1 of the completed
diffeomorphism group D" 1. This has application in Teichmiiler theory for open surfaces.
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1. Introduction. In [5] the second author introduced Teichmiiller spaces for
open manifolds (i.e., noncompact complete manifolds) as follows. Let (M™, g) be
an open Riemannian manifold with bounded geometry, the Sobolev completed space
M?7(I,By,) (c.f. [5]) splits into its arc components M?" (I, By) = Y. comp®>"(g;)-

i€l
We considered the case n = 2, i.e. (M?,go) with the sectional curvature K, = —1,
the lowest spectral value inf o(Ag(go)) > 0, the injectivity radius 7in;(g0) > 0 and
its arc component comp®”(go). We defined a completed space P"(gg) of positive
conformal factors. P" = Y comp(e*i), and comp(l) C P"(go) is an invariant of

3
comp(go). comp(1) acts on comp(gop). We proved that under the above assumptions
there exists for any g € comp(go) a unique e € comp(1l) C P"(go) such that Keuy =
—1. Thereafter we defined as Teichmiiller space of comp®™(go) the space

T" (comp(go)) := comp(1)\comp®" (go)/ Dy

If M? would be closed, then M?" (I, By,) consists of only one component, and we
come back to the classical Teichmiiller space.

In the open case, we would be interested in the topological structure of
T7"(comp(go)). Tt follows from the slice theorem in [7] that 7" (comp(go)) is a Hilbert
manifold. One canonical method to get some insight into the topological structure
is the construction of a Morse function. Assume that for any g1 € comp®"(go) with

K, = —1 there exists a unique harmonic diffeomorphism f : (M2, go) — (M?,¢1) in
Dg"Hl, then we prove in a forthcoming paper that in fact

Plg1) == /[e(f D (M?,g0) — (M?,g1)) — e(id : (M?, go) — (M?, go))]dvola(go),
M2

where e(h) is the energy density of h, defines a Morse function on 7" (comp(go))-
Hence we have to assure the assumption above. This is the content of this paper
and our
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MAIN THEOREM. Let (M? go) be an open Riemannian surface with K, =
—1, the injective radius rin;(go) > 0 and the lowest spectral value of (M, go) is
inf o(Ao(g0)) > 0. If g1 € comp®"(go) and {gi}o<i<1 is a smooth curve between
go and g1 such that K,, = —1, then there exists a unique curve of harmonic dif-
feomorphisms {f: : (M?,g0) — (M? g:)}o<t<1, in particular, fi is isotopic in
Dy = comp®t1(id) € D> toid : (M2, go) — (M2, go).

The proof of this theorem considerably differs from existent proofs in the compact
case. In the compact case one more or less uses some compactness arguments, mostly
of Arzela-Ascoli type, or properties of the heat flow on compact manifolds. In the
open complete case, one has to establish another approach. Very successful approaches
are e.g. the papers [3], [18],[19],[27],[31]. Our approach here essentially relies on the
framework of nonlinear Sobolev analysis on open manifolds established in [12].

The paper is organized as follows. In section 2 we collect those constructions and
facts of linear and nonlinear Sobolev analysis on open manifolds which are needed in
the sequel. This contains Sobolev spaces, spaces of Riemannian metrics, manifolds of
maps and diffeomorphism groups. Section 3 is devoted to harmonic maps as stationary
points of a relative energy functional. In section 4 we present gradient estimates for
harmonic maps between open surfaces, which are of extraordinarily importance for
the above sections. We prove in section 5 by means of standard techniques that locally
we can extend a curve of harmonic f; : (M, go) — (M, g¢). In section 6, we reduce our
main theorem to the Banach fixed point theorem. The section 7 contains the proof
of the existence theorem. It amounts to quite formidable estimates. The concluding
section 8 contains the uniqueness and the proof of the main theorem, i.e., the proof
that the harmonic maps in question are in fact diffeomorphisms. We would like to
point out that the open manifolds considered here and in [5] are all of infinite genus.

There are other existence theorems, we refer to [19], [27] and [31]. One of the
special features of our approach is the fact that we work in Sobolev category, we
reduce to the Banach fixed point theorem, and we obtain harmonic diffeomorphisms
and a whole curve of such diffeomorphisms.

Another approach for open complete surfaces has been established by J. Lohkamp
in [20] and [21]. M. Wolf used in [29] harmonic diffecomorphisms to describe the
Teichmiiller space of compact surfaces and Wolf-Weber in [30] used Teichmiiller theory
to construct complete minimal surfaces of finite genus.

In [20] Lohkamp proved the following

THEOREM ([20]). Let f: M — N be simple. Then there exists a harmonic map
homotopic to f.

We refer to [20] concerning the exact definition of simple. Roughly speaking, it
means that there exists an exhaustion M; by compact submanifolds such that the
energy of f restricted to the annulus M;;1/M; becomes very small . J. Lohkamp gives
classes of examples for simple maps. One class (he uses) are maps f : M — N with M
a punctured closed Riemann surface. The proof of the theorem essentially uses some
kinds of compactness arguments, whose applicability comes from the simplicity of f
(at the ends = cusps the injectivity radius tends to zero, the volume of a cusp is finite
etc.). In our case, the initial map id : (M, go) — (M, go) or fr : (M, go) — (M, g:) is
not simple, and the arguments of Lohkamp are not applicable.

In [21] Lohkamp proved the following
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THEOREM ([21], p.343). If f : X — Y is a homeomorphism between punctured
surfaces, then there exists a unique harmonic map h homotopic to f with E(h) < oo.
h is a diffeomorphism.

Here the author again uses an exhaustion argument adapted to the special struc-
ture of the ends. We can not see the possibility of generalization of these arguments
to the case of infinitely connected ends. In the case of cusp manifolds, one can tra-
ditionally separate the considerations, one considers the contribution of the compact
part and the contribution of the cusps. In our case, such a separation is impossible.

Hence, our results and those of Lohkamp and Wolf are disjoint, since the classes
under consideration are completely disjoint.

The authors are deeply indebted to the Deutsche Forschungsgemeinschaft and the
NSF of China for the support of their collaboration. One third of the paper has been
established at the Greifswald University, the second third at the Wuhan University and
the last third at the MPI for Mathematics in Bonn. The research of QC was partially
supported by NSFC (Nos.10571068, 10871149) and RFDP (No0.200804860046). The
authors are deeply indebted to these institutions.

2. Nonlinear Sobolev analysis. In this section, we briefly collect those facts
from nonlinear Sobolev analysis which we essentially need in the sequel. We restrict to
bounded geometry and say (M™, g) has bounded geometry up to order k if it satisfies
the condition (I) and (By(M, g)):

ij(M,g) >0 (I)

The condition (Boo (M, g)) means |[V'R| < C;, i =1,2,---. Every closed Riemannian
manifold satisfies (I) and (B (M, g)). Examples of open manifolds satisfying (I) and
(Boo(M, g)) are homogeneous spaces or Riemannian coverings of closed manifolds.
Greene has proven that every open manifold admits a metric g satisfying (I) and
(B (M, g)), i.e., bounded geometry does not affect the topological type. We restrict
in most of our considerations to bounded geometry. The reason for this is the fact
that then Sobolev analysis is available, e.g. embedding theorems, module structure
theorems and many invariance properties. If we give up (I) for instance, then these
theorems do not apply. Parts of them still hold by using weighted Sobolev spaces,
but this requires additional effort. We list some important consequences of (I) and
(Bk)-

PROPOSITION 2.1. a) (1) implies completeness of (M™,g).

b) If (M™, g) satisfies (I) and (Bg) and % = {(Uqa, Pa)}a s a locally finite cover
by normal charts, then there exist constants Cpg, CZ,, C’;, multi-indexed by (3,7 such
that

|D%gi;| < Cg,  |DPg7| < Cp, for |B] <k (2.1)
and

all constants are independent of c.
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c) If (E,h,VE) — (M™,g) is a Riemannian vector bundle satisfying (I) and
(Br(M,g)), (Bp(E,V)), then additionally to (2.1), (2.2) there holds for the connec-
tion coefficients Ty defined by V%¢,\ =TI ¢u, {du}yu a local orthonormal frame

obtained by radial parallel tmnslatign,

IDPTY| < Dg, |B<k-—1 (2.3)

Proof. Under the assumption of (I) any Cauchy sequence (x,), in M can be con-
sidered, up to quasi-isometry, as contained in a small closed Euclidean ball, omitting
only a finite number of the z,’s. This proves a). b) and c) are the content of [10]. O

PROPOSITION 2.2. Assume (M™,g) satisfies (I) and (By). There exists £9 > 0
such that for any e € (0,e0) there is a countable cover of M by geodesic balls B.(x;),
UiBe(2;) = M, such that the cover of M by the balls Bo(x;) with double radius and
same centers is still uniformly locally finite.

We refer to [12] for the proof. Proposition 2.2 implies the existence of an associ-
ated uniform partition of unity.
PROPOSITION 2.3. Assume (M™, g) open with (I) and (By) for r € (0,7:,;). For
o0
every 0 < e < r/2 there exists a partition of unity 1 = 3 1; on M such that

i=1
1) ¢; >0, ¢; € C°(M), suppyy; C Bae(x;), where the sequence {x;}; comes from
Proposition 2.2.
2) |DB4i(ut, - u™)| < Cg, |8] < k + 2, where (ul,--- ,u™) are normal coordi-
nates in Boc(x;).

We refer to[12] for the proof. O

Let (E,h,V") — (M™, g) be a Riemannian vector bundle. Then the Levi-Civita
connection V9 and V" define metric connections V in all tensor bundles T ® E.
Denote smooth sections as above by C*°(T¥ ® F), and by C°(T* ® E) those with
compact support. In the sequel we shall write E instead of T} ® E, keeping in mind

that E can be an arbitrary vector bundle. Now we define for p € R, 1 < p < oo and
T a non-negative integer

r 1/p
|Blp.r = (/Zlvi¢|§dvolm(9)> 7
i=0
WP (B) = Q(E) = {¢ € C=(B)||g]p.r < oo},
QYT (E) = QP"(E) = completion of QF(E) with respect to | - [,

QO 0P (E) =0 PT(E) = completion of C2°(FE) with respect to |- |p.r,

QYPT(E) = QPT(E) = {#| ¢ measurable distribution section with |@|,, < co}.
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Here we use the standard identification of sections of a vector bundle E with
E-valued zero-forms. Q%P7 (FE) stands for a Sobolev space of ¢-forms with values in
E.

For p = 2, we often use the notations | - |2,0 = | - |,. Furthermore, we define

Pgl =D VB,

i=0
bmO(E) ={¢| ¢ C™ — section and >™|¢| < oo},

)

bm ) (E) = completion of C°(E) with respect to ®™| |,
bmQ)(E) equals the completion of
mQ(E) = {¢ € C=(E)|""™|¢| < oo}
with respect to ®™| - |.

Denote by >*Q(FE) the locally convex space of smooth sections ¢ such that V*¢
is bounded for s =0,1,2,---.

PROPOSITION 2.4. The spaces ép’T(E),QP’T(E),QP’T(E),Z”WEZ (E),b™Q(E) are
Banach spaces and there are inclusions

[e]

QrT(E) C QPT(E) C QP(E),

bm (02 (E) gb,m Q(E)
If p=2, then §022’T(E), 027 (E),Q*"(E) are Hilbert spaces. O

In general, {OZP’T(E), QP (E), QP (E) could be different from one another.

PROPOSITION 2.5. If (M™,g) satisfies (I) and (By), then

o

QPT(E) =P (B)= QP (E), 0<r<k+2.

Proof. We refer to [12] for the proof. O
Embedding theorems are of great importance in non-linear global analysis and
even more the module structure theorem which we present now.

THEOREM 2.6. a) Assume r — % > 5 — %, r>s. Let B C R" be a Euclidean
ball. Then

QP (B x R") <0 ¥%(B x R")

continuously.
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b) If r — T >8, 8€ Ly, then

QP7(B x R™) <0 (B x R")
continuously.
The global version of a) looks slightly different.
THEOREM 2.7. Let (E,h,VE) — (M",g) be a Riemannian vector bundle satis-

fying (I), (Bx(M™,9)), (Bk(E,V)), k= 1.
a) Assumer—%Zs—%,rEs, q>p. Then

QPT(E) — QT3(E) (2.4)
continuously.
b) If r — T >8, 8€ Ly, then
QPT(E) — QY*(E) (2.5)
continuously.

We refer to [11] for a proof.
Now we come to the module structure theorem.

THEOREM 2.8. Let (E;, hi, Vi) — (M™,g) be Riemannian vector bundles satis-
fying (I), (Bx(M™,9)), (Bi(E;,V;)), i = 1,2. Assume 0 < r <ry,re <k. Ifr=0

assume

_n _m
T <7 P
r—2 <y — 22
p2 or
r—2 <y -4y — 22
_1 1101 1 p2
1l 14 1
P_P1+;D2
n ni na
r—=><r -2t O<r — 2+
P_l p1 1 p1
0<ry— 22 or{ r—2<rp— 2
P2 P P2
11 11
P — PN P = p2
Ifr >0, assume * < L + L and
’ P — p1 D2
n n1 n ni
r——-<ry—-t r—-<r —--
b T p T
r—I<rg— 2 r—2 <y — 22
r—-<rp— 24— 22 r—-<rp— -+ +rp— 2
p ST T2, p ST T T2 T,

Then the tensor product of sections defines a continuous bilinear map
QPUTH (B, V) X QP72 (Ep, Vo) — QPT(E @ Ep, Vi @ V). (2.6)

We refer to [12] for the proof. O

COROLLARY 2.9. Assumer =11 =17T2. p=p1 = po.
(a) If Ey = M xR, Ey = E, then QP (E) is an QP" (M x R)-module.
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(b) If By = M x R = Es, then QP"(M x R) is a commutative, associative Banach
algebra.
(¢) If Ey = E = E», then the tensor product of sections defines a continuous map

QP (E) x QP (E) — QPT(E @ E).
O

Given (E,h,VF) — (M™,g), for fixed E — M, r > 0, p > 1, the Sobolev space
O (E,h,VE g, V9, dvol,(g)) depends on h,V = V¥, and g. Moreover, if we choose
another sequence of differential operators with injective symbol, e.g. D, D?,--- in
case of a Clifford bundle, we should get other Sobolev spaces. Hence two questions
arise, namely

1) the dependence on the choice of h, V¥, g,

2) the dependence on the sequence of differential operators.

We start with the first issue and investigate the dependence on the metric connec-
tion V = V¥ of (E,h). If V' = V'E is another metric connection then n = V' —V is a
1-form with values in g, V' =V € Q1 (&g) = Q(T*M @ ). Here G is the bundle
of the skew-symmetric endomorphisms. V = V¥ induces a connection V = V®= in
&g and hence a Sobolev norm |V — Vv pr = [V — V|1, v,0,v9,p.r-

THEOREM 2.10. Assume (E,h,VE) — (M™, g) be a Riemannian vector bundle
satisfying (I), (Bx(M",g)), (Bx(E,VF)), k> r > 241 Let V' = V'E be a second
metric connection with By(E,V'F)) and suppose

|V - V/|v1p17«71 < 0.
Then
QZIP(E, hvvvg):Qp.p(Ea hvvlag)a OSPST

as Sobolev spaces.
This can be extended to a more general

THEOREM 2.11. Let (E,h,V¥) — (M",g) be a Riemannian vector bundle sat-
isfying (I), (Br(M™,q)), (Bx(E,VE)), k> r > 7+ 1. Suppose I’ is a fibre metric
on E with metric connection V' and g’ a metric on M™ with (I), (Bx(M",g')),
(Bk(E, V")) satisfying Ch <h' < D-h,C1-9g<¢ <Cs-g,|V—=V'|hvgpr-1 <00,
V9" — V9|, pr1 < 00. then

Qp7p(E7h7vvg) :Qp7p(E7hlav/ugl)a OSPST

as equivalent Sobolev spaces. [

We are left with the dependence on the sequence of differential operators. This
can be answered by the following two theorems.

THEOREM 2.12.  Let (M™,g) be an open Riemannian manifold satisfying
(Boo(M™,g)). Then

6q72)2S(M7v) =§02 q72)2S(M7A)7 qugna 782071727"'
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as equivalence of Sobolev spaces. O

Here the 2's are Sobolev space of forms.

THEOREM 2.13. Let (E,h,V¥) — (M",g) be a Clifford bundle satisfying
(Boo(M™,g)) and (Boo(E,V)) . If (M™,g) is complete, then

0" (E,V)=Q*"(E,D), ,r=0,1,2,---
as equivalence of Sobolev spaces.

We refer to [12] for the proof. O

For later use we restric ourselfs additionally to metrics with bounded geometry.
Let (M™, g) be open. Consider the conditions (I) and (By) and

M(I)={ge M| g satisfies (I)},
M(Bg) ={g e M| g satisfies (By)},

M(I,Bk) = M(I) N M(Bk)

Now we want to introduce Sobolev uniform structures into the space of metrics.

Let now k >r > 2+1,6 >0, C(n,0) =1+ 06+ d/2n(n —1),
Vs = {(gugl) € M(IuBk) X M(IuBk”C(nv(S)_lg < gl < C(n75)97

r—1
9= lae = ([ Qg =95+ S [V (V7 = 995 dvola(9)F < 5),
i=0

PROPOSITION 2.14. The set {Vs}s=o is a basis for a metrizable uniform structure
UPr(M(I, Bg))) on M(I,By). O

Denote ME (I, By) as (M(I, Bg), 4?"(M(I, By))) and by MP"(I, By) the com-
pletion. It was proven by Salomonsen that the completion yields only positive definite
elements, i.e. we still remain in the space of C' Riemannian metrics.

For g € MP" (I, By),

{UP™(g)}es0 = {{g' € MP"(I,By)| ’lg—d'lg <&, ‘lg—d'ly <,
|g - g/|g,p,r < E}}s>0

is a neighborhood basis in the uniform topology. There arises a small difficulty.
g € MP7"(I,By) must not be smooth and hence |g — ¢'|yp,» must not be defined
immediately. But in this case we use the density of M(I, By) C MP"(I, By) and
apply a suitable approximations procedure (cf. [12]).

PROPOSITION 2.15. The space MP" (I, By) is locally contractible. O

PROPOSITION 2.16. In MP" (I, By) components and arc components coincide. O
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Set for g € MP"(I, By)
UP"(g) ={g' € MP"(I,Bi)| "lg—g'lyg <00, °lg—g'ly < o0,
|9 - 9/|97p,r < OO}}

PROPOSITION 2.17. Denote by comp(g) the component of g € MP" (I, By). Then
comp(g) = comp”” (g) = U""(g).
a

THEOREM 2.18. Let (M™ be open, k > r > 2+ 1. Then MP"(I, By) has a
representation as a topological sum

MPT(1LBy) = S U (g).

iel

We can reformulate theorems 2.10 and 2.11.
PROPOSITION 2.19. Let g € M(I,Bi), k 2 v > 2+ 1, g € comp(g) C
MP"(I, By). Then
QP(Ty, g) = QPN(T, g')
as equivalence of Sobolev spaces. [

THEOREM 2.20. Assume k > r > % + 1. Then, each component of the space
MPT(I, By) is a Banach manifold and for p = 2 it is a Hilbert manifold. O

We introduce now in quite analogous manner uniform structures of connections.
Let (E,h) — (M",g) be a Riemannian vector bundle. Denote by Cg the set of all
metric connections in E and set for m € Zy, 6 > 0

Vs = {(V,V') € CE|"™|V' = V| < 6},
where, according to our definitions in section 2,
PV = Vg =Y sup [VH(V = Vo~ sup [VA(V = V)l

—nTEM eM
#=0 0<p<m

PROPOSITION 2.21. B = {Vs}s>0 is a basis for a metrizable uniform structure
bmy((Cg) on Cp. O

Denote ©,.Cr = (Cg,>™ U(Cg)) and by »™Cg the completion.

PROPOSITION 2.22. a) "™Cg is locally arcwise connected, hence components
coincide with arc components.
b) »™Cg has a representation as topological sum

bme = Z b’mcomp(vi).

icl
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c) ForV ebm(Cp
bmeomp(V) = {V' € "™Cp|P™|V' — Vv < oo} = V +21 QY (GR),
where Gg are the skew symmetric endomorphisms of E and the connection in Gg is
defined by V9¢ = [VF ¢]. O
REMARK 2.23. On a compact manifold we have only one component. O

Suppose that (M™,g) satisfies (By) and consider the set Cg(Bg) = {V €
Cp|(E,V) satisfies (By)}. Restricting ™4 to Cg(By) by yields ,C(By) and the
completion *™Cp(By,).

PROPOSITION 2.24. Suppose m >k + 1.
a) ""MCg(By) is locally arcwise connected, hence components coincide with arc com-
ponents.
b) ®™MCg(By) has a representation as topological sum

bCp(By) = P comp(V).
jeJ

O

We discuss another example, which is important in Teichmiiller theory for open
surfaces. That is the space of bounded conformal factors, adapted to a Riemannian
metric g.

Let

Pm(g) = {¢ € C°(M)| inf ¢(z) >0, sup ¢(z) < oo, [Viglg. <Ci 0<i<m}
zeM zeM

Set for 1 <p < oo, re€Zy,d>0,
Vs = {(¢=¢/) € Pm(9)2| lp — ¢/|g,p,r = (/Z |(vg)i(¢ - ¢/) _Zq),deOIw(g))% <}
i=0

Then B = {Vs}s>0 is a basis for a metrizable uniform structure.
Let PP, ,.(g) be the completion,

C'P={pc CYM)| inf é(z) >0, sup ¢(z)< oo}
zeM zeM

and set
PE"(9) = Ph, .(9) NC'P.

PPT(g) is locally contractible, hence locally arcwise connected and hence components
coincide with arc components. Let

U (@) ={¢' € PR (9] ¢ = &'lgpr < o0} (2.7)

and denote by comp(¢) = compP;"(¢) the component of ¢ in PE"(g). |- |g,pr in (2.7)
means the local extended metric, i.e. it is defined by taking distributional derivatives.
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THEOREM 2.25. P27(g) has a representation as topological sum

P (g) = comp(ei)

el
and

comp(¢) = UR"(9).
O

REMARK 2.26. On a compact manifold there is only one component, the compo-
nent comp(1). O

Let M™ be an open smooth manifold, M = M (M) be the space of all Riemannian
metrics. We want to endow M with a canonical intrinsic topology either in the C™—
or Sobolev setting, depending on the subsequent investigation.

Our last class of examples for non-linear Sobolev structures are manifolds of maps
and diffeomorphism groups.

Let (M™,g),(N™ h) be open, complete, satisfying (I) and (By) and let f €
C>(M,N). Then the differential f. = df is a section of T*M ® f*T'N. f*TN is
endowed with the induced connection f*V" which is locally given by

K
Ozt
V9 and f*V" induce metric connections V in all tensor bundles T9(M) ® f*T%(N).
Therefore V™df is well defined. Since (I) and (Bp) imply the boundedness of the
9ij, gk, huw in normal coordinates, the conditions df to be bounded and 0; to be

bounded are equivalent.
In local coordinates

sup |df|2 = suptrg(f*h) = sup g h, 0; fO; f*.
pAS

Ty, = 0if* ()Tay(f (@), 0=

For (M™,g),(N™, h) of bounded geometry up to order k and m < k we denote by
C>™(M, N) the set of all f € C>°(M, N) satisfying

m—1

b,m
| = sup |V*df|, < cc.
|df| == > sup [V*df|

u=0 x€

Assume (M™,g),(N™, h) are open, complete, and of bounded geometry up to order
k,r <k 1<p<oo,r> % + 1. Consider C°*™ (M, N). According to the Sobolev
embedding theorem, for r > % + s,

QP (fTN) =P Q(F'TN), (2.8)
DY < DYl (2.9)

where [V, = ([ 2 |ViY|pdVO].)%. Set for § > 0,-D < dn < 7inj(N)/2,1 < p < o0,
i=0

Vs = {(f,g) € C=™(M,N) x C™(M,N)| 3Y € Q2(f*TN) such that g = gy =
expY and |Y|,, < d}.
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PROPOSITION 2.27. B = {Vs}o<s<r,,,;(N)/2D 5 @ basis for a metrizable uniform
structure UPT(C™(M,N)). O

UPr(Co™(M,N)) is metrizable. Let ™QP"(M,N) be the completion of
C>"™(M,N). From now on we assume r = m and deonte "QP" (M, N) = QP" (M, N).

THEOREM 2.28. Let (M™,g), (N™, h) be open, complete, of bounded geometry up
to order k, 1 <p<oo,r <k, r> % + 1. Then each component of QP"(M,N) is a

CY**="— Banach manifold, and for p = 2 it is a Hilbert manifold. O

Let (M™,g) be open, complete, oriented, of bounded geometry up to order k,
1§p<oo,r§k,r>%+1. Set

DY ={feQP"(M,M)|f Dbijective, orientation preserving, |A|lmin(df) > 0.}

THEOREM 2.29. DP'" 4s open in QP (M, M), in particular, each component is a
C'*tE="_Banach manifold.

This follows from immediately from the condition |A|min(df) > 0 and the Sobolev
embedding theorem. In particular for f € D27, TyD>" = T;O*"(M, M), but for
f € D>, exp; : B(0) C TyD*" — Q>"(M, M), must not map into D>". This only
holds for & ”very small”, depending on |A|min(df).

We denote by comp?"(id) = Dy" C D>" or comp>” (id) C Q*>"(M, M) the com-
ponents of the identity map, respectively. f € comp(id) C D*" or f € comp(id) C
Q%7(M, M) if and only if f is homotopic in Dy" or Q> (M, M) to the identity map.

The metric g enters into the definition of ’DS’T and Q%" (M, M). Tt is easy to show
that they depend only on comp?®"(g),

D" (9) = Dy (comp(g)),

0*"((M,g),(M, g)) = Q>"((M, comp(g)), (M, comp(g))).

In particular, if we fix a metric go € M (I, By) and consider a smooth curve {g: }o<i<1
connecting go and g1 in M(I, By), then

Q2770((]\45 QO); (Mv QO)) = Q2770((]\45 QO); (Mv gt))'

This will be important in section 7.

3. Harmonic maps as stationary points. Not very much is known about
harmonic maps between open manifolds. The reason for this is that-in comparison
with the compact case-the analytical difficulties grow considerably. Nevertheless,
there are some substantial results, e.g. [3], [19], [27], [31].

We start with some generalities concerning energy, tension and harmonic maps
between open manifolds.

Let (M™,g), (N™,h) be open and of bounded geometry up to order k, k > r >
max{n,n'}+2,p=1, f € QY7 (M, N). Thendf € CL(T*M®f*TN). Let us introduce
the energy density of f,

2
T*M®f*TN-

e(f) = 5ldf
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If vol(M, g) = oo (as follows from (I) and (Bj)) then, in general,

B(f) = /M e(f)dvol, (g) = oo.

Let X € QU7 (f*TN), where f*TN is endowed with induced metric and connection,
and put f; = exptX, i.e.

1
fi(z) = expf(m)(tX,f(w)>’ e(fit) = §|dft|2T*M®f;TN-

LEMMA 3.1. Let f, X, fi as above. Then the integral

[ et = et dvola() .)
M

1

— 5 [l dr) = (df. @)l o) (3.2

converges, i.e. has a finite value.

Proof. dfy — df is not defined since for a tangent vector Z € T, M, df;(Z) and
df (Z) lie in different tangent spaces. But if we translate df; along exp(—sP;X) from
fi(x) to f(x), thus getting a map df;, then df; — df is well defined. We obtain

(dfe,dfs) — (df,df) = (dfe, df.) — (df, df) = (df; + df, df, — df).

But |(/1ﬁ|, |df| are bounded and |(/iﬁ —df|. < C-t|X|, where C' depends on curvature
bounds. Hence the integral (3.2) converges. O

LEMMA 3.2. Let fi € comp'"(fo). Then

| et = e(fulldvol. () 33)
converges, i.e. has a finite value.

Proof. By assumption, f; = expX, oexpX,_1---oexpX1, X1 € QU (f;TN),
X; € QY ((expXi_1 -+ 0oexpX1)*TN). Then we write

e(f1) —e(fo)

= e(expXy, oexpXy—_1---oexpXi) —e(expX,_1---0expXi) (3.4)
+e(expX,_1---oexpXy) — e(expX,_o---0expXy) (3.5)
+ e

+e(expX1) — e(fo) (3.6)

Each of the terms (3.4)-(3.6) is of the kind (3.1) and we can apply Lemma 3.1. O
Define for fo € QY7 (M, N) the relative energy functional w.r.t. fo,

Ey, : comp™ (fo) — R
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by
Ba(f) = [ [e(h) = elfolldvol. o).

According to Lemma 3.2, Ey,(-) is well defined. Let us further define for f €
QL7(M, N) the tension field 7(f) €0 Q(f*TN) = T;*°Q(M, N) by

7(f) := trgV"df = {7%(f)}a
() = (g7 (V"df)i)*, 9= (9ij), h=(hap), 1,5 =1,2,--+,n, a,f=1,2,--- 0.

LEMMA 3.3. A map f € comp™"(fo) is a stationary point of Ey,(-) if and only if
7(f) = trgVPdf = 0.

Proof. We note that our choice of r implies the applicability of Stokes’ theorem.
We have to calculate for fix = exptX, X € QUT(f*TN),

1 d

%Efo (fex)t=0 = 3 /M a[(dftx,dftx) — (dfo, dfo)]]t=0dvol.(g)

= [V g, df)lodvol. (o)
M
:/ (df, VX)dvol,(g)
M
= / (V*df, X)dvol;(g)
M
= —/ (tryVdf, X )dvolg(g),
M
hence the Euler-Lagrange equations for Ey, (-) are
7(f) = trgV"df =0.
d

LEMMA 3.4. Let f1 € comp™(fo). Then f is a stationary point of Ey,(+) if and
only if it is a stationary point of Er, (-). O

Now we define f € Q1"(M, N) to be harmonic if it is a stationary point of some
Et (), fo € comph"(f) fixed. As we have seen, this property does not depend on the
choice of fy.

We summarize in

PROPOSITION 3.5. f € QY"(M, N) is harmonic if and only if

7(f) = tryV"df = 0. (3.7)



HARMONIC DIFFEOMORPHISMS BETWEEN OPEN SURFACES 487

We now turn to harmonic maps within the Teichmiiller space. Suppose M2 = N2,
M? an open Riemannian surface with go € M(I, Bs), Ky, = —1 (Ky,=the scalar
curvature), r;(go) > 0, infoe(Ao(go)) > 0. We extend our considerations above
slightly by working with p = 2. But for vector bundles, Q" — Q%% if r > n :
r—2%>%—2 r>2 p=2>1=q This implies Q'"(M,N) — Q*2(M,N) etc.
We write in the sequel r for 5 and assume r > §+2, i.e. in our caser > 3. Denote as in
section 2 by comp®™(go)_1 the submanifold consisting of all metrics of scalar curvature
-1. Let {gt}o<t<1 be a C"— curve in comp®7(go)—1. Then id : (M?,go) — (M?,go)
is harmonic. We ask for a harmonic map f; € comp?®7 (id) C Q*>"((M, go), (M, g1))
between (M, gg) and (M, g1)).

Consider the map

[0, 1] x comp*"(id) ? Tcomp®"2(id),

E(t, f) := try, V9 df € Tcomp®"~2(id). (3.8)
First we must show that this map is well defined, i.e.
Te(f) = trg, VIdf € Q> 2(f*TM?, f*g;) = Q> 2(TM?, go). (3.9)

At this point we should remove the t-ambiguity in our Sobolev spaces. According
to section 2,

Q*(TM,go) = Q*(TM,g;), 0<j<r—1 0<t<I, (3.10)

as equivalence of Sobolev spaces and, since {g: }o<i<1 is a compact curve, there exists
constants independent of ¢ which describe the equivalence (3.10). Moreover, for any
C"— curve {fi}o<t<1 in comp®" (id) CQ>"((M, go), (M, go)) = Q*"((M, g0), (M, g1)),

Q%I (TM, go) 2 Q> (f;TM, ffgr), 0<j<r—1, 0<t<1, 0<7<1, (3.11)

with equivalence constants independent of ¢,7 (but depending on {g-}o<r<i,
{ft}o<i<1). Finally, we use the fact that under our assumptions the Sobolev spaces
based on the covariant derivative V and on the (Bochner) Laplacian A are equivalent,
ie.

Q21j (TM, Agov gO) = QQJ‘ (TMv Vg()’ 90)7

Q2I(TM, V9%, g;,) 2 QI (TM,A%,g;), 0<j<r—1, 0<t<1 (3.12)

as equivalent Sobolev spaces with constants independent of ¢ (cf. [12]. (3.12) holds cor-
respondingly for the induced bundles and metrics by a curve { f; }o<t<1 in comp*” (id).
We want to prove 7¢(f) = try,Vgdf € Q> 72(f*TM) and start with the case
f = expX. At this point there arises a further question. With respect to which
g shall we take the exponential map, f = expyX 7 Let § < ilgfrmj (9¢). Then

f =exp9X(g¢) if and only if f = exp9 X (go) if we restrict to X’s with length < §,
i.e. given f and ¢, there exists a unique X = X (g;) such that f = exp? X (g;). Hence,
restricting once and for all to such X’s, the choice of g to represent f as f = expyX
is irrelevent and we fix g = go and simply write f = expX = exp% X. Moreover, we
denote in the sequel V = V9.



488 Q. CHEN AND J. EICHHORN

PROPOSITION 3.6. Let (M?,g;), r be as above and f € comp®"(id) C
Q21T((M790)7(Mvgt))' Then

() = try, (V9 df) € Q¥ 2(f*TM) = Trcomp®" (id). (3.13)

Proof. We start with f = expX = exp% X (go), X € Q2(TM). Then, according
to chapter III, section 5 of [12], for 1 <i<r—1

|VidexpX|e < pi(|X |y VX ey, |V X|,) € Lo, (3.14)

where p; is a universal polynomial in the indicated variables without constant term.
(3.14) implies

[trg, V9 dexpX| € Lo, (3.15)
|[trg, VIt dexpX| € Lo (3.16)

and finally
V3 trg, V¥ dexpX| € Ly, 0<j<r—2. (3.17)

Let X € Q*"(TM), then there exists a sequence (X,), in Q2(T'M) converging to
X wurt. |-|.. For the X, (3.14) makes sense since the corresponding pointwise
norms are defined. We have, according to the embedding theorem, X, — X in C?,
trg,VdexpX, — try VdexpX in C°, and (Vitr, VdexpX,), is a Cauchy sequence
in Ly which converges to (the distribution) V7try VdexpX, which now is in Ly too,
0 < j <r — 2. Then, according to the equivalence of Sobolev spaces above,

V3 trg, V¥ dexpX| € Ly, 0<j<r—2. (3.18)
Suppose
IVdf|s < piu—1 (X1l IV Xa], - [ Xuzal, o5 [V Xuea]) € Lo (3.19)

forall f = expX,_10---0expXi, X; € Q2((expX;_1 ---0oexpX1)*TM) and let now f =
expXy, 0expXy—1 - -0expXy, sup | X;|, < irtlf Tinj(g1). We recall: If Ey, E4,--- , E, are
z,J

vector bundles with connections Vo, -+, Va, respectively, which induce connections
V = V,_1,; in Hom(E;_1,E;) and ® : T'(Ey) — I'(E,) can be factorized as @ :
T'(Eo) 25 T(Ey) — -+ 2% T(E,) then for X €T
V(2(X)) = V((®yo0---0®)(X))
— (V(I)u)((l)u,1 O---0 (I)l)(X) =+ (I)u o (V(I)ufl)(q)u,Q Q---0 (1)1)(X)
+...+(®uo...0®1)(vX)_ (320)
We apply this to By = T'M, ®; = dexpX;. Hence

V(dexpX, o---odexpX;) = Vd(expX, o---oexpXy)
= [V(dexpX,)] o d(expX,_10---0expXy)
+dexpX,, o Vd(expX,—10---oexpXi) (3.21)
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Here |Vd(expXy)| < p1(|Xul, |IVXu]) = p1,1 and d(expX,—10---oexpXy) is bounded
by po.u—1(|X1], -+, | Xu—1]) since we assumed (B1) and r > 3, dexpX,, is bounded by
po,1 and |Vd(expXy—1 0 ---0expXi)| < p1u—1 € Lo by induction assumption. We
infer

|Vd(expXy 0---0expXi)| < pi1-Pou—1+DPo,1Plu-1=Plu- (3.22)

We demonstrate the general rule, performing the estimates still for V2. We apply V
to (3.21) and obtain

[V2(dexpX,)] o d(expXy_10---0expXi) (3.23)
+[V(dexpX,)] o [Vd(expX,_1 0--- 0 expX})] (3.24)
+[V(dexpX,)] o [Vd(expXy—10---0expXy)] (3.25)

+[dexpX,] o [V2d(expX,_1 0---0expXy)], (3.26)

V2 (dexpX)| < pallXo], VX0, IV2Xul) = pot € Lo, Jd(expXy 1 0 - o expXy)|
is bounded by pou—1, |VdexpXy| < p11(|Xul,|VXy|) € Lo, |Vd(expXy—10---o0
expX1)| < p1u—1 € Lo, |V2d(expX,—10---0expXi)| < p1u—1 € Lo, hence

|V2d(expXy—10---0expX1)| <pa1-Pou—1+ 211  Plu—1+Do1 Pu-1. (3.27)

The polynomials pa 1,p2,,—1 are in Ly, pg ; is always bounded, p2,1 - Do,u—1, Po,1
D2,u—1 are in Lo. The open question is p11 - p1,u—1 € L2? Fortunately, the product
P11 - Pru—1 in (3.27) is indeed in Lo. This comes from the special structure of the
polynomials which we exhibited in chapter ITI, section 5 and 6 of [12]. We repeat this
briefly. Assuming the assumptions of the module structure theorem-which are satisfied
in our case-one gets X, Y (2, r)—Sobolev implies X ®Y is also (2, 7)—Sobolev. The p;;
arise during the estimate of the i-th derivative of j factors (or compositions) applying
the Leibniz rule. The module structure theorem then just says that the estimated
summands are in L. This yields p1,1 - p1,u—1 € L2. Having these arguments in mind,
it is a matter of induction and simple combinatorics that, assuming |V/dexpX, o---o
expX1)| < pju, finally

|Vittd(expXy 0 0expX1)| < pjp1w, J+H1<7r—1, (3.28)

where pjt1,, with the structure coming from (3.19). By a simple completion (diag-
onal) argument quite parallel to that after (3.17) we can extend (3.28) to the case
X; € O*"((expXj_1 0---0expX1)*TM), i.e. to the case f € comp®"(id) and infer
from (3.28), (3.11) that

[trg, Vdf| € Lo,

|trg, VItdf| € Lo,

|Vitry, VIdf| € Ly, j<r—2,

ie. T(f) = try, VItdf € Q> 2(f*TM). (3.29)
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4. Gradient estimates for harmonic maps on open manifolds. We assume

that for a curve {g:} := v of metrics, we have a family of harmonic diffeomorphisms
fe 1 (M2, go) — (M2, g4) for t € [0,T]. This implies

Te(ft) = trg, (Vg df) = 0.
For fo =id: (M, g0) — (M, g;), we have
7¢(fo) = B(id)(idseq, idve;) = Vite; — Vs = (I‘fﬂ.i _ I"g)ii)ayh (4.1)

where B(id)(-,-) stands for the second fundamental form of the map id : (M, go) —
(M, g;), and {0,x} is a natural frame corresponding to some local coordinates {y*}
on M. Using the assumption on the metrics {g:}, we have

e (id)lg, = |(T

t,ii

- Fg,ii)ayk lg. € L*(M).

As in [23], we have the distance function p;(-,-) with respect to the metric g, on M.
From [23] and [3], we have

Apy(fe,id) = = (|7 (fe)lg, + |Te(id)lg, ),
consequently,
Apt(ftu Zd) > _th(id”gH (42)

and note that the RHS is in L?(M), furthermore, the L? norm of |7:(id)|,, is bounded
above by a constant C' = C(v) independent of ¢. For simplicity of notation, we denote
the lowest spectral value inf o(Ag(go)) > 0 of (M, go) by A(M,go), or even simply
A(M).

LEMMA 4.1. We have
/ pi (fesid)dvy < Co < 400, (4.3)
M
where Cy = Co(v, AM(M, go)) > 0 is a constant independent of t.

We proceed to consider the gradient estimates for f; and will prove Lemma 4.1
later. Since A(M, go) > 0, Ricpr > —1, and in{d Vol(B,(1) = a > 0, from (4.2) and
zTE

using the Moser’s iteration, we have (c.f. Proposition 2.1 and (3.5) in [3]):
pe(frid)(@) < Cullpe(frid)l| 2, (29 + VOL(Bw(2)) 2 [ me(id) g, 12(B, 2] (4:4)
for any x € M, where C; > 0 is a constant independent of ¢. Since
loe(fesid)l L2y < C2 lme(id) g, 2ar) < Co
for some constant C > 0 independent of ¢, we conclude that
pi(frrid)(x) =0 (2 — o0)
uniformly in ¢, hence

pie(fryid)(x) < Cs, Vt,Vz e M, (4.5)
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where C'5 > 0 is a constant independent of ¢.

REMARK 4.2. From (4.5) we have
dgt(ft(I),I) §O37 Vt,V.IEM,
so, for any xog € M and a geodesic ball in (M, go) of radius r centered at xq, we have

dgt (ft($)7 ft(xo)) < dgt (ft(l'),.’li) + dgt (‘T7 ‘TO) + dgt (ft(x0)7x0)
<2C3 + Cyr := R(T),

where in the last step we have used the fact that
Cy g0 < g1 < Cago

for some constant Cy > 0 independent of t. Therefore, for the map fi : (M, go) —
(M7 gt):

ft(Bao (7)) C By, (o) (B(r))- (4.6)

Denote by M the universal covering space of M, and denote the covering projection
by m. For any @ € M, choose ¥ € m—1(x). Let § > 0 be a constant smaller than
the infimum of the injective radius of points in (M, go) which is positive since (M, go)
satisfies (I). Then from (4.5), for any #’ € B;(d),

dﬂ'*gt (ft(j/)v f‘t(j» < dﬂ'*gt (ﬁ(j/)vj/) + dﬂ'*gt (jlv‘%) + dﬂ'*gt (ﬁ(j)v‘i)
< pe(fryid) (@) + Cad + pi(fr,id)(x)
<205+ 046 = Ry,

namely, the harmonic map f; : (M, 7*go) — (M,n*g,) satisfies:
Fi(B3(9)) C B,z (Ro) (4.7)

for some constant Ro(7y, A\(M, go)) > 0 independent of t. Now we need the following

(c.t. [2])

LEMMA 4.3. Let M™ and N be complete Riemannian manifolds, N is simply-
connected with nonpositive sectional curvature, xo € M. If f : M — N 1is a harmonic
map satisfying f(Bz,(2)) C By,(R) C N, then

sup |df| < C(m, R, K),
By (1)

where K > 0, and Ricpyr > —K on B, (2).
Using the above estimate for f; : Bz(5) — Bf}(i) (Ro), we have

|dfelge = |dfeln-g, (&) < Cs (4.8)

for some constant Cs > 0 independent of t. From the standard elliptic estimate for
the equation

Tt(ft) =0, (49)
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we can conclude that
|v]ft|(h($)§0(]7’7)u VI'EM, 321127 7T+1a (410)

where C(j,v7) > 0 is a constant independent of t. To see (4.10), we choose local
coordinates {2}, {y'} around any point * € M and f;(z) respectively, and write
(4.9) locally as

; . ofl off .
Aff=— t,jkaﬁa—xtg%ﬁa (4.11)

namely,

d s Of} . Ofl off . ;
w(\/g_ogoﬁa—xtg) = _\/Q_OFt,jkﬁa—xtggoﬁ = Iy, (4.12)

where go := det(go,o3). It follows from (4.8) and Fi,jk € C™"1(M) that F} € L*, by
Schauder estimates for the elliptic equation (4.12) (see e.g. Theorem 2.2.1 in [15] or
[14]), we have

[ fllcram, (1)) < CO; (4.13)

using this in Schauder estimates for the elliptic equation (4.12) again, we obtain

£l ez (Ba (1) < CO; (4.14)

by using the bootstrap method like this, we finally obtain (4.10). Now we give the

Proof of Lemma 4.1. Since f, € comp(id), by definition (c.f. [12]), there exist
vector fields X, X5, ---, X}, such that

fi = expX}, 0o expX]

and X! € Q> ((expX)_j o---o0expX{)*TM), j =1,2,--- ,ns. r{’he homoNtopic maps
Je,id = (M, go) — (M,g¢) can be lifted to homotopic maps f;,id : (M, 7*go) —
(M, 7*g;) respectively between covering spaces, and

fi = expXy, o+ oexpX!

with X} = dw(f(;-), j =1,2,---,n Note that since the covering projection 7 is
a local isometry, we have |X|;, = |X!|x-g,, j = 1,2,--+,n;. The distance between
fi(%) and id(&) = & in (M, 7*g,) is

dreg, (Fi(7), 7) < dreg, (T, expX](2)) + -+ + dig, (expX;,, _y 0 0 expX{(7), fi(T))

= |Xf|7r*gt (T) + |X5|7r*gt (:ﬁ) + -+ |X7tzt T gy (55)
= | Xilg, () + [X3lg, (2) + - + | X}, g (),

by the definition of p; we have

pi(fi(z), x) < Z | X g ().
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From this we conclude that

| dtiadn < [ Z|X )2
SntZ/ |Xf|§tdvo<oo,
i=17M

the last inequality is because of the definition of the spaces Q27. Thus, for any fixed
t, the map f; : (M, go) — (M, g¢) is harmonic and satisfies

/ 02 (fr,id)dvy < o0. (4.15)
M
However, such f; is unique, that is, if there is another map

ﬁ : (ngo) - (Magt)

homotopic to id which is also harmonic and satisfies
/ P2(fr,id)dvy < o0,
M

then we can deduce that f; = f;. In fact, since pi(fs, fi) < pe(fr,id) + pe(fi,id), we
have

/ p%(ftu ft)dUO S 2/ p%(ftuzd)dvo + 2/ p%(ﬁuzd)dvo < 00,
M M

M
that is,

pe(fe. fr) € L*(M, go). (4.16)
On the other hand,

Ape(fe, fo) = =(Ine(fo)lg, + |me(fe)lg.) = 0. (4.17)

From (4.16) and (4.17) we see that p;(f:, f;) is a nonnegative subharmonic function
on (M, go) which is in L?(M, go), by Theorem 3 in [32], we conclude that

pt(fe, fi) = const.

But the volume of (M, go) is infinite, this contradicts with [,, p7(fi, fi)dvo < oo. We
must have p(f;, f;) = 0, consequently, f; = fi. (Here we would like to remark that
having this uniqueness of fi, we then have a determined family of { fi} corresponding

to {gt}.)
Now we consider the map id : (M, gg) — (M, g:), a sequence of harmonic maps
{ft.i} solving the following

7t(ft,i) =0, (4.18)
ft,i|8£2i :Zd|aﬂla Z: 172;"' '

for an exhaustion {€2;} of M. For these f:; we have the following estimates

. L
| i < gl xn < Co (4.19)

7
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where Cy > 0 is a constant depending only on A(M) and the curve of metrics
{gt}o<t<1, but independent of t. And f;;,i = 1,2,--- converges uniformly on any
compact subsets of M to a harmonic map ft : (M, go) — (M, gt) as i — oo, further-
more, from (4.19), f, satisfies

/ P2 (fr,id)dvy < Co. (4.20)
M

(c.f. [3], also [17]). By the above mentioned uniqueness of f;, we know that f; = f;
and consequently

/P?(ft,id)dvoﬁco vi. (4.21)
M

This proves (4.3). O

5. The local existence of harmonic maps. We are searching for a curve
{fi}o<t<1 in comp®"(id) such that

F(t, fi) = tro, Vdfy = 7(f¢) = 0.

f1 would be the harmonic map f; : (M2, go) — (M?, g1) we are searching for. We will
prove in section 8 that f; must be a diffeomorphism. Our main tool is the continuity
method. Define

L ={t €[0,1]|There exists f & Q*((M,go),(M,qg1)) s.t. 7(f) =0}

The uniqueness will be later discussed. the set L is not empty since fo : (M?,go) —
(M?, go) is harmonic and 0 € L. In this section, we want to show that L is open. For
this we use the implicit function technique and express F' in local coordinates to get
maps in vector spaces.

Let fi, be harmonic, % (f,) a sufficiently small neighborhood of f;, € comp®" (id)
and % (0) = exp;ti (%(f1,)) C Ty, comp®" (id).

Consider the map

{#5s(to) N [0,1]} x %(0) — T}, comp®" 2 (id)

t,Y)— F(t,Y),

where %s(to) == (to—0,t0+0), F(t,Y) = P_ytry, VI®dexpY and P_y is the parallel
translation along the geodesic u — expu(—FPyY) from expY to fi, (we omit the
points x € M), i.e., F(to,-) is a non-linear map from %.(0) C Ty, comp>"(id) —
Ty,, comp™" =2 (id).

If we start with t = 0, fo = id : (M?,go) — (M?, go), then

F(0,0) = 0.

PROPOSITION 5.1. L is open in [0,1].
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Proof. Let Ays X := —gf ViV; X = —tr, V2X, X € Q>"(f*TM) be the rough
Laplacian acting on vector fields along f. Then

d
FX (0, O)Y = — |T:0F(O, TY)
dr
d d
= E|T:0P,Tytrgo Vv9d(id) + £|T:0trgovg°d(eXpTY)

d
= |r=otrg, VI°d(expTY’)
= —AypidY +trg, R (Y, d(id))d(id) (5.1)

The last equation is a straightforward calculation. Here we obtain in our case n = 2
and K = -1

(Fx(0,0)Y,Y) 2 = —(Ays.iaY,Y) 12 + (Ric®Y,Y) >
1
< —§|Y|%2 (5.2)

Hence Fx(0,0) has zero kernel and bounded inverse with closed image. Us-
ing the A-based definition of Sobolev spaces, we conclude easily that Fx(0,0) is
an isomorphism between Tjscomp®™(id) = Q>"(TM, go) and Tigcomp®"~2(id) =
O27=2(TM, go) since Fx(0,0) is essentially self-adjoint and dimcokerFx (0,0) =
dimkerFx (0,0) =0.0

According to the implicit function theorem, there exist § > 0, € > o such that
for t € [0,0] there is a unique X = X(t) € %(0) C Ty, comp*"(id) such that
F(t,X(t) =0, ie.,

119, VI d(expX (1)) = ¢ (expX (t)) = 0.

L contains an open neighborhood of tg = 0 in [0,1]. Now let 0 # to € L, 74, (f1,) =
trgovgfo dfto = 0,

Us(to) x %-(0) 3 (1,Y) — P_ytr, VIWd(expY) = P_yr(expY) = F(t,Y)

with % C Ty, comp®"(id), Y a Sobolev r-vector field along fy,.

We recall V = V9% exp =exp?, R=R%,|-|=|-| and T =% i.e., without

”go” everything is with respect to go. Moreover, we remark that in local normal

coordinates {u’}; and X = &2

out

CilX g < (Z(ﬁi)Q)l/Q = [ Xlewar < Ca2|X|ga

%

holds for arbitrary vector fields. Then again a straightforward calculation yields

d
Fx(to,0)Y = d—T|T:oF(t0, 7Y)
d gt d go
= d—T|T:oP_Tytrgov odfy, + d—T|T:0trgov d(exptY)

d
= |r=o[trg, VIt d(expTY)]
= _Avf,fm Y + trgoRgm (Yu dfto)dftm (53)
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(Fx (to, O)Y, Y>L2 = _<Avf,fm Y, Y>L2

b [ B (Y, )i Y) 1, 0900 (F 0. (5.0
M

where all scalar products in (5.4) are taken in (f; T'M, f7 gi,).

We recall our main assumption inf o.(Ag(go)) > 0, comp®"(go) C A*" (I, Boo),
7 > 3, Tin;(go) > 0, in particular, vol(M?, go) = vol(M?, g;) = o0, Ky, = —1.

The assumption inf oe(Ag(g0)) > 0, {g:}o<i<1 a smooth curve in comp(go)—1 C
comp®"(go) imply inf o.(Ag(g:)) = inf oe(Ag(g0)) > 0. Hence below inf o (Ag(g:))
there can be only discrete nonnegative eigenvalues of finite multiplicity which cannot
accumulate at 0. Moreover, 0 is not an eigenvalue of Ag(g;) since vol(M?,g;) = oo.
Hence if inf 0. (Ag(g:)) > 0, for compactness reasons teir(lJfl inf o (Ao(g:)) = Ao > 0.

)

We remark that for any Riemannian vector bundle (E,h,V) over a complete
Riemannian manifold (M2, g) there holds that ¢ € C°(E) implies |¢| € Q%21 (M™, g).
Moreover,

V2,
m 2
0#£peCE (M) |1]72

_ in |VX|%2
0£x€Q021 (M) |x|32

inf o(Ag(M™,9)) =

(5.5)

LEMMA 5.2.  Let (M™,g) be open, complete, vol(M™, g) = oo, Aoy =
info(Ag(g)) > 0 and let (E,h,V) — (M™,g) be a Riemannian vector bundle over
M. If Ao, = inf o(V*V), then

Ao,E = Ao,M- (5.6)

Proof. According to (5.5) and Kato’s inequality |d|¢||s < [V@|s,

V|22
mn 3
0£x€Q021 (M) |x|72
|d|¢]]7
T 0£6eC=(B) B2,
v 2
< inf | ¢2|L2
0£peC=(E) |P|72

Ao, M =

Z)\())E.
a

We now apply Lemma 5.2 to E' = fi TM, V*V = Ay, and obtain from (5.6)
and (trg, R9% (Y, dfto)dftO,Y>gm < 0 that

(Fx(tg,0)Y,Y)2 < —C|Y]3., 0< ) n[%fl] inf cAg(g:)) < C. (5.7)

From this we immediately see that Fx(to,0) : Q*>"(f; TM) — Q>"2(f; TM)

is an isomorphism: kerAvys, = {0}, Im(Avy,f, ) is closed, and kerAj; , = {0}.
Applying again the implicit function theorem, there exist 6 > 0, € > 0 such that
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for t € U(to) N [0,1] there is a unique Y = Y(t) € %(0) C Q>"(fiTM) with
F(t,Y(t)) =0, ie., 7(expY (t)) = 0. We conclude that L is open in [0, 1], the proof
of Proposition 5.1 is done. O

We infer from the implicit function theorem even more. The map
U (t9,0) > (t,Y) — F(t,Y) = P_ytrg,d(expY)

is smooth since {g:}o<i<1 is smooth. Then, according to the implicit function theo-
rem, the function ¢ — Y'(¢) is smooth and hence t — expY (¢) is a smooth curve in
comp®"(id). The derivative 2V (t) is given by

0

5 Y (1) = —Fx(t,Y(£) " Fi(t, Y (1)),

An explicit expression for the vector field &(x) = %expr(t) can be obtained
as follows. c¢(s.t) = exp(sY(t)) defines a Jacobi field Ji(s) = %exp(sY(t)), & =
ZexpY (t) = Ji(1), J4(0) =0, Vi Je(s) = VY (t), hence

0
€= gyexpY (t) = (d(expy, Y(1)(V 2 Y (1))
An estimate for |&| plays an essential role. In [22] has been established an elliptic
PDE for ¢ which could be use to estimate |£;| but we have chosen in section 4 another
approach. To prove L = [0,1], we must show the following. Assume that t; < t2 <
cee < tg,t, € Ly,v>1,t, — ty, then tg € L. The canonical procedure to prove this
would be to prove

(fe,)» is a Cauchy sequence in comp®"(id), (5.8)
ft. = fro, (5.9)
(i) = 0. (5.10)

As well known from other treatises on harmonic maps, the proof of (5.8), (5.10) would
be the hardest part of an existence theorem for harmonic maps. In the next section,
we shall follow another road which will turn out as essentially equivalent to (5.8) and
(5.10).

6. The reduction to a uniform Banach fixed point theorem. The proof
of L = [0, 1] will immediately follow from the following

THEOREM 6.1. The ezists a § > 0 independent of ty such that

(to — 8,t0 +6) N [0,1] C L. (6.1)

We shall later see that the proof of (6.1) is equivalent to (5.8)-(5.10).
The proof of Theorem 6.1 essentially relies on careful estimates of Fx(¢,Y) and
F(t,Y) to which we turn our attention in the next section.



498 Q. CHEN AND J. EICHHORN

First we sketch the key idea proof of Theorem 6.1.
Letto € L, fi, : (M?,g0) — (M?,4,), fr, € comp?"(id) C Q¥ (M, M), 14, (f1,) =
try, VI dfy, = 0 and set with F(t,Y) = P_ytry, VI®dexpY
g(t, Y) = FX (to, O)Y — F(f, Y)
d

= £|T:0[P,Tytrg0 Vi d(exprY)] — F(t,Y) (6.2)

for Y € %.(0) C Ty, comp®”(id) C Q*7(f TM), e sufficiently small. g is a map
[0,1] x %(0) — Ty, comp™"~*(id).

Then 7 (expY) = 0 if and only if F(¢,Y) = 0 ifand only if Y = Fx (t9,0)"tg(t,Y).
Hence if we set

TY = Fx(to,0) 'g(t,Y), (6.3)

then
Ft,Y)=0 if and only if TY =Y, (6.4)
i.e., if Y is a fixed point of ;. Hence we would be done if there would exist a § > 0
and for every to € L a (non-empty) complete metric space My, s C T, comp?" (id)

such that

T, : My, — My, (6.5)

and
T, is contracting for all té€ (to—6,to+06)NJ[0,1], (6.6)

where 0 is independent of tg.

To establish (6.5) and (6.6), we must carefully estimate the operator norm
|Fx (to,0)"!|-—2. and the Sobolev norm |g(t,Y)|2.,—2.

We write

T;Y := Fx(to,0) 'g(t,Y) = Fx(to,0) *[g(t,Y) — g(t,0) + g(t,0)]. (6.7)

PROPOSITION 6.2.

1. |FX(t0,O)_1|T_2,T < (Cy, Ci independent of to. (6.8)
2. |g9(t,0)|r—2 = 19(t,0)|2r—2 < Co|t —to|, Caz independent of to. (6.9)
3. |g(t, Y) - g(t, O)|T—2 < 01(1)|Y|r7 (6'10)

where 01(1) — 0 as |Y|, — 0 and |t — to| — 0 with rate independent of ty.
4. |g(t, Y1) = g(t,Ya)|r—2 < 02(1)[Y1 — Yo, (6.11)

where 02(1) — 0 as |Y1|, — 0 and |Ya|, — 0 with rate independent of to.
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The proof of (6.8)-(6.11) will occupy the whole next section.
Now we draw our conclusions from Proposition 6.2. Choose p so small such that

1
(1) < — 6.12
1) < 5 (6.12)
for |Y|, < pand |t —to| < 0,7 =1,2. Then
|FX(t07 0)_1[(g(t, Y) - g(t, 0) + g(t, O)”T
< Cilon(D[Y ] + Caft —to]]
1
< Ci[=—=IY|, + Calt — ¢
< 1[201| |r + Calt — tol]
1
< SVl + CiCalt — tol
1
< §p+C1C2|t—to|
Sl
Soptgp=p
for |t—t0| S ﬁ
Hence
T,: My — M, M,={Y € Q> (fi TM)||Y|, < p}.
THEOREM 6.3. T} : M, — M, is contractive for [t —to| < min{d, %= }-
Proof. Let Y1,Ys € M,. Then
|T:Yy — T, Ya|, < Cro2(1)|Y1 — Yal,
1
< (O1—1Y1 — V5|,
< 12C1| 1 2
— i - Vil
- 2 1 2|r-.
0

7. Proof of the existence theorem. As we pointed out in the preceding sec-
tion, the proof of the existence theorem essentially reduces to the proof of Proposition
6.2. We start with the uniform boundedness of Fx (to,0)™t. Let fi, : (M2, go) —
(M2, g1,) € comp(id) C Q*7(M, M) be harmonic, where {g; }o<i<1 is the given curve.
Then, according to (5.3),

Fx (t07 O)Y = _Avf,fmy + trg, R (Y. dfto )dft,-

LEMMA 7.1. There exists Cr_a , > 0, independent of to, such that

|Fx (t0,0) 22 g2 = [Fx (t0,0) o < Croa. (7.1)

Proof. We know from (5.7) and the spectral theorem that
|Fx (t0,0) o2 < Coo. (7.2)
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Write
Fx(t0,0)Y = —Avt 1, Y +trg, R (Y, dft,)dft, = (— Aty + %1,)Y.
Then (7.2) is equivalent to
(=D, + Z1y) Y20 < Co2|Y |20

Here and in the sequel, for a vector field Z, denote |Z|2,; the i-th Sobolev norm
for p = 2, in particular, |Z|2 := |Z|p2. According to Theorem 2.12, (7.1) would be
done if we could additionally to (7.2) establish

[(=A4) (= Aty + Zry) Y20 < CilY|ap-1y, 1<i< . (7.3)

Let ¢« =1, then

|(_At0)(_At0 +‘%)t0)_1y|2,0 = |Y - %to(_Ato +‘%t0)_1y|2,0
<|Yl2,0 +di|Y |20 = (1 +d1)|Y]2,0 = C1]Y|2,0.

Using (4.10), Theorem 2.12, (Bs,) and the Leibniz rule, we immediately obtain for
it < 3 that

|(_At0)i(_At0 + %to)ilybﬂ

= |(_At0)l_1y - (_Ato)l_l‘%to(_Ato +‘%t0)_1yl270
2(i—1)

< dai—1)|Y2,2(-1) + Z d}|Y|2,j < CilYla,2(-1)5

§—0
where C; is independent of tg. O

PROPOSITION 7.2. Under the assumptions above, there holds

g(t,0)]2,r—2 < Clt = to| = Calt — tol.

Proof. We first note that

g(t,0) = =F(t,0) = F(to,0) — F(¢,0) = try, Vo dfy,
_trgo Vo dfto = trgo [(vgto - vgt)dfto]'

Now we give an expression for V9 — V9t

LEMMA 7.3. Let g be a C'-metric, A a symmetric tensor field such that g + A is
still C'-metric. Then there holds in local coordinates

, , 1 i
L(g+ A =T(9)j + 5((9 + A) T A + Ak + Ajra)s (7.4)

where ; is the covariant derivative with respect to g.

Proof. We refer to [13] for the proof. O
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Now we apply this to

Gt,ij — Gto,ij = Gtij(to + 0i5(t —t0))(t —to), 0< 6 <1,

(9t.i5) = (9to.4j + Aij)

with
{ (Aij) = (9e,i5(to + 05 (t — t0)))(t — to) = (Bij)(t — to), (7.5)
(9t.i5) = (9t0,i5) + (Bij)(t — to), '
and according to (7.4)-(7.5), we get
T (90) — Do (gi,) = %gil(Blj;k + Bik;j + Bk )(t — to). (7.6)

Here we take ; with respect to gy,. This yields in local coordinates (x!,2?) about

9 € M? and (y', y?) about fi, (o)

() gy = T (0) T ) P a0 o 0
+(F§j (9t0) — Fl;j (g¢))(dz? ® (ZJ;% 3(;')’
and consequently,
(99~ 9, = 55T ) ~ T ) 2 O 0
+957 (T% (g1,) — T, (Qt))gfg 321'
= %[QSS(QfZ(Bzi;j + Byji + Bij;z)?;{? g‘fﬁ 1t — to)aiyk
+%[98jgf’(st;j + Bijis + st;z)%](to - t)a%.. (7.7)

By assumption, g; € comp*7(go), 0 <t < 1, which implies
|9t — Giol2.r < C1,  |Bijikl2,r—1 < Cf

with C4, Cf independent of ¢, ¢y. Moreover, according to (4.10), |Vidf,| < di, 0 < i <
r — 1, and we obtain with (7.7)

l9(t,0)[2,,—1 = | = F(t,0)|2,r—1 < Calt — o], (7.8)

with Cs independent of ¢,ty. O
Finally we estimate g(t,Y) —g(¢,0) and g(¢,Y1) — g(t, Y2), i.e. we establish (6.10).

PROPOSITION 7.4. Suppose fi, : (M?,90) — (M?,gs,) harmonic. Then there
holds for Y € Ty, C comp®"(id) C Q>"(f£TM), |Y] < %iltlfrmj (g90), [Y|r < % that

9(.¥) = 9(t,0)}r2 o1 (D)IY ], (1) T2 0 (7.9)
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with rate independent of tg.

Proof. Let V and W be Banach spaces, U C V open, f : U — W a Cl-map.
Then we have the standard estimate

|f(u+h) = f(u )|<O§;El| IT of (w+ (0 +7)h)|.

In our case, f(u) = g(t,Y), V; = {t} x Ty, comp>"(id), W = Ty, comp>">(id),

g(t,Y) = Fx(t9,0)Y — P_ytrg, V9d(expY)
= _Avf,fm Y + trgo R%o (K dfto)dfto - P—Ytrgo Vgtd(eXpY),

Hence
L oot (0 + 7)Y
S lT= } T T—
dar olg 2
d
= |E |7—:0[FX (to, 0) (9 + T)Y - P,(ngT)yt'f‘gO ngd(exp(H + T)Y)]|r—2
d
= |FX (to, O)Y - E|5:9[P_sytrgovgtd(expsY)]|T_2. (710)

We calculate the pointwise expression of the second term.

Consider ¢(s) = expsY, P_gy the parallel transport from the point expsY back
to the initial point, 0 < s < 1, so € (0,1) and let X (s) be a vector field along c(-).
Then

d%ls:sopfsyx(s) = lim P_SYX(S)S__]:;SUYX(SO)
— lim PfsoYpstﬁfsoYX(S) - P*SoyX(SO)
s—So S — 80
_ PfsoY lim P—SY—>—SOYX(S) - X(SO)
§—380 S — 8o
= Py VX (0). (7.11)

We obtain in our case d%|7.:0 = dis|szg that

d

dr

where, according to our convention before Proposition 3.6, V., = VY. In the sequel
we always denote V = V9 R = RY%. Then

l7=0[P—(9+r)ytrg VI d(exp(0 + 7)Y)] = P_gy Voitry, V9 d(expfY), (7.12)

Vertrg, VIt d(expdY')
= 1ry, Ve VI d(expdY)
= g5’ Ver (V) (d(expbY ) (e:)
= géjv (V;(d(expY))(ei) + g5 Ver (V9" = V) (d(exphY ) (e:)
95V Ve ((d(expfY))(e:) + g5 R (¢!, (d(exphY))(e;)) (d(expbY)) (e;)
+go Ve (V9 = V%) (d(expbY ) (e:)
= g5’ V;Vid + g R (¢, (d(expfY))(e;))(d(expY ) (e)
+95' Ve (V9" = V%) (d(expfY ) (e:),
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where we used V-2 5ic(s,t) = Vt%c(s,t).

Hence, with ¢/ = PyyY, we have

d
Fx (tp,0)Y — £|S:9P,Sytrgo Vid(expsY) = —Ay, Y +try, RO (Y, dfy, )dfy,

—i—P_gyAexpgyP@yY — P_gy [t’l“go R90 (ngY, d(exp@Y))d(exp@Y)
—trg, V' (V9 — V) (d(expdY))]. (7.13)

Now we start with the estimate of

Aftoy - P—GyAexpOYPOYY'

Writing A = Aysyp,, P = Poy, P7' = P_py, we have to estimate [(A —
P7AP)Y|,_2 and start with the estimate of the pointwise norm |A — P7'AP| in
local coordinates. For this, we recall the standard formula for parallel transport. Let
c(s), —5 < s < e be a Ct—curve, X(s) a parallel C'—vector field along ¢, denote

c=ut X = 53 a . Then, the equation VX = 0 is equivalent to

au'z 3

(! 5ii§k - uiglrz)% = (%gk + 4Tk Z)% =0. (7.14)
We can rewrite (7.14) as
d —X(s) = (6. T"X) cuc, (7.15)
ds
where I'PX = I‘i—“lfl and (,)eye; means the euclidean scalar product in local

coordinates which in normal coordinates is equivalent to the Riemannian one since
we have bounded geometry.

We now perform the estimate of |(A — P~'AP)Y| in normal coordinates.

Q.

|P—0YAexp0YP0Y Af,UY| | d_S P—sGYAexpSOYPSGYy]dsl
0
h d
/ |£ SGYAcxpSHYPSGYY] |dS (716)
0

According to (7.11) and (cf. [6], 12.7) V&V V = V. VY + 3 VL 'R(V, )V, Y,
=1
and according to (7.11),

d

E[PszY (AcxpSGYPSGYY)] - Pstch’ AcxpsGYPSHYY)- (717)
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We estimate
|P—sovV e Aexpsoy PsoyY)| = |V e Aexpsoy Peoy Y)|
=195’ VeV Vilexpsoy Pagy Y))|
= |97V iV o Vilexpsoy Psoy V)|
+9¢’ R(¢', (d(expsOY ) (€;))Vilexpsoy Peoy Y )|
=195 V;ViVe PagyY)
+9IV,R(¢, (d(expstY))(e;)) Psgy Y
+9¢’ R(¢', (d(expstY ) (€;))Vilexpsoy Peoy Y )|
= |97V R(¢, (d(expsfY ))(e;) Psoy Y
+géjR(0/v (d(expsfY'))(e;)) Vilexpsoy Psoy'Y)|
< allVe||Y[+ [ p([Y], [VY])]Y]
+|[IV(Psoy Y)| 4 |||V (Psoy V)]
< al[V(Poy VY| + [YIp (Y], [VY Y]
HY[|[V(Pooy Y)| + Y|V (Psoy Y]]

= ClY[|[V(Peoy Y)| + p1(IY], VY)Y ]?]. (7.18)
Here we used
[V (d(expsY)| < pi(|Y ], [VY],---,[V'Y]), |(d(expsY))(e;)| <1, (7.20)

where p; is a polynomial in the indicated variables with positive coefficients depending
on 74, curvature and on bounds for [V7dfy,| (cf. [12], p.362). But according to
(4.10), we have such bounds independent of 5. Further we used |VxY| < |X||VY],
[V|Y]| < |VY]| under our curvature assumptions.

We must estimate

V(PspyY) = (VPspy )Y + Py (VY) (7.21)
which amounts to the estimate of
VP,y. (7.22)

Here we consider V P,y as an isomorphism f;TM — (expsdY)*TM, VP,y =
(fiV)Psy. V = f;V is independent of s. Hence, in (7.14), (7.15) 4 and V are
exchangeable.

We get with X (s) = PspyY that

d d

— (VP Y =[(V—PF;

ds( oY) [( I ov)]
—v( Ly - Lp vy
— dS sOY dS s0Y

= —V(,TPPyyY) — (—(c,T°P Pypy VY))
= —[(Vd, PPy Y) + (¢, (VI'P) Pyy Y)
+(c,TP(V Py )Y) + (¢, TP (Psgy )VY) — (¢, °P(P.y )VY)
= —[(Vd, T Py Y) + (¢, (VTP) Pyyy Y)
+(c',TP(V Py )Y)]. (7.23)
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We see that (7.23) is a linear ODE for the morphism V Pggy:

i(VPseY)(') = —[(V, TP Pspy (+)) + (¢, (VTP) Psy (-))

ds
+(,TP(V Py ) (), (7.24)
that is,

d
d—S(VPsey) = f(VPyy,d, VTP, VTP, Pyy),

and f is continuous, bounded and satisfies a Lipschitz condition, if ¢/, V¢, I'°P, VI'°P,
P,y are bounded. The latter is the case. Hence V Py itself is bounded on M:

|V Psy| < Cf. (7.25)
Completely parallel we obtain from differentiation of (7.21), (7.24) and (7.25)
|V2 Py | < Ch. (7.26)

For higher derivatives of P9y, we cannot apply the classical existence theorem and
its conclusions. We assumed r > 3 and inferred ¢ is C2. But we can only conclude
|Vic'| € La, i > 3. In these cases we apply Theorem 26.1 from [28], p.384 and can
still conclude

|ViPyy| € Ly, r>1i>2. (7.27)
We obtain from (7.19),(7.25),(7.26),and (7.27)
|P759ch’ (AcxpSGYPSGYY” < pO(|Y|7 |VY|)5

where pg is a polynomial in the indicated variables with pointwise coefficients (one
of them is a Sobolev function) and without monomials of degree not greater than 1.
Since all monomials stem from the Leibniz rule, we can infer that they are in Lo, and
we obtain

[P—gy Dexpsoy Poy = Ag, YL, < C(Y |, + VY)Y L,
< ClY||Y],. (7.28)

Next we have to estimate
V¥P_s6y Ve Dexpsoy PoyY
which reduces to the estimate of V?Pyy and
VIV o Aexpsoy PoyY. (7.29)

We exchange the differentiations in (7.29), a procedure which we use in the sequel.
To estimate V*V for a vector field V', we have to estimate expansions

Vg -

u

Vz,.

Since Vx1yVx_y = Vg( — V%; + VyVx — VxVy and we control the curvature, we
would be done controling V4,V =Vz---VzV.
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According to (7.18),

VU957V Vi Vil expsoy Py Y|
= g V¥V R(¢, (d(expsfY))(e;)) Psoy Y
+R(c, (d(expsfY))(e;)) Vilexpsoy Psoy Y|
<c{ > |V||VZd(expstY)||V* Py |

i1+i2+iz=u

+ Y VRV d(expstY)| [V Pagy [}, (7.30)

Jitj2+iz=u

Now we estimate the single terms of (7.30) according to (7.20), (7.27) and obtain
easily

V95V oV Vil expsoy Pooy Y| < Pu([Y], VY], -, V¥ 1Y), (7.31)

where P, is a polynomial in the indicated variables with positive coefficients (some of
them are Sobolev functions) independent of ¢y and without monomial of degree not
greater that one. Since all monomials stem from the Leibniz rule, we can apply the
module structure theorem and infer that they are in L, and we obtain for u < r — 2

IV Pagy 959V oV jVi Py Y |1, < Qu(|Y],),

|Paoy 9§ Ve ViViPay Y |2 = Qr_a([Y ) = P_a([Y],)[Y ], (7.32)

where P._2(|Y],) := Qr—2(|Y|+)/|Y]+ is a polynomial in the indicated variables with
positive coeffcients independent of ¢y and without constant term, in particular

|P_gy Aexpoy PovY — Ay, Y2 <o(1)[Y],, (7.33)

where o(1) — 0 (Y], — 0) with rate independent of #.
There remains to estimate

trgo R (Y, df i, )dft, — P-ovtrg, R (PoyY, d(expfY))d(expbY’) (7.34)
and
P_gytrg, Ve (VI — VP)d(expdY). (7.35)
We write (7.34) as

trg, BRI (Y, df 1, )dft, — P—oytre, R (Py'Y, d(expfY))d(expfY) (7.36)
+P_gytrg, R (PpyY, d(expfY’))d(expfY)
—P_gytry, R (Pyy'Y, d(expfY))d(expfY’). (7.37)

In normal coordinates,
'd
(7.36) = —/ E[P,SgytrgoRgtO (Pspy'Y, d(expsfY))d(expsfY)]ds
0

1
= —/ P_sgy Vertrg, R9% (Psgy'Y, d(expsfY))d(expsfY)]ds.  (7.38)
0
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But
|P_sgy Vertrg, R9% (Psgy Y, d(expsfY))d(expsfY)| < C|Y||VY],
we obtain (as always, by the module structure theorem)
(7.36)|1, < OI¥|1,[VY |1, < CIY][Y], = Po(IY )]V ], (7.39)

We recall our standard formula

V4VeV =VoVy+ Y V' R(V,d)Vy, V. (7.40)
=1
Applying this to (7.29) yields
V4 Vg5 RO (Pogy , (d(expsfY))(e:)) (d(expstY))(e;)]
= |V Vg5 R (Psgy , (d(expstY'))(e;)) (d(expstY))(e;)

+ 3" VEIR(RI Py, (d(expstY ) (e:))(d(expstY ) (e;)), )

=1
Vi 'R (Psgy, (d(expsfY))(e;))(d(expstY ) (e
< c{ld][ > [V R0 ||V Py Y [pis (1Y ], -+ [V Y [)pi, (1Y, -+ [VHY )]
i1+i2+iztia=u+1
+Y > IVERSVEPey Y pi (Y], [VEY i (Y- [VRY]) [V
i=1414---+is=u
> V7RI [|V72 Pogy Y |ps (IY ], -+, [V Y Dpy, (Y], -+, VY ])}
Jitj2t+iztja=u+1
= P,(|Y],-+-, [V*TY)), (7.41)

where P, is a polynomial in the indicated variables with positive coefficients (possibly
Sobolev functions) independent of ¢y and without monomials of degree not greater
that one. Hence

V" Pugy Vgl R (Pugy . (d(expstY ))) (e:)) (d(expstY ) (e;)] .
< 3 IV Poylpun (Y], VY],

11+ie=u

< Qu(IY]), (7.42)

[trgo R (Y, dft, )dft, — P—oy R (Poy'Y, (d(expfY’)))d(expdY )], —2

S Qr—?(lylr)

=P (Y)Y, (7.43)
thus

|trgo R0 (Y, df s, )dfr, — P-gy R% (Poy'Y, (d(expfY)))d(expbY))|r—2 < o(1)[Y ],
(7.44)
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o(1) = 0 (|Y| — 0) with rate independent of to, (7.36) is done.
We write (7.37) in normal coordinates(w.r.t. go) as

(7.37) = /01 dis [P_soytrg, Rt (P_gsgyY, d(expstY))d(expsfY)
—P_sgytrg, R (P_spvY, d(expsfY))d(expstY)|ds
= /1 P_ gy Ve [trg, Rt (P_sgy'Y, d(expsfY))d(expsfY)
—Otrgo RI% (P_spyY, d(expsfY))d(expsdY)]ds.

But both terms of |P_spy V[ --]| can in the same manner be estimated as (7.41)-
(7.44), then

[(737)lr—2 < pr—1 (Y)Y (7.45)
From (7.44) and (7.45) it follows that
|(7:34)]r—2 < Pt (Y)Y ] = o(D) Y], (7.46)

where P,_1 without constant term and with positive coefficients independent of ¢g.
We finally estimate

P_oytry, Ve (VI — VP)d(expfY)

1
d
:/0 E[Pisgyt’rgovcl(vg‘qt — V9)d(expsfY)|ds

1
:/ P_ oy Vertrg, Ve (VI — V9)d(expsfY)ds,
0

VUV o Vertrg, (VI — V9°)d(expstY )|
= |tr90 [vc,vuvc,(vgst - vgo)d(GXPSHY)

+ 2 VITR(Ver (VO = V) (dlexpstY ), ¢ )V Ve (VI = V) d(expstY )|
i=1

= |trg, [V VeV (VI — V9)d(expsfY)

+ ) Vo VETIR((VE — V9)(d(expsfY), ¢ )V (V9 — V9)d(expshY )|
1=1

n Z VU R(V o (V95 — V9)(d(expsfY ), )V "1V o (V9 — V9)d(expsfY )|
i=1

<CP Y V(Y = V)|V d(expstY)| (7.47)
11 +io=u+2
u+1 ) ) .
D > [V V0 (V95 — V9)||V2d(expshY ) ||V (/|

i=1i1+---+ig=ut+l—i
|V (g9 — 790) d(expsOY))| (7.48)
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+3 0 DT VRV (VO — V)|V d(expstY )|V |
=1 i1 +--Fig=u—1

VALY L (Vs — V9°)d(expsdY)|. (7.49)
We estimate the single terms.

[']* < 2| + Y2 = Y3 )2,

11 gst __ 790 sup, |v11 (F(gSt) - F(QO))| < 00, 0 S Z.1 S 17
V(v vl < { Sobolev  function, i1 > 2. (7.50)
: Py([Y],-+,|[V2Y]), iz >1
2 . 2 ) ) I )
[V (d(expsfY))(e;)| < { const., iy =0, (7.51)
Visd| = |[V3(PagyY)| < Y [V Py || V2Y]. (7.52)
J1+j2=i3

We have in (7.48), (7.49) terms of the kind VIV (V9% — V9%)d(expsfY), but
VIV (V9 — V9)d(expsfY) = Vo VI (V9 — V9)d(expsdY)
J
+ D VTIR((VE = V) d(expsY), )V TH (V9 — V) d(expstY),
i=1
hence,

|VIV o (V95 — V9°)d(expsfY )|
<UL YD WV = V)|V d(expstY)|
Jit+je2=j
+30 YT V(v — V)|V d(expstY)|| V|
i=1 j1+-+ja=j—i
> |VF (W95t — V90)||V*2 d(expshY ). (7.53)
kitko=js+i—1
Inserting (7.50)-(7.53) into (7.47)-(7.49) yields
|VUV o Vet gy (V950 — V9)d(expsfY )| < Qu(|Y],-- -, |V F2Y)),

where Qu is a polynomial in the indicated variables with positive coefficients (possibly
Sobolev functions) independent of ¢y and without monomials of degree not greater
that one.

We conclude that

V" Posoytrg, Ve (V9 = Vo)d(expstY)| < Y [V Py |Qu (Y], [V2F2Y))
i1+ie=u

= Qu([Y],---,[V'F2Y)). (7.54)
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All monomials in (7.52) stem from the Leibniz rule, and we can apply the module
structure theorem. Summing up u =0,--- ,7 — 2, we get

| P_sovtrg, Ve (VI — V) d(expstY)|r—2 < Qr—2(|Y]r)
= T—2(|Y|T)|Y|r
=o(1)|Y],, (7.55)

where o(1) — 0 as |Y], — 0, and p,_2(]Y],) is a polynomial in the indicated variables
with positive coefficients independent of ¢y and without constant term.
Finally, we infer from (7.33), (7.46) and (7.55) that

|g(t, Y) —g(t, O)|T—2 < 0(1)|Y|T7

where o(1) — 0 (Y], — 0) with rate independent of ¢3. The proof of Proposition 7.4
is done. O

PROPOSITION 7.5. Suppose fi, : (M?,g0) — (M?,g,) is a harmonic diffeomor-
phism. Then there holds for Y1,Yy € Q2" (ff TM), r > 3, |Y;| < min{,inf; rin;(g:)},
il < 3

3
lg(t, Y1) — g(t,Y2)|r—2 < 02(1)|¥7 — Ya|,, (7.56)
where
02(1) =0 as |V, —0 (7.57)
with rate independent of tg.

Proof.

|g(tuyl) _g(t7§/2)|7‘—2
= |g(tuyl) - g(t,Yi + (Yé - Yl))'T—2

d
S sup |d_|‘r:0.g(tu Yl + (9 + 7-)(3/2 - S/i))|r—2
0<f<1 aT
d
= sup |——[r=oFx (to,0)(Y1 + (6 +7)(Y2 — 1))
0<f<1 aT
d
—E|r:0[P—(Y1+(e+r)(YrY1>)t7°goVgtd(exp(yl + (0 +7)(Yo = Y1))llr—2
= sup |Fix(to,0)(Y2 — Y1)
0<6<1
d
_E|T:0[P—(Y1+(0+T)(Y2—Y1))tTg0vgtd(exp(yl + (0 +7)(Y2 = Y1))]lr—2
= sup | - Afto (1/2 - YVl) + trgoRgtO (Yé - Y, dfto)dfto
0<6<1

d
—E|r:0[P—(Y1+<e+7)(Y27Y1>>t7“goVgtd(exp(yl +(0+7)(Y2 = Y1)))]|r—2

We calculate

d

77 IT=0l =i+ (o) (va—v2)) tg0 V' d(exp (Y1 + (0 + 7) (Y2 — Y1)))] (7.58)
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as follows. Denote Yy := Y7 + 6(Y2 — Y1), let Py, be the parallel transport along
expy, sYy from fy, to expYy, and P_y, be the corresponding parallel transport from
expYy to fi,. Denote by cy,(7) the curve exp(Yy + 7(Ya — Y1)), and let Py, be
the parallel transport along cy, (7) from expYp to exp(Yp + 7(Y2 — Y1)), Pr—o is the
inverse of Py_,.. Here and in the sequel exp, V, R always have to be understood as
with respect to go.

Denote by X (1) a vector field along cy, (7), then

d .1
27 Ir=0P- Vo tr (v X (7) = 1 =[P (v 47 (v—-v2)) X (1) = P-y, X (0)]
1
= lim —[(P- vy +r(va-vi)) Por = P-v5) X (0)]
!
+ Thj{% ;[P—(YB"FT(Yz—Yl))PO*’T(PTHOX(T) - X(0))]

= lim %[(P*(Y9+T(Y27Y1))PO—>T — P_y,)X(0)]  (7.59)
+Py, Ve, X|ro. (7.60)
For X (1) = try, V9td(exp(Yy + 7(Y2 — Y1))), (7.60) becomes
P_y, ch/e V9 d(expYp). (7.61)
¢y, (1) = expYy + 7(Y2 — Y1) is the image of the straight line 7 — Yp + 7(Ya2 — Y1) C

Tt @M under the exponential map w.r.t. gg. Hence the tangent vector at 7 =0 is

A(exXDY) (A —o(¥o + (Y2 — 1)) = d{exp¥s) (¥ — Ya).

But the latter is J(1), where J(s) is the Jacobi field along s — expsYy with
J(0)=0,J(0) =Y, — V1.
Quite parallel to (7.13), we calculate

Ve, trg, V9 d(expYp)
ztrgovc/ V9 d(expYp)
=95 Ves, (W*) d(expYp)(e:)
=géjvcfyevjd<expn>< ei) + g5 Vi, (V7 = V) jd(expYy) (e;)
= g5 V;Vey,, d(expYp)(es) + g5 R® (¢, , d(expYp) (e;))d(expYp) (e:)
95 Vey,, (V9 = V%) d(expYp) (e:)
= 95’ V;Vicy, + g5 R (¢, , d(expYp)(e;))d(expYs)(e:)
)

+géch;/9 (V9 — V%) d(expYy)(e:), (7.62)

where again we used VS%C(S, t) = Vt%c(s, t).
Hence,
Fx(t0,0)(Y2 = Y1) = Py, Vg, trqovgf (dexpYy)
=-Ay, (Yo — Y1) + trg, R (Yg — Y1, dft,)dft, — P_y, Ve, trqovgt (expYp)
= —Ay, (Y2 = Y1) + Py, Aexpy, Cy, + trg, R0 (Ya — Yl,dfto)dfto (7.63)
—P_y,try, R (cy,, d(expYy))d(expYy) — P- yegéjv (ng V99);d(expYp)(e;).
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Note that

1
d
_Afto (Y2 = Y1) + Py, Aexpy, ClYg = / E[P—sYe Acxpsy, d(expsYp)(Ya — Y1)]ds
0

1
- / Py Vo (Dspayy d{expsYs) (Ya — Y2))ds,
0

where ¢(s) = expsYp, ¢/ = Pyy,Yp, and Vo =V, = V.
We would like to estimate as in (7.13)-(7.33), but unfortunately we have here
P_sv, Ve (Aexpsy, d(expsYp) (Yo — Y1)
rather than
P_sv, Ve (Dexpsyy Psy, (Yo — Y1)).

For this reason, we write

Pe oy, Ve (Dexpsy, d(expsY) (Ya — 1)) (7.64)
- Pstg VC/(ACX])SYQ PSY@ (}/2 - Yl)) (765)
+P_sv, Ve (Aexpsy, [d(expsYp) (Yo — Y1) — Psy, (Y2 — Y1) (7.66)

If we replace Y by Y5 — Y7 in (7.13)-(7.33), then we get
|P_y, Acxpy, Py, (Ya = Y1) = Aj, (Y2 = Y1)|r—2 < proa(|Yo = Y1) [Ya = Y1, (7.67)
We write
[d(expsYp)]s(Y2 — Y1) — Psy, (Yo = Y1) := J(s) — Ps(Y2 — Y1)
and have to estimate
P_y, Ve Aexpy, (J(1) — P1(Yz — Y1)).

The zero-th step is to estimate J(1)— Py (Y2—Y1). Consider for this ¢(s, 7) = exps(Yp+
(Yo = Y1), d(s) = Zc(s,7)|r=0 = Pay,Yp, ' = Vs = V¥ and the equation
(J(s) — PsJ'(0) —sJ'(s)) = sR(J, ),

which implies for the pointwise norms

[J(s) = PJ'(0) = sJ'(s)|" < [(J(s) = PuJ'(0) = sJ'(s))'| < s|R(J, &),

1
[7(1) = PJ'(0) = J' (1) = |.T'(0)] S/O s|RI|T[|'|?

< Y x| () V3
< max [ J()[([Y3] + ¥a — Y3 )?
_ sinh [Yp|
=T
+Py (Y2 — Y1) D (V1] + Yo — Y3 [)?
<3+ Y-V -vil (T68)

P (Yy - Yy)™
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We obtain from

inh(s|Y;
(s) = wzﬂsm = V1)™ 4 5Py (Vs = Y1) (7.69)
0
that
J'(s) = cosh(s|Yp|) Ps(Ya — Y1) + Py(Yo — Y1) @, (7.70)

and J'(0) = Y3 — Y7 as it should be. (7.68)-(7.70) yield

[7(1) = P (0)] < [J°(0)] + |J'(1))] +/O s|R||J]|c'[*ds

< Yy = Yi| + | cosh [Yp P (Yo — V7)™ 4 Py (Yy — Y1)
+3(V| + Yz — Yi|)*|Ye - Vi
< C(L+ V1| + Y2 = Y1])?[Y2 - Ya).

We have to calculate the derivative Vo A(J(1) — Pi(Y2 — Y1)) and start with the
equation (with ' =V = V)

(VzJ(s) = VzPsJ'(0) — sVzJ'(s))
=VVzJ =V VzPJ (0) = VzVsJ — sV VzVJ
=VVzJ —=VzVsJ =V, V2P, J(0) — sVsVzVeJ
— R(¢, Z)J = VgV PoJ (0) = R(¢, Z) P (0) — sVoVs(V2J) — sV R(Z, )]
— R(¢, 2)J — R(¢, Z)P,J'(0) — sV,V4(V3J) — sVoR(Z,¢)J
= R(d,J)(J = PsJ(0) + s%Z(J,J) — sR(V zJ,c' )¢ —VR(Z,c)J, (7.71)

where we used (cf. [10], [12])
VsVs(VzJ)+ R(NVzJ, )\ =—-%(Z,J), (7.72)
Z(X,Y) = (V.R)(X,)Y + (VzR)(Y,d)d +2R(X, )V, Y
+2R(Y, )V X (7.73)
and assume |Z| =1, |V Z| bounded. Hence we obtain
V2 J =V 2PJ (0) = sVzJ'| <|(VzJ = VzPJ'(0) = sVzJ')|
=|R(c,J)(J — PsJ'(0)) + s%(J,J) — sR(VzJ,c )¢ =V R(Z,)J|, (7.74)
IVz2(J(1) = P (0))] = [V 2[(d(expYp)) (Y2 — Y1) — Py, (Y2 = Y1)]|
< V2 (] + [927'0)| + | R D) - P(O)
+s#(J, J) — sR(V zJ, c’)c’o— VsR(Z, ) J|ds. (7.75)
We estimate the single terms of (7.75).

V2J'(0) = Vz(Ya — Y1), (7.76)
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VzJ'(1) = Vgleosh(|Yy|) Py (Y2 — Y1) + Py (Y2 — V1))
= sinh(|Yp|) V2| Ye| Pr (Y2 — Y1)™ + cosh(|Yy|) (V2 P1) (Y — Y1)
+ cosh(|Yp|) Py Vz (Yo — Y1) + (V2 Py)(Ya — Y1) ®
+PV (Y — Y1), (7.77)

Hence we obtain for Z a unit vector
VzJ'(0)| < V(Y2 = Y1) (7.78)
and

|VzJ' (1) < Co(|VY1] + V(Y2 — Y1)|)|Y2 = V1| 4+ C1|Y2 — V1| + Co| V(Y2 — Y1)
+|(1 = cosh [Yp|)Vz(Yz — Y1)V

But
d .
Vz(Y: = Y1) = V(Y2 - 17, WW
d . 1 vd . d
= Yy = V1), —)— 4 (Yo = Y1, ——— (V¢ , &) + —)—
(V202 =00 gl + 02 =1 m (Ve et g
c 1 v
+(Y2 — Y1, E)[—W(Vc’,c’)d + W]’ (7.79)
which immediately implies
(1= cosh Y5 ) V(Y2 = Y1) @] < CIV(Ya = V)|(1¥1 + Y2 = Vi )?
+Ye = YV1|(|VY1] + [V (Y2 = V1)) (Y1 + Y2 — Y1)] (7.80)

and

IVzJ' (D] < ClIVY| + V(Y2 = Y1)Y2 = Y| + [Ya = V1| + [V(Ya = Y3))
HV(Y2 = Y)Y + Y2 - 11])
+(VN[+ V(Y2 = Y1) (Y1 + [Ya = Vi ])[Y2 = Ya |- (7.81)

We estimate the terms in (7.71).
[R(c", J)(J = PsJ'(0)] = 2(|Y1| + [Y2 = Yi[)| J||J — Ps.J'(0)]
<12(f + Y2 = i)Yz — 1l (7.82)

[R(VzJ,c)e'| < 20(1Y1] + Y2 = Y1|)?[(IVYi] + V(Y2 = Y1)])|Y2 — Vi
+HVY2 =Y)[+ (VY| + V(Y2 =)DV + [Ya = W)Y =Yl (7.83)

IV.R(Z,c)J| < ||IVR(Z,¢)J|
<V2(Vi|+ Y2 = YAl) - O - [(IVA] + Y2 — Y)Y — Y4

+(IVY1[ + V(Y2 = Y1) ])Y2 = Y| + (Y1 + [Y2 = Y1[)]. (7.84)

12 (J, J)| = 4|R(J, ) J'| < C(IVa] + [Y2 = Yi])|Ya — Y2 [*. (7.85)
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We see from (7.75)-(7.85) that
IV(J(1) = AT (0))] < PL((Va] + Y2 = Y3 ), (VY3 | + V(Y2 — Y1),
Y2 = 1i[,[V(Y2 = 1)), (7.86)

where P is a polynomial in the indicated variables with positive coefficients indepen-
dent of ¢y and such that each monomial contains a factor |Yz — Y3| or |V (Y2 — Y7)|.
Next we must estimate

|96’V Va(J(1) = PLJ'(0))] (7.87)
Vegi V,;Vi(J(1) = PLJ'(0))] (7.88)
and
IVUVeugd ViVi(J(1) = P (0)], 0<u<r—2. (7.89)
We again apply our standard formula
V4VeV =VoVy+ Y V' R(V,)Vy V. (7.90)
=1

and estimate

VC/V%(J(1)—P1J’(0))+Zv;*iR((J(U—PlJ’(O)),c’)vizfl(J(U—PlJ’(O)). (7.91)

Suppose V% !(J(1) — P;J'(0)) can be estimated by a polynomial Q,—1((|Y| + Y2 —
Yil), o, (VI + |V L (Yo = Y1), [Ya = Vi, - -+, [V¥" 1 (Y2 —Y7)]) in the indicated
variables with positive coefficients independent of ¢y and such that each monomial
contains a factor |[V7/ (Y2 — Y7)|. Then, as immediately follows from the chain and
Leibniz rule

Y VER((J(1) = PLJ(0),¢)V5 (I (1) = P (0) < Quoa ()
i=1

There remains to investigate V% (J(1) — P J'(0)). For this, we consider the expression

[VZ(J(s) = V5P (0) = sV3J'(s)]'

= Z VY IR((J(s), )V I (s) — VLV P (0)

+> VER(PJ(0), )V P (0)
1=1

—V4VJ(s) = s[VVaVI(s)+ Y Vy R(J(s), )V ' P (s)]
=1

= —(145)Y VY R((J(s), )V I (s)
=1
+> VER(PJ(0), )V P (0) — VY VP (0) (7.92)
=1
+8[R(V%I(s), ) + R(Z,NS2T) + V2 RB(Z, NG 2T+ + VS 2R(Z,T)),
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since
VoV =V4VJ =Y V4 R(J, VT
i=1
and (cf. [10])

0= V.,V VYT + R(VYI(s), ¢ )¢ + R(Z, V2 T)
+V 2 R(Z,NEPT) 4+ VY 2R(Z, ).

Clearly, V% V,P;J'(0) = 0. We start with the estimate of the single terms in (7.92).

- Z V' R((J(s), )V ' I(s)+ Y Ve R(P.T'(0), )V ' P (0)

i=1

=Y VY R(PJ(0) = J(s),d )V P (0)
i=1

+ Z VYIR(J(s), ¢ )V (P (0) — J(s)).

(7.93) or (7.94) is a sum of terms of the kind

R(V2(P,J'(0) — J(s)), V2 )V Py (0)
or

R(V3(J(5), VZ)VZ (P (0) = J(s)),

i1 + 42 + 13 = u — 1 respectively.
(7.95) can be estimated as follows.

|R(V(PsJ'(0) — J(s)), V2 )VEP.J'(0)]
<V2IVH(PJ'(0) = J(5))| IV |IVE P (0)],

V2 (P,J'(0) — J(5))] < QL ((IVi] + [Ya = Ya]), -+, [V7 (Yo — V1)),
Ve | < QP((IVi] + [Ya = Vi), -, (V21| + [V2(Ya — V1)),

Vi P (0)] < QP (Vs — Yal, -+, [V (Vs — V1))
and (7.96) as

[R(V(J(5), V)V 2 (P J'(0) = J(5))]
< V2VZJ(s)IVE V2 P (0)],

V2e] < QR ((IVi] + Y2 = Yil), -, (VY1 | + [V (Y2 = V1)),

(7.93)

(7.94)

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

(7.100)

(7.101)

(7.102)
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IVEP.J'(0) = J(s)] < QL ((IVi] + Yz = Ya]), -+, [V (Yo — V1)) (7.103)

We need to estimate V' J(s).

VzJ(s)
sinh(s|Y¢
= Z[wﬂ% — Y1) + 5Py (Y2 — Y1)®)]
cosh(s|Y; sinh(s|Y
_ (s] 9|)SVZ|}/‘9|PS(}/2_}/1)(71)+M(VZPS)(}/Q—YQ(")
Y] [¥s|
sinh(s|Y;
|§@|| D p v, (Y2 = V)™ + (V2P (Yo = Ya)® + P (V2 (¥a = V1))
cosh(s|Yz sinh(s|Y¢
|§/9|| D ow %ol (e = Y1) + %szﬂm -

s|Yp| — sinh(s|Yp|)
Yo
+P, V(Yo —Y)®]. (7.104)

+PVz(Ys — Y1)] + [(V2zPy)(Yz — Y1)

We estimate |V z(Yz — Y1)®||Yy|? according to (7.80):
V2(Ya = Y1) V||%[* < CIV(Y2 = YD)|([¥a] + Y = Vi) + Y2 = Ya| (%3] + Y2 = Vi),

then

cosh(|Yp))
5]
+HV(Yy = Y1) + (V2] + Y2 — Y1|)?|Y2 — V7|

HV(Ya = Y)I(Vi] + [Yo = Yi|) + (IVa] + [Ya — Vi])|Yz — Vi
= QW (V1] + Y2 = 1)), (VY| + V(Y2 = V1)), Y2 — Vi, [V (Y2 — V1)),

VzJ(s)| < C (VY| + [V (Y2 = Y1)])[Y2 = V1| + [Y2 — Y1

where QYQ is a polynomial in the indicated variables with positive coefficients inde-
pendent of ¢y, without constant term and such that each term contains |Y> — Y;]| or
V(Y2 — Y1) as a factor.

To estimate V%J(s), we have to differentiate (7.104). A simple induction and
again the chain and Leibniz rule yield an estimate

V()| < QP ((1Vi] + Yo = 1a), -+, [V (Y2 — 1)), (7.105)

where QZ(-4) is a polynomial with analogous properties as Qg‘l). Here we remark that
ﬁ in #(Vc’ ,c)c and |vc?|/ disappears since we have to multiply with |¢/|* (which
s|Yy|—sinh(s|Yy|) |)
[Yol )

comes from |

We remark further that QZ(-4) contains monomials of degree one, namely certain
V(Y2 —Y1)|.

We accomplished the pointwise estimate of the terms (7.93) and (7.94).

The last step is the estimate of (7.92) which is the sum of terms

Vi 2R(ZNY ) =V (VR) (2, )y ' T+ VI3V 2R) (VY ' J,. )
+2V 2 R(Z, )V VY LT + 2V 2R(VYT T, )V Z
=2V 2 R(Z,J)V VYT (7.106)
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since VzR = 0 = VR and we assume Z to be parallel along ¢(s) = expsYp, moreover,
|Z] = 1. (7.106) splits into a sum of terms of the kind

2R(V3Z, V2 )\VEV VL, (7.107)

i1+ iy +i3 =1 — 2. We assume |V3Z| < C', ig < i — 2.
Hence
|R(V3Z, V2 )V VLT < C'VE||VEV VL |
<CQP (V] +[Ya = Yal), -+, (IV2Ya| + [V (Y2 — V1)) VEV. V],

we note that

i3
IVEV.VY I = |V VEVY T+ ) V2 R(VY 'J,d)Vy vy |
j=1

i3
< |V Vg + ST VETR(VY L)V T,

j=1

VsV TR < INV(Ty )]
< (M| +1Y2 = YiDOQY s i (N3] + Y2 — YA), -+,
(Ve LY, — 7)), (7.108)

since |[VX| = (32 |Ve, X|?)2 and in our case Z runs through {e;};. From this we infer

|R(V 2, V2 )VEV Ve ]|
< QP (W] + [Ya=Yil), -+, ((VEYi| + [V (Vs — V1))
O]+ Y2 = YiDQ s (V2] + Yo = Ya), -, [VU7 04y, — 1))

13
@) @ H@
+ Z Z Qu—i+k§3> Qk;?’)Qu—iJrj—lJrkg?’)}
T= ) 4§D 4kl =iz —j
= QU (Vi + Yo = Yal), -+, (IV"7 2| + [V 2(Ya — V), |2 - Vi,

e VR (Y, = Y))), (7.109)

where QEI‘;Z;” is a polynomial in the indicated variables with positive coefficients

independent of t, and such that each monomial contains a factor (|[VY;|+ |Vi(Yz —
YNV (Y2 = Y1)l.
Summing up, we get

V' 2R(Z, VY T)| = 2|V 2R(Z, )V Ve |
<QUTMTI((Ma| + [Ya = Yal), - [VHTE (Y2 = V)
= ¥ QL = (7.110)

i1+i2+i3=1—2
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and
\B(Z, N 2T) + N2 R(Z,NE 2T + -+ VY 2R(Z, )|
<QU (Vi + V(Y2 = Y)), -+, [V* 2 (Y2 — Y1)

u—2
=> QU (7.111)
i=1

where Q“~2 is a polynomial in the indicated variables with positive coefficients in-
dependent of o and such that each monomial contains a factor (|[V'Yi| + |V*(Yz —
Y1)V (Y2 = Y1)l
The remaining terms in (7.92) are —V%V P, J'(0) = 0 and sR(V%J(s),d)c.
[R(VEJ(s),¢)e| < C'(JYa] + |Ya = Y1 |)*| VLI (s)]
<C(Wil+ Y2 =PRI (M + Y2 = i), -+, [V (Y2 = W1))).

We add up all our estimates:

|—(1+5) ZV“ "R((J(s),c )V (s Zv" ‘R(PsJ'(0), )V 1P (0)
=1 =1
~V4 VP J'(0) + sR(V%J(s),c ) + R(Z,NE2T) + -+ YV 2R(Z,J)|

|—SZV" ‘R(( V(s +ZV“ ‘R(P,J'(0) — J(s), )V P.J' (0)

i=1

+ Z VY R(J(s), )V EPL(J'(0) — J(s)) + sR(VEJ(s), )¢

+2) "V PR((Z,¢)V. VY|

1=2
S 4
- C[Z Z le)Q Qz 1413 (7112)
i=1 41 +iz+iz=u—i
+>. > QYoo (7.113)
i=1 i1 +i2+iz=u—i
+> > eledol., (7.114)
i=1 i1 +i+iz=u—1i
+QW(IV| + Y2 — Y3 )2 (7.115)
+Q ) (7.116)
= p (V1] + Yo = Yi]), -+, (IV*Y1 + [ V4 (Yo = V1)), [Y2 — Y,
VE(Y2 = Y1), (7.117)

where p(*) is a polynomial in the indicated variables with positive coefficients in-
dependent of ¢y and such that each monomial contains a factor (|[V'Y1| + |[V¢(Ya —
Y1)|)|V4 (Y2 —Y1)|. The latter follows from the fact that in (7.112)-(7.116) Q'* (which

contains monomials [V*(Yz — Y7)| ) always appears in connection with Qf oI powers
of (|V!Y1 + [V1(Y; — Y1)]).
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We turn to equation (7.92),
IVZ(J(s) = VEP:J'(0) = sVZJ'(s)] < |[ %( (s) = VEP:J'(0) = sV T (s)]'|
<pM (] + Yo = Vi), -, [VH(Ye = V))),

from
1
Vz(J(1) - %PL]/(O)—V%J'(IH—|V%J'(O)|S/ p®ds,
0

we conclude that

IVE(J(1) = VEPLT(0)] < [V (0)] + [V (1)] +p™)

<20 (V] + [Ya = Vi), -+, [V (Yo = V1)) + ™)
= Qu((IM] + Y2 =11l), -+, (V'] + [V* (Y2 — 1)),
Yo =Yaf,---, [V*(Ya = 1)), (7.118)

where @, is a polynomial in the indicated variables with positive coefficients inde-
pendent of ¢y without constant term and such that each term contains [V7(Ys — Y7)|
as a factor.
(7.118) accomplishes our induction proof of the estimate of |[V*(J(1) — PyJ'(0))].
But our task was to estimate

vuP—YevC’AEXpYS (J(l) - P (Y2 - Yl))v
which reduces to the estimate of
V'Vegi ViVi(J(1) = Py (Y, — V1))

=VoV4J(1) - P (Y2 —Y7))

FSVERUI) - ALY — V),V () - Ve - V) (7119

as we have seen in (7.91).
The first term on the RHS of (7.119) can be estimated as

Ve VE(J(1) = P(Ya — Y1)
< IV - PY2 - V)]
<Ol + Y2 = Y1|)Quir
= Pu((IV1] + Y2 = Vi), (IV*F1Y + [VU5H(Y = 1)),

Yz =Y, [VHHH (Y2 = V), (7.120)
where P, is a polynomial in the indicated variables with positive c_oefﬁcients_ inde-
pendent of t; and such that each monomial contains a factor (VY| + |V* (Y2 —
Yi)PIV? (Ya — Y1).

Since all norm products stem from the Leibniz rule, they are in Lo according to
the module structure theorem, and we obtain from the latter theorem

VeV (J(1) = Pu(Yz = Y1) 2, < C(IYV1]L, + Y2 = YiL,)[QualL,

< C(Iile, + Y2 = Y1L,)Quar (Yalr + [Y2 — Vi,
Y2 = Y1), (7.121)
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where Q,+1 is a polynomial in the indicated variables with positive coefficients inde-
pendent of ¢y and such that each monomial contains |Y> — Y|, as a factor.
Hence

Ve VU (J(1) = Pu(Yz = Y1))|1, < QuialYz = Yilr, (7.122)

where Qui1 = C(|Y1|L, +1Y2 —Y1|1,)Qu+t1/]Y2 — Y|, has no constant term. If u runs
from 0 to r — 2, we obtain

|P—Yevc/AeXpYe (J(l) - P (Y2 - Yl))lr—2 < ﬁr|Y2 - Y1|T7

where p, = p.(|Y1|- + |Y2 — Yi|r, [Y2 — Y1|;-) is a polynomial in the indicated variables
with positive coefficients independent of ¢y and has no constant term, in particular,

|P—Yev0’AeXpYe (J(1) = Pi(Yz = Y1))|r—2 = o(1)|Y2 = Y1, (7.123)

o(1) = 0 ( |Y1],, |Y2]» — 0 ) with rate independent of ¢.
|(7.65)|,—2 and (7.66) are completely estimated,

| = A, (Yo = Y1) + Poy, Dexpy, &y, Ir—2

< |P-y, Aexpy, Pry (Y2 = Y1) — Ay, (Yo = Y1)[r—2
+|P_y, Ve Aexpy, (J(1) — Pi (Yo — Y1))|r—2

= o(1)|Yz2 — Y1, (7.124)

The remaining expressions are

trg, R9% (Yo — Y1, df, )dfs, — P_y,trg,R%(cy,, d(expYp))d(expYp) (7.125)
—P_y,g7 Ve, (V9 = V9);d(expYp)(e:). (7.126)

We write (7.125) as

trgo R0 (Y2 = Y1, dfy, )dfr, — P-ytrg, R (d(expYy)(Yz — Y1), d(expYp))d(expYy) (7.127)
+P_y,trg, R9% (d(expYy)(Yz — Y1), d(expYp))d(expYp) — P_y,trg, R% (d(expYy)(Y2 — Y1),
d(expYy))d(expYp)

and express (7.127) in local coordinates as

1
d
_/0 E[P_syetrgoRng (d(expsYy)(Ya — Y1), d(expsYy))d(expsYy)|ds

1
= —/ P_oy,Vetrg, R (d(expsYy) (Yo — Y1), d(expsYy))d(expsYy)ds.
0

trg, Ve R (d(expsYp)(Ya — Y1), d(expsYy))d(expsYy) (7.128)
= trg, (Ve R9%)(d(expsYy)(Ya — Y1), d(expsYp))d(expsYy) (7.129)

+trg, R9% (Vo (d(expsYp)(Ya — Y1)), d(expsYy))d(expsYy) (7.130)
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+trg, R9% (d(expsYy)(Ya — Y1), Vo (d(expsYy)))d(expsYy) (7.131)
+trg, R9% (d(expsYy)(Ya — Y1), d(expsYp) Ve (d(expsYp)). (7.132)
Since
J(s
Alexps¥y) (v - Y1)| = 122 < oy — v,
Vo B < I [V R
= |¢[[V50 B — (V90— 9)Rou|
= |||V = V[|Rf]
< Co([Ya] +[¥2 = Yi|)[ Voo — V], (7.133)
hence,
(7.129) < C|VIo — V|(JY1] + |Y2 — Y1|)[Y2 — Y. (7.134)

For the estimate of (7.130), we use
Vld(expsYa) (Va — Y1)] = V(d(exps¥a))(Ya — Vi) + d(exps¥y)(V(Yz — Y1)
and
[V (dexpY)| < P([Y],[VY], -+, [V'Y]), 1<u<r,
and obtain

(7.130) < C(M | + [Ya = ) [P (V1] + [Ya2 = Y3 ),

(VY[ + V(Y2 = Y1) Ye = Vi + [V(Y2 = Y1)}, (7.135)
(7.131) < CIYy = 1a|(Y1| + Y2 = Vi) [Y2 = Y|Py, (7.136)
(7.132) < CPYz = Yi|([Va] + [Y2 = W1[)[Ya — V2| Py, (7.137)

where P, has no constant term.
Next we must estimate

V*(7.128) = V¥*(7.129) + - - - + V*(7.132)
and we perform induction. Suppose
IVI(7.128)] < Pi((IVa| + Y2 = Ya), -, (VY1 |+ [V(Ya = Y1) ]), [Yo = Y[, [V(Y2 = V1))

for 0 < ¢ < u— 1, where P; is a polynomial in the indicated variables with positive
coefficients independent of ¢ and such that each monomial contains a factor (|VY;|+
|Vi(Ya — Y1)|)|V7 (Y2 — Y1)|. We admit additionally Sobolev functions as factors. For
i = 0, this follows from (7.134)-(7.137).
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We use again
|Votre, Ve X | =trg, Ve Ve X]|
= |trg, (Ve VEX + > Vi R(X, )V X))
i=1

SCINVHIX+Y D Y IVEXVRVEX])(7.138)

1=1 11 +i2+iz=u—1

In our case
X = R9% ((dexpsYy)(Ya — Y1), (dexpsYy)(e;))(dexpsYy)(e;).

By the case ¢« = 0 and our induction assumption, the term

oD IVEX||[VEVEX]

1=1 11 +i2+iz=u—1

has already the structure of such a polynomial. In |¢/||[V* 1 X, |¢/| < V2(|Y1|+ Y2 —
Y1|) already generates a required factor. There remains to estimate

V" R9% ((dexpsYy)(Ya — Y1), (dexpsYp)(e;))(dexpsYa)(e;)
= ) (VPRI (V?[(dexpsYy)(Ya — V1)),

i1+i2+iz+ig=u

Vi [(dexpsYy)(e;)]) V¥ [(dexpsYy)(e;)]. (7.139)
Quite parallel to (7.134), we get
|Vt Rt | < C|V™ (V90 — V)| (7.140)

which is in Lo.
For i1 > 1,

V%2 [(dexpsYp) (Y2 — Y1)]|
ClYs =Y1|, i2=0,
< OP, (M| +[Y2 = Y1), -, (VY1 + V72 (Y2 — 11)
V72 (Yo = Y1)|,  j1+j2 =i2 > 0.

) (7.141)

IV [(dexps¥p) e,
C, i=0

< ’ . ; . 7.142
< el + - v (TR v, iz (1)

We see from (7.140)-(7.142) that (7.139) can be estimated by a sum of polynomials
in [Yi| + Yo = Y1, VY| + V(Y2 —Y1)|, .-+, [Yo = Y3, V(Y2 — Y1), for i1 > 1, the
corresponding polynomials have an Q%7 2-function as factor, each polynomial has
some |V7 (Y2 — Y7)| as factor, but there are terms without |V/Y;| + |VI (Y — Y1)|-
factor (ia,i3,44 = 0). This missing factor is covered by |¢/| < V2(|Y1| + |Y2 — Y1)
in |/||[V¥TLX|. All expressions in the estimate of |[V*(7.128)| stem from the Leibniz
rule, and we can apply the module structure theorem.
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Finally, we have to estimate
VU P_sy,trg, R (d(expsYy)(Y2 — Y1), d(expsYy)(d(expsYp)) = [V PX]
=| > (V'P)(VX)|
11 +io=u
< ) |VPP||VEX]. (7.143)

i1+ie=u

According to (7.26), (7.27), for iy < 2, [V¥ P| can be estimated by a constant,
for i; > 2, it is an Q%7 2-function.
We obtain from (7.143) and the preceding estimates (7.133)-(7.142) that

|tr90Rgt0 (Yé -1, dfto)dfto - P—Yetrgo Rt (d(eprb)(Yé - Yl)? d(exp%))d(exp}@)|r_2
S P’I"(|Y1|’I" + |}/2 - }/1|r7 |}/2 - }/1|r)|}/2 - Y1|r

<o(1)[Y2 = i, (7.144)
where o(1) — 0 as |Y1],, |Y2|, — 0, and p, is a polynomial in the indicated variables

with positive coefficients independent of ¢y and without constant term.
We still have to estimate

P_y,try, R (d(expYy) (Y2 — Y1), d(expYy))d(expYp)

—P_y,try, R9 (d(expYs) (Y2 — Y1), d(expYy))d(expYp) (7.145)
and
Py, 95 Ve, (V¥ = V9);(d(expYp)) (e:)- (7.146)

We start with (7.145) and write in normal coordinates (w.r.t. go)
Y d
(7:45) = [ APyt (R0 = R)(d(exp¥y) (Vo = Vi), dlexp¥y)d(exp¥s)lds

1
- / [P-sv, Vertrg, (R0 — R%)(d(expYy)(Ya — Y1),
0
d(expYy))d(expYy)|ds,

|P_sy, Veitrg, (Rt — R9%)(d(expYs)(Ya — Y1), d(expYy))d(expYs)|

= |trg, Ve (Rt — R9)(d(expYy)(Ya — Y1), d(expYy))d(expYs)]

< Gold[[|V = Vo0 [[R9=*0 |4, [Y2 — Y1

<C(Va|+ Y2 = Yi))[Yz — Vi, (7.147)

where we used

V(Rgsto _ Rgo) — ngstO — [(v _ vgsto) + vgstO]Rgsto — (v _ vgstO)Rgst()’ (7'148)

VUV otrg, (R9t0 — R%)(d(expsYy)(Ya — Y1), d(expsYy))d(expsYp)
=11y [V V¥ (R0 — R9)(d(expsYy) (Yo — Y1), d(expsYy))d(expsYy) (7.149)
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+ Z V(R — R9)(d(expsYy)(Ya — Y1), d(expsYy))d(expsYp),, ) (7.150)

VIR0 — R)(d(expsYp)(Ya — Y1), d(expsYp))d(expsYp)].
We estimate (7.149) as above,

(7149)| < Cld| Y. |[VIR|
11+ +iga=u+1
V2 (dexpsYy) (Y2 — Y1)| - [V* (dexpsYp)| - [ V" (dexpsYp)|.

Here
i1 DYst const., i1=0
|Vt Rt | g{ Lo — function. i >0, (7.151)
|Vi2 (dexpsye)(Yz - }/1)| < Z |ledeXp$)/9||Vj2 (}/2 _ }/1)|7 (7152)
J1tj2=i2
where
| VIt dexpsYy|
const., j1=0
= - - / 7.153
B { P((Yil+Ya = Yil)s--- (VO Yi| + VP (Yo = 2)]), o> 0. (193)

We then have that

(7.149)] < Qu((Ya| + Yz = Ya|), -+, (VY| + [V (Y2 — Y1),
|}/2 - Y1|7 Tty |vu+1(y'2 - Yl)')’

where Qu is a polynomial in the indicated variables with positive coefficients (possibly
Sobolev functions) independent of ¢y and such that each monomial contains a factor

|ViY1| 4+ |[VE(Ya — Y1)|| VI (Y2 — Y7)] (the first factor is delivered already by |c’|).
If we apply the inequalities (7.151)-(7.153) to (7.150), then we get quite analogous
(7.150)] < Qu-a((I¥1] + Y2 = Ya[), -, (IV* Y| + [V (Y2 = 1)),

|}/2 - }/1|a T |Vu_1(}/2 - Y1)|)7

where Q,_» has the same properties as Q,, (the ¢ is contained in the curvature terms).
Altogether,

VP sy, Vertrg, (R — R)(d(expYp)(Y2 — Y1), d(expYy))d(expYp)
< Y VAP (@i + Qi)

11 +io=u+1
= Qu((V1] + Y2 = Yi), -, [V*F (Y2 = 11))).
All terms in the polynomial stem from the Leibniz rule. Summing up u=20,--- ,7r—2

and taking the Lo-norm, we obtain finally

|P_yytrg, (R — R%)(d(expYy)(Ya — Y1), d(expYy))d(expYp)|r—2

< Qr((IMlr + Y2 = Yilo), [Y2 — Yilr)

= P.((IV1l]r + Yo = Y1), [Yo = Y1) [Yo — Y1,

o(1)|Yz = Y1, (7.154)
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where o(1) — 0 as |Yi |, [Ya|» — 0, P. = Q,./|Y2—Y1],, and Q- ((|Y1]-+|Y2—Y1].), |Yo—
Y1|,) is a polynomial in the indicated variables with positive coefficients independent
of tg and such that each monomial contains a factor (|Yi|. + |Y2 — Y1|.)|Y2 — Yi|,
which finishes the estimate of (7.125).
The last step in the estimate of (7.61),(7.62) is the estimate of
P_y,g0 Ve (VI —V9),d(expYy)(e;) (7.155)

Yo

_ /0 1 C%[P_sye trgy Ve, (V97— V) d(expsY)|ds
= /01 P_sy, vcltrgov% (V951 — V9°)d(expsYp)ds.
But

P_sy,Veitrg Ve (V9 —V9)d(expsYy)

Yo
can be estimated similarly to
P_sy,Vertrg, VC/(VgSt - vgo)d(eXPSYG)a

i.e. completely parallel to (7.47)-(7.55). One has only to replace Y by Yy and one
of the s by cg/g. In our case here, ¢’ = Py Yy = Pspy (Y1 +60(Y2 — Y7)), and Cgfe =
d(expsYp)(Ya — Y1). This has the consequence that in the polynomial P,._ of (7.55)
each monomial instead of a factor |Y'|? now has a factor (Y1, +|Y2 — Yi|.)|Ya — Y1,
We will not repeat all details which are completely parallel to (7.47)-(7.54).

Hence,

|P—Yetrgovc’ (V9 — V9)d(expYp)|r—2

Yo
S Pr—2((|yl|r + |Yv2 - YVI|7‘)7 |Yv2 - Y71|T)|Yv2 - S/i|r
= o(1)|Y2 — Yil, (7.156)

where o(1) — 0 as |Y1|,, |Ya|, — 0, P. = @Q,/|Y2 — Y1|,, and P,_5 are polynomials
in the indicated variables with positive coefficients independent of ¢, and without

constant term.
We infer from (7.124), (7.144), (7.154) and (7.156) that

[(7-61)]r—1 = [Py, Vg, V" d(expYp)|r—2
<o(1)|Yz - Yil,, (7.157)
where o(1) — 0 as |Y1],, [Y2|» — 0.

The last step to prove Proposition 7.5 is to calculate and to estimate

.1
Mm —[P_ (v, r(va-v1)) Posr — Py, ] X(0) (7.158)

T—0 T

which is the expression of (7.59).
We consider two curves, begining at expsYp, ending at fy,,

c1(s) = exp[—sPy,Yy = {expsYy} !, 0<s<1,

c (8)_ exp(}/b""s(}/é_}/l))u OSSSTu
2T exp— Py vy Yo+ T(Y2 — Y1), T<s<1,
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and the homotopy ¢;(s), 1 <t < 2, connecting ¢; and ¢y

exp(Yy + (t — 1)s(Ya — 7)), when 0<s <, (7.159)
s—T
ci(s) :expeprg-l-(t—l)‘r(Yg—Yl)[_ﬁPYng(tfl)T(Yngl)YvG
+(t—1)7(Y2 — Y1), when 7<s<1. (7.160)

Then for t > 1, s — ¢,(s) is not smooth at s = 7.
We calculate the tangent vectors to ¢(s),

0
048 _ (dexp(¥i + (¢~ )s(¥s ~ V)~ D%~ ¥i), 0<s<77,  (716)
Oee(s) 1
Js - - 1_ TP_ f::(y9+(t_1)T(y2_yl))PYe—i-(t—l)r(Yg—Yﬂ[YH + (= 1)7(Y2 = 11)]
1
S TP s - e vy Yo + (E = Dr(Ya = Y1),
Tt <s<1, (7.162)
dee(s) _
AT (dexp(Yg + (t —1)s(Yo — Y1))s(Ya— Y1), 0<s<7. (7.163)
The calculation of 805—58) for s > 7 is a little bit more complicated. We set o = {—.

Then s runs through [r,1] if and only if o runs through [6,1]. With o = {==, the

curve {c;(0)}o<o<1 for s > 77 is just the inverse curve to

{@@)ozoss = expa (¥ + (1~ )r(Va ~ Vi)bosozs, (7164
in particular
(o) =G(1—6)=&(5), 0F<o<l1 (7.165)
and
dails) _ 0a),
ot ot

= D fexp(1 ~ o) (¥ + (¢~ )73 1)

= [dexp((1 ~ 0)(¥p + (¢~ )r(¥z ~ Vi)l (¥s — i)

= desp[T =2 (Vy + (1= )r(¥Va ~ WY Y1) (7167)

Now we come back to (7.158). The main idea how to attack it is represented in [1],
p-92-93. In our case, we have two curves beginning at expYp and ending at f;,, namely
c1 and ¢z, and we have our homotopy c; between them. Denote X (s,t) = P,, (X (0)
the vector field along the homotopy which is parallel along the paths ¢;. Then we
denote X;(s) = P,,(5X(0) and get

0

X(0,£) = X(0,1) = X(0,2) = X(0), V,X(s,t) =0,
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where V, =V

=Voe, Vi = Vo . (7.158) can be rewritten as
s ot

2c
ds D

Xo(1) — Xy (1)

lim (7.168)
7—0 T
We compare the tangent vectors at 77,77, to determine the jump:
Jey(s T.(r
) = (exp (Y + (- 17— ) - D) v = 247 (7160)
0c(s 1
5i )|s:T+ =~ Pror-nr ey Vo + (= Dr(¥2 = 1)), (7.170)

We see, the jump is just the difference between the parallel displacement and the
(Jacobi field) /7. For the t derivative, the situation is much better:

dcy(s) der(s) ot
ot ot T

If s — c¢(s) would be C, then, using V; X (0,t) =0, V;V;X(s,t) = 0, we obtain

|s:7’* = (dexp(Y}) + (t - 1)7—(}/2 - le)))T(Yv2 - Yi) =

2
Xa(1) = X2y gy < [ VX (1)
1
2 1
S/ / VsV X (s,t)|dsdt
1 0

2 ! 8Ct 8Ct
—/1 /0 |R(§,E)X(s,t)|dsdt, (7.171)

which holds for an arbitrary vector bundle.

Unfortunately, for t > 1 our ¢;(s) are not C!, so we cannot apply this procedure
immediately. There are two ways out from this situation. The first one is to take
into account the jump and its consequences into all calculations and estimates. Using
(7.24), one can calculate and estimate the jump of X(s,t). The other way is to
use a family of arbitrarily dense C!-approximations {cf (s)},—o of ¢, which has the
following properties:

(1) For s ¢ [t — (1), 7 + ()], (7) = o) for 7 — 0, there holds
ci (s) = ce(s); (7.172)
(2)

/2 /1 dist(cy (s), ci(s))dsdr = o(r), for 7 — 0; (7.173)
1 Jo

(3) In normal coordinates,

sup|Vi(%%—%)| —o(r), 0<i<2 (7.174)

and

2 1 T
/ / |Vi(%—%)|dsdt:o(7), 2<i<r—2. (7.175)
1 0
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These properties imply by means of (7.24)

sup |VH(X (s,t) — X7 (s,1))|dsdt = o(T), 0<i<2, (7.176)

/2 /1 V(X (s,t) — X7 (s,t))|dsdt = o(1), 2<i<r—2. (7.177)
1 0

where X7 (s,t) = Per(5X(0).

The estimate of such approximations is a standard fact in differential topology
and geometry and is already contained in [25]. In our case of bounded geometry, we
can do this uniformly on M.

Now we can estimate

| X2 (1 )—Xl( )l
< |X5(1) = XF(1)] + [XF(1) — XT(1)] + X7 (1) = X1 (1)
//|R (2 ‘%t SEX (s, )| dsdt + o(7)
sﬁssuy—w-|sup%|-|sug|XT<s,t>|+o<r>
< VEsup(| 5T = G+ 158 sup | G = S+ 15D X )]+ o)
< VEsup(| 52|+ ofr) -sg;u% +o(r)) - [X(0)] +0(r)
Zup| 5| sup |t X (0)] + ofr)

= V2{max{sup |(deXP(Y9 (= 1)s(Ya = V)t — 1)(Ya = Vi),

sup
t

1
T Yo + (t — )7 (Y2 — Y1)|}- max{sutp |dexp(Yy + (t — 1)s

(Ya = Y))s(¥a = Y1) sup dexp— (¥a + (¢ = 7(¥2 = Y1) (¥a — Y1) |}}

X (0)] + of7). (7.178)

If we estimate the numerator in (7.168) by (7.178), then we see that the 7 in the
denominator of (7.168) cancels out against the s < 7 or 7 in the terms of (7.178).
Moreover,

lim sup dexp(Yy + (¢ = 1)s(¥e = ¥1))(t = 1)(¥a = ¥1)| = |(dexp¥5) (¥ = Y1),

7—0

t

lim Yo+ (t - 1)r(Y2 = V1) = [Yol,

lim_sup dexp(Yp + (¢ — 1)s(Ya — Yi))(Ya — Y1) = |(dexp¥p) (Y2 — V1)1,

T—01T <,
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tim sup [[dexpr— (¥ + (¢ — )r(Ys — Vi))](¥Vs — Vi)

T—0t r<s<1 1-—
t

— sup |(dexp(l— s)Yp)(Ya — Y1)

0<s<1
We obtain
lim %[(P7Y9+T(Y27Y1)PO—>T — P_y,)X(0)]
<Oz —Yi| - |[Y2 - Y| (7.179)
or
<O+ Yo = Yi])|Y2 = 11l. (7.180)

Let Z € Ty, M 2 be a unit vector, radially parallel transfered to all directions and
consider, according to (7.171),

|VzP.,1)X(0) = VzP, 1)X(0)]

2 1
< / / |V Vi(Vz P, )X (0))|dsdt
1 0

2 1
0
:/ / V3V 29 Pay( X (0) + VL R(SE, Z) Py X (0) | dsclt
1 0

8Ct

0
= [ 19T X0+ RO 2090 x(0) + VR

P. X (0)|dsdt
ot )crs) ()|S

6Ct 6Ct 80,5
< 7tz
< [ [ 1w e xR 2P X(0)
6Ct

+|V R( 8t )Pct(s)X(Oﬂdet,

i.e., we have to estimate

Oc Bc Jc Oc Oc Bc
[ vEae g+ G v e o + 1 5 2

(VP (5))X (0)+Pa<s>VX( )I}dsdt (7.181)
8015 8015

/ / V2 2l 5 15 11V Pey () X (0) + Pey (o) VX (0) st (7.182)

/ / f|%||vact||X( 0)|dsdt (7.183)

We see from (7.181)-(7.183) that each term contains a factor of one of the following
forms:

Yo = V1] - Yo — Y1, (7.184)
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(V] + Y2 = Vi)|Y2 — Yil, (7.185)
V(Y2 —Y1)| - [Ya — Vi, (7.186)
(IVYi] + [V (Ya — YD))IYa — Yil, (7.187)
(Y] + |V — Vi)V (Y2 — V)1, (7.188)

assuming for a moment c;(s) € C*.
Now it is visible and absolutely parallel to the procedure above how to handle
the case

|V Pey(1yX (0) — V' P., 1y X (0)],

1). one changes V¢V ,V, to V,V,;V?, thus producing curvature terms containing lower
derivatives;
2). one distributes derivatives V7 as V7" of the single components of a term, according
to the Leibniz rule.

Thus one obtains

[V Py X (0) = VP, 1y X (0)] < 7Qi(IY1] + Y2 = V1), -+, [V V1| + [V (Y2 — V1),
Yo = Yil,---, [V (Y2 = V1)), (7.189)

where @; is a polynomial in the indicated variables with positive coefficients inde-
pendent of ¢y without monomials of degree not greater than one and such that each
monomial contains a |V7(Ya — Y1) as a factor.

Applying the module structure theorem, taking the Lo-norm and summing up
r—2

>, we get
i=0
[P, (1) X (0) = Pey 0y X (0)|r—2 < 7P (V1] + [Ya = Vi), [Yo = Yilo) - [Yo = Vil
=7-0(1)- [Y2 = Y1, (7.190)

where o(1) — 0 as |Yi|,|Y2|. — 0, P, is a polynomial in the indicated variables with
positive coefficients independent of ¢ty and without constant term.

Our ¢;(s) is not smooth enough, but we approximate by ¢f (s), use (7.172)-(7.177)
and obtain

|Pey(1yX (0) = Poy 1y X (0)[r—2 < 7-0(1) - [Yo = Y1, + o(7), (7.191)

for 7 — 0.

We infer from (7.157) and (7.191)
19(6,Y) — g(t, V)l < o(1)[Ya — Yils, (7.192)

o(1) — 0 (|Y1|r,|Y2|r — 0) with rate independent of ¢y. This finishes the proof of
Proposition 7.5. O

REMARK. Our variation of the continuity method by reduction to a uniform
Banach fixed point theorem requires more or less the same efforts like the classical
continuity method. There we have to prove the closedness of L in [0,1]. A sequence
(expt,Y,), = (expft0 t,Y,), = (expt, Y, o fi,), of harmonic maps with ¢, — t* is
a Cauchy sequence if and only if (Y}), is a Cauchy sequence, ie. |Y, —Y,|, — 0
(u,v — 0). If f, — f*, then f* is harmonic if and only if F(¢*,Y,) — 0. The latter
is equivalent with 73+Y,, — Y™*. This can be controlled by our estimate (7.192).
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8. Proof of the main theorem.

THEOREM 8.1. Suppose (M?,go) be an open surface of constant curvature Ky =
=1, Tinj(g0) > 0, g € comp(go)—1, {gi}o<i<1 @ smooth arc between go and g1 in
comp(go)—1, and suppose inf o.(A(go)) > 0. Then there exists a unique smooth arc
{fi}o<i<1 of harmonic diffeomorphisms fi : (M?,go) — (M?,g;) bounded homotopic
to the identity.

Proof. We considered in section 7 an arc {fi}o<i<1 of harmonic maps f; :
(M?,g0) — (M?,g;), with f; bounded homotopic to id : M — M, since it results
from the composition of exponential maps = — exp, X;, the X; Sobolev vector fields.
According to theorem 4.1 of [31], p.1025, each f; is uniquely determined hence the
whole arc is uniquely determined.

We use the following

PROPOSITION 8.2. Let f be a harmonic map of degree one between surfaces of
constant curvature —1. Then the Jacobian of f is everywhere positive. In particular,
f is locally a diffeomorphism.

Proof. There are several proofs. We refer to [16], [22], [24] and [26]. One can
infer from these proofs a proof for the case M? open. Denote by J(f) the Jacobian
determinant of f.

LEMMA 8.3. Under our assumptions, J(f) > 0.

Proof. This has been proven in [26], Lemma B.32, p. 182 or in [24], pp.270-271
by purely local methods like the local maximum principle. O
We recall Proposition 2.2 from [24] as

LEMMA 8.4. Let Q C (M,go) be open, connected and f : Q — (M,q1) be a
harmonic map satisfying J(f) > 0. Then either J(f) is identically zero or all zeros
of J(f) are isolated. Moreover, if there is a number k so that #f~1(q) < k for each
regular value ¢ € (M, g1) of f, then each isolated zero of J(f) is a non-trivial branch

point of f. O

Now let Q C (M, go) be as above and relative compact. According to Lemma
8.4, isolated zeros of J(f) correspond to non-trivial branch points of f. But we have
degree(f) = 1, hence such branch points do not exist, J(f) > 0 on € and hence on
all of M. O

REMARK. For open manifolds there exists a well-defined fundamental cycle in
locally finite bounded homology. Hence the notion of mapping degree one is well-
defined.

Back to the proof of Theorem 8.1. In our case, any map ¢ — exp, X is proper,
since the preimage of any compact set K C M is a closed subset of %, . (K). The
finite composition of proper maps is also proper. Hence f is proper, and a finite
covering of itself. Since degree(f) = 1, there is only one leaf, f is a diffeomorphism
and the whole curve {f;}o<¢<1 consists of harmonic diffeomorphisms. O
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