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Abstract

In this paper a Beddington-DeAngelis predator-prey model with time lag for preda-
tor is proposed and analyzed. Mathematical analysis regard to boundedness of solu-
tions, nature of equilibria, uniform persistence, and stability are analyzed. We show
that if the positive equilibrium is unstable, an orbitally asymptotically stable periodic
solution exists.
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1 Introduction

Generally a predator-prey model has the structure

N′(t) = f (N)N −g(N,P)P
P′(t) = −νP+εg(N,P)P,

(1.1)

where N(t), P(t) represent the population density of prey and predator at time t, respectively.
f (N) is the growth rate of prey and it is assumed that f (0) > 0 and has exactly one positive
zero, say K, which is called the carrying capacity of prey. In most cases, the prey is always
assumed to grow logistically, i.e., f (N) = r(1− N/K). The constant r is called intrinsic
growth rate of prey. The function g(N,P) is the functional response of the model, i.e., the
rate at which an individual predator consumes prey. The parameter ε describes the efficiency
of the predator in converting consumed prey into predator offspring, while ν is the predator
mortality rate. In this paper we will assume that the functional response is the so-called
Beddington-DeAngelis one; i.e.
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g(N,P) =
µN

α+βN +γP
. (1.2)

This type of functional response was introduced by Beddington [1] and DeAngelis et al. [7],
independently. It is similar to the well known Holling type II functional response but has an
extra term γP in the denominator which models mutual interference between predators. It
can be derived mechanistically via considerations of time utilization [1, 15] or spatial limits
on predation [5]. The system (1.1) with the functional response (1.2) can take the form
(after rescaling)

N′ = N(1−N)−
aNP

1+bN + cP
,

P′ = −dP+
mNP

1+bN + cP
.

(1.3)

System (1.3) and the analogous systems with diffusion have received much attention in
the literature in recent years [3, 4, 8, 9, 10, 11, 12, 20]. The studies [3, 9, 10] present a
complete classification of the global dynamics of (1.3), if there is no positive steady state,
the boundary steady state (1,0) is globally attracting; if (1.3) admits a positive steady state
but it is unstable, then there is a unique limit cycle; otherwise, the positive steady state is
the global attractor.
In this paper, we will consider the model (1.3) with delay, which is described by the integro-
differential system

N′ = N(1−N)−
aNP

1+bN + cP
,

P′ = −dP+m
∫ t

−∞

δ
N(τ)P(τ)

1+bN(τ)+ cP(τ)
e−δ(t−τ)dτ

(1.4)

where the exponential weight function satisfies∫ t

−∞

δe−δ(t−τ)dτ =
∫ ∞

0
δe−δsds = 1.

We are assuming in a more realistic fashion that the present level of the predator affects
instantaneously the growth of the prey, but that the growth of the predator is influenced
by the amount of prey in the past. More precisely, the predator grow up depending on the
weight average time of the functional response over the past by means of the function Q(t)
given by the integral

Q(t) =
∫ t

−∞

δ
N(τ)P(τ)

1+bN(τ)+ cP(τ)
e−δ(t−τ)dτ. (1.5)

Clearly, this assumption implies that the influence of the past fades away exponentially and
the number 1/δ might be interpreted as the measure of the influence of the past. So, the
smaller the δ > 0, the longer the interval in the past in which the values of N are taken into
account; see [2, 6, 14].
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The integro-differential system (1.4) can be transformed (see [6, 14]) into the system of
differential equations on the interval [0,∞),

N′ = N(1−N)−
aNP

1+bN + cP
,

P′ = −dP+mQ,

Q′ = −δQ+
δNP

1+bN + cP
.

(1.6)

We understand the relationship between the two systems as follows: If (N,P) : [0,∞) −→
R3 is the solution of (1.4) corresponding to a continuous and bounded initial functions
(Ñ, P̃) : (−∞,0] −→R2, then (N,P,Q) : [0,∞) −→R3 is a solution of (1.6) with N(0) = Ñ(0),
P(0) = P̃(0), and

Q(0) =
∫ 0

−∞

δ
Ñ(τ)P̃(τ)

1+bÑ(τ)+ cP̃(τ)
e−δτdτ.

Conversely, if (N,P,Q) is any solution of (1.6) defined on the entire real line and bounded
on (−∞,0], then Q is given by (1.5) so (N,P) satisfies (1.4).
The main concern of this paper is to study the dynamics of the system (1.6). More con-
cretely, we will show that if the positive equilibrium of the system (1.6) is unstable, an
orbitally asymptotically stable periodic solution exists.

2 Preliminaries

In this section we will summarize the main facts related to our research. Let us consider the
system of differential equations

x′ = F(x), x ∈ D (2.1)

where D is an open subset of R3 and F is twice continuously differentiable in D. The
noncontinuable solution of (2.1) satisfying x(0) = x0 is denoted by x(·, x0), the positive
(negative) semi-orbit through x0 is denoted by ϕ+(x0) (ϕ−(x0)), and the orbit through x0
is denoted by ϕ(x0) = ϕ−(x0)∪ϕ+(x0). We use the notation ω(x0) (α(x0)) for the positive
(negative) limit set of ϕ+(x0) (ϕ−(x0)) provided the later semi-orbit has compact closure in
D.
System (2.1) is said to be competitive in D if the Jacobian matrix of F at x, F′(x), has
non-positive off-diagonal elements

∂Fi

∂x j
≤ 0, i , j,

at each point of D. System (2.1) is said to be competitive and irreducible in D provided
that de Jacobian matrix is an irreducible matrix at each point x ∈ D and (2.1) is competitive
in D. Recall that an n× n matrix A is irreducible if for each nonempty proper subset I of
N = {1,2, . . . ,n} there exist i ∈ I and j ∈ N − I such that Ai j , 0.
For vectors x and y in R3 the inequality x� y (x ≤ y) means that xi < yi (xi ≤ yi) holds for
all i and x < y means that x ≤ y but x , y. Two vectors x and y are related if either x ≤ y or
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y ≤ x and are unrelated otherwise. The open set D is said to be p convex provided that for
every x and y belonging to D for which x ≤ y the line segment joining x and y belongs to D.
The following theorem is proved in [16].

Theorem 2.1. Let (2.1) be a competitive system in D ⊂ Rn y suppose that D contains a
unique equilibrium point p which is hyperbolic and assume that F′(p) is irreducible. Sup-
pose further that W s(p), the stable manifold of p, is one-dimensional. If q ∈ D\W s(p) and
ϕ+(q) has compact closure in D, then ω(q) is a nontrivial periodic orbit.

The existence of an orbitally stable periodic solution can also be proved. We introduce the
following hypotheses.

(H1) System (2.1) is dissipative: For each x ∈ D, ϕ+(x) has compact closure in D. More-
over, there exists a compact subset B of D with the property that for each x ∈ D there
exists T (x) such that x(t, x) ∈ B for t ≥ T (x).

(H2) System (2.1) is competitive and irreducible en D.

(H3) D is an open, p-convex subset of R3.

(H4) D contains a unique equilibrium point x∗ and det(F′(x∗)) < 0.

The following result holds (see [17]).

Theorem 2.2. Let (H1) through (H4) hold. Then either

(a) x∗ is stable or,

(b) there exists a nontrivial orbitally stable periodic orbit in D. In addition, let us assume
that F is analytic in D. If x∗ is unstable then there is at least one but no more than
finitely many periodic orbits for (2.1) and at least one of these is orbitally asymptoti-
cally stable.

Our system (1.6) can be transformed into a competitive system. Let us denote by u =
(N,P,Q)T , v = (x,y,z)T , and H = diag[1,1,−1]. The transformation v = Hu in the system
(1.6) results in

x′ = x(1− x)−
axy

1+bx+ cy
,

y′ = −dy−mz,

z′ = −δz−
δxy

1+bx+ cy
.

(2.2)

Let F denote the right-hand side of (2.2). Then the Jacobian of F is given by

F′(v) =


1−2x−

ay(1+ cy)
(1+bx+ cy)2 −

ax(a+bx)
(1+bx+ cy)2 0

0 −d −m

−
δy(1+ cy)

(1+bx+by)2 −
δx(1+bx)

(1+bx+ cy)2 −δ

 .
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Obviously (2.2) is competitive and irreducible in the open region D = {(x,y,z) ∈ R3 : x >
0,y > 0,z < 0}. Our main results will follow from this observation and the above theorems.
The equilibria of the system (1.6) consist of two trivial critical points E0 = (0,0,0) and
E1 = (1,0,0) in the boundary of Ω = {(N,P,Q) ∈ R3 : N ≥ 0,P ≥ 0,Q ≥ 0}, and a unique
nontrivial equilibrium point E∗ = (N∗,P∗,Q∗) if and only if the following condition is true

m > d(b+1). (2.3)

In this case, we have

N∗ =
cm−a(m−bd)+

√
(a(m−bd)− cm)2+4adcm

2cm
,

P∗ =
1
cd

((m−bd)N∗−d), Q∗ =
d
m

P∗.

The stability properties of E0 and E1 can be determined by their linearizations. Let J(Ei)
denote the Jacobian matrices evaluated at Ei. Then

J(E0) =

 1 0 0
0 −d m
0 0 −δ

 ,
and

J(E1) =



−1 −
a

1+b
0

0 −d m

0
δ

1+b
−δ


.

Thus, E0 is a saddlepoint, having two negative eigenvalues and one positive eigenvalue.
If m > d(1+ b) then E1 also a saddlepoint with two negative eigenvalues and one positive
eigenvalue.
Is easy to show that

Lemma 2.3. 1. The N-axis and the (P,Q) plane are invariant under flow induced by the
system (1.6).

2. The intersection of the stable manifold of E0 with Ω consists of all points (0,P,Q)
such that P ≥ 0 and Q ≥ 0.

3 Dissipativeness and Uniform Persistence

The main goal of this section is to give conditions implying that the predator and prey
persist indefinitely, i.e., that neither becomes extinct.
The following theorem shows that all solutions of system (1.6) are bounded and therefore
defined for all t ≥ 0.
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Theorem 3.1. Ω is positively invariant under the flow induced by (1.6). Moreover, (1.6)
is pointwise dissipative and the absorbing set (into which every solution eventually enters
and remains) is given by B = [0,1]× [0, m

dc ]× [0, 1c ].

Proof. Standard and simple arguments show that solutions of the system (1.6) always exist
and stay positive.
Now, let us prove that the solutions of the system (1.6) are bounded for t ≥ 0.
Taking into account the first equation of the system (1.6) we obtain that

N′ ≤ N(1−N),

implying that

limsup
t−→∞

N(t) ≤ 1. (3.1)

This means that for any η > 0, exist Tη > 0 such that 0 < N(t) < 1+η for t ≥ Tη.
From the third equation of the system (1.6),

Q′+δQ =
δNP

1+bN + cP
≤
δ

c
N ≤
δ

c
(1+η), if t ≥ Tη,

which implies that

Q(t) ≤ Q(Tη)e−δ(t−Tη)+
1
c

(1+η)[1− e−δ(t−Tη)], for all t ≥ Tη,

therefore

limsup
t−→∞

Q(t) ≤
1
c

(1+η). (3.2)

Since η is arbitrary, we have

limsup
t−→∞

Q(t) ≤
1
c
. (3.3)

Now, given ε > 0, exits Tε > 0 such that 0 < Q(t) < 1/c+ ε if t ≥ Tε. By using the second
equation of the system (1.6)

P′+dP = mQ ≤ m
(
1
c
+ε

)
, if t ≥ Tε.

Hence, for t ≥ Tε we have

P(t) ≤ P(Tε)e−d(t−Tε)+
m
d

(
1
c
+ε

)
[1− e−d(t−Tε)] for all t ≥ Tε,

therefore

limsup
t−→∞

P(T ) ≤
m
dc

This completes the proof of our claim. �

We now show that the system (1.6) persist indefinitely if m > d(b+1). Mathematically, we
use the theory of uniform persistence (see [19]).
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Theorem 3.2. Assume that m > d(b+1). Then exists η > 0 such that

liminf
t−→∞

N(t) > η, liminf
t−→∞

P(t) > η, liminf
t−→∞

Q(t) > η,

for all solutions of the systems (1.6) starting in Ω with positive initial data.

Proof. We use Theorem 4.6 of [19], employing the notation of that result and the notation
u = (N,P,Q). Let X2 the union of the nonnegative N-axis and the (P,Q) plane, with P ≥ 0
and Q ≥ 0. Let X1 = Ω∩ Xc

2. We need to prove that solutions starting in X1 are eventu-
ally bounded away from X2, uniformly with respect to the initial data. The compactness
assumption (C4,2) of Theorem 4.6 holds with B as in Theorem 3.1 (for small positive δ
as defined in [19]). Define Ø2 = ∪u∈X2ω(u). According to Lemma 2.3, Ø2 consist of the
equilibria E0 and E1 and hence it has an acyclity isolated covering M = M0 ∪M1, where
Mi = Ei for i = 0,1. Here, acyclity of M means that there do not exist points ui ∈ X2 with
α(u1) = E0, ω(u1) = E0, α(u2) = E2 and ω(u2) = E2. In fact, it is the latter u2 which cannot
exist by Lemma 2.3. Isolatedness of Mi means that these sets are isolated in Ω, that is, there
exists open sets Ui of Mi in Ω such that Mi is the maximal invariant set in Ui. This Holds
since each Ei is hyperbolic. We must also show that each Mi is a weak repeller for X1: for
all u(0) ∈ X1, limsupt→∞ |u(t)−Ei| > 0. Suppose, for contradiction, that a solution u(t) with
u(0) ∈ X1 satisfies limt→∞ u(t) = E0. Then u(0) belongs to the stable manifold of E1. But
the intersection of the latter with Ω consists of the (P,Q)-plane by Lemma 2.3 so we have
a contradiction to u(0) ∈ X1. Suppose now that limt→∞ u(t) = E1, let us linearize the system
(1.6) about E1, obtaining the following system

P′ = −dP+mQ, (3.4)

Q′ =
δ

1+b
P−δQ.

Taking into account that m > d(b+ 1) and by using comparison techniques we obtain that
P(t) and Q(t) cannot tend to zero as t tends to infinity, which is a contradiction. Hence, by
Theorem 4.6 of [19], X2 is a strong repeller for X1. �

4 Global stability of E1

Theorem 4.1. If m < d(b+1) then E1 is globally asymptotically stable.

Proof. From (3.1), for any η > 0 sufficiently small, exist Tη > 0 such that N(t) < 1+ η if
t ≥ Tη.
From the last two equations of the system (1.6), we get

P′ = −dp+mQ

Q′ = −δQ+
δN p

1+bN + cP
< −δQ+

δ(1+η)
1+b

P
(4.1)

We consider the comparison equations
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u′(t) = −du+mv,

v′(t) = −dv+
δ(1+η)

1+b
u.

(4.2)

It easy to show that if m < d(b+ 1) for any solution of (4.2) with nonnegative initial val-
ues we have u(t) −→ 0 and v(t) −→ 0, as t −→∞. Let 0 < P(0) ≤ u(0), 0 < Q(0) ≤ v(0). If
(u(t),v(t)) is a solution of the system (4.2) with initial value (u(0),v(0)), then by the compar-
ison theorem we have P(t) ≤ u(t), Q(t) ≤ v(t) for all t ≥ 0. Hence P(t) −→ 0 and Q(t) −→ 0,
as t −→∞.
Having in mind that P(t) −→ 0 as t −→∞, we get that for any ε > 0, exist Tε > 0 such that

P
1+ cP

<
ε

1+ cε
, ∀t ≥ Tε.

By using the first equation of the system (1.6) we obtain that

N′ = N(1−N)−
aNP

1+bN + cP
≥ N(1−N)−

aNP
1+ cP

≥ N(1−N)−
aNε

1+ cε
= N

(
1−N −

aε
1+ cε

)
,

which implies that

liminf
t−→∞

N(t) ≥ 1−
aε

1+ cε
.

Since ε is arbitrary, we get

liminf
t−→∞

N(t) ≥ 1.

This completes the proof of our claim. �

5 Stability of the nontrivial equilibrium

We want to determine the stability of the unique nontrivial equilibrium E∗. It is convenient
to examine the equivalent problem of the stability of the unique nontrivial equilibrium v∗ =
HE∗ of (2.2). The Jacobian matrix of F evaluated in v∗ is given by

F′(v∗) =


a11 −aa12 0

0 −d −m

−δa31 −δa12 −δ


,

where

a11 =
bd
m

(1− x∗)− x∗, a12 =
x∗(1+bx∗)

(1+bx∗+ cy∗)2 , a31 =
y∗(1+ cy∗)

(1+bx∗+ cy∗)2 ,
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x∗ = N∗, y∗ = P∗ and the characteristic equation is given by

Pδ(λ) = λ3+q1(δ)λ2+q2(δ)λ+q3(δ),

where

q1(δ) = δ+d−a11

q2(δ) = δ
( c
a

(1− x∗)−a11

)
−da11,

q3(δ) = δ
(
−

c
a

(1− x∗)a11+maa12a31

)
.

It is worth noting that the coordinates of the critical point v∗ are independent of δ.

Lemma 5.1. Suppose that
bd

bd+m
< x∗,

then exactly one of the following hold:

1. All the roots of Pδ(λ) have negative real part.

2. There is one negative eigenvalue and a pair of nonzero purely imaginary eigenvalue
(if and only if q1 > 0, q2 > 0 and q1q2 = q3).

3. There is one negative eigenvalue and a pair of eigenvalues with positive real part.

Proof. Since (bd)/(bd+m) < x∗ then det F′(v∗) = −q3(δ) < 0. As the product of the eigen-
values is negative, we conclude that an even number (0 or 2) of eigenvalues have positive
real part and zero cannot be an eigenvalue. In the nonhyperbolic case (ii), one sees that
η2 = q2 = q3/q1 by substituting λ = iη into Pδ(λ) = 0. �

The Routh-Hurwitz criteria give necessary and sufficient conditions for (i). We will be
particulary interested in finding conditions for v∗ to be hyperbolic and unstable because
Theorem 2.2 implies the existence of periodic orbits. Of course, the Hopf Bifurcations
Theorem my apply but it leads to the existence of small-amplitude periodic orbits.
Let us define the function

φ(δ) = q1(δ)q2(δ)−q3(δ) = Aδ2+Bδ+C,

where

A =
c
a

(1− x∗)−a11

B =
dc
a

(1− x∗)−2da11+a2
11−maa12a31

C = −da11(d−a11).

Applying the Routh-Hurwitz criteria, we get the following theorem.
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Theorem 5.2. Let us assume that
bd

bd+m
< x∗.

Then A > 0, C > 0, and qi(δ) > 0 for i = 1,2,3. Exactly one of the following holds:

1. All the roots of Pδ(λ) have a negative real part for all δ > 0.

2. There exist 0 < δ1 ≤ δ2 such that for δ ∈ (0, δ1)∩ (δ2,∞) the roots of Pδ(λ) have real
negative real part, and Pδ(λ) has a negative root and two complex roots with positive
part for all δ ∈ (δ1, δ2). This case holds if and only if B < 0 and B2−4AC ≥ 0.

6 Existence of a stable periodic orbit

Our main result below gives sufficient conditions that almost every solution is asymptoti-
cally periodic.

Theorem 6.1. Suppose that
bd

bd+m
< x∗.

Assume that the unique nontrivial equilibrium E∗ is hyperbolic and unstable. Then it has
a one-dimensional stable manifold W s(E∗). Furthermore, there exist an asymptotically
orbitally stable periodic orbit, and the omega limit set of every solution (N(t),P(t),Q(t))
with N(0) > 0, P(0) > 0, and (N(0),P(0),Q(0)) <W s(E∗) is a nonconstant periodic orbit.

Proof. We apply Theorems 2.1 and 2.2 to the transformed system (2.2). From Lemma 5.1
we see that the stable manifold of E∗ is one-dimensional. The existence of an orbitally
asymptotically stable periodic orbit follows from Theorem 2.1 and the analyticity of the
vector field. Note que (H1) holds by Theorem 2.1 and Theorem 3.2 (the latter must be
translated appropriately to system (2.2)). In particular, we take the domain D as in Section
2. Using Theorem 3.2, Theorem 2.1 implies the final assertion. �

7 Discussion

The Beddington-DeAngelis form of functional response has some of the same qualitative
features as the ratio-dependent. A ratio-dependent version of (1.3) would be the form

N′ = N(1−N)−
aNP

bN + cP
,

P′ = −dP+
mNP

bN + cP
.

The ratio-dependent form also incorporates mutual interference by predators, but it has
somewhat singular behavior at low densities and has been criticized on other groups, see
[13] for a mathematical analysis and the references in [5] for some aspect of the debate
among biologists about ratio dependence. The Beddington-DeAngelis form of functional
response has some of the same qualitative features as the ratio-dependent form but avoids
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some of the behaviors of ratio-dependent models at low densities which have been the
source of controversy (see [5, 13, 18]).

Figure 1. δ = 4. Initial value I1= (0.2,0.2,0.1). Initial value I2= (0.4,0.4,0.02)

Figure 2. δ = 15. Initial value I1= (0.1,0.1,0.01).

In this paper, a Beddington-DeAngelis predador-prey model with time lag for predator is
proposed and investigated. Using results about competitive system, we prove that there exist
and orbitally asymptotically stable periodic orbit when (2.2) is permanent and the positive
equilibrium is unstable. Comparing our results with the results of Cantrell and Cosner [3]
and Hwang [9, 10] we know that this is a new phenomenon, and this shows that the time lag
may be the cause of periodic oscillations in the populations. Finally the following numeric
examples shows that the feasibility of our results.
Let us pick a = 3,b = 1,c = 0.01,d = 0.1,m = 2. Under this selection of parameters the
critical point is given by

(N∗,P∗,Q∗) = (0.05280707500,0.3334425000,0.01667212500).

In this parameter configuration the nontrivial equilibrium point is hyperbolic with a one-
dimensional stable manifold just for δ ∈ (0.000687597,9.708583324), therefore for this
values of δ, E∗ is unstable and an orbitally asymptotically stable periodic solution exist
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(see Fig. 1). If δ ∈ (0,0.000687597)∪ (9.708583324,∞) then all roots of the characteristic
equation have negative real parts and therefore E∗ is asymptotically stable (see Fig. 2).
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