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Abstract. In this paper, we present the Fermi-Walker parallel transport and the
generalized Fermi-Walker parallel transport according to quasi frame in three di-
mensional Minkowski space.
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1. Introduction

A relativistic observer £ needs reference frames in order to measure the movement
and position of a object. If € is free falling, its restspaces are transported with Levi-
Civita parallelism. For accelerated observers, the restspaces are not transported by
the Levi-Civita parallelism. In this case Fermi-Walker parallelism is used to define
constant directions. Fermi-Walker parallelism is an isometry between the tangent
spaces along relativistic observer £. [6,11].
Balakrishnan et al investigated time evolutions of the space curve associated with
a geometric phase using Fermi-Walker parallel transport in three dimensional Eu-
clidean space [2]. Giirbiiz had introduced new geometric phases according three
classes of a curve evolution in Minkowski space [7, 8].
Usual Fermi-Walker parallel derivative for any vector field A is given with respect
to Frenet frame {¢, n, b} in three dimensional Euclidean space as following (cf. [9])
DIA  dA dt dt
s~ ds & s
Dandoloff and Zakrzewski [4] introduced the modified Fermi-Walker derivative of
the vector field A according to Frenet frame in three dimensional Euclidean space
as

— (t, A) At.

DIA  dA db db

— = ——(b,A) — — (—, A)n.

Dfs  ds (b, >ds <ds7 m
Generalized Fermi—Walker parallelism is used by both accelerated observers and
not accelerated observers and it offers better choice of reference systems than the
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classical one [11]. Recently many authors studied Fermi-Walker and generalized
Fermi-Walker derivative for various spaces [10, 12, 13].

Coquillart introduced the quasi-normal vector of a space curve to construct the
3D curve offset [3]. The quasi frame has many advantages according to Frenet
and Bishop frames. It is defined even when the curvature (k = 0) vanishes. The
construction of the quasi frame does not depend on the fact if the space curve has
an unit speed or not.

In this paper we study Fermi-Walker derivative, generalized Fermi-Walker deriva-

tive and the modified Fermi-Walker derivative according to a quasi frame along a
non-null curve in three dimensional Minkowski space.

2. Preliminaries

The three dimensional Minkowski space R? is the real vector space R? with the
indefinite metric defined as

(x,y) = z1y1 + T2Y2 — T3Y3

where * = (71, 2,73) and y = (y1,%2,¥y3) in R3. A vector z of R$ is said to be
spacelike if (x,z) > 0 or x = 0, timelike if (x,z) < 0 and lightlike or null if
(x,z) =0and x # 0 [1].

Let « : I — R} be a timelike curve with an arc-length parameter s in three
dimensional Minkowski space R$. The derivative formulas of the Frenet frame
{t,n,b} of a timelike curve are given by

t 0 O t
n|=xk 0 7 n (D
4 0 -70 b

where ¢ is unit tangent vector, n is unit normal vector and b is unit binormal vector.
x and 7 are the curvature and the torsion of a timelike curve in R3.
A quasi frame (or g-frame) is defined as follows (cf. [5])
f g o oo A k
! le[|” Akl
where t, is the unit tangent vector, n, is the quasi normal vector, b, is the quasi
binormal vector and k is the projection vector.

by = —tq Anq

If t and k are parallel, then the g-frame is singular and ¢ A k vanishes. For this
reason we will not study the case ¢ = k . In this paper, for simplicity we choose
the projection vector as k = (0,1, 0).
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The derivative formulas of the quasi frame {t¢,, n, by, k} of a timelike curve are
given by

ty 0 & & tq
ng | =& 0 & ng (2)
A & =& 0 bq
(tg,tq) = —1, (ng,nq) =1, (bg, bg) =1
ng Nty = by, by Ntg = —ng, ng N by = tg4
& = kKcosd, & = —kKsinb, &=14+10.

Here &1, &3, &3 are the g-frame curvatures of a timelike curve along quasi frame and
6 is the pseudo-Euclidean angle between the vectors the principal normal vector n
and the quasi-normal vector n,. The relationship between quasi frame and Frenet
frame is given by

ng = cos On + sin 0b, by = —sinfn + cos 6b.

Let o : I — R} be a spacelike curve with a timelike binormal vector b in R$. The
derivative formulas of the Frenet frame {¢, n, b} along a spacelike curve are given
by

t/ 0 k0 t
n|=|-xk0r7 n |. 3)
v 0 70 b

The derivative formulas of the quasi frame {¢,, n4, by, k} along a spacelike curve
with a projection vector k = (0,1, 0) are given by (cf. [5])

ty 0 & —&\ [
ng | =1 -& 0 —& || ng @)
b, —& =& 0 by
(tg:tg) = 1, (ng,ng) =1, (bg, bg) = —1
ng Ntqg = —by, by Ntg = —ng, ng AN by = —tg4
§&1 = rcoshd, &9 = —ksinh 0, Eg=—17—0

where 6 is defined as the pseudo-angle between the binormal b (timelike) and
quasi-normal b, (timelike) vectors and &1, &2, {3 are the quasi frame curvatures
of a spacelike curve for the quasi frame in the three dimensional Minkowski space.
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3. Fermi-Walker Parallel Transport with Quasi Frame

3.1. The curve « is spacelike

Definition 1. The Fermi-Walker derivative of a vector field of V along a spacelike
curve according to quasi frame {tq, ng, by} is defined as
DIV _av
Dfs  ds

dt,

— Aty) AN V. 5
(G2 A ty) )
Definition 2. Let V' = ity + nang + 1n3by be a vector field according to quasi

frame {t,, ng, by} along a spacelike curve o. If
DIV
Dfs

is satisfied, the vector field V is called the Fermi-Walker parallel according to
quasi frame {tq, ng, by} along a spacelike curve.

=0 (6)

Lemma 3. The Fermi-Walker derivative of a vector field V' = n1t, + nang + 13by
according to quasi frame {t,,nq, by} along a spacelike curve is given by

DIV dv
fs — ds (§ang — §1bg) A V. (7
Proof: Using (5), we obtain (7). |

Theorem 4. The vector field V' = n1tq + nang +n3bg is the Fermi-Walker parallel

along a spacelike curve according to quasi frame if and only if
dm dnp dns
— O — _ = . 8
ds ) ds 773537 ds 77253 ( )

Here 11,2 and n3 are smooth functions with respect to s.

Proof: Using (7) we have

D'V d d d
= ity + (32— m€a)ng + (T2 — méa)by. ©

Dfs  ds ! ds d
If V is the Fermi-Walker parallel along a spacelike curve o according to quasi
frame in R, then
DIV
Dis
Thus (9) and (10) give (8). The other part is trivial. |

= 0. (10)
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Theorem 5. The Fermi-Walker derivative of the vector field V coincides with deriva-
tive of V according to quasi frame along a spacelike curve in R3 if and only if

V = c(&ibg — &ang), ¢ = constant. 11
Proof: ;

D'V dV dVv

_— — — — b = —

DfS dS (§2nq 51 Q) A V dS
if and only if

V = c(&ang — &1by), ¢ = constant.

Theorem 6. If 11,12, 13 are constants and &3 = 0, then the vector field V is the
Fermi-Walker parallel according to quasi frame along a spacelike curve o in RZ{’.

Proof: If 01, 12, n3 are constants and 3 = 0, (9) implies

D'V

D/fs
Thus, V is the Fermi-Walker parallel according to quasi frame. |

3.2. The curve « is timelike

Definition 7. The Fermi-Walker derivative of a vector field U along a timelike
curve according to quasi frame {ty,ng, by} is defined as

DU AU dt,

—— = —+(—At;) ANU. 12

D/fs ds + ds ) (12)
Definition 8. Let U = 1ty + pang + psby be a vector field according to quasi
frame {t;,nq, by} of a timelike curve o If

DU
D/fs
is satisfied, the vector field U is called the Fermi-Walker parallel according to

quasi frame {tq,nq, by} of a timelike curve.

Lemma 9. The Fermi-Walker derivative of a vector field U = 1ty + pong + psbg
according to quasi frame {ty,nq, by} along a timelike curve « is given by
DU AU

Dl E + (flbq - §2nq) AU. (13)
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Proof: Using (12) we obtain (13). |

Theorem 10. The vector field U = ity + pang + p3by is the Fermi-Walker par-
allel along a timelike curve according to quasi frame if and only if

duy dpo dus
15 ) P 13&3, P 1283 (14)

Here i1, po and us are smooth functions with respect to s.

Proof: From (13) we have

DIy dU

DFs = qs T (61bg —&ng) AU (15)
_dm dpg dps
= & tg+( s 1383)nq + ( Is + p2és)by- (16)

If U is the Fermi-Walker parallel along a timelike curve « according to g-frame,
then

DU
=0 17
DT (7)
which implies (14). The rest part is obvious. |

Theorem 11. The Fermi-Walker derivative of the vector field U coincides with
derivative of U according to quasi frame along a timelike curve in R:{’ if and only

if

U = c(&1bg — &2ny), ¢ = constant. (18)
Proof: ;

D/'U  dU dU

.2 _ b — _ Y

D/fs ds  (§ibg = &ong) AU ds
if and only if

U = c(&1bg — &any), ¢ = constant.

Theorem 12. If u1, p2, s are constants and £s = 0, then the vector field U is the
Fermi-Walker parallel according to quasi frame along a timelike curve o in ]R:f.

Proof: If 11, po, p3 are constants and £3 = 0 with the help of (16), we obtain
DIU

Dfs
Thus U is the Fermi-Walker parallel according to quasi frame. |
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Definition 13. The generalized Fermi-Walker derivative of a vector field U ac-
cording to quasi frame along a timelike curve is defined as

DU  DIU

S = pre AU, {AD).t) =0 (19)

where A'is a (1,1)-tensor field and I € x=.

Definition 14. Let U = pit, + pang + psby be a vector field according to quasi

frame of a timelike curve in R3. If
DEU
Z 2 -0
DCs

is satisfied, U is called the generalized Fermi-Walker parallel transport with re-
spect to quasi frame with a timelike curve o in R3.

Theorem 15. The generalized Fermi-Walker derivative of the vector field U ac-
cording to quasi frame along a timelike curve is given by

DU  dm dpa dps
DCs — th + (E — ugfg)nq + (g + ,uzég)bq + AD). (20)
Proof: Using (9) and (19), we obtain (20). |

Theorem 16. The vector field U = i1ty + pong + p3by is the generalized Fermi-
Walker parallel according to quasi frame along a timelike curve « if and only if

d d d
AU) = - (ﬁtq (L2~ sy + (42 + u253>bq) @1

where L1, 42, 13 are smooth functions with respect to s.

Proof: If U is the generalized Fermi-Walker parallel transport with respect to quasi

frame along a timelike curve «, then
DEU
—— =0. 22
DECs @2)

Thus, (20) and (22) imply (21). ]
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4. Modified Fermi-Walker Parallel Transport with Quasi Frame

Definition 17. Let W = \it,+ Xong+ A3by be a vector field. The modified Fermi-
Walker derivative along a timelike curve o with respect to quasi frame is defined
by
DIw dw  dn,
— =——(—A ANW. 23
Dfs ds ( ds ) @3)
Definition 18. Let W = \it, + Aong + A3y be a vector field according to quasi
frame {t;, ng, by} along a timelike curve a. If

DfW_O
Dfs

is satisfied, the vector field W is called the modified Fermi-Walker parallel accord-
ing to quasi frame {t,,ngq, by} along a timelike curve with a projection k.

Lemma 19. The modified Fermi-Walker derivative of a vector field W = Aty +
Xang + Azbg according to quasi frame {t,, ngy, by} along a timelike curve is given

by

DIw  aw

- = w. 24

Dfs ds + (flbq + £3tq) A ( )
Proof: Using (23) we obtain (24). |

Theorem 20. The vector field W = Aty + Xang + A3bg is the modified Fermi-
Walker parallel along a timelike curve according to quasi frame if and only if

dM\; d)s dAs

= =2 = 8 2
P A3, os 0, Is &2 (25)

where A1, Ao and A3 are smooth functions with respect to s.
Proof: Equation (24) implies

f
= xeo)ty + (T2 Natang + (2 + My (26)
If W is the modified Fermi-Walker parallel along a timelike curve o according to
quasi frame, then
DIwW B
Dfs 0
and this implies (25). By this the claim of the Theorem is obvious. ]

27)
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Theorem 21. The modified Fermi-Walker derivative of the vector field W coin-
cides with derivative of W according to quasi frame of a timelike curve in R3 if
and only if

W = o(&1bg + &E3ty), 0 = constant. (28)
Proof: ;
D'w AW dw
Dfs ds Jr(51 q+§3 q) ds
if and only if

W = o(&1bg + E3ty), 0 = constant.
|

Theorem 22. If A1, Ao, A3 are constants and &5 = 0,&3 = 0, then the vector field
W is the modified Fermi-Walker parallel according to quasi frame with a timelike
curve in R3.

Proof: If A1, A2, A3 are constants and £ = €3 = 0 equation (26) implies

DIw

— =0. 29
Dls (29)

Therefore, W is the modified Fermi-Walker parallel according to quasi frame. W

Definition 23. The generalized modified Fermi-Walker derivative of a vector field
W along a timelike curve with respect quasi frame is defined by

DCW DWW

Here Ais a (1,1)- tensor field and I € x*.

Definition 24. Let W be a vector field according to quasi frame in RS. If

DEW

DGs
is satisfied, W is called the generalized modified Fermi-Walker parallel along a
timelike curve with respect to quasi frame.

Theorem 25. The generalized modified Fermi-Walker derivative of a vector field
W = Mty 4+ Xang + A3b, along a timelike curve with respect to q-frame is given
by

DEYW  dA

da dA
Sao = (o A8l + (2 = Naadng + (2 + Aia)by + A(W). (BD)
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Proof: By combining (26) and (30), we obtain (31). |

Theorem 26. The vector field W = Aty +Aang+A3bg is the generalized modified
Fermi-Walker parallel along a timelike curve with respect to q-frame in Ri{’ if and

only if

dA dA dA
AW) = - ((d; + Aaaltg + (57— Msba)ng + (0 + A@)bq) €2

Proof: If W is the generalized modified Fermi-Walker parallel along a timelike
curve with respect to ¢g-frame in R3, then

DEW _ 0
DGs
From this, we obtain (32). |

5. Concluding Remarks

In the present work we have focused our attention on

e The study of the Fermi-Walker parallel transport along a spacelike and time-
like curve with respect to quasi frames in the three dimensional Minkowskian
space.

e The investigation of the properties the modified and generalized Fermi-Walker
parallel vector fields.
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