
JGSP 20 (2010) 97–106

MONODROMY AND THE BOHR–SOMMERFELD GEOMETRIC
QUANTIZATION

NICOLA SANSONETTO

Communicated by Jan J. Sławianowski

Abstract. We study the linear part of the monodromy of completely integrable

Hamiltonian systems via Bohr–Sommerfeld Geometric Quantization. We relate

monodromy to the ambiguity in the choice of the pre–quantum connection and to

the action of the (connected component of the) gauge group.

1. Introduction

In the framework of Bohr–Sommerfeld geometric quantization, we study (quan-

tum) monodromy from different viewpoints. Monodromy, together with the so–

called Chern–Duistermaat class and the Lagrangian class, provides an obstruction

to the global definition of action–angle variables for completely integrable Hamil-

tonian systems [7, 9]. Our specific contributions relate monodromy to the freedom

of choice of a pre–quantum connection and to G0–equivalence of connections (G0

is the connected component of the identity of the gauge group G of a pre–quantum

line bundle).

The present work is organized as follows. In Section 2 we first review Liouville–

Arnold theorem and the obstructions to existence of global action–angles coordi-

nates and then we quickly review the geometric quantization method. In Section 3

we state and prove the main results of the paper. A short section with conclusions

and perspectives follows.

2. Liouville–Arnold Theorem and Geometric Quantization

In this section we review some basic facts about completely integrable Hamiltonian

systems and geometric quantization. We will also introduce the notation that will

be used throughout the paper.
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2.1. Completely Integrable Hamiltonian Systems

Let (M, ω) be a 2n–dimensional symplectic manifold, and fix h : M −→ R,

a smooth function on M (the Hamiltonian), with its associated vector field Xh,

fulfilling iXh
ω = −dh. The triple (M, ω, h) is called a Hamiltonian system on

M , and it is said to be completely integrable in a subset M̃ of M if it admits n
mutually Poisson–commuting first integrals, which are functionally independent

almost everywhere in M , and, restricting the latter, if necessary, the joint level

sets of the first integrals are compact and connected. The Liouville–Arnold The-

orem (see e.g. [1, 7]) gives sufficient conditions for the complete integrability of a

Hamiltonian system.

Theorem 1 (Liouville–Arnold). Let (M, ω) be a 2n–dimensional symplectic man-
ifold. Let f = (f1, . . . , fn) : M −→ R

n

• be a surjective submersion (i.e., the energy–momentum mapping)

• have compact and connected fibers f−1(x)

• its components pairwise Poisson–commute, i.e., {fi, fj} = 0 for every i, j =
1, . . . , n.

Let A be the set of regular values of f . Then for each x ∈ A

1. the fibers f−1(x) of f are diffeomorphic to T
n

2. there exists an open neighborhood Ux of x in A and a diffeomorphism
(a, α) : f−1(Ux) −→ V × T

n with V an open subset of R
n such that

a = (a1, · · · , an) = κ ◦ f for some diffeomorphism κ : f(Ux) −→ V

3. the coordinates (a, α) on M are Darboux coordinates, the so–called action–
angles coordinates, that is ω = da ∧ dα.

From the geometric point of view the Liouville–Arnold Theorem ensures that M
has a T

n-bundle structure with Lagrangian fibers and moreover, f−1(A) is a lo-

cal toric principal bundle with structure group T
n with Lagrangian fibers, whose

structure group T
n acts in a Hamiltonian way, with momentum map given by the

projection bundle map. Besides the action–angles coordinates are bundle coordi-

nates. We want to stress that the construction of the toric principal bundle or, equiv-

alently, the existence of global action–angle coordinates is only local. Liouville–

Arnold Theorem also implies that the base manifold A of the T
n–bundle is an inte-

gral affine manifold. Since also the fibers of the bundle carry an affine structure, the
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transition functions between two intersecting domain of action–angle coordinates

(a, α) and (a′, α′) are

a
′ = Z−T

a + z, α
′ = Z α + F(a) mod 2π (1)

where Z ∈ SLn(Z), z ∈ R
n and F : a(π−1(V ) ∩ π−1(V ′)) −→ R

n such

that ∂ai
(ZF)j = ∂aj

(ZF)i with i, j = 1, . . . , n. From (1) clearly follows the

non–uniqueness of the action–angle coordinates which is due to the three arbitrary

choices that must be made in the proof of Liouville–Arnold Theorem - first, the

choice of a basis of the period lattice, second a choice of a local Lagrangian section

(that is an origin to count the angles) and finally a constant of the integration in the

derivation of the actions. This freedom affects the globalization of the construction

of Liouville–Arnold Theorem. A first answer was given in terms of cocycles by

Nekhoroshev [9] in 1976 and exhaustively and independently by Duistermaat [7]

in 1980, in terms of the sheaf theory.

Theorem 2 ([7]). With the notation of the previous theorem, the torus bundle π :
f−1(A) −→ R

n is topologically trivial if and only if the monodromy and the
Chern–Duistermaat class of the T

n–bundle are trivial. Moreover if the symplectic
form is exact then the existence of global action–angle coordinates is equivalent to
the triviality of the Lagrangian toric fibration.

Remarks 3. • The Chern–Duistermaat class is the Chern class of the bundle
and it describes the obstruction to the existence of a global section of the
bundle (we referee to [2, 12] for a detailed discussion on the Chern class
in the case of completely integrable Hamiltonian systems). In local terms it
means that even if the action variables are globally defined, the function F
in (1) is not.

• In the case of a system with two degrees of freedom possessing an isolated
critical value (of focus–focus type) of the energy–momentum map f , the
Chern–Duistermaat class is trivial since the base manifold A admits a Leray
cover with empty triple intersections. Therefore the only obstruction to the
triviality of the fibration is the monodromy.

The coarsest and most known obstruction to the global existence of the action–

angles coordinates is the monodromy (actually its linear part), which is the one we

are interested in this paper. From the geometric point of view the monodromy is

the obstruction to the global “principality” of the toric bundle. Equivalently, taken

a point x in A and a basis for the first homology group of the fiber π−1(x) over

x, if we carry it over loops in A, when we arrive again back at x, we have a map
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that describes the change of the basis of the first homology of the fibers and it

depends only on the homotopy type of A. Therefore the monodromy is given by

the representation (Duistermaat’s idea)

M : π1(A) −→ Aut(H1(Tn, Z)) ∼= SLn(Z). (2)

From a local point of view, (Nekhoroshev’s idea) the monodromy is the obstruction

to patch together charts on the base manifold A around the singularities. Indeed

the product of r > 1 matrices in SLn(Z) need not to be the identity. Another

characterization of monodromy has been suggested by Weinstein [7], but see [2]

for a detailed discussion in terms of the holonomy of a suitable flat connection.

Since every Lagrangian fibration admits an affine, flat and torsion free connection

induced by the standard connection of R
n (see [13]), it turns out that the holonomy

of this connection is the monodromy of the bundle. Let us discuss more in de-

tail this aspect since it will be crucial for the sequel. It will be convenient for

us to study Hamiltonian monodromy from a differential geometric point of view

(see [5, 7, 13]). Indeed, it is well–known (see [13]) that a Lagrangian fibration ad-

mits an affine, flat, torsion free connection ∇Ehr : TM −→ V M (the vertical bun-

dle over M ) on the Lagrangian leaves, which is an Ehresmann good connection for

the fibration (i.e., that is every smooth curve on the base has a horizontal lift). The

GL(n, Z)–holonomy representation hol(∇Ehr) of ∇Ehr is the monodromy repre-

sentation M(π1(A)) of the T
n–bundle over A. Moreover the monodromy rep-

resentation actually takes values in SL(n, Z) upon choosing suitable bases of the

tangent spaces of the base space.

Remarks 4. • In [8] (and independently in [15]) is given a sufficient condition
for the non–triviality of monodromy near isolated focus–focus singularities:

more precisely, the (local) monodromy near a topologically stable focus–
focus point (in the interior of the energy–momentum range) is non–trivial.

• There are various examples of completely integrable Hamiltonian systems
that present monodromy: the spherical pendulum [5,7], the champagne bot-
tle [2], the Lagrange top (see [5] and reference therein).

• Upon quantization of a completely integrable Hamiltonian system, one has a
natural notion of quantum monodromy μq which is equal to (μc)

−T , where
μc denotes the classical monodromy. (See [10] for a rigorous introduction
to quantum monodromy).
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2.2. Geometric Quantization

Let us now briefly review the basics of geometric quantization. For a complete

account we refer to [3, 14]. Recall that if (M, ω) is a real symplectic manifold

of even dimension such that
[

1
2π

ω
]
∈ H2(M, Z), then the Weil–Kostant Theorem

states that there exists a complex line bundle (L,∇, h) over M equipped with a

hermitian metric h and a compatible connection ∇ with curvature F∇ = ω. Hence

[ω] = c1(L), the first Chern class of L → M . The connection ∇ is called a

pre–quantum connection and L → M the pre–quantum line bundle. The differ-

ent choices of L → M and ∇ are parametrized by the first cohomology group

H1(M, S1) (see e.g. [14]). In more detail given any complex line bundle L → M ,

the connections thereon are classified, up to gauge equivalence, by their curvature
(fixing the topological type of the line bundle, via the first Chern class) and by

their holonomy, specified, in turn, on a basis of (real) homology one–cycles [γi],
for H1(M, R), of dimension b1, the first Betti number of M - represented, for in-

stance, by smooth curves passing through a given point. The holonomy is trivial

if M is simply connected. The gauge group G consists, in this case, of all smooth

maps g : M → S
1 - explicitly, g : x �→ ei ϕ(x), obvious notation - and it is not

connected in general, its connected components being parametrized by the degree

of the maps g : M → S
1. The connected component (of the identity) of G will be

denoted by G0, as usual, and will play an important role in what follows.

Given a connection ∇0, any other connection is of the form ∇ = ∇0 + a, with

a ∈ Λ1(M), (i.e., they build up an affine space modelled on the space of one–forms

Λ1(M)) and the relation between their respective curvatures is F∇ = F∇0
+ dη

Therefore, the curvatures are the same if and only if η is closed. This being the

case, a determines a de Rham cohomology class [a] ∈ H1(M, R), fully recovered

via the period map

H1(M, R) � [a] �→
(∫

γ1

a , . . . ,

∫
γb1

a

)
∈ R

n. (3)

The gauge group G acts on connections via ∇ �→ ∇+g ·dg−1 = ∇− i dϕ. There-

fore, the set of all gauge inequivalent connections (possessing the same curvature)

is clearly given by H1(M, R)/H1(M, Z) and, if M is a torus, then the above set is

again a torus, the Jacobian of M . If the initial connection has zero curvature, then

the above space parametrises flat connections up to gauge equivalence.

Coming back to the specific geometric quantization setting, given a Lagrangian

submanifold Λ of the symplectic manifold M , the symplectic two–form ω van-

ishes upon restriction to Λ by definition, and any (semi–local) symplectic potential
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θ becomes a closed form thereon, defining a (semi–local) connection form per-

taining to the restriction of the pre–quantum connection ∇, denoted by the same

symbol. The latter is a flat connection and a global covariantly constant section

of the restriction of the pre–quantum line bundle exists if and only if it has trivial

holonomy, that is the Bohr–Sommerfeld condition is fulfilled[
1

2π
θ

]
∈ H1(M, Z) i.e.,

∫
γ

θ ∈ 2πZ

for any closed loop γ in Λ.

A covariantly constant section (which we call WKB–, or BS–wave function) takes

the form

s(m) := holγ(∇) · s(m0) = ei
γ

θ s(m0) (4)

with γ denoting any path connecting a chosen point m0 in Λ with a generic point

m ∈ Λ, holγ(∇) being the holonomy along γ of the restriction to Λ of the pre–

quantum connection ∇. The r.h.s. of (4) tacitly assumes the choice of a trivializa-

tion of L |Λ−→ Λ around m0 and m in a corresponding local chart.

Remarks 5. 1. We stress the fact that the Bohr–Sommerfeld condition forces
us to deal with G0-equivalence classes (i.e., the degree of the gauge maps
must be zero) in order to avoid trivialities.

2. Our definition of WKB–wave function is slightly different from the conven-
tional one (see e.g. [14]). Indeed we do not require square–integrability and
we do not twist the prequantization bundle with Δ∇ (whose smooth sec-
tions consist of the complex n–forms on Λ), thus neglecting the “amplitude–
squared”.

3. There is a version of the Bohr–Sommerfeld condition incorporating the Maslov
class, but we shall not need this refinement in what follows.

We also recall that the pre–quantum connection ∇ allows the construction of the

(Hermitian) pre–quantum observables Q(·) via the formula

Q(f) = −i∇Xf
+ f = −i (Xf − iXf

θ) + f

with f a smooth function on M . The connection is determined up to a closed

one–form, yielding a corresponding ambiguity in the definition of the quantum

observable Q(f) attached to f . This fact will be exploited in the sequel.



Monodromy and the Bohr–Sommerfeld Geometric Quantization 103

3. Monodromy via Bohr–Sommerfeld Geometric Quantization

In this section we will detect (quantum) monodromy via Bohr–Sommerfeld geo-

metric quantization and analyse how the monodromy itself affects geometric quan-

tization as well in different ways.

Let us consider the geometric quantization of a completely integrable Hamiltonian

system on a symplectic manifold of dimension 2n with vanishing Chern class and

with vanishing affine monodromy, i.e. the vector z and the function F in (1) must

vanish. (This two assumptions are not necessary for the result of our work but will

simplify the exposition and improve the clarity of the results).

3.1. The Pre–quantum Connection

In this section we show that monodromy can be detected exploiting the freedom in

the choice of the pre–quantum connection.

Let us perform geometric quantization in a neighborhood U of a Lagrangian torus

T
n. Let L denote the pre–quantum line bundle and ∇ the pre–quantum connection.

Moreover let θ be the (local) connection form.

Theorem 6 ([11]).

A. The monodromy is the holonomy of the so–called BS–adapted connection
induced by the Liouville one–form.

B. The monodromy is the holonomy of the so–called monodromy connection
induced by the vertical one–form, which in coordinates reads θ ′ = −αda.

Proof:

A. Consider the standard connection ∇ given by the Liouville one–form θ =
adα. Since this connection is vertical we call it a BS–adapted connection.

It fulfills ∇Xb
= Xb with Xa any vector field tangent to a Lagrangian sec-

tion. Moreover it is obviously flat along the fibers, since the restriction of the

symplectic form on the fibers vanishes, being the fibers Lagrangian subman-

ifolds. Given a BS–adapted connection, the action variables may be recover

as follow ak = 1
2πi

log hol(∇|Tn , γk) where γk’s yield a basis of one–cycles

in T
n, thus making clear local definition of the actions. Hence, monodromy

may be view as the obstruction to patch together geometric quantization bun-

dles equipped with a local BS–adapted connection. Note, however, that there

is non global obstruction to prequantization by the Weil–Kostant Theorem.
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B. Consider now the connection ∇′ defined by the form θ′ = −αda. We call

this connection a monodromy connection, since parallel transport along a

non trivial loop contained in a local Lagrangian section α = c, whereupon

it is flat, produces a holonomy hol(∇′) = e−iΔa due to the possible non–

globality of the action variables.

�

3.2. The Gauge Approach

In this section show how to detect monodromy using a gauge–equivalence theoretic

interpretation of the pre–quantum connections.

Theorem 7 ([11]).

1. The monodromy representation (2) can be viewed as a map M̃ : π1(A) −→
G/G0

∼= SLn(Z), which acts transitively on BS, as expression (5) below
shows, and can be read both on wave functions and observables.

2. Take a BS–adapted connection and perform a change of coordinates ac-
cording with (1), then, remaining in the same Hilbert space, monodromy
eventually induces a change in the quantum action operator.

Proof:

1. Upon enforcing Bohr–Sommerfeld condition take the integral de Rham class

of ∇ := ∇|Tn . i.e., [θ] via the period map (3), and denote by BS the set of

all classes [θ∇].Then

BS ∼= H1(Tn, Z) = G · [∇0] (5)

with ∇0 a fixed flat connection. Thus BS is a G–homogeneous space iso-

morphic to Z
n, whereupon the connected component G0 of the gauge group

G acts trivially. Hence G/G0
∼= SLn(Z) acts freely on BS and provides a

natural (quantum) monodromy representation: M̃ : π1(A) −→ G/G0
∼=

SLn(Zn).

2. Let us perform a Darboux change of coordinates on a fixed BS–torus ac-

cording to (1). Then extend the change of coordinates to a canonical trans-

formation in a neighborhood of the fixed torus: a
′ = Z−T

a and α
′ = Zα

with Z ∈ SLn(Z). Then the Hamiltonian vector fields Xak
= ∂αk

for
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k = 1, . . . , n of the action variables change consistently ∂αk
= Z−T ∂αk

.

The quantum operator associated with the action ak is âk = iXak
= −i∂ak

,

as can be easily checked âk = −i(Xak
− iXak

θ) + ak = −iXak
, since

i∂ak

∑n
j=1 aj dαj = ak. Therefore after the change of coordinates the quan-

tum operator takes the form a
′ = −iZ−T ∂α. Then, using Nekhoroshev’s

idea, if we glue together r > 1 charts surrounding an isolated singularity of

focus–focus type we obtain a non–trivial product Z = Πr
ν=1Zν of matrices

in SLn(Z). This is equivalent to say that monodromy manifests itself via a

non–trivial SLn(Z)–representation [γ] �−→ Z = Z([γ]) of the fundamental

group π1(A) of the base manifold A.

�

Remark 8. We stress the fact that in spectroscopy, monodromy manifests itself
precisely through a shift of the energy levels, see e.g. [4] and references therein.

4. Conclusions and Perspectives

We have reviewed some general methods to compute the (quantum) monodromy of

completely integrable Hamiltonian systems using the geometric quantization pro-

cedure. In particular, recovering Weinstein idea, we have detected the monodromy

via a choice of the pre–quantum connection and using Nekhoroshev original idea

performing a parallel transport along a nontrivial loop around a singularity.

As future work it would be of interest to try to extend our results to fractional mon-

odromy and to study all Duistermaat singularities in the framework of geometric

quantization.
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