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THE PICARD GROUPS OF THE STACKS Y,(2) AND Y,(3)
ANDREW NILES

Abstract: We compute the Picard group of the stack of elliptic curves equipped with a cyclic
subgroup of order two, and of the stack of elliptic curves equipped with a cyclic subgroup of order
three, over any base scheme on which 6 is invertible. This generalizes a result of Fulton-Olsson,
who computed the Picard group of the stack of elliptic curves (with no level structure) over
a wide variety of base schemes.
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1. Introduction

Modular curves and their stack-theoretic counterparts appear widely in modern
number theory and arithmetic geometry, yet many basic questions about these
stacks remain unaddressed or only recently addressed in the literature. For ex-
ample, the complete moduli stacks X(N), Xo(N) and X1 (N) of generalized ellip-
tic curves equipped with Drinfeld level structure were not shown to be algebraic
stacks over Spec(Z) until this was proved in the paper [Con], though partial (in
fact, nearly complete) results in this direction were given in [DR] and [KM].

Another property of these stacks that has not been fully considered is their
Picard groups. For example, consider the stack M, ;. Its Picard group, over an
algebraically closed field of characteristic # 2,3, was computed by Mumford in
[Mum]|. However, its Picard group over more general base schemes does not seem
to appear in the literature until the relatively recent paper [FO].

In this note we consider the analogous question for the stack Yo (V) classifying
elliptic curves equipped with a cyclic order-N subgroup, for N = 2 and N = 3
(note that Yo(2) equals the stack Y1(2) classifying elliptic curves equipped with
a point of exact order 2). These stacks share some key characteristics with M ;:
over Z[1/6], their generic points have stabilizer group ps, some of their points have
larger automorphism groups p4 or ug, and their coarse spaces are genus-0 modular
curves.
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As with all modular curves, the Picard group of the coarse space Yy(N) is
well-understood, but that of the stack has not been previously addressed in the
manner that the Picard group of Mj 1 is studied in [FOJ. Specifically, the main
result of [FO] is the construction of a canonical isomorphism

7/(12) x Pic(My 1 5) — Pic(M11.5),

where S is any scheme satisfying either (1) 2 is invertible on S or (2) S is reduced,
and where M; 1 g = AL is the coarse moduli space of M; 1,s. We prove similar
results for Yo(2)s and Yo(3)s, though necessarily over a more restrictive class of
base scheme:

Theorem 1.1. Let S be a scheme on which 6 is invertible, and let Yo(2)s (resp.
Yo(3)s) be the Deligne-Mumford stack over S whose objects over an S-scheme T
are pairs (E,G), where E/T is an elliptic curve and G C E(T) is a cyclic subgroup
of order 2 (resp. order 3). Let Yy(2)s (resp. Yo(3)s) be the coarse moduli space of
Yo(2)s (resp. Yo(3)s). Then there are canonical isomorphisms:

Z/(4) x Pic(Yy(2)s) — Pic(Yo(2)s)
7/(6) x Pic(Yy(3)s) — Pic(Yo(3)s)

Conventions. Over a scheme S, Yo(INV)g is the category fibered in groupoids over
S, whose objects over an S-scheme T are pairs (E,G), where E/T is an elliptic
curve and G is a [[g(IV)]-structure on E. To work in arbitrary characteristics G
must be taken to be a Drinfeld structure (see [KM] or [Con]); however, our results
are specific to N = 2,3 and only hold over schemes on which 6 is invertible, so G
may simply be viewed as a cyclic, order-N subgroup of E(T'). Over any scheme S
on which N is invertible, Yo(NN)g is a Deligne-Mumford stack (see [DR, §4.2]).

Acknowledgments. We thank Martin Olsson, Lennart Meier, and the referee for
their helpful comments and suggestions.

2. Picard group of Yo(2)
Let S be a scheme on which 6 is invertible, and consider the stack Yo(2)s. Let
f1(€,G) = Y90(2)s
be the universal elliptic curve with [['g(2)]-structure, and let
A= FQ% 0205

be the Hodge bundle on Yy(2)s.
An object of Yo(2)s over an affine S-scheme T' = Spec(R) consists of a pair
(E,G), where E/T is an elliptic curve and G C E(T) is a [['g(2)]-structure on E,
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i.e. a cyclic subgroup of E(T') of order 2, say G = (P) where P € E(T) has exact
order 2. Write
t:T = Yo(2)s

for the morphism corresponding to (E, G).
Suppose the elliptic curve E is given by an equation

y? = 42® — gox — gs,

where g2, g3 € R. (Since 6 is invertible, any elliptic curve may be given by such
an equation locally on the base; see [Del, 2.5].) Any change of coordinates may
be given by = — u?z, y — uy for some unit v € R*. We have the invariant

differential w = df (a section of t*A), and under such a change of coordinates

w +— u~lw. Finally, we have the discriminant A = g3 — 27¢2, and under such a

change of coordinates A — u!2A.
Since P € E(T) has exact order 2, in coordinates it is of the form P = (z,0),
where zg € R is a root of the equation 43 — gox — g3 = 0.

Lemma 2.1. Let (E,G) € Y9(2)s as above, where G = (P) and P is given in
coordinates by (x0,0). Then the discriminant A = g3 — 27g2 factors as

A = (g2 — 3x7) (92 — 1225)*.

Proof. This is elementary and well-known (see [Beh, 1.3.1] or [HBJ, Appendix I,
Remark 3.7]), since g3 = 422 — gazo. We have:

A = g5 —27g3
= g5 — 27(4af — gawo)”
— g3 — 27g2a2 + 216goa:t — 43225
= (g2 — 322)(go — 1222)2. n
In particular, D := g, — 322 is a unit in R, since it is a factor of the unit A.

Note that under a coordinate transformation z — u?z, y — u3y we also have
zo — u?zg and go u4g2, so D — u*D.

Corollary 2.2. Dw®* is independent of the choice of coordinates.

Since Dw®* is independent of the choice of coordinates, and since D is a unit in
the base, this means that for every morphism ¢ : T' = Spec(R) — Yo(2)s defining a
pair (E,G), where the elliptic curve E is given by an equation y? = 423 — gox — g3
and where G = ((0,0)), we have a canonical trivialization of t*A\®* defined by
Dw®?*, independent of the choice of coordinates. Therefore we have shown:

Corollary 2.3. Dw®* defines a trivialization of the line bundle A** on Yo(2)s.

We are now ready to prove the main result of this section. Let S be a scheme
on which 6 is invertible, and consider the stack Yo(2)s. Let p : Yo(2)s — Yo(2)s
be the coarse space morphism.
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Theorem 2.4. Under the above assumptions, the homomorphism
Z/(4) x Pic(Yp(2)s) — Pic(Yo(2)s)
(n, [£]) = " @ pL]
is an isomorphism.

Note that the reason the group homomorphism in the theorem is well-defined
is the canonical trivialization of A®* constructed in Corollary 2.3.

Proof. Let k£ be an algebraically closed field of characteristic # 2,3, and let
E/E be an elliptic curve equipped with a [['g(2)]-structure G. Then Aut(F,G) =
Aut(F) = po unless F has j-invariant 0 or 1728.

If j(E) = 0, then E is isomorphic to the elliptic curve y? = 2341 and Aut(E) =
pe. If G = ((x0,0)) and € g is a generator, then E[2] = {o0, (29,0), (n%x0,0),
(n*20,0)}, and under the action of ug we have n*(z,y) = (n%x, n%y), so n* (g, 0) =
(7%20,0). In particular, the [[g(2)]-structure G is only preserved by pa C jig, SO
M(Ev G) = W2

If j(E) = 1728, then E is isomorphic to the elliptic curve y? = 23 — z and
Aut(E) = pg. We have E[2] = {0, (0,0), (—1,0),(1,0)}. If i € py is a generator,
then i % (x,y) = (—=z,iy), so i * (0,0) = (0,0) but ¢ x (—1,0) = (1,0). So the
[Co(2)]-structure G = ((0, 0)) is fixed by all of p4, hence Aut(E, G) = py; but the
other two [['g(2)]-structures G; = {(—1,0)) and Gy = ((1,0)) are only preserved
by p2 C pa.

We conclude that the coarse space morphism p : Yo(2)s — Y5(2)s is a pa-gerbe
over

Yo0(2)s \ p(E, G),
where FE is the elliptic curve 4?2 = 23 — x and G = ((0,0)).

Let §: S — Y9(2)s be the morphism corresponding to (E,G), where E is the
elliptic curve y? = 23—z and G is the [['(2)]-structure {(0,0)). Since Aut(FE, G) =
4, this defines a closed immersion s : Buss < Yo(2)s. For any line bundle £
on Yo(2)s, s*L is a line bundle on By g, corresponding to a line bundle L on S
equipped with an action of 4. This means we have a map p : pug — Aut(L) = Gy,
which corresponds to a character x(£) € Z/(4).

This defines a homomorphism

Pic(Yo(2)s) — Z/(4)
[£] = x(L).

Let K denote the kernel.

The pullback p* : Pic(Yp(2)s) — Pic(Yo(2)s) is injective and lands in K. We
claim that

p* : Pic(Yp(2)s) = K

is in fact an isomorphism. By [FO, 2.3], it therefore suffices to show that for every
geometric point T — Yo(2)s and every [L£] € K, the action of the stabilizer group
of T on L(7) is trivial; for then p, L is an invertible sheaf on Yy(2)g and p*p. L — L
is an isomorphism.
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Indeed, if [£] € K then the action p defined above is trivial. By
[FO, proof of 2.2|, p|., equals the action of p5 on the fiber of £ at the generic
point of Yo(2), hence the action of uy on the fiber of £ at the generic point is
trivial. Therefore the action is trivial at every point since Yo(2)s is a ps-gerbe
over Yy(2)s \ p(E,G), for E the elliptic curve y> = 23 — 2 and G = {(0,0)) as
discussed above.

Therefore p* : Pic(Yp(2)s) — K is an isomorphism. Furthermore, the map

Pic(Y0(2)s) = Z/(4)

is surjective, by the same argument as [FO, 2.5]. Indeed, the image of X in Z/(4)
is a generator, because the action of any { € u4 on the invariant differential w of
the elliptic curve y? = 23 — z is given by multiplication by (.

Therefore we have a short exact sequence

0 — Pic(Yy(2)s) % Pic(Yo(2)s) — Z/(4) — 0.
The homomorphism

Z)(4) = Pic(Yo(2)s)
n = [A®"]

(well-defined due to the canonical trivialization of A®4 provided by Corollary 2.3)
provides a canonical splitting. ||

3. Picard group of Yo (3)
Let S be a scheme on which 6 is invertible, and consider the stack Yo(3)s. Let
f:(&,G) = Y(3)s
be the universal elliptic curve with [I'g(3)]-structure, and let
A= fu a0

be the Hodge bundle on Yo(3)s.

An object of Yo(3)s over an affine S-scheme T' = Spec(R) consists of a pair
(E,G), where E/T is an elliptic curve and G C E(T) is a [['g(3)]-structure on E,
i.e. a cyclic subgroup of E(T') of order 3. Write

t: T — 150(3)5

for the morphism corresponding to (F, G).
Suppose the elliptic curve E is given by an equation

y? = 42® — gow — gs,
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where go, g3 € R. (As before, since 6 is invertible, any elliptic curve may be given
by such an equation locally on the base.) As before, any change of coordinates may
be given by z > u?x, y — u3y for some unit © € RX. We again have the invariant
differential w = df (a section of t*A), and under such a change of coordinates
wr utw,

The group law on E tells us that G = {oo, (zg, £yo)} for some zg,y9 € R.
Furthermore, yy must be a unit in R; otherwise, modulo some prime ideal of R
we would have G = {00, (20, 0)}, which is impossible since G must remain a cyclic
order-3 subgroup modulo any such reduction.

In particular, the unit (y9)? = (—y0)? € R is canonically determined (in our
coordinates) by the choice of [['g(3)]-structure G on E. Under a change of coor-
dinates given by z — u?z and y — u3y, we have (y9)? — u%(yo)2. In particular,
(y0)?>w®% is independent of the choice of coordinates, so it provides a canonical
trivialization of t*A®5. We have proven:

Corollary 3.1. (y0)?w®% defines a canonical trivialization of the line bundle A\®°
on Yo(3)s.

We are now ready to prove the main result of this section. Let S be a scheme
on which 6 is invertible, and consider the stack Yo(3)s. Let p: Yo(3)s — Yo(3)s
be the coarse space morphism.

Theorem 3.2. Under the above assumptions, the homomorphism

Z/(6) x Pic(Yp(3)s) — Pic(Yo(3)s)
(n, [£]) = A" @ p*L]

is an tsomorphism.

Proof. Let k be an algebraically closed field of characteristic # 2,3, and let
E/k be an elliptic curve equipped with a [I'g(3)]-structure G. Then Aut(E, G) =
Aut(E) = po unless E has j-invariant 0 or 1728.

If j(E) = 0, then E is isomorphic to the elliptic curve y? = x3+1 and Aut(F) =
6. One may compute:

E[3] = {00, (0, +1), (V—=4,+v/=3), ((V=4,£V=3), ((*V—4,£V-3)},

where ¢ € pS. n € ug acts on E by n- (z,y) = (n°z,n3y), so we see that the ug
action preserves the [I'g(3)]-structure G = {oo, (0, £1)}, but every other [I'g(3)]-
structure on E is only preserved by ps C pg.

If j(E) = 1728, then E is isomorphic to the elliptic curve y?> = z3 — x and
Aut(F) = p4. One may compute that the z-coordinate of any point of exact order

3 on FE is of the form
xO:j:\/li?.

3
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For any fixed xq of this form, the action of a generator ¢ € uy is given by i-(zo, yo) =
(—x0,%yo). In particular, none of the four [T'g(3)]-structures on F are preserved
by all of pg.

We conclude that the coarse space morphism p : Yo(3)s — Y5(3)s is a ua-gerbe
over

Yo(3)s \ p(E, G),

where E is the elliptic curve y? = 23 + 1 and G = {0, (0,£1)}. For this pair
(E,G) we have Awt(E, G) = .

Let § : S — Y9(3)s be the morphism corresponding to (E,G), where E is
the elliptic curve y? = 23 + 1 and G is the [[o(3)]-structure {oo, (0,£1)}. Since
Aut(E,G) = ug, this defines a closed immersion s : Bug,s < Yo(3)s. For any
line bundle £ on Yo(3)s, s*L is a line bundle on Bug g, corresponding to a line
bundle L on S equipped with an action of p. This means we have a map p : yug —
Aut(L) = G,,,, which corresponds to a character x(£) € Z/(6).

This defines a homomorphism

Pic(Y9(3)s) — Z/(6)
[£] = x(L).

Let K denote the kernel.
The pullback p* : Pic(Y5(3)s) — Pic(Yo(3)s) is injective and lands in K. We
claim that
p* : Pic(Yp(3)s) = K

is in fact an isomorphism. By [FO, 2.3|, it therefore suffices to show that for every
geometric point T — Yo(3)s and every [L£] € K, the action of the stabilizer group
of T on L(Z) is trivial; for then p, L is an invertible sheaf on Yy(3)g and p*p. L — L
is an isomorphism.

Indeed, if [£] € K then the action p defined above is trivial. By
[FO, proof of 2.2], p|,, equals the action of py on the fiber of £ at the generic
point of Yo(3), hence the action of uy on the fiber of £ at the generic point is
trivial. Therefore the action is trivial at every point since Yo(3)s is a po-gerbe
over Yy(3)s \ p(E, GQ), for E the elliptic curve y? = 2% + 1 and G = {0, (0, £1)}
as discussed above.

Therefore p* : Pic(Yp(3)s) — K is an isomorphism. Furthermore, the map

Pic(Yo(3)s) — Z/(6)

is surjective. Indeed, the action of 17 € ug on the elliptic curve y? = 23 +1 is given

by - (z,y) = (n?x,m%y), so its action on the invariant differential w = df is equal
to multiplication by 7~!. So the image of A in Z/(6) is a generator.
Therefore we have a short exact sequence

0 = Pic(Yo(3)s) % Pic(Yo(3)s) — Z/(6) — 0.
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The homomorphism

7./(6) — Pic(Yo(3)s)
n — [A®"]

(well-defined due to the canonical trivialization of A®6 provided by Corollary 3.1)

provides a canonical splitting. |
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