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MILNOR K-GROUPS ATTACHED TO ELLIPTIC CURVES OVER
A p-ADIC FIELD

Toshiro Hiranouchi

Abstract: We study the Galois symbol map of the Milnor K-group attached to elliptic curves
over a p-adic field. As by-products, we determine the structure of the Chow group for the product
of elliptic curves over a p-adic field under some assumptions.
Keywords: Elliptic curves, Chow groups, Local fields.

1. Introduction

K. Kato and M. Somekawa introduced in [13] the Milnor type K-group
K(k;G1, . . . , Gq) attached to semi-abelian varieties G1, . . . , Gq over a field k which
is now called the Somekawa K-group. The group is defined by the quotient

K(k;G1, . . . , Gq) :=

 ⊕
k′/k: finite

G1(k′)⊗Z · · · ⊗Z Gq(k
′)

 /R (1)

where k′ runs through all finite extensions over k and R is the subgroup which
produces “the projection formula” and “the Weil reciprocity law” as in the Milnor
K-theory. As a special case, for the multiplicative groups G1 = · · · = Gq = Gm,

the groupK(k;

q︷ ︸︸ ︷
Gm, . . . ,Gm) is isomorphic to the ordinary MilnorK-groupKM

q (k)
of the field k ([13], Thm. 1.4). For general semi-abelian varieities G1, . . . , Gq, let
Gi[m] be the Galois module defined by the kernel of Gi(k)

m→ Gi(k) the multipli-
cation by a positive integer m prime to the characteristic of k. Somekawa defined
also the Galois symbol map

h : K(k;G1, . . . , Gq)/m→ Hq(k,G1[m]⊗ · · · ⊗Gq[m])

by the similar way as in the classical Galois symbol map KM
q (k)/m→ Hq(k, µ⊗qm )

on the Milnor K-group, where µm = Gm[m] is the Galois module of all m-th
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roots of unity. He also presented a “conjecture” in which the map h is injective
for arbitrary field k. For the case G1 = · · · = Gq = Gm, the conjecture holds
by the Milnor-Bloch-Kato conjecture, now is a theorem of Voevodsky, Rost, and
Weibel ([17]). Although it holds in some special cases ([18], [19], and [9]), Spieß
and Yamazaki disproved this for some tori ([14], Prop. 7).

The aim of this note is to show this “conjecture” for elliptic curves over a local
field under some assumptions.

Theorem 1.1 (Thm. 4.1, Prop. 4.2). Let k be a finite field extension of the
p-adic field Qp and n a positive integer.

(i) Let q be an integer > 3 and E1, . . . , Eq be elliptic curves over k with Ei[p] ⊂
Ei(k) for i = 1, . . . , q. Assume that E1 has good ordinary reduction or split
multiplicative reduction, and Ei has good reduction or split multiplicative
reduction for i = 2, . . . , q. Then, we have

K(k;E1 . . . , Eq)/p
n = 0.

(ii) Let E1, E2 be elliptic curves over k with Ei[pn] ⊂ Ei(k) for i = 1, 2. As-
sume that E1 has good ordinary reduction or split multiplicative reduction,
and E2 has good reduction or split multiplicative reduction. Then, the
Galois symbol map

h : K(k;E1, E2)/pn → H2(k,E1[pn]⊗ E2[pn])

is injective.

The theorem above is known when Ei’s have semi-ordinary reduction, that is,
good ordinary or multiplicative reduction ([18], [9], see also [8]). Hence our main
interest is in elliptic curves which have good supersingular reduction.

In our previous paper [3], we investigate the image of the Galois symbol map h.
As byproducts, we obtain the structure of the Chow group CH0(E1×E2) of 0-cycles
as follows. By Corollary 2.4.1 in [9], we have

CH0(E1 × E2) ' Z⊕ E1(k)⊕ E2(k)⊕K(k;E1, E2).

The Albanese kernel T (E1 × E2) := Ker(alb : CH0(E1 × E2)0 → (E1 × E2)(k))
coincides with the Somekawa K-group K(k;E1, E2), where CH0(E1 ×E2)0 is the
kernel of the degree map CH0(E1 × E2) → Z. Mattuck’s theorem [6] implies the
following:

Corollary 1.2. Let E1 and E2 be elliptic curves over k with good or split mul-
tiplicative reduction. Assume that E1 does not have good supersingular reduction
and Ei[pn] ⊂ Ei(k) for i = 1, 2. Then, we have

CH0(E1×E2)/pn '

{
(Z/pn)2[k:Qp]+6, if E1 and E2 have a same reduction type,
(Z/pn)2[k:Qp]+7, otherwise.
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Notation

Throughout this note, for an abelian group A and a positive integer m, let A[m]
be the kernel and A/m the cokernel of the map m : A → A defined by the
multiplication by m. For a field F , we denote by F sep the separable closure of
F and GF := Gal(F sep/F ) the absolute Galois group of F . We also denote by
Hi(F,M) := Hi(GF ,M) the Galois cohomology group of GF for a GF -module
M . The tensor product A⊗B for abelian groups A,B means A⊗Z B.

For a finite field extension K/Qp, we denote by vK the normalized valuation,
mK the maximal ideal of the valuation ring OK , O×K = U0

K the group of units in
OK and FK = OK/mK the finite residue field.

Acknowledgments. This work was supported by KAKENHI 25800019. The
author would like to thank the referee for pointing out mistakes of the proof of
Theorem 3.6 in an earlier version of this article.

2. Mackey functors

Throughout this section, let k be a field of characteristic 0.

Mackey products

Definition 2.1. A Mackey functor A over k is a contravariant functor from the
category of étale schemes over k to that of abelian groups equipped with a covariant
structure for finite morphisms such that A(X1 tX2) = A(X1)⊕A(X2) and if

X ′

f ′

��

g′ // X

f

��
Y ′

g // Y

is a Cartesian diagram, then the induced diagram

A(X ′)
g′∗ // A(X)

A(Y ′)

f ′∗

OO

g∗ // A(Y )

f∗

OO

commutes.

For a Mackey functor A, we denote by A(K) its value A(Spec(K)) for a field
extension K over k.
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Definition 2.2. For Mackey functors A1, . . . , Aq, their Mackey product A1⊗· · ·⊗
Aq is defined as follows: For any finite field extension K/k,

(A1 ⊗ · · · ⊗Aq) (K) :=

 ⊕
L/K: finite

A1(L)⊗ · · · ⊗Aq(L)

 /R,

where R is the subgroup generated by elements of the following form:
(PF) For any finite field extensions K ⊂ K1 ⊂ K2, and if xi0 ∈ Ai0(K2) and

xi ∈ Ai(K1) for all i 6= i0, then

j∗(x1)⊗ · · · ⊗ xi0 ⊗ · · · ⊗ j∗(xq)− x1 ⊗ · · · ⊗ j∗(xi0)⊗ · · · ⊗ xq,

where j = jK2/K1
: Spec(K2)→ Spec(K1) is the canonical map.

This product gives a monoidal structure in the abelian category of Mackey
functors with unit Z : k′ 7→ Z. We write {x1, . . . , xq}K/k for the image of x1 ⊗
· · · ⊗ xq ∈ A1(K)⊗ · · · ⊗Aq(K) in the product (A1 ⊗ · · · ⊗Aq) (k). For any field
extension K/k, the canonical map j = jK/k : k ↪→ K induces the pull-back

ResK/k := j∗ : (A1 ⊗ · · · ⊗Aq) (k) −→ (A1 ⊗ · · · ⊗Aq) (K)

which is called the restriction map. If the extension K/k is finite, then the push-
forward

NK/k := j∗ : (A1 ⊗ · · · ⊗Aq) (K) −→ (A1 ⊗ · · · ⊗Aq) (k)

is given by NK/k({x1, . . . , xq}L/K) = {x1, . . . , xq}L/k on symbols and is called the
norm map.

Let G1, . . . , Gq be semi-abelian varieties over k. These form a Mackey functor
by K 7→ Gi(K). The Somekawa K-group K(k;G1, . . . , Gq) attached to G1, . . . , Gq
is defined by a quotient of (G1 ⊗ · · · ⊗Gq) (k) by the subgroup which produces “the
Weil reciprocity law” (see for the precise definition, [13]).

Galois symbol map

For any positive integer m, we consider the isogeny m : Gi → Gi induced from the
multiplication by m. The exact sequence

0→ Gi[m]→ Gi(k)
m→ Gi(k)→ 0

of Galois modules gives an injection of Mackey functors

Gi/m ↪→ H1(−, Gi[m]),

where Gi/m := Coker(m) (in the category of Mackey functors) and H1(−, Gi[m])
is also the Mackey functor given by K 7→ H1(K,Gi[m]). The cup products and
the corestriction on the Galois cohomology groups give

G1/m⊗ · · · ⊗Gq/m→ Hq(−, G1[m]⊗ · · · ⊗Gq[m]). (2)
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This map factors through K(−;G1, . . . , Gq)/m ([13], Prop. 1.5). The induced
homomorphism

K(k;G1, . . . , Gq)/m→ Hq(k,G1[m]⊗ · · · ⊗Gq[m])

is called the Galois symbol map.

3. Higher unit groups

Throughout this section, we fix a finite field extension k of Qp and assume that it
contains µp := Gm[p] the group of all p-th roots of unity.

Mackey functor defined by higher unit groups

Let K be a finite field extension of k and put e0(K) := vK(p)/(p − 1). The
unit group U0

K = O×K and the higher unit groups U iK := 1 + miK (i > 1) induce
a filtration {U iK}i>0 of K×/p which is given by

U
i

K := Im(U iK ↪→ K× � K×/p).

By abuse of notation, we still use a ∈ U iK for the residue class represented by a
unit a ∈ U iK .

Lemma 3.1 (cf. [5], Lem. 2.1.3).
(a) If 0 6 i < pe0(K), then

U
i

K/U
i+1

K '

{
FK , if p - i,
1, if p | i.

(b) If i = pe0(K), then U
pe0(K)

K /U
pe0(K)+1

K ' Z/p.
(c) If i > pe0(K), then U

i

K = 1.

Lemma 3.2 ([5], Lem. 2.1.5). Let K be a finite field extension of k. For a posi-
tive integer i, and a ∈ U

i

K r U
i+1

K , we define an extension L = K( p
√
a) of K.

For any σ ∈ Gal(L/K), put i(σ) := vL(σ($) − $), where $ is a uniformizer
of L.

(a) If 1 6 i < pe0(K) and p - m then L/K is a totally ramified extension of
degree p and i(σ) = pe0(K)− i+ 1 for σ ∈ Gal(L/K) with σ 6= 1.

(b) If i = pe0(K), then L/K is an unramified extension of degree p.

For any integer i > 0, we define a sub Mackey functor U
i
of Gm/p := Coker(p :

Gm → Gm) over k by
U
i
(K) := U

ie(K/k)

K

for a field extension K/k with ramification index e(K/k). For a finite field exten-
sion L/K over k and j = jL/K : Spec(L)→ Spec(K), the covariant map NL/K :=
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j∗ : U
i
(L) → U

i
(K) is given by the norm homomorphism NL/K : L× → K×.

We also denote by ResL/K the contravariant map j∗. The Galois symbol map (2)
induces the following isomorphisms:

Lemma 3.3 ([9], Lem. 4.2.1). For integers i, j > 0 with i+ j > 2, we have

(U
0
)⊗i ⊗ (Gm/p)⊗j

'−→

{
H2(−, µ⊗2

p ), if i+ j = 2,

0, otherwise.

For integers m,n > 0, we define a map hm,n : U
m ⊗ U

n → H2(−, µ⊗2
p ) of

Mackey functors over k by the composition

hm,n : U
m ⊗ Un → Gm/p⊗Gm/p

'→ H2(−, µ⊗2
p ).

Here, the latter map is the Galois symbol map on Gm/p ⊗ Gm/p defined in (2)
and is an isomorphism (Lem. 3.3). We also denote by

h−1,n : Gm/p⊗ U
n → Gm/p⊗Gm/p

'→ H2(−, µ⊗2
p )

by convention. For any finite field extension K/k, the map hm,n induces hm,nK :(
U
m ⊗ Un

)
(K)→ H2(K,µ⊗2

p ).
As noted in (2), the Galois symbol map

h : (Gm/p⊗Gm/p) (k)→ H2(k, µ⊗2
p )

is given by h({a, b}K/k) = CorK/k(h1(a) ∪ h1(b)) for a symbol {a, b}K/k ∈
(Gm/p⊗Gm/p) (k), where h1 : Gm/p(K)→ H1(K,µp) is the Kummer map. The
corestriction CorK/k is bijective (e.g., [8], Lem. 5.8). The cup product
∪ : H1(K,µp) ⊗ H1(K,µp) → H2(K,µ⊗2

p ) on the Galois cohomology groups is
characterized by the Hilbert symbol ( , )K : K×/p⊗K×/p→ µp as in the follow-
ing commutative diagram (cf. [11], Chap. XIV):

H1(K,µp)⊗H1(K,µp)
∪ // H2(K,µ⊗2

p )

'

��
K×/p⊗K×/p

'

OO

( , )K // µp .

(3)

The image in H2(K,µ⊗2
p ) by the Hilbert symbol are calculated as follows (cf. [3],

Lem. 3.1):

Lemma 3.4. Let m,n be integers > 0.

(i)

#(K×/p, U
n

K)K =

{
p, if n 6 pe0(K),

0, otherwise.
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(ii) If p - m or p - n, then

#(U
m

K , U
n

K)K =

{
p, if m+ n 6 pe0(K),

0, otherwise.

(iii) If p | m and p | n, then

#(U
m

K , U
n

K)K =

{
p, if m+ n < pe0(K),

0, otherwise.

Let π be a uniformizer of K. Since U
pe0(K)

K ' Z/p (Lem. 3.1), one can find
a unit ρ ∈ O×K such that 1 + ρπpe0(K) is a generator of U

pe0(K)

K . It is known
that the Hilbert symbol (π, 1 + ρπpe0(K))K is a generator of H2(K,µ⊗2

p ) (e.g., [7],
Cor. A.12).

Lemma 3.5.

(i) Let i, j be positive integers with i + j = pe0(K). Assume i - p. Then, for
any unit u ∈ O×K , there exists v ∈ O×K such that (1 + uπi, 1 + vπj)K 6= 0.

(ii) Let i be an integer which is prime to p with 0 < i < pe0(K). Then, there
exists u ∈ O×K such that (1 + uπi, π)K 6= 0.

(iii) Let i, j be positive integers. Assume p - i, p - (i+ j), i+ j < pe0(K), and
i+ 2j > pe0(K). Then, for any η ∈ µq−1 ⊂ O×K there exists v ∈ O×K such
that (1 + ηπi, 1 + vπj)K 6= 0, where q = #FK .

Proof. (i) As in [1], Lemma 4.1, we have the following equalities:

(1 + uπi, 1 + ρu−1πj)K

= (1 + uπi(1 + ρu−1πj), 1 + ρu−1πj)K (by Lem. 3.4)

= −(1 + uπi(1 + ρu−1πj),−uπi)K
= −(1 + ρ

1+uπiπ
pe0(K),−uπi)K (from the Steinberg relation)

= −(1 + ρπpe0(K),−uπi)K (by 1 + ρπpe0(K) = 1 + ρ
1+uπiπ

pe0(K) in U
pe0(K)

K )

= −i(1 + ρπpe0(K), π)K (by Lem. 3.4)

= i(π, 1 + ρπpe0(K))K .

This implies (1 + uπi, 1 + ρu−1πj)K 6= 0 because of p - i.
(ii) Since ((1− πi)i, π)K = (1− πi, πi)K = 0, we have

(1 + ρπpe0(K), π)K = (1 + ρπpe0(K), π)K + ((1− πi)i, π)K

= ((1 + ρπpe0(K))(1− πi)i, π)K .

The unit (1 + ρπpe0(K))(1− πi)i ∈ U iK r U i+1
K gives the required unit u.
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(iii) From (ii), there exists u ∈ O×K such that (1 + uπi+j , π)K 6= 0. Put v =
(1 + ηπi)uη−1 ∈ O×K . The calculations of symbols as in (i) we have

(1 + ηπi, 1 + vπj)K

= (1 + ηπi(1 + vπj), 1 + vπj)K (by i+ 2j > pe0(K) and Lem. 3.4)

= −(1 + ηπi(1 + vπj),−ηπi)K
= −i(1 + uπi+j , π)K 6= 0. �

Mackey products of higher unit groups

The rest of this section is devoted to show the following theorem.

Theorem 3.6. Put e0 := e0(k). Let n be an integer > 0 with p | n.
(i) The map h−1,n induces an isomorphism

Gm/p⊗ U
n '−→

{
H2(−, µ⊗2

p ), if n 6 pe0,

0, otherwise.

(ii) For m = 0 or pe0, the map hm,n induces an isomorphism

U
m ⊗ Un '−→

{
H2(−, µ⊗2

p ), if m+ n < pe0,

0, otherwise.

Let n be a positive integer with p | n and K/k a finite field extension with
ramification index e := e(K/k). From now on, we investigate the Galois symbol
map

h := h0,n
K :

(
U

0 ⊗ Un
)

(K)→ H2(K,µ⊗2
p ).

We basically follow the proof of Lemma 4.2.1 in [9] and proceed the steps below
to show the injectivity of h:

Step 1. For any symbol of the form {a, b}K/K ∈
(
U

0 ⊗ Un
)

(K), if
h({a, b}K/K) = 0 then {a, b}K/K = 0. (Prop. 3.7)

Step 2. The map h is injective on the subgroup of
(
U

0 ⊗ Un
)

(K) generated
by symbols of the form {a, b}K/K . (Prop. 3.10)

Step 3.
(
U

0 ⊗ Un
)

(K) is generated by symbols of the form {a, b}K/K .
(Prop. 3.11)

Proposition 3.7.

(i) For any symbol {a, b}K/K in
(
U

0 ⊗ Un
)

(K), if h({a, b}K/K) = 0, then
we have {a, b}K/K = 0.

(ii) For symbols of the form {a, b}K/K , {a′, b}K/K in
(
U

0 ⊗ Un
)

(K) with
h({a, b}K/K) = h({a′, b}K/K), we have {a, b}K/K = {a′, b}K/K .



Milnor K-groups attached to elliptic curves over a p-adic field 47

Proof. (i) Take a symbol {a, b}K/K in
(
U

0 ⊗ Un
)

(K) and assume h({a, b}K/K) =

0. The symbol map is written by the Hilbert symbol h({a, b}K/K) = (a, b)K as in
(3) and thus a is in the image of the norm NL/K : U

0

L → U
0

K for L = K( p
√
b) ([2],

Chap. IV, Prop. 5.1). Take α ∈ U0

L such that NL/K(α) = a. We obtain

{a, b}K/K = {NL/K(α), b}K/K = {α,ResL/K(b)}L/K = 0

by the condition (PF) in the definition of the Mackey product (Def. 2.2).
(ii) Suppose h({a, b}K/K) = h({a′, b}K/K) and thus h({a(a′)−1, b}K/K) = 0.

From (i) we obtain {a(a′)−1, b}K/K = 0. Therefore we get {a, b}K/K = {a′, b}K/K .
�

Now we assume n < pe0 and introduce subgroups S(K) and T (K) of(
U

0 ⊗ Un
)

(K) as follows:

S(K) := subgroup generated by symbols of the form {a, b}K/K in
(
U

0⊗ Un
)
(K),

T (K) := subgroup generated by symbols {a, b}K/K ∈ S(K) for a ∈ Upe0(K)−ne−1

K .

Lemma 3.8. Using the above notation, we have S(K) = T (K).

Proof. Define a filtration of S(K) by

Si(K) := subgroup generated by symbols {a, b}K/K ∈ S(K) for a ∈ U iK .

By the very definition, we have S(K) = S0(K) and T (K) = Spe0(K)−ne−1(K). It
is enough to show Si(K) = Si+1(K) for i with 0 6 i < pe0(K)− ne− 1.

Fix a uniformizer π of K. Take a symbol ξ = {1 + uπs, 1 + vπt}K/K ∈ Si(K)

with u, v ∈ O×K , s > i, t > ne. To show ξ ∈ Si+1(K) we may assume s = i. We
may also assume s and t are prime to p (Lemma 3.1) and s+ t 6 pe0(K) (Lem. 3.4
and Lem. 3.7). From Proposition 3.7, Lemma 3.5(i) and Lemma 3.4 we have the
following equalities:

ξ = {1 + uπi, 1 + vπt}K/K
= c{1 + uπi, 1 + v′πpe0(K)−i}K/K (for some c and v′ ∈ O×K)

= c{1 + ηπi, 1 + v′πpe0(K)−i}K/K (for u = ηu1 ∈ O×K
with η ∈ µq−1(K) and u1 ∈ U1

K),

where q := #FK . Since i = s is prime to p and we have inequalities

i+ 2(pe0(K)− i− 1) > pe0(K) + ne− 1 > pe0(K) + p− 1

(recall p | n and n > 0), one can apply Lemma 3.5(iii) so that there exists a non-
zero symbol {1 + ηπi, 1 + v′′πpe0(K)−i−1}K/K for some unit v′′ ∈ O×K . From
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Proposition 3.7(ii) we have

{1 + ηπi, 1 + v′πpe0(K)−i}K/K
= c′{1 + ηπi, 1 + v′′πpe0(K)−i−1}K/K (for some c′ ∈ Z).

Now we suppose p - i+ 1. From Proposition 3.5(i) again we have

{1 + ηπi, 1 + v′′πpe0(K)−i−1}K/K
= c′′{1 + u′πi+1, 1 + v′′πpe0(K)−i−1}K/K (for some u′ ∈ O×K and some c′′).

Thus ξ ∈ Si+1(K). In the case of p | i+ 1, we have U
pe0(K)−(i+1)

K = U
pe0(K)−(i+2)

K

(Lem. 3.1). Therefore, the same computations as above give

{1 + ηπi, 1 + v′′πpe0(K)−i−1}K/K
= {1 + ηπi, 1 + v′′′πpe0(K)−i−2}K/K (for some v′′′ ∈ O×K)

= c′′{1 + u′πi+2, 1 + v′′′πpe0(K)−i−2}K/K (for some u′ ∈ O×K and some c′′).

Hence we obtain Si(K) = Si+1(K). �

Define a bilinear map of Fp-vector spaces

Φ : FK × FK → S(K); (a, b) 7→ {1 + ãπpe0(K)−ne−1, 1 + b̃πne+1}K/K ,

where ã, b̃ ∈ OK are lifts of a, b respectively. The map Φ is well-defined
(Lem. 3.4, Prop. 3.7(i)). Take a non-zero single symbol {a, b}K/K ∈ T (K) with

a ∈ U
pe0(K)−ne−1

K , b ∈ U
ne+1

K = U
n
(K). If a ∈ U

pe0(K)−ne
K or b ∈ U

ne+2

K , then
(a, b)K = 0 (Lem. 3.4) and this contradicts with {a, b}K/K 6= 0 by Lemma 3.7(i).

Thus a ∈ Upe0(K)−ne−1

K rUpe0(K)−ne
K , b ∈ Une+1

K rUne+2

K and there exist a, b ∈ FK
such that {a, b}K/K = Φ(a, b). From Lemma 3.8, any single symbol in S(K) can
be written as Φ(a, b) for some a, b ∈ FK so that any non-zero element in S(K),
that is, a finite sum of symbols, can be written as

∑
i Φ(ai, bi) for some ai, bi ∈ FK .

We also define
Ψ := h ◦ Φ : FK × FK → H2(K,µ⊗2

p ).

Lemma 3.9. If Ψ(a, b) = Ψ(c, d) for a, b, c, d ∈ FK , then Φ(a, b) = Φ(c, d).

Proof. Put α = Ψ(a, b) = Ψ(c, d) and we may assume α 6= 0 by Proposition 3.7(i).
If {b, d} ⊂ FK are linearly dependent in FK (as an Fp-vector space), then

sb = d for some s ∈ Fp (s 6= 0). From Ψ(a, b) = Ψ(c, d) = sΨ(c, b) = Ψ(sc, b), we
have Φ(a, b) = Φ(sc, b) = Φ(c, d) by Proposition 3.7(ii).

When {b, d} ⊂ FK are linearly independent, we define non-zero homomor-
phisms ψb, ψd : FK → H2(K,µ⊗2

p ) by ψb(x) = Ψ(x, b), ψd(x) = Ψ(x, d). These are
linearly independent. In fact, if we assume ψb = sψd for some constant s then,
for any x ∈ FK , ψb(x) = sψd(x) and thus Ψ(x, b − sd) = 0. Take a generator
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1 + ρπpe0(K) ∈ U
pe0(K)

K with ρ ∈ O×K and denote the reduction of ρ to FK by
r ∈ FK . Since u := b − sd 6= 0, the calculations of symbols as in the proof of
Lemma 3.5(i) give

0 = Ψ(ru−1, u) = (1 + ρũ−1πpe0(K)−ne−1, 1 + ũπne+1)K = (1 + ρπpe0(K), π)K .

This contradicts with (1 + ρπpe0(K), π)K 6= 0. Thus ψb and ψd are linearly inde-
pendent. One can find x ∈ FK such that ψb(x) = ψd(x) = α. Putting y := d, we
have

α = Ψ(a, b) = Ψ(x, b) = Ψ(x, y) = Ψ(c, y) = Ψ(c, d).

From these equalities and Proposition 3.7(i), we obtain

Φ(a, b)− Φ(c, d) = Φ(a− x, b) + Φ(x, b− y) + Φ(x− c, y) + Φ(c, y − d) = 0. �

Proposition 3.10. Let K be a finite field extension of k, and n an integer with
p | n and 0 < n < pe0(K). Then, the Galois symbol map h is injective on S(K).

Proof. Take a non-zero symbol Φ(a0, b0) ∈ S(K). By Proposition 3.7(i), it is
enough to show that S(K) is generated by the symbol Φ(a0, b0). Since Ψ(a0, b0)
is a generator of H2(K,µ⊗2

p ), for any non-zero element ξ =
∑n
i=1 Φ(ai, bi) ∈

S(K), there exists ci such that Ψ(ai, bi) = ciΨ(a0, b0) for each i. By Lemma 3.9,
Φ(ai, bi) = Φ(cia0, b0) = ciΦ(a0, b0) for all i and hence ξ = (

∑n
i=1 ci)Φ(a0, b0). �

Proposition 3.11. Let K be a finite field extension of k, and n an integer with
p | n and 0 < n < pe0(K). Then, we have S(K) =

(
U

0 ⊗ Un
)

(K).

Proof. Take a symbol {a, b}L/K ∈
(
U

0 ⊗ Un
)

(K) and we have to prove that the
symbol {a, b}L/K is in S(K).

(a) Reduce to the case of a Galois extension L/K: First we assume that this
claim holds for all Galois extensions, namely, for any finite extension K/k and any
symbol {a′, b′}K′/K ∈

(
U

0 ⊗ Un
)

(K) where K ′/K is a finite Galois extension,
we have {a′, b′}K′/K ∈ S(K).

Let M be the Galois closure of L/K. The Galois symbol maps are compatible
with norm maps as in the following commutative diagram:

(
U

0 ⊗ Un
)

(M)

NM/L

��

h0,n
M // H2(M,µ⊗2

p )

CorM/L

��(
U

0 ⊗ Un
)

(L)
h0,n
L // H2(L, µ⊗2

p ).

Since the corestriction map CorM/L : H2(M,µ⊗2
p ) → H2(L, µ⊗2

p ) on the Galois
cohomology groups is bijective ([8] Lem. 5.8) and the Galois symbol map h0,n

M are
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surjective (Lem. 3.4), one can find a symbol {α, β}M/M ∈ S(M) such that

h0,n
L ({a, b}L/L) = CorM/L ◦h0,n

M ({α, β}M/M )

= h0,n
L ◦NM/L({α, β}M/M = h0,n

L ({α, β}M/L).

Since M/L is Galois, {α, β}M/L ∈ S(L) and thus {a, b}L/L = {α, β}M/L by
Prop. 3.10. From the equalities

{a, b}L/K = NL/K({a, b}L/L) = NL/K({α, β}M/L) = {α, β}M/K

and the extensionM/K is Galois, we obtain {a, b}L/K ∈ S(K). Therefore, without
loss of generality, we may suppose L/K is a finite Galois extension and show
{a, b}L/K ∈ S(K).

(b) The case p - e(L/K). In this extension, the norm map NL/K : U
0

L → U
0

K

is surjective. There exist γ ∈ U
0

L and d ∈ U
ne

K such that {NL/K(γ), d}K/K is
a generator of S(K). By the projection formula (PF), we have

{NL/K(γ), d}K/K = {γ,ResL/K(d)}L/K = NL/K({γ,ResL/K(d)}L/L).

Since the symbol {γ,ResL/K(d)}L/L is also a generator of S(L), we obtain

{a, b}L/K = NL/K({a, b}L/L) = NL/K(i{γ,ResL/K(d)}L/L) = i{NL/K(γ), d}K/K

for some i. Hence {a, b}L/K is in S(K).
(c) The case p | e(L/K). By taking the maximal tamely ramified extension

K ⊂ K ′ ⊂ L in L/K, we have {a, b}L/K = NK′/K({a, b}L/K′). From the above
arguments (b) again, we may assume that L/K is totally ramified Galois extension
with [L : K] = ps.

Take a finite sub extension K ′ of Kp/K, where Kp is the fixed field of the
p-Sylow subgroup of Gk and put L′ = LK ′. As in (b), there exists α ∈ U0

L′ such
that NL′/L(α) = a. Therefore,

{a, b}L/K = {NL′/L(α), b}L/K
= {α,ResL′/L(b)}L′/K
= NK′/K{α,ResL′/L(b)}L′/K′ .

Choosing K ′ large enough, we may also assume e(K/k) > 1.
We prove {a, b}L/K ∈ S(K) for a finite extension K/k with e(K/k) > 1 and

L/K is a totally ramified Galois extension with [L : K] = ps by induction on s.
If s = 0, there is nothing to show. So we assume s > 0. There exists an

intermediate field M of L/K such that L/M is a cyclic extension of degree p.
(The subfield M exists since the Galois group Gal(L/K) is solvable.) There exists
an element d ∈ Un(M) = U

ne(M/k)

M such that Σ = M( p
√
d) is a totally ramified

nontrivial extension of M and Σ 6= L. In fact, if the element d is in U
i

M r U
i+1

M
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(ne(M/k) < i < pe0(M), p - i) then the upper ramification subgroups of G :=
Gal(Σ/M) ([11], Chap. IV) is known to be

G = G0 = G1 = · · · = Gpe0(M)−i ⊃ Gpe0(M)−i+1 = {1}

(Lem. 3.2, see also [11], Chap. V, Sect. 3). Hence we can choose d such that the
ramification break of Σ/M is different1 from that of L/M . Using the element d,
there exists c ∈ U0

M such that {c, d}M/M 6= 0. By local class field theory, we have
U0
M = NL/MU

0
L · NΣ/MU

0
Σ. Therefore, one can find γ ∈ U0

L and γ′ ∈ U0
Σ with

c = NK/M (γ)NΣ/M (γ′). Since {NΣ/M (γ′), d}M/M = {γ′,ResΣ/M (d)}Σ/M = 0, we
obtain

{c, d}M/M = {NΣ/M (γ′), d}M/M + {NL/M (γ), d}M/M

= NL/M ({γ,ResL/M (d)}L/L).

In particular, {γ,ResL/M (d)}K/K 6= 0. Therefore, there exists i such that

{a, b}L/K = NL/K({a, b}L/L)

= NM/K ◦NL/M ({γi,ResL/M (d)}L/L)

= NM/K({γi,ResL/M (d)}L/M )

= NM/K({NL/M (γi), d}M/M )

= {NL/M (γi), d}M/K .

By the induction hypothesis, the last symbol {NL/M (γi), d}M/K is in S(K). �

Proof of Thm. 3.6. The proof of (i) is basically same as in (ii) and much eas-
ier so that we show the assertion (ii) only. For any finite extension K/k with
ramification index e, we prove that the Galois symbol map gives isomorphisms

h := hm,nK :
(
U
m ⊗ Un

)
(K)

'−→

{
H2(K,µ⊗2

p ), if m+ n < pe0,

0, otherwise.
(4)

(a) The case m = pe0: We show
(
U
pe0 ⊗ Un

)
(K) = 0. For any symbol

{a, b}L/K in
(
U
pe0 ⊗ Un

)
(K), we have NL/K({a, b}L/L) = {a, b}L/K . Thus it is

enough to show {a, b}K/K = 0 with a 6= 1. Since the extension L = K( p
√
a) is

unramified and of degree p (Lem. 3.2), the norm map NL/K : U
n
(L)→ U

n
(K) is

surjective ([11], Chap. V, Sect. 2, Prop. 3). By the projection formula (PF),

{a, b}K/K = {a,NL/K(β)}K/K = {ResL/K(a), β}L/K = 0

for some β ∈ Un(L).
(b) The case m = 0 and n > pe0: From the norm arguments, it is enough to

show {a, b}K/K = 0 for any symbol {a, b}K/K ∈ (U
0⊗Un)(K). Since e0(K) = e0e
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and U
n
(K) = U

ne

K , Lemma 3.4 implies h({a, b}K/K) = 0. The required assertion
{a, b}K/K = 0 follows from Proposition 3.7(i).

(c) The case m = 0 and n < pe0: From Lemma 3.3, we may assume n > 0.
Lemma 3.4(iii) implies that h = h0,n

K is surjective. Since h is injective on S(K)

(Prop. 3.10) and we have S(K) = (U
0 ⊗ Un)(K) (Prop. 3.11), the symbol map h

is injective. �

4. Galois symbol map for elliptic curves

Let k be a finite field extension of Qp and put e0 = vk(p)/(p − 1) as in the last
section.

Theorem 4.1. Let n be an integer > 1. Let E1, E2 be elliptic curves over k
with Ei[p

n] ⊂ Ei(k) for i = 1, 2. Assume that E1 has good ordinary reduction
or split multiplicative reduction, and E2 has good reduction or split multiplicative
reduction. Then the Galois symbol map

hpn : K(k;E1, E2)/pn → H2(k,E1[pn]⊗ E2[pn])

is injective.

Proof. Consider the following diagram with exact rows:

K(k;E1, E2)/pn−1

hpn−1

��

// K(k;E1, E2)/pn

hpn

��

//K(k;E1, E2)/p

hp

��
H2(k,E1[pn−1]⊗ E2[pn−1]) // H2(k,E1[pn]⊗ E2[pn]) // H2(k,E1[p]⊗ E2[p]).

The assumption Ei[p
n] ⊂ Ei(k) implies the injectivity of the left lower map

H2(k,E1[pn−1] ⊗ E2[pn−1]) → H2(k,E1[pn] ⊗ E2[pn]). By induction on n, the
assertion follows from the case of n = 1. More strongly we show that the Galois
symbol map on the Mackey product

h : (E1 ⊗ E2) (k)/p→ H2(k,E1[p]⊗ E2[p])

is injective.
We recall the following results on the image of the Kummer map h1 : E(k)→

H1(k,E[p]) for an elliptic curve E over k ([5], see also [15], Rem. 3.2). Assume
E[p] ⊂ E(k) and choose an isomorphism of the Galois modules E[p] ' (µp)

⊕2

which maps E[p]0 onto the first factor µp, where E[p]0 is the subgroup of E[p]
consisting of k-valued points of the maximal connected finite flat p-torsion sub-
group scheme of the Néron model of E. From the isomorphism, we can identify
H1(k,E[p]) and (k×/p)⊕2. On the latter group k×/p, the higher unit groups Umk =

1 + mmk induce a filtration U
m

k := Im(Umk → k×/p) as noted in the last section.
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In terms of this filtration, the image of h1 : E(k)/p ↪→ H1(k,E[p]) = (k×/p)⊕2 is
written precisely as follows (cf. [15]):

Im(h1) =

{
U
p(e0−t0)

k ⊕ Upt0k , if E has good reduction,
k×/p⊕ 1, if E has split multiplicative reduction,

(5)

where t0 := t0(E) ∈ Z with 0 < t0 6 e0 (It is calculated from the theory of the
canonical subgroup of Katz-Lubin, cf. [3], Thm. 3.5).

Fix isomorphisms of Galois modules E1[p] ' µ⊕2
p and E2[p] ' µ⊕2

p as above.
From the isomorphisms we can identify H1(−, E1[p]) ' (Gm/p)⊕2 and
H1(−, E2[p]) ' (Gm/p)⊕2.

(a) E1 has split multiplicative reduction: Consider the case that E1 has split
multiplicative reduction. We also assume that E2 has good reduction. The other
case on E2 is treated in the same way and much easier. From (5), the Kummer
maps on E1 and E2 induces isomorphisms

E1/p
'−→ Gm/p, E2/p

'−→ U
p(e0−t0) ⊕ Upt0 ,

where t0 := t0(E2). Therefore E1/p⊗E2/p ' (Gm/p⊗U
p(e0−t0)

)⊕(Gm/p⊗U
pt0

).
The Galois symbol map h commutes with the maps h−1,p(e0−t0) and h−1,pt0 defined
in the last section and the injectivity of h follows from Theorem 3.6(i).

(b) E1 has good ordinary reduction: Next we assume that E1 has good ordinary
reduction and E2 has good reduction. In this case also, by (5), we have

E1/p
'−→ U

0 ⊕ Upe0 , E2/p
'−→ U

p(e0−t0) ⊕ Upt0 ,

where t0 := t0(E2). We have to show that the induced Galois symbol maps on

U
0 ⊗ Up(e0−t0)

, U
0 ⊗ Upt0 , U

pe0 ⊗ Up(e0−t0)
, and U

pe0 ⊗ Up(e0−t0)

are injective. This follows from Theorem 3.6(ii). �

Proposition 4.2. Let n be an integer > 1 and q an integer > 3. Let E1, . . . , Eq
be elliptic curves over k. Assume that Ei[p] ⊂ Ei(k) for 1 6 i 6 3, E1 has good
ordinary reduction or split multiplicative reduction, and Ei has good reduction or
split multiplicative reduction for i = 2, 3. Then, we have

K(k;E1, . . . , Eq)/p
n = 0.

Proof. By considering the exact sequence

(E1 ⊗ E2 ⊗ E3)(k)/pn−1 → (E1 ⊗ E2 ⊗ E3)(k)/pn → (E1 ⊗ E2 ⊗ E3)(k)/p,

it is enough to show (E1⊗E2⊗E3)(k)/p = 0. We show only the case E1 has good
ordinary reduction and Ei has good reduction for each i = 2, 3. As in the above
proof of Theorem 4.1, we have

E1/p
'−→ U

0 ⊕ Upe0 , Ei/p
'−→ U

p(e0−t0(Ei)) ⊕ Upt0(Ei)
(i = 2, 3),
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By Theorem 3.6,

U
0 ⊗ Up(e0−t0(E2)) ' U0 ⊗ Upt0(E2) ' Gm/p⊗Gm/p.

Hence the assertion follows from Lemma 3.3. �

Remark 4.3. From the same arguments in the proof of Theorem 4.1, we obtain
the injectivity of the Galois symbol map

h : K(k;Gm, E)/pn → H2(k,Gm[pn]⊗ E[pn])

under the assumption E[pn] ⊂ E(k) for n > 1. As in [3] we can determine the
image of the above h and have

K(k;Gm, E)/pn '

{
Z/pn, if E has multiplicative reduction,
(Z/pn)⊕2, if E has good reduction.

It is known that the Somekawa K-group K(k;Gm, E) is isomorphic to the homol-
ogy group V (E) of the complex

K2(k(E))
⊕ ∂P−→

⊕
P∈E: closed points

k(P )×
∑
Nk(P )/k−→ k×.

By the class field theory of curves over local field ([10], [20]), we have V (E)/pn '
π1(E)ab,geo

tor /pn. Therefore, the above computations give the structure of π1(E)ab.
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