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ON THE WORK OF LECH DREWNOWSKI

Paweł Domański, Witold Wnuk

It is difficult to write a paper on a mathematical work of a person like Lech
Drewnowski. First of all because of a large variety of subjects he worked on. Sec-
ondly, since several of his topics which seem to be completely pairwisely unre-
lated surprisingly turn out to be connected on a deep level: look for instance, on
Drewnowski’s work on Nikodým and Vitali-Hahn-Saks theorems — it is a root of
his interest in barrelled spaces and one can easily observe its further interrelation
with his work on series convergence in the context of the Orlicz-Pettis theorem.
The third reason why our task is close to impossible is that Drewnowski’s work
is far from being completed: every year new and thorough papers appear so one
cannot predict which of that existing papers should be reinterpreted in a new light
of his recent discoveries. Last but not least it is difficult to write about our own
Master and Teacher whom we owe so much. We do not present a systematic and
detailed analysis of all Drewnowski’s results. We have subjectively selected sev-
eral topics and theorems due to him which are, in our private opinion, beautiful,
important and also sufficiently near to our own interests.

Let us say that Drewnowski is a true “problem solver”. When others feel that
the solution is already complete and fully satisfactory, he works further and finds
unexpected deeper results and he builds an extensive theory. While collaborat-
ing we experienced this phenomena several times. One could say that the “first
solution” is only a motivation and starting point for Drewnowski’s extensive re-
search which leads to the “deep solution”. In this paper we explain a little bit
of motivation of the particular theorems but the emphasis will be put on further
results inspired by Drewnowski’s research. We will show how many people owe
their inspiration to Drewnowski. Writing this survey we realized once again how
lovely Lech’s mathematics is.

Lech Drewnowski was born on 10 February 1944 in Kruszyna (now part of
Belarus). He started an academic career at Adam Mickiewicz University in Poz-
nań in 1966 when he had finished mathematical studies on the Faculty of Math-
ematics, Physics and Chemistry. Five years later, in 1971, Lech Drewnowski
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obtained Ph.D. defending the thesis On some problems in the theory of spaces
of integrable functions which was prepared under a supervision of Władysław Or-
licz. The thesis, published in 1972 in the Bulletin of the Polish Academy of Science
as a three-part paper Topological rings of sets, continuous set functions, integra-
tion, had an essential influence on the measure theory and it belongs till now to the
most frequently cited Drewnowski’s works. Lech Drewnowski’s career developed
very quickly – in 1975 he earned postdoctoral degree (habilitation) and in 1985
he obtained a specifically Polish scientific highest grade: the title of the professor
nowadays equivalent with the full professor position. Both his Ph.D. dissertation
and the postdoctoral dissertation Decompositions of set functions and existence of
scalar measures topologically equivalent to vector measures were honored by the
Award of the Ministry of Science, Higher Education and Technology of Poland.

During his whole scientific activity Professor Drewnowski received numerous
invitations to universities in Europe (Paris VI, Universidad de Sevilla, Universi-
dad Complutense de Madrid, Universitá di Catania, Universität Trier) and USA
(Michigan State University, University of South Carolina, University of Florida,
University of Mississippi) where he had visiting positions. He obtained many scien-
tific awards: Polish Mathematical Society Award for young mathematicians (1972),
Stefan Banach Main Prize of the Polish Mathematical Society (1977), the Award
of the Scientific Secretary of the Polish Academy of Sciences (1977, 1986), Award
of the Third Department of the Polish Academy of Sciences (1978), the Award of
the Minister of National Education (1988).

Up to now Lech Drewnowski has published 116 papers.
Let us explain that in all sections below the notation [DX] refers to the paper

on the list of Publications of Lech Drewnowski.

1. Vector and scalar set functions

Results concerning measure theory form a big and important part of Lech Drew-
nowski work. Papers [D7], [D8], [D9] are his most frequently cited publications.
As the Web of Science informs they were jointly cited 212 times. After forty years
from printing these papers still inspire succeeding generations of mathematicians
– from 2010 till 2013 authors of 35 articles put them in references. Drewnowski’s
contribution to a development of the measure theory was appreciated very quickly.
Already the book [84], printed in 1975, refers to four Drewnowski’s publications.
The famous Diestel and Uhl monograph [25] published in 1977, i.e., less than
ten years after beginning of Drewnowski’s scientific activity, quotes thirteen his
papers (and additionally six written with coauthors). Importance of his results was
confirmed twenty five years later when the handbook [103] arose. Drewnowski’s
achievements are discussed in five chapters and again thirteen his publications are
cited.

Drewnowski’s papers refer to natural, classical problems which are a subject
of interests of many investigators and which are in the main stream of measure
theory. It is worth to emphasize that a lot of his results have a final character
closing a problem.
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1.1. FN-topologies and related topics – decompositions and convergence
theorems for set functions

A topological ring of sets is a ring R of subsets included in some set together with
a topology Γ providing continuity of the symmetric difference and intersection
of sets. A topology Γ is said to be Fréchet-Nikodým if there exists a basis A of
neighborhoods of the empty set ∅ such that B ∈ A whenever R 3 B ⊂ A ∈ A.
The most important example of an FN-tpology is related to a submeasure, i..e, to
a set function η : R → [0,∞) satisfying the following three conditions:

1. η(∅) = 0,
2. η(A ∪B) 6 η(A) + η(B),
3. A ⊂ B ⇒ η(A) 6 η(B).

The FN-topology Γ(η) is then defined by a semimetric d(A,B) = η((A r B) ∪
(B r A)) and {∅}

Γ(η)
= {A ∈ R : η(A) = 0}. Conversely, every FN-topology

Γ is generated by some family of submeasures (ηt)t∈T , i.e., sets
⋂
t∈∆{A ∈ R :

ηt(A) 6 ε} (where ε > 0 and ∆ ⊂ T is finite) form a basis of Γ-neighborhoods
of ∅. Beginnings of FN-topologies go back to Fréchet and Nikodým. They were
used, probably for the first time, in proofs of the famous Vitali-Hahn-Saks and
Nikodým theorems. Weber, the author of Chapter 16 in [103], says that “Today
FN-topologies are considered an elegant and powerful tool in the measure theory.”

Diestel and Uhl in [25] describe papers [D7], [D8], [D9], [D14], [D15] and [D19]
as “masterful study of Fréchet-Nikodým topologies and their applications”. The
first three papers are a part of Drewnowski’s Ph.D. thesis. They contain extensive
investigations of FN-topologies and related to them exhaustive and order con-
tinuous extended real valued as well as group valued set functions (let us recall
that exhaustivity of µ means µ(An) → 0 for disjoint An’s and order continuity is
defined as follows: An ↓ ∅ ⇒ µ(An) → 0). Characterizations and relationships
joining equi-continuity, order continuity and uniform exhaustivity of families of set
functions are also presented there. Additionally one can find theorems concerning
extensions of exhaustive, order continuous or σ-additive set functions from a ring
onto the generated σ-ring (see [D8] Thm. 7.2, Thm. 7.3 and [D9] Thm. 9.2).
Drewnowski continued an analysis of FN-topologies (for instance their complete-
ness) and submeasures in later papers [D19] and [D26].

Decompositions of set functions is the next direction of Drewnowski’s interests
which was developed in [D8] and [D14]. He paid a special attention to the Lebesgue
and Hewitt-Yosida type decompositions for various classes of submeasures and
exhaustive group valued additive set functions µ defined on rings. Paper [D14]
presents a very general and unified approach to decompositions which essence is
included in Theorem 3.11 saying that every such µ can be uniquely decomposed
onto a sum of two additive exhaustive set function where the first component is
additive and the second is singular with respect to some family of sets (called an
additivity). Choosing appropriate additivities one can obtain the Lebesgue and
Hewitt-Yosida decompositions for µ. It is also worth to recall Theorem 4.1 from
[D14] concerning very general decompositions of exhaustive submeasures.
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Classical Vitali-Hahn-Saks and Nikodým theorems (their more general form is
presented in Theorem 1.1) about properties of a set function being the pointwise
limit of σ-additive (real valued) set functions belong to the most important results
in the measure theory. They were generalized in various directions (the assumption
of σ-additivity was weakened and the range R was replaced by infinite dimensional
Banach spaces or complete topological groups). Several early Drewnowski’s papers
contain results belonging to the above area (see [D7] Thm. 3.2 or [D14] Thm.
2.14’) but his most spectacular theorem in this direction is the following ([D10]
Theorem).

Theorem 1.1. Let R be a σ-ring of sets, G a Hausdorff topological commutative
group and let (µn) be a sequence of additive G-valued set functions such that there
exists the limit µ0(A) = limn→∞ µn(A) for each A ∈ R. Then the following
statements hold and are equivalent.

(BJ) If each µn is exhaustive then the family {µn : n ∈ N} is uniformly exhaus-
tive.

(VHS) Let Γ be an FN-topology on R. If each µn, n > 1, is exhaustive and
Γ-continuous, then the family {µn : n = 0, 1, 2, . . . } is equi-Γ-continuous.

(N) If each µn, n > 1, is σ-additive, then the family {µn : n = 0, 1, 2, . . . } is
uniformly σ-additive.

The Author of [D10] discovered very important relationship joining exhaustiv-
ity and σ-additivity.

Theorem 1.2. Let R be a σ-ring and let G denote a a metrizable commutative
topological group. An additive set function µ : R → G is exhaustive if and only
if each disjoint sequence (An) ⊂ R contains a subsequence (Ank) such that µ is
σ-additive on the σ-ring generated by (Ank).

It is worth to add that the assumption of metrizability is essential. Later we
will see that this circle of ideas has a deep connection with barreledness properties
– see Section 4 (especially 4.1) below – and the problems described above were
considered by Drewnowski from a different point of view.

1.2. The control measure problem

Suppose that R be a ring of sets and let G denote a Hausdorff commutative
topological group. We will say that a set function m : R → G is controlled by
an additive set function µ : R → [0,∞) (or that µ is a control measure for m)
if µ(An) → 0 ⇒ m(An) → 0. The question if there exists a control measure
for a given m is known as the control measure problem. A particular case when
m is an exhaustive submeasure is a very famous Maharam’s problem formulated
in [95]. The problem waited for a solution around sixty years. Efforts of Kalton,
Roberts, Farah and Talagrand led to the solution in the negative. The authors
of [79] showed that an exhaustive submeasure η is controlled by an additive set
function if and only if η is uniformly exhaustive, i.e., for given ε > 0 there exists
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n ∈ N such that min16i6n η(Ai) 6 ε whenever A1, . . . , An are disjoint. Later on
Talagrand constructed in [123] a non-zero exhaustive submeasure on the algebra
of clopen subsets of the Cantor set that is not uniformly exhaustive.

It occurs that many σ-additive vector valued set functions on σ-algebras
are controlled by σ-additive (real valued positive) set functions. Saying about
σ-additive set functions defined on a σ-algebra Σ of sets we will use the name
“measure”. In 1955 Bartle, Dunford and Schwartz showed in [6] that measures with
values in normed spaces have control measures. One of the most spectacular results
concerning control measures is due to Rybakov (see [110]). He proved that for every
measurem : Σ→ X, whereX is a normed space, the total variation of a real valued
measure x∗◦m controlsm for some continuous linear functional x∗ onX. Moreover
a family of such x∗’s forms a dense Gδ-set in the dual X∗ (see [129]). Drewnowski
obtained in [D9] (see also [D15] 3.2. Theorem) an interesting generalization of
Rybakov’s theorem emphasizing a role of the so-called countable chain condition.
We will need an additional notation – for a set function m on Σ we distinguish
the family of m-null sets N (m) = {A ∈ Σ : m(B ∩A) = 0 for every B ∈ Σ}.

Theorem 1.3. Let X be a Banach space and letM denotes a family of measures
on Σ with values in X having the property that every family of disjoint sets in
Σ r

⋂
m∈MN (m) is at most countable. There exist sequences (cn) ∈ `1 and

(mn) ∈M such that m0(·) =
∑∞
n=1 cnmn(·) is a control measure for each m ∈M.

Applying the above theorem to the familyM = {x∗◦m : ‖x∗‖ 6 1} we will find
measures x∗n ◦m which produce a functional x∗ =

∑∞
n=1 cnx

∗
n described in the Ry-

bakov’s theorem. The paper [D15] contains two extensions of the Bartle-Dunford-
Schwartz result to measures taking their values in locally convex topological vector
spaces. Namely, Drewnowski obtained the following result.

Theorem 1.4. A measure m : Σ→ X taking values in a Hausdorff locally convex
topological vector space X has a control measure if and only if every family of
disjoint sets in Σ rN (m) is at most countable.

Moreover, any X-valued measure on a σ-algebra has a control measure if and
only if every family (xi)i∈I ⊂ X r {0} such that every its countable subfamily
(xi)i∈J⊂I is summable, is countable, that is card I 6 ℵ0 (in particular, it is the
case when X admits a coarser metrizable linear topology).

1.3. The Pettis integral

Drewnowski joined to investigations of the Pettis integrability after publication
of Talagrand’s monograph [122] which systematized a knowledge about the Pet-
tis integral dispersed in the literature. The author of [D47] discovered several
conditions equivalent to the Pettis integrability.

Suppose that µ is a finite measure on a σ-algebra of subsets of S and X is
a Banach space. Let us recall that a function f : S → X is scalarly µ-integrable
if x∗ ◦ f ∈ L1(µ) for each x∗ ∈ X∗ and such a function has the Dunford integral
(D)

∫
A
f dµ ∈ X∗∗ if the following holds

(
(D)

∫
A
f dµ

)
(x∗) =

∫
A

(x∗ ◦ f) dµ for all
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x∗ ∈ X∗. We say that f as above is Pettis integrable if its Dunford integral belongs
to X. Every scalarly integrable function f defines an operator Tf : X∗ → L1(µ)
given by the formula Tf (x∗) = x∗◦f . It is known that if f is Pettis integrable then
Tf is always weakly compact. We say that f is determined by a subspace Y ⊂ X
if for every x∗ ∈ Y ⊥ the equality x∗ ◦ f = 0 holds µ-a.e. (for details concerning
all above notions we refer [103] Chapter 12). Drewnowski noticed that the Pettis
integrability is related to a special type of Banach spaces Y called Corson spaces.
We say that a Banach space Y is a Corson space whenever each family of closed
convex subsets of Y has a nonempty intersection if every its countable subfamily
has nonempty intersection; weakly compactly generated spaces – in particular
reflexive spaces – are Corson. Drewnowski proved in [D47] the following result.

Theorem 1.5. For a scalarly integrable f : S → X such that the operator Tf is
weakly compact the following are equivalent.

(a) f is Pettis integrable.
(b) f is determined by a weakly compactly generated subspace Y ⊂ X.
(c) f is determined by a Corson subspace Y ⊂ X.

Another, more general, characterization of the Pettis integrability is related to
two notions introduced by Drewnowski. The first is called the Corson envelope
X̃ of X, i.e., X̃ =

⋃
Y
∗∗

where the sum runs over all Corson subspaces Y in
X and Y

∗∗
means the σ(X∗∗, X∗)-closure of Y , and the second is said to be

a weak∗∗-core of a scalarly integrable f : S → X, i.e., for A ∈ Σ we define
cor∗∗f (A) =

⋂
{conv∗∗f(A r N) : µ(N) = 0}. It occurs that if f : S → X

is scalarly integrable and the operator Tf is weakly compact, then f is Pettis
integrable whenever cor∗∗f (A) ∩ X̃ 6= ∅ or {(D)

∫
A
f dµ : A ∈ Σ} ⊂ X̃ .

Drewnowski investigated also the whole space of Pettis integrable functions
(see Section 4.2).

1.4. Ranges of measures and Baire category results

Properties of sets m(Σ) where Σ is a σ-algebra of sets and a measure (= σ-additive
set function) m takes values in a topological vector space X (or in a topological
group G) were investigated intensively for many years. Some obtained results
remains valid in more general situations, e.g., for algebras of sets or exhaustive and
additive functions m. The Lapunov convexity theorem opens a long list of papers
devoted to ranges of vector measures. It says (see [88]) that a finite dimensional
vector measure m has compact range and the range is convex for an atomless m.
This fundamental theorem has many different proofs (see [65], [52]) but the most
elegant, using the Krein-Milman theorem, is due to Lindenstrauss (see [90]).

Wnuk modifying Gerencsér’s idea showed in [131] that if every atomless mea-
sure m defined on an arbitrary σ-algebra with values in a metrizable complete
topological vector space X has either convex or closed range, then X is finite
dimensional. There exist a lot of examples of atomless measures with values in
infinite dimensional Banach spaces whose ranges are neither closed nor convex.
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On the other hand m(Σ) is always compact whenever m is purely atomic (and
even if m is group valued) — see [100], [66]. Similarly, m(Σ) is conditionally com-
pact when m is an indefinite Bochner integral with respect to real valued positive
measure µ and moreover m(Σ) is convex for atomless µ (see [128]).

Bartle, Dunford and Schwartz showed in [6] conditional weak compactness of
m(Σ) for a Banach space valued m and later on Tweddle extended this result to
measures with values in a complete locally convex topological vector space (see
[127]). The assumption of local convexity is very important because Turpin con-
structed in [126] a complete metrizable topological vector space XT and a measure
transferring the Lebesgue measurable sets onto an unbounded set in XT . Turpin’s
example is rather curious because, as Drewnowski proved in [D8], m(Σ) is bounded
if m carries Σ into a locally pseudo-convex space X (i.e., the topology of X is gen-
erated by a family of p-homogeneous seminorms with, in general, various p’s). To
be precise we should recall that Drewnowski’s result is more general.

Theorem 1.6. If R is a ring of sets and m : R → G is additive and exhaustive,
then m(R) is additively bounded, i.e., for every neighborhood U of zero there exists
n such that m(R) ⊂ Un (where U1 = U and Un+1 = Un + U).

It is easy to check that a subset A of a topological vector space X is additively
bounded if and only if supa∈A ‖a‖ <∞ for every continuous F-seminorm ‖·‖ on X.
Now it is clear that families of additively bounded and bounded subsets coincide
in a locally pseudo-convex space (in particular, in a locally bounded space). The
space L0(µ) of equivalence classes of real functions measurable with respect to
a finite measure µ considered with the topology of convergence in measure is
a classical example of a non locally bounded space. Hence after publication of
Drewnowski’s result it was natural to ask if L0(µ)-valued measures have bounded
ranges. After long efforts, finally, Talagrand and, independently, Kalton, Peck
and Roberts (see [121], [77]) found a solution in the affirmative. The paper
[D43] contains an essential generalization of the Talagrand-Kalton-Peck-Roberts
result. There was showed that if L0(Z) means the space of all Bochner measurable
functions from a finite measure space (Ω,Σ, µ) to a Banach space Z equipped with
the topology of µ-convergence, then every measure m : Σ→ L0(Z) has a bounded
range.

The use of the Baire category theorem in the measure theory has a long story
(it goes back to S. Saks). A part of this story is a question how “big” (in the Baire
category sense) can be sets of measures possessing a fixed property, e.g., is it typical
that an interior of the range of a measure m is nonempty or the range is convex or
closed? Similarly we can ask how “big” is a family of sets A such that m(A) ∈ Y
where Y is a linear subspace or m(Σ ∩ A) is not relatively compact. Such type
of problems was considered in [3] and [4]. Results obtained by R. Anantharaman
and K.M. Garg inspired papers [D63] and [D89] which content can be, roughly
speaking described as follows (see [D89], p. 103):

“Let X be a topological abelian group or vector space in which ’small’ subsets
has been distinguished, satisfying some mild conditions. For instance, ’small’ may
mean ’finite’, or ’finite dimensional’, or ’precompact’, or ’bounded’. Furthermore,
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let m : Σ → X be a measure with a non-small range. Then, given a small (or
σ-small) set H ⊂ X, we prove that on most of the sets from Σ the values assumed
by m are outside of H. Likewise, the range of m over most of the sets from Σ is
non-small (and even non-σ-small). Here ’most of the sets from Σ’ means that the
class of sets involved is residual . . . ”

As we have already explained a measure (or a submeasure) λ : Σ → [0,∞)
defines a complete semimetric dλ on Σ by dλ(A,B) = λ(A M B) where M is the
symmetric difference. It was shown in [D63] that the following theorem holds.

Theorem 1.7. Let C be a subset of Σ such that

(a) every λ-atom is in C;
(b) if E,F ∈ C are disjoint, then E ∪ F ∈ C;
(c) if E,F ∈ C and E ⊂ F , then F r E ∈ C.

Then:

(i) If C has a nonempty interior in (Σ, dλ), then C = Σ.
(ii) If C is an Fσ-set in (Σ, dλ), then either C = Σ or C is of the first category.

The above theorem allows us to simplify several proofs presented in [3] and
[4] and it has many further applications. For instance, let f be a positive Σ-
measurable function. If f is not λ- essentially bounded (not λ-integrable), then
C = {A ∈ Σ : f is λ − essentially bounded on A} (C = {A ∈ Σ :

∫
A
f dλ < ∞})

is of first category in (Σ, dλ). Consider a measure m : Σ → X (X is a Banach
space) and assume m is λ-absolutely continuous. If the total variation varm is
not σ-finite, then C = {A ∈ Σ : varm is σ − finite on A} is nowhere dense in
(Σ, dλ). Similarly, if m(Σ) is not relatively (norm) compact, then C = {A ∈ Σ :
m(Σ ∩A) is relatively compact} is nowhere dense in (Σ, dλ).

It turned out that considerations presented in [D63] can be generalized and
it was done in [D89]. Assume that H(X) is a class of subsets of a (Hausdorff)
topological vector space X satisfying the following four conditions:

1. H(X) contains finite subsets of X,
2. K ⊂ H ∈ H(X) ⇒ K ∈ H(X),
3. K,H ∈ H(X) ⇒ K ±H ∈ H(X),
4. H ∈ H(X) ⇒ H ∈ H(X).

Basic examples of classes H(X) are the following: finite subsets of X, sets of finite
dimension in X, precompact subsets of X, bounded subsets of X. Let us formulate
two interesting results from [D89].

Theorem 1.8. Suppose that λ is an order continuous submeasure on Σ.

1. Let mn : Σ→ X be measures λ-absolutely continuous and such that mn(Σ) /∈
H(X) for n = 1, 2, . . . . Then, for every sequence (Ln) of sets being a count-
able union of elements from H(X) (resp. a countable union of closed sets
from H(X)), the class {A ∈ Σ : mn(A) /∈ Ln for each n} is residual (resp.
dense and Gδ) in (Σ, dλ).
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2. Let a measure m : Σ→ X be λ-absolutely continuous and such that m(Σ) /∈
H(X). Then the class {A ∈ Σ : m(Σ∩A) ∈ H(X)} has an empty interior in
(Σ, dλ).

One of consequences of the above result is the following

Corollary 1.9. Let mn : Σ → X, (n = 1, 2, . . . ) be measures such that each mn

has infinite range. Then, for any two sequences (xn) and (yn) in X, there exists
A ∈ Σ such that mn(A) 6= xn and mn(S rA) 6= yn for every n.

The Baire category method was also the main tool in [D81] where we can find
extensions and deep analysis of ideas from [4] concerning sets of vector measures
having everywhere infinite total variations or noncompact ranges.

2. Orthogonally additive functionals

One of the first fields of interest of Lech Drewnowski was a description of orthog-
onally additive functionals — the topic he studied already with his Ph. D. tutor
the well-known Polish mathematician Władysław Orlicz. The result turned out to
be striking and still inspire other mathematicians: the papers [D4], [D5], [D6] of
Drewnowski and Orlicz obtained more than 30 citations till now. The newest one
is the paper [17], see also [8] or [87].

Let us consider a finite measure space (Ω,Σ, µ). We say that two elements x, y
in the space of measurable functions L0(µ) are orthogonal x⊥y if x·y = 0 in L0(µ).
A function f : R×Ω→ R is called Carathéodory function if f(r, ·) is µ-measurable
for every fixed r ∈ R and f(·, t) is continuous for µ-a.e. t ∈ Ω. Moreover, a map
ξ : A → R acting on a subset of L0(µ) is called orthogonally additive if and only
if ξ(x + y) = ξ(x) + ξ(y) for every x⊥y. A map ξ : A → R as above is called
continuous if for any sequence (xn) ⊂ A such that xn

µ→ x and there is y ∈ L0(µ)
with |xn|, |x| 6 y, then

ξ(xn)→ ξ(x).

A subset A is called solid if x ∈ A whenever |x| 6 |y| for some y ∈ A.
The main result is the following representation theorem [D4], [D5], [D6]:

Theorem 2.1. Let E be a solid subset closed with respect to addition of orthogonal
elements of the space of measurable functions L0(µ) for some finite measure space
(Ω,Σ, µ).

A map ξ : E → R is orthogonally additive and continuous if and only if

ξ(x) =

∫
Ω

f(x(t), t)µ(dt),

for some Carathéodory function f , f(0, t) = 0 a.e.

There are several generalizations of this result directly or indirectly related to
the above theorem. For instance, for operators T : C(K) → X, X a suitable
Banach space, see [50], [7]. For operators T : Lp(µ,X)→ Y ; X, Y Banach spaces,
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see [98]. For operators on Sobolev spaces T : W p
n [a, b]→ L1[a, b] see [96], [18]. In

[8] the representation of orthogonally additive polynomials on a Banach lattice is
given generalizing several earlier results.

The results above depend on the notion of orthogonality. It is worth mentioning
that there is a related notion in arbitrary Banach spaces. Namely in a real Banach
space X two vectors x, y are called orthogonal x⊥y if and only if

‖x+ λy‖ > ‖x‖ ∀λ ∈ R.

Then Sundaresan in [120] proved the following theorem:

Theorem 2.2. Let X be a Banach space and let Y be a locally convex space and
T : X → Y be continuous. The map T is orthogonally additive if and only if

(a) T is linear whenever X is not isometric to a Hilbert space;
(b) ∃ ξ ∈ Y, ∃G : X → Y linear and continuous such that

T (x) = ‖x‖2ξ +G(x),

whenever X is a Hilbert space.

3. Topological vector spaces

In the late seventies there was a growing interest in non-locally convex spaces. It
appeared several deep results of Kalton, Peck, Roberts on that topic. In that at-
mosphere Drewnowski developed also in Poznań a systematic program of studying
p-Banach and more general non-locally convex F-spaces (i.e., metrizable complete)
to which he attracted a group of his pupils. The programme was loosely connected
to earlier research in Poznań on modular spaces and Orlicz spaces. It was the
time Kalton visited for the first time Poznań to meet Władysław Orlicz and work
with Lech Drewnowski. A little bit later at some conference Kalton was wearing
a T-shirt with a statement “Lp, 0 < p < 1” showing his enthusiasm for the non-
locally convex case — the research programme which was summarized in the mono-
graph [78]. The topic was then very “hot”. The emphasis was put on finding to
which extent the locally convex theory using a lot of duality can be transferred to
the non-locally convex case where the Hahn-Banach theorem fails in general and
so duality tools are not available.

This was the time of a very fast development of Drewnowski’s seminar and time
of a very intensive work of its participants: we meet in the seminar room of the
Poznań branch of the Institute of Mathematics of the Polish Academy of Science
at 9 am and work till 2 pm every Thursday. First, we presented new results (also
own results) and later there were systematic presentations of some topics from
existing books (topics like distributions, martingales, tensor products, Hp spaces
and many more, elements of local theory of Banach spaces, probability methods)
— in the meantime we discussed all the topics including politics which was also
hot (Solidarity movement period). We learn a lot but we have also a lot of fun.
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3.1. Minimal spaces

One of the important contributions of Drewnowski to the theory of non-locally
convex spaces were his papers on minimal spaces. A topological vector space is
minimal if and only if there is no strictly weaker vector Hausdorff topology on
the space. In the locally convex setting these are exactly arbitrary products of
one dimensional spaces. Drewnowski in his paper [D25] introduced the notion of
q-minimal spaces as those for which every Hausdorff quotient is minimal (i.e., there
is no non-trivial weaker vector topology at all). It was discovered among others
by Drewnowski that minimal or q-minimal spaces play in the theory of non-locally
convex F-spaces a role of finite dimensional spaces in the theory of Banach spaces.

As explained in [78] the following results hold:

• (Kalton-Shapiro [80, Th. 3.2]) A non-locally convex F-space is minimal if
and only if it has no basic sequence.

• (Kalton [78, Th. 4.10]) Non-locally convex p-Banach space is q-minimal
if and only if it is atomic, i.e., does not contain a proper closed infinite
dimensional subspace.

The question on the existence of a q-minimal non-locally convex F-space (or
q-minimal non-locally convex topological vector space) is still open. This problem
as well as the problem of existence of an atomic F-space was posed in [107, p. 114].
The first example of a minimal non-locally convex F-space is given in a paper [76]
where the famous method of Gowers and Maurey [58] is used (the same method
was used for obtaining Banach spaces without an unconditional basic sequence).

In [D25] Drewnowski proved that:

Theorem 3.1. Let Z be an F-space. Assume that X, Y are closed subspaces of
Z such that any F-space V isomorphic simultaneously to subspaces of X and Y is
automatically q-minimal. Then X + Y is closed.

The result is a non-locally convex version of the results of Gurarii [62], Rosen-
thal [108] (for Banach spaces) and Diestel and Lohman [24] (for general locally
convex spaces). In fact a kind of “reverse” is also proved [D42]:

Theorem 3.2. Let Y be a separable F-space and X be a non-minimal subspace of
Y with infinite dimensional Y/X. Then there exists Z ⊆ Y , X ∩ Z = {0}, such
that X + Z 6= X + Z = Y .

This is a generalization to the non-locally convex case of the results of Mur-
ray [99] and Mackey [94] (for more references see the introduction [D42]).

The paper [D25] of Drewnowski found some applications. First, it is used in
a paper [9] in the proof of the following result:

Theorem 3.3. Let X be a Fréchet non-Montel space (i.e., it has closed bounded
non-compact sets). If all subspaces of X have the density property then X ⊆ Z×ω,
where Z is a Banach space.
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Let us recall that X has the density property, if every bounded set in the strong
dual X ′ is metrizable — this condition is related to ultraproducts of locally convex
spaces and was used by Bierstedt and Bonet in their study of distinguishedness of
Köthe sequence spaces.

Second application is even more surprising — in fact, some stability results for
basic sequences from the paper [D25] are used in order to prove in [26] that there
exists a quotient X of C∞ such that there is a non-splitting “good” (in the sense
explained in [26]) exact sequence of Fréchet spaces of the form:

0 −−−−→ X −−−−→ Y −−−−→ C∞(Rd) −−−−→ 0.

Operator T : X → Y between Banach spaces is called strictly singular if there
is no infinite dimensional subspace Z of X such that T restricted to Z is an
isomorphism. This class of operators (in fact, an operator ideal) introduced by
Kato is quite important in the theory of operators on Banach spaces. A classical
characterization of strictly singular operators reads as follows: a map T : X → Y
is strictly singular if and only if for every infinite dimensional closed subspace Z of
X there is another closed subspace V ⊂ Z such that T restricted to V is compact
[57, Th. III.2.1]. In the paper [D30] the following generalization to F-spaces is
shown:

Theorem 3.4. Let X, Y be F-spaces, T : X → Y a continuous linear operator.
A map T is not an isomorphism on any non-q-minimal subspace of X if and only
if for every closed subspace Z of X there is a further closed subspace V ⊂ Z such
that T restricted to V is compact.

3.2. Mackey topology

In the paper [D36] Drewnowski together with his pupil M. Nawrocki studied the
so-called Mackey topology for F-spaces. Let us recall that the Mackey topology of
a topological vector space X is the strongest locally convex topology giving the
same dual. In case of F-spaces it is just the strongest locally convex topology
weaker than the original one. In the study of non-locally convex F-spaces it is
important to find the Mackey topology (or its completion called the Mackey hull)
which allows to use the Fréchet space theory. There is a large literature on that
subject for concrete function F-spaces. For instance J. Shapiro in [116] found the
Mackey hull for the Hardy space Hp for 0 < p < 1. Kalton [74] found it for
separable sequence Orlicz spaces `ϕ. In [D36] the Mackey topology was found
in the non-separable case, i.e., for Orlicz functions ϕ without the so-called ∆2-
condition. The result was used later on by Nawrocki [101] in his study of the
Orlicz-Pettis property for Orlicz and other non-locally convex F-spaces.

3.3. Bases

It is an important fact that in a Fréchet space every Schauder basis in the weak
topology is automatically a Schauder basis in the original Fréchet space topol-
ogy (for more general results in locally convex spaces see [69, 14.3.3, 14.3.4]). It
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was first observed by Stiles [117] that this result fails in some non-locally convex
F-spaces like `p, 0 < p < 1 (more examples was found by Shapiro [115]). Drewnow-
ski proved in [D29] the following striking result:

Theorem 3.5. Every non-locally convex F-space X which has a basis in the weak
topology contains also a sequence which is a basis in the weak topology but not in
the F-space topology.

We say that a sequence (xn)n∈N is topologically independent if for any sequence
of real scalars (λn)n∈N the equality

∑∞
n=0 λnxn = 0 implies that λn = 0 for every

n ∈ N. A topologically independent sequence is called a quasi-basis for a real
topological vector spaceX whenever it is linearly dense inX. In [D35] Drewnowski
and his coauthors showed how to construct quasi-basis from an arbitrary countable,
linearly dense linearly independent sequence. In particular, they proved:

Theorem 3.6. Every separable topological vector space has a quasi-basis.

3.4. Locally balanced topological groups

In [D79] Drewnowski obtained a very easy proof of several results on the so-called
Nevanlinna class, i.e., a family of holomorphic functions on the unit disc satisfying

‖f‖0 := lim
r→1

∫ π

−π
log+ |f(reit)|dt <∞

with the 0-neighborhood basis of its group topology given by balls with respect to
‖·‖0. The Smirnov class is a subclass of the Nevanlinna class consisting of functions
for which integrals above are uniformly integrable for all r ∈ (0, 1). Drewnowski
just look at the Nevanlinna class as a general topological group with balanced basis
of neighborhoods of zero. This abstract approach allows him to prove easily the
result of Shapiro and Shields that the Smirnov class N+ is the largest topological
vector subspace of the Nevanlinna class N . The result of Yanagihara that N+

is not locally bounded is provided with an easy proof. He also proved that no
“reasonable” complete metrizable vector topology exists on N . This approach
allows to get similar results in the several variable case as well, comp. [102] and
for other classes see [64].

3.5. Descriptive set theory and continuity

The paper [D104] was inspired by the earlier work [82], where the authors asked
the following question.

Problem 3.7. Let X be a separable Fréchet space covered by a family (Kα : α ∈
NN) of its compact subsets with Kα ⊆ Kβ whenever α 6 β pointwisely. Is it then
possible to find a linear functional f on X that is continuous on each of the sets
Kα, and yet is discontinuous on X?
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The paper [D104] is very characteristic for the work of Lech Drewnowski: the
author looked at the problem in a very systematic way and then using simple but
very effective tools he solved it completely, by far in a more general setting than
one could expect. In this case he showed that:

Theorem 3.8. Let X be an arbitrary F-space (so not necessarily locally convex and
not necessarily separable) covered by a family (Eα : α ∈ NN) (a so-called resolution)
of its arbitrary (not necessarily compact) subsets with Eα ⊆ Eβ whenever α 6 β
pointwisely. Then for arbitrary linear topological vector space Y every linear map
T : X → Y that is continuous on each of the sets Eα is automatically continuous
on X.

The proof is a beautiful mathematical gem: the author first prove that T has
a closed kernel and then he applies it to the map G : X × Y → Y , G(x, y) =
y−T (x), and the resolution (Eα×Y ) of (X ×Y ). The kernel of G is equal to the
graph of T . Closed graph theorem does the work since without loss of generality
we may assume that Y is an F-space as well.

In fact in [82] the problem was already solved in the negative if all Kα are
absolutely convex. This led Ka̧kol to suspect that might be if K is a compact set
in a Fréchet space X and a linear functional f on X is continuous on K then it
must be continuous on the absolute convex closed hull acoK of K. It is easy to
show that in general the answer is no, but Drewnowski showed that the answer is
yes whenever acoK is contained in the linear span of K.

3.6. Measures with values in topological Riesz spaces

Suppose that Σ denotes a σ-algebra of subsets of a set S. If E is a vector lattice,
then a family of additive set functions m : Σ→ E is an ordered linear space with
respect to the natural partial order m1 6 m2 ⇔ m1(A) 6 m2(A) for all A ∈ Σ.
By an absolute majorant for m we mean an additive set function γ : Σ→ E+ such
that ±m 6 γ (E+ is the positive cone in E). The smallest absolute majorant for
m, if exists, is called the modulus of m and denoted |m|. It is easily seen that if E
is Dedekind complete and m : Σ→ E has order bounded range, then the modulus
|m| exists and is given by each of the equalities:

|m|(A) = sup
{∑
D∈π
|m(D)| : π ∈ Π(A)

}
= sup{m(B)−m(ArB) : B ⊂ A}

= sup{m(B)−m(C) : B,C ⊂ A} = sup{|m(B)−m(C)| : B,C ⊂ A}

where Π(A) stands for all Σ-partitions of A. Moreover, whenever the above formu-
las make sense for each A, they define a set function which is precisely the modulus
of m. When this is the case, we will say that the modulus |m| exists properly, or
that m has a proper modulus. It is still an open question whether a measure with
the order bounded range may have a non-proper modulus.



On the work of Lech Drewnowski 21

In [60], [86], [112] and [114] the following natural problems were raised and
investigated: conditions providing existence of the modulus, a form of the modulus,
what properties of m are inherited by |m|. These problems were attacked in [D94]
and [D102]. Clearly order boundedness of a range is a necessary condition for
existence of the modulus but this condition is not sufficient. In [D102] one can find
an example of a measure with values in c (i.e., in the Banach lattice of convergent
sequences) that has no absolute majorant. The paper [D94] shows that if m is
the indefinite Bochner integral of a function f with respect to a signed measure
ν : Σ → R, then the modulus |m| exists properly and |m|(A) = (B)

∫
A
|f | d |ν|

where |f |(s) = |f(s)| and |ν| is the total variation of ν. As it was proved in [D94]
similar result holds for the indefinite Pettis integral. We cannot expect full analogy
because for every Banach lattice E not order isomorphic to a (closed) sublattice
in some C(K) there exists a Pettis integrable function f : N→ E whose indefinite
Pettis integral is not order bounded (see [D94] Remark 4). A worse situation may
happen – there exists a Pettis integrable function whose modulus is not weakly
measurable (a suitable example, due Fremlin, is also presented in [D94]). However
the following result is true.

Theorem 3.9. Let m be the indefinite Pettis integral of a strongly measurable
function f with respect to a positive measure ν. Then the following statements are
equivalent:

(a) |m| exists properly and is σ-additive.
(b) |m| exists and is σ-additive.
(c) |f | is Pettis integrable.
(d) |f | is Pettis integrable and its indefinite Pettis integral is the modulus of m.
(e) The series

∑
n |(P)

∫
An

f d ν| converges for every disjoint sequence (An)
in Σ.

If these conditions hold, then |m|(A) = supB (B)
∫
A∩B |f | d ν where B runs over

the family of sets on which f is Bochner integrable.

It is a non trivial work to find a measure whose modulus is not a measure (i.e.,
it is not σ-additive) First example was constructed by G. Groenewegen (see [60])
and the next one was shown in [D94]. An essential part of [D102] is devoted to an
analysis of the so-called property (S) (which was introduced by G. Groenewegen,
compare [60] and [61]). The property allows to activate a machinery producing
a lot of examples of measures whose modulus exists and is not σ-additive. Let us
recall that a Banach lattice E has the property (S) if for every subseries conver-
gent series

∑
n xn with order bounded set {

∑
n∈M xn : M ⊂ N finite}, the series∑

n |xn| is convergent. C(K)-spaces and Banach lattices with order continuous
norms are typical examples of spaces with the property (S) while nonseparable
Orlicz spaces Lϕ[0, 1] have not the property. The machinery mentioned above is
described in [D102]:

Theorem 3.10. Let E be a σ-Dedekind complete Banach lattice without prop-
erty (S). If the σ-algebra Σ admits an atomless probability measure, then there
exists an atomless measure m : Σ→ E with a non-σ-additive proper modulus.
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Papers [112] and [114] contain conditions providing σ-additivity of the modulus
(but these sufficient conditions can be used only for particular classes of Banach
lattices). Some necessary and sufficient conditions for σ-additivity of |m| were
obtained in [D102]. One of them is the following.

Theorem 3.11. Let E a topological Riesz space (= a locally solid Riesz space
in the terminology of [2]) have a basis of neighborhoods of zero consisting of solid
order closed sets. If a measure m : Σ→ E has a proper modulus |m|, then |m| is
a measure if and only if m is absolutely exhaustive (i.e. for every disjoint sequence
(Aj) the series

∑
j |m(Aj)| is Cauchy ).

3.7. Structure of topological Riesz spaces

Inspired by some results of Lavric̆ (see [89]) Drewnowski investigated in [D100]
F-lattices (= metrizable complete topological Riesz spaces) E that have the prop-
erty (λ): every nondecreasing function f : [0, 1]→ E has at most countably many
points of discontinuity. He simplified and shortened Lavric̆ construction of an in-
creasing function f : [0, 1] → `∞ without any points of continuity and, applying
this construction, extended two Lavric̆’s results: a characterization of order conti-
nuity as well as a relationship between separability and the property (λ). Namely,
he showed that in the class of σ-Dedekind complete F-lattices (E, ‖ · ‖) the (λ)
property is just equivalent to the order continuity of ‖ · ‖ and every separable
F-lattice has the property (λ). Moreover, Drewnowski found a negative answer
to Lavric̆’s question: if every Banach lattice E which contains no order copy of
`∞ must have the property (λ). It turns out that the space of those functions
f : [0, 1]→ R that are continuous from the left, continuous from the right at zero,
and the right-hand limit f(t+) exists for each t ∈ [0, 1) forms a Banach lattice with
respect to the sup norm which does not contain any order copy of `∞ and has no
property (λ). It was also obtained in [D100] that the property (λ) is inherited from
E onto spaces of vector valued functions Lp(µ,E) (for arbitrary µ and p ∈ [1,∞))
and C(K,E) for some special compact sets K (e.g., Eberlein compacts).

One of the most important classes of topological Riesz spaces (E, τ) are spaces
with the order (respectively, σ-order) continuous topologies τ , i.e., nets (respec-
tively sequences) of positive elements decreasing to zero are τ -convergent to zero.
These two classes are different — the quotient norm topology in `∞/c0 is σ-order
continuous but not order continuous. There exists around two hundred various
characterizations of Banach lattices whose norm topology is order continuous (see
[97] and [132]). One of the main characterization is due to G.J. Lozanovskii and
it says that a σ-Dedekind complete Banach lattice E has order continuous norm
topology if and only if E contains no order copy of `∞ and if and only if E contains
no isomorphic (= linearly homeomorphic) copy of `∞. Similar situation holds with
copies of c0 – a Banach lattice E does not contain any order copy of c0 if and only
if E does not contain any isomorphic copy of c0 if and only if E is a KB-space
(i.e., bounded increasing nets of positive elements are convergent).
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Paper [D93] contains important extensions of the above equivalences to a broad
class of topological Riesz spaces X of λ-measurable functions satisfying some com-
pleteness type assumptions. A space X considered in [D93] is equipped with
a Hausdorff locally solid topology, and it forms an order ideal in the Riesz space
L0(λ) of λ-equivalence classes of measurable scalar functions where λ is a semi-
finite measure. A theory of topological vector spaces of Bochner measurable func-
tions L(η,E) was developed in [D101]. The theory is sufficiently general to include
topological Riesz spaces of measurable functions as a particular case because there
are considered functions which are almost everywhere limits of simple functions
with values in an F-space E and equality almost everywhere is taken with respect
to a special type of a submeasure η. The main parts of [D101] are devoted to
investigations of these properties of spaces L(η,E) which are related to the order
continuity of their topology, to a counterpart of KB-spaces, and to the topological
completeness.

It is also worth to quote a characterization of σ-order continuity formulated in
[D102]:

Theorem 3.12. A σ-Dedekind complete topological Riesz space E has σ-order
continuous topology if and only if order bounded monotone Cauchy sequences are
convergent and there is no positive linear isomorphic embedding of the Banach
lattice c of convergent scalar sequences into E.

It is interesting that the phrase “E contains no positive copy of c” cannot be
replaced with “E contains no order isomorphic copy of c”.

The paper [D112] contains studies of F-lattices that are curious from many
points of view. Namely it was constructed an F-lattice λ0 consisting of sequences
and its separable order ideal λ00 such that (see [D112] 15. Conclusion):

(a) λ0 and λ00 are quasi-L0-like, i.e., for every neighborhood U of zero in λ0

(resp. in λ00) there exists a finite-codimensional subspace L in λ0 (resp. in
λ00) and a natural number m such that L ⊂ U + · · · + U (m summands).
In particular the spaces are not locally pseudo-convex, and their duals are
poor.

(b) Every infinite-dimensional locally bounded closed subspace of λ00 contains
a copy of c0 that is extendable to a copy of `∞ in λ0, and λ00 is not com-
plemented in λ0.

(c) The quotient λ0/λ00 is such that for every neighborhood U there is anm ∈ N
such that λ0/λ00 ⊂ U + · · ·+U (m-summands) and contains copy of `∞/c0.

(d) λ0 contains a copy of the space `p for each p ∈ (0, 2].
(e) λ00 contains a closed Schwartz subspace of infinite dimension that is non-

isomorphic to RN.
(f) λ0 and λ0/λ00 have the bounded multiplier property (i.e., if a series

∑
n xn

is unconditionally convergent, then
∑
n tnxn converges for every bounded

sequence (tn) of scalars).

It is well known that the algebraic sum of two closed linear subspaces in a Ba-
nach space need not be closed. A situation is even worse because, as G.W. Mackey
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showed in [93], if Y is a closed linear subspace of infinite dimension and infinite
codimension in a Banach space X then there exists a closed linear subspace G ⊂ X
such that Y ∩ G = {0} and Y + G 6= Y +G. On the other hand H.P. Lotz, and
independently E.B. Davies, proved (see [92], [21]) that if F1, F2 are closed ideals
in a Banach lattice then F1 + F2 is closed. The quoted statement remains true
in the class of F-lattices (see [97] the proof of Proposition 1.2.2). The assumption
of a (topological) completeness is crucial because in [133] there was constructed
a normed lattice and a closed ideal I in it such that I + Id is not closed (Id is the
orthogonal complement of I and so it is possible that the algebraic sum of a band
and a closed ideal is not closed). The paper [D115] contains a nice generalization
of the Lotz-Davies result:

Theorem 3.13. Let E be an F-lattice, and let (Iγ)γ∈Γ be a family of closed ideals
in E. Define I =

∑
γ∈Γ Iγ to be the set of all elements z ∈ E that are of the form

z =
∑∞
n=1 xn, where xn ∈ Iγn for every n, and (γn) is a sequence in Γ. Then I

is the smallest closed ideal in E that contains all the ideals Iγ . Moreover, every
element z ∈ E can be represented so that also the series

∑∞
n=1 |xn| converges in E.

3.8. The Orlicz-Pettis type theorems

Classical Orlicz-Pettis theorem says that if a series
∑
n xn in a normed space X

is weakly subseries convergent, then it is norm subseries (and so unconditionally)
convergent. This can be reformulated in the following equivalent form: if an
additive set function m mapping a σ-algebra into X is weakly countably additive
(i.e., x∗ ◦m is countably additive for each x∗ ∈ X∗), then m is norm countably
additive (clearly it is enough to consider only one σ-algebra, namely the family P =
P(N), i.e., the power set of N). The Orlicz-Pettis theorem has been a subject of
many investigations leading to various generalizations (there exists several surveys
discussing progress in these investigations, e.g., [75], [46], [D96]). Drewnowski
joined to this trend of research and obtained a lot of valuable results. He gave
simpler, more direct proofs of two Kalton’s theorems ([72]) concerning group valued
set functions ([D13],[D18]):

Theorem 3.14. Let α, β be two Hausdorff group topologies on an abelian group
G and suppose m : P → G is α-countably additive.

(a) If β has a base of sequentially α-closed neighborhoods of 0 and m(P) is
β-separable, then m is β-countably additive.

(b) The condition α 6 β implies that m is β-countably additive if and only if
m(P) is β-separable and the topology induced by β on m(P) is metrizable
by a complete metric.

It was shown in [D18] that Kalton-Drewnowski theorems can be extended to
exhaustive additive set functions. It turns out that the Orlicz-Pettis type theorem
works in some spaces X of measurable functions, i.e., X, equipped with suitable
Hausdorff locally solid topologies, are order ideals in the Riesz space of all (equiv-
alence classes of) measurable functions with respect to a semi-finite measure λ.
Indeed, the paper [D93] contains the following result.
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Theorem. If τ is σ-order continuous and m : P → X is σ-additive (exhaus-
tive) with respect to the topology of convergence in measure λ on all sets of finite
measure, then it is also τ -countably additive (exhaustive).

An extension of the above theorem to spaces L(η,E) of vector-valued Bochner
measurable functions (mentioned in the Section 3.7) was obtained in [D101].
It is worth to recall a surprising version of the Orlicz-Pettis theorem for general
topological Riesz spaces obtained in [D92]:

Theorem 3.15. If an additive set function m maps P into a Riesz space E and m
is countably additive (exhaustive) with respect to some Hausdorff order continuous
topology on E, then it is countably additive (exhaustive) with respect to every
Hausdorff order continuous topology on E.

3.9. Series in topological vector spaces

Drewnowski’s investigations devoted to vector series referred to natural classical
problems concerning various types of convergence (e.g., subseries convergence)
and maps preserving convergence or transferring one type of series to another
(e.g., convergent series to series whose set of partial sums is bounded). In an early
paper [D16] he considered the set P of all permutations on N endowed with the
topology of pointwise convergence on N and proved two facts: P is of the second
Baire category (but it is not complete) and if (xn) is a sequence in a sequentially
complete topological vector space (or more generally in a sequentially complete
topological group), then the set {p ∈ P :

∑∞
n=1 xp(n) converges} as well as the set

{p ∈ P : the sequence (
∑k
n=1 xp(n))

∞
k=1 is bounded} is either identical with P or

of the first category. Many years latter Drewnowski came back to this topic but he
investigated it in broader and more general context (see [D103]). Namely, every
map % of N into itself induces a transformation of a sequence (xn) (of scalars or
vectors) and the corresponding series

∑
n xn to the sequence (x%(n)) and the (for-

mal) series
∑
n x%(n). A number of authors have been interested in characterizing

functions % that the following conditions are satisfied:

(bb) if the set of partial sums of a series
∑
n xn is bounded, then the same holds

for the series
∑
n x%(n),

(cb) if
∑
n xn converges, then the set of partial sums of the series

∑
n x%(n) is

bounded,
(cc) if

∑
n xn converges, then

∑
n x%(n) is also convergent.

It is shown in [D103] how one can apply elementary methods of functional analysis
to cope with problems formulated above. This approach was used to prove that for
series in arbitrary topological vector space properties (bb), (cb), (cc) are mutually
equivalent for an arbitrary % and additionally equivalent to an intrinsic property
of %. Moreover, similar relationships hold for more general transformations of∑
n xn onto

∑
n T%(n)(x%(n)) where (Tn) is a sequence of some continuous and

linear operators.
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A subject of two papers mentioned above was also developed in [D99]. For
broad classes of (Hausdorff) topological vector spaces X and Y there are given
complete characterizations of those maps f : X → Y for which the induced
transformation of series

∑
n xn →

∑
n f(xn) preserve properties such as conver-

gence, boundedness of the set of partial sums, absolute convergence and uncondi-
tional convergence. A special part is played by locally additive maps f , i.e., there
exists a neighborhood U of zero in X such that f(u+ v) = f(u) + f(v) whenever
u, v ∈ U . It is interesting that every continuous at zero locally additive f : X → Y
is uniquely determined by a continuous R-linear operator T : X → Y , i.e., f and T
coincide in a neighborhood of zero in X (this observation was also made in [D99]).
It turns out (see [D99] Theorem 1) that:

Theorem 3.16. For a metrizable topological vector space X and a topological
vector space Y which has no subspace isomorphic to the countable product of one
dimensional spaces, the following statements are equivalent.

(a) A function f : X → Y is continuous at zero and locally additive.
(b) f sends convergent series in X to convergent series in Y .

Maps preserving absolute convergence are characterized in the following way
([D99] Theorem 3).

Theorem 3.17. A map f between F-normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y )
sends absolutely convergent series to absolutely convergent series if and only if
there exists a constant K such that ‖f(x)‖Y 6 K‖x‖X in a neighborhood of zero
in X.

A description of functions preserving unconditional convergence is more com-
plicated. Namely (see [D99] Theorem 7):

Theorem 3.18. For a function f mapping an F-space (X, ‖ · ‖X) into a normed
space (Y, ‖ · ‖Y ) the following are equivalent.

(a) f sends unconditionally Cauchy series to unconditionally Cauchy series.
(b) f sends unconditionally Cauchy series to series with bounded set of all par-

tial sums.
(c) There are constants c and K such that∥∥∥∥∥

n∑
i=1

f(xi)

∥∥∥∥∥
Y

6 K maxF⊂{1,...,n}

∥∥∥∥∥∑
k∈F

xk

∥∥∥∥∥
X

whenever maxF⊂{1,...,n} ‖
∑
k∈F xk‖X 6 c.

Drewnowski studied also rare subseries, i.e., lacunary and zero-density sub-
series. This area of research goes back to a 1930 result due to H. Auerbach: a scalar
series is absolutely convergent if all its zero-density subseries converge. Let us re-
call that a subseries

∑
k xnk of a given series

∑
n xn in a topological vector space

is zero-density (resp. lacunary) if limk→∞ k/nk = 0 (resp. nk+1 − nk −−−−→
k→∞

∞).



On the work of Lech Drewnowski 27

In [D95] there were investigated topological vector spaces with the lacunary con-
vergence property (= if each lacunary subseries of a series

∑
n xn is convergent,

then
∑
n xn converges) and with the zero-density convergence property (which is

defined analogously: if each zero density subseries of a series
∑
n xn is conver-

gent, then
∑
n xn converges). It was already known from [D91] that the space

L0(λ) (the space of all equivalence classes of measurable functions with respect to
a measure λ) with the topology of convergence in measure and finite λ has the
lacunary convergence property (this fact was also proved, in a simpler manner, in
[D97] and was generalized to semi-finite λ’s providing some completeness property
of L0(λ)). The most difficult result of [D95] is that if a Banach space E contains
no copy of c0 and λ is finite, then the space L0(λ,E) of Bochner measurable func-
tions has the lacunary convergence property. The same holds in a more general
situation, i.e., for some vast class of spaces continuously included in L0(λ,E) (see
[D95] Theorems 10.3 and 10.4).

An absence of a copy of c0 is necessary for the lacunary convergence property
and sometimes a lack of c0 is also sufficient for the property. Indeed, as it was no-
ticed in [D95] for sequentially complete locally pseudo-convex spaces the lacunary
convergence property as well as the zero-density convergence property are equiv-
alent to the condition that a space contains no isomorphic copy of c0. However
an F-space was constructed that contains no copy of c0 but lacks the lacunary
convergence property. Another example presented there shows that in general the
zero-density convergence property ; lacunary convergence property. Another in-
teresting observation made in [D95] is the following: if every lacunary subseries
of a series

∑
n xn converges than the set {

∑
n∈F xn : F ⊂ N is finite} need not

be bounded but it is always additively bounded, i.e., for every neighborhood U of
zero the set of finite sums is included in Um = U + · · ·+ U where the number m
of summands depends on U .

4. Barreledness for non-complete spaces

Drewnowski’s interest in barreledness was born in early nineties along to his col-
laboration with Sevilla group especially with Pedro Paúl. The root seems to go
back to his interest in the Nikodým Boundedness Theorem already in seventies (see
Section 1.1 above). Let us recall that the theorem says that for every σ-algebra Σ
of sets every family of bounded finitely additive scalar set functions on Σ which
is pointwisely bounded is automatically uniformly bounded on Σ. This, of course,
reminds the famous Principle of Uniform Boundedness of Banach and Steinhaus
for linear operators on Banach spaces or F-spaces. In fact, the class of barrelled
spaces is a “good” class of domain spaces for the Principle to hold (the same is
true for the Closed Graph Theorem). Let us recall that the locally convex space
E is barreled if every pointwisely bounded set of continuous functionals on E is
equicontinuous. Coming back to Nikodým Theorem, we call rings of sets Σ for
which the Nikodým Boundedness Theorem holds to have Nikodým Property and
as shown by Schachermayer [111] this is equivalent with barreledness of the space
S(Σ) of Σ-simple functions with the sup-norm.



28 Paweł Domański, Witold Wnuk

Already in seventies and eighties there was a huge literature on barreledness.
Several authors tried to find some weaker or stronger versions of barreledness re-
lated to weaker or stronger versions of the Principle of Uniform Boundedness and
they compared these properties as well as various versions of Baire property (cru-
cial in the proof of barrelledness/Banach-Steinhaus Theorem). These efforts are
well documented in the literature (see the monographs of Jarchow [69] or Perrez-
Carreras and Bonet [104]). Drewnowski went in a completely other direction: the
Principle of Uniform Boundedness is so useful that he wanted to know which spaces
satisfy the Principle as it is even though they are not complete — like spaces of
simple (vector-valued) functions or spaces of Pettis integrable functions. For a rel-
atively new survey on the Nikodým property and barreledness of spaces of simple
and measurable functions see [44].

4.1. Nikodým property

The first result in this area we have to mention is Drewnowski’s vector valued
version of Nikodým Boundedness Theorem [D11]:

Theorem 4.1. Let Σ be a σ-ring of sets, let X be a barreled locally convex space
and letM be a family of additive X-valued set functions on Σ with bounded range.
If the familyM is pointwise bounded then it is uniformly bounded on Σ.

A generalization of Drewnowski’s theorem is proved in [83].
In [D78] Drewnowski with his coauthors proved that the ring Z of density zero

subsets of integers has the Nikodým property. Let us recall that the set A ⊂ N
has density zero if

d(A) := lim sup
n→∞

card{k ∈ A : k 6 n}
n

= 0.

One can generalize the density taking instead of the fraction above the sum∑
j tnjχA(j), where T = (tnj) is the non-negative matrix and χA denotes the

characteristic function of the set A. In [D98] the authors proved that the ring ZT
of sets with the above generalized density zero has the Nikodým property if and
only if it has the absolute summability property, i.e., for every sequence (xn)n∈N
of complex scalars the convergence of subseries

∑
n∈A xn for each A ∈ ZT implies

that
∑∞
n=1 |xn| < ∞. This gives a surprising connection between the Nikodým

boundedness circle of ideas and the Orlicz–Pettis type series convergence prob-
lems. This ideas were developed further in a series of papers of Boos and Leiger
[13], [14], where the connection with the so-called Hahn property is discovered.
More classes of rings with the Nikodým property are found in [D83]. For other
sufficient conditions see [118], [119] and the survey [44] . Let us note that the
characterization of rings with the Nikodým property is not known.

As we mentioned, a ring Σ has the Nikodým property if and only if the space
S(Σ) is barreled. In [D27] Drewnowski with his coauthors proved that if Σ is an
infinite algebra then S(Σ) is never ultrabornological (a property of domains D
which gives for many range spaces R the Closed Graph Theorem for operators
T : D → R).
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4.2. Barreledness of spaces of vector valued functions

It seems that the first space where Drewnowski and his collaborators want to study
barreledness was the space of Pettis integrable functions.

Let us recall that the space of Pettis integrable functions f : Ω → X, X
a normed space, over a measure space (Ω,Σ, µ) consists of functions f for which
the map t 7→ 〈x′, f(t)〉 is an integrable function for every x′ ∈ X ′ and for every
measurable set A ∈ Σ there is x ∈ X such that

〈x′, x〉 =

∫
A

〈x′, f(t)〉dµ(t) for every x′ ∈ X ′,

of course, the functions g, f such that x′ ◦ f = x′ ◦ g µ-a.e. for any x′ ∈ X ′ are
identified. The space of Pettis integrable functions is denoted by P(µ,X) and it
is equipped with the norm:

‖f‖ := sup

{∫
Ω

|〈x′, f(t)〉|dµ(t) : x′ ∈ X ′, ‖x′‖ 6 1

}
.

Clearly, completeness of a normed space implies barreledness. Unfortunately, as
shown by Pettis [105] (for infinite dimensional Hilbert spaceX) and independently,
by Thomas [124] and Janicka and Kalton [68] (for arbitrary infinite dimensional
Banach space X) the space of Pettis integrable functions is never complete. Never-
theless, the three collaborating authors proved in [D68] (another proof is contained
in [D70]) the following theorem:

Theorem 4.2. The space P(µ,X) is barreled for every Banach space X and every
measure µ.

Moreover, as it was proved in [D81] (p. 9 and Theorem 5.6), the space P(µ,X)
is never ultrabarrelled if µ is atomless, and additionally P(µ,X), for a separableX,
is an Fσ,δ- but not Fσ-set in the space of µ-continuous measures on Σ.

The above result as well as further results on barreledness of spaces of simple
functions was a motivation for further search of natural non-complete normed
spaces which are barreled. The taste of results they obtained is given by the
following one (see [D69]). First let us recall that if (Ω,Σ, µ) is a finite measure
space, Λ a complete, solid locally convex lattice of scalar measurable functions
defined on Ω, and X a normed space then we define the space Λ(X) of strongly
measurable functions f : Ω→ X such that ‖f(·)‖ ∈ Λ.

Theorem 4.3. If Λ is order-continuous and barreled and the measure is atomless,
then Λ(X) is barreled even for a non-barreled space X. If Λ is quasibarreled, then
so is Λ(X).

Freniche [49] proved that the space of vector valued simple functions S(Σ, X)
for infinite algebra of sets Σ is barreled if and only if both X and S(Σ) are barreled
and X is nuclear. Drewnowski and his coauthors [D72] prove the analogue of
this result for the space S(µ,X) for a finitely additive positive set function µ,
where we identify functions µ-equal a.e. They also proved that S(µ,X) is not
ultrabornological.
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Finally, they showed [D80] that:

Theorem 4.4. Let Ω be a set and X a barreled normed space. If card Ω or
cardX is nonmeasurable, then the space of bounded X-valued functions `∞(Ω, X)
is barrelled.

Let us note that continuing this line of research Ferrando and Lüdkovsky proved
[43] that the space c0(Ω, X) of vanishing at infinity functions on an arbitrary set
Ω with values in a locally convex space X is barreled if and only if X is barreled.
Similar results for other subspaces of `∞(Ω, X) are found in [45].

4.3. Boolean algebras of projections

Drewnowski with his collaborators from Sevilla developed a method of proving
barreledness via constructing of a good Boolean algebra of projections. Let us
recall that for a ring of sets Σ the family of linear continuous projections (PS)S∈Σ

on a locally convex space X is called a Boolean ring of projections if PS1∪S2 =
PS1 +PS2 and PS1∩S2 = PS1 ◦PS2 . In particular, in [D68] barreledness of the space
of Pettis integrable functions is proved by applying the following result:

Theorem 4.5. Let a locally convex space X admit a Boolean algebra of projections
(PS)S∈Σ where (Ω,Σ, µ) is a measure space with Σ a σ-algebra, µ a σ-additive
atomless measure, such that

1. for every x ∈ X holds limµ(S)→0 PS(x) = 0;
2. for every family of pairwise disjoint sets (Sn) ⊂ Σ whenever P (Sn)(xn) =
xn for every n ∈ N then (xn)n∈N contains a subsequence which produces
a convergent series.

If X is quasibarreled then it is barreled.

In [D73] a similar methods were applied to a larger variety of spaces. In [D78]
another result of a similar spirit was proved:

Theorem 4.6. Let X be a barreled locally convex space with an equicontinuous
ring of projections (PS)S∈Σ, where the ring of sets Σ has the Nikodým property.
Then also the subspace Σ(X) :=

⋃
S∈Σ PS(X) of X is barreled.

A survey of this ideas is presented in [D87]. Another approach to prove bar-
reledness was developed in [D70].

4.4. Other results

In a [22] De Wilde and Tsirulnikov have shown that if Y is a dense barrelled sub-
space of a B-complete locally convex space X, then there is an order-reversing
correspondence between the closed subspaces M of Xtransversal to Y (i.e. sat-
isfying M ∩ Y = {0} ) and the weaker barreled topologies on Y . In the paper
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[D39] this result was generalized to topological vector spaces (i.e., local convexity
was removed). In the paper [D37] Drewnowski solved in the negative the follwing
problem posed in the paper [22]:

Problem 4.7. Suppose Y is a dense barrelled subspace of uncountable codimension
in a Banach space X. Does there always exist an infinite dimensional closed
subspace M of X transversal to Y ?

5. Spaces of operators

Again in nineties Drewnowski worked intensively on various properties of spaces
of vector valued measures (like ba(Σ, X) the space of finitely additive bounded
X-valued set functions on a σ-algebra Σ, its subspace ca(Σ, X) of countable ad-
ditive elements (i.e., measures) and a further subspace of countable additive mea-
sures with compact range cca(Σ, X)), spaces of vector valued continuous functions
(like the space C(K,X) of continuous X-valued functions and its superspaces
C(K,X,w) of weakly continuous functions f : K → X and C(K,X ′, w∗) the
space of weak∗ continuous functions — all of them equipped with the topology of
uniform convergence), spaces of operators (like the space of all linear continuous
operators L(X,Y ) and of compact operatorsK(X,Y ) — all of them equipped with
the topology of uniform convergence on bounded sets). All these topics can be
unified in the language of tensor products, more precisely ε-product of Schwartz.

Let us recall that for any Banach spaces X, Y its ε-product of Schwartz is
by definition the space Kw∗(X

′, Y ) of compact weak∗-weak continuous linear op-
erators T : X ′ → Y . It is naturally contained in the space Lw∗(X ′, Y ) of all
weak∗-weak continuous operators T : X ′ → Y . Let us observe that the space
of compact operators K(X,Y ) can be naturally identified with Kw∗(X

′′, Y ) while
the space of weakly compact operatorsW (X,Y ) identifies with Lw∗(X ′′, Y ). Simi-
larly, ca(Σ, X) is isomorphic to Lw∗(X ′, ca(Σ)) ∼= Lw∗(ca(Σ)′, X) while cca(Σ, X)
is isomorphic to Kw∗(X

′, ca(Σ)) = Kw∗(ca(Σ)′, X). Finally, it is known that
C(K,X ′, w∗), C(K,X ′, w) and C(K,X ′) are naturally isomorphic to spaces
L(X,C(K)),W (X,C(K)) = Lw∗(X

′′, C(K)) andK(X,C(K)) = Kw∗(X
′′, C(K)),

respectively.
There are three main types of results Drewnowski obtained for the above kind

of spaces. First, he studied the so-called Gelfand-Phillips property connected with
the Josefson-Nissenzweig theorem. Then he asked when the spaces in question
contain isomorphic copies of c0 and `∞ — here again the Josefson-Nissenzweig
theorem is a tool for producing a copy of c0 and Rosenthal’s theorem becomes a tool
to produce a copy of `∞ out of an existing copy of c0. Finally, Drewnowski asked
if one of the considered spaces is complemented in the bigger one (a prototypic
question is if K(X,Y ) can be complemented in L(X,Y )) and the main tool to
contradict complementation is to produce a complemented copy of c0 in the smaller
space such that it extends to a copy of `∞ in the bigger space via a variant
of the Rosenthal theorem (of course, c0 is never complemented in `∞). This
considerations also lead to results about injectivity of studied spaces.
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5.1. Gelfand-Phillips property

Let us recall that a subset A in a Banach space X is called limited if for every
weak-star null sequence (x∗n) ⊆ E′ holds

x∗n(x)→ 0 uniformly on A.

A Banach space X has the Gelfand-Phillips property if every limited subset of X
is relatively compact. The limited sets are related to one of the very few deep
results true for all infinite dimensional Banach spaces:

Theorem 5.1. (Josefson-Nissenzweig 1975 [23, Ch. XII]) The unit ball in an
infinite dimensional Banach space is never limited.

Later the result was generalized to arbitrary Fréchet spaces by Bonet, Lind-
ström and Valdivia [12]: they showed that a Fréchet space contains bounded non-
limited sets if and only if it is not Montel (i.e., there are bounded non-relatively
compact sets in the space).

The Gelfand-Phillips property was studied by Bourgain and Diestel in early
eighties [16] and it still attracts some attention (see the following papers citing the
results of Drewnowski [15], [55], [48], [70], [71]).

Drewnowski [D46] proved:

Theorem 5.2. Let X and Y be Banach spaces. If X and Y have the Gelfand-
Phillips property then the completed injective tensor product X⊗̃εY has the Gelfand-
Phillips property. If X ′ and Y have the Gelfand-Phillips property then the space
of compact operators K(X,Y ) has the Gelfand-Phillips property.

A little bit later Drewnowski and Emmanuele [D58] proved even:

Theorem 5.3. Let X and Y be Banach spaces. If X and Y have the Gelfand-
-Phillips property then the space of compact weak∗-weak continuous operators
Kw∗(X

′, Y ) has the Gelfand-Phillips property.

This result was generalized to arbitrary locally convex spaces by Lindström
and Schlumprecht [91]. A more general result for Banach spaces from which the
previous result follows was found in [53]. Recalling the following isomorphisms we
get the Gelfand-Phillips property criteria for more spaces:

• K(X,Y ) ∼= Kw∗(X
′′, Y );

• C(K,X) ∼= Kw∗(X
′, C(K));

• cca(Σ, X) ∼= Kw∗(X
′, ca(Σ));

• X⊗̃εY ∼= Kw∗(X
′, Y ) under some approximation property assumption.

Since for every σ-algebra Σ the space of countable additive measures ca(Σ) has the
Gelfand-Phillips property [D58] so cca(Σ, X) has the Gelfand-Phillips property for
any Banach space X with the Gelfand-Phillips property ([D58] Corollary 3.3).
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Quite recently Ghenciu and Lewis [55, Th. 26] proved that if a Banach space
X has the Gelfand-Phillips property then the space ca(P(N), X) has also the
Gelfand-Phillips property (here P(N) denotes the algebra of all subsets of inte-
gers).

Emmanuele [28], [27] and very recently in [31] continued the line of research
in [D46] and [D58]. In particular, he proved that if Banach spaces X ′ and Y have
the so-called Schur property (i.e., every weakly convergent sequence in the space
is norm convergent) then even the space of all continuous operators L(X,Y ) has
the Gelfand-Phillips property. Again in [D58] the authors showed that the vector
valued space Lp(µ,X), 1 6 p < ∞, has the Gelfand-Phillips property whenever
the Banach space X has the same property.

For spaces of vector valued continuous functions it follows from the above
results that C(K,X) has the Gelfand-Phillips property if and only if both C(K)
and X have this property. For spaces of continuous functions the following was
obtained in [D46]:

Theorem 5.4. If a compact topological space K has a dense subset S which is
conditionally sequentially compact, i.e., every sequence in S has a convergent sub-
sequence then C(K) has the Gelfand-Phillips property.

Schlumprecht [113] later proved that this condition is not necessary as well as
he proved that not necessary for the Gelfand-Pettis property in a Banach space
X is the sufficient condition (discovered in [D46]): X ′ has a norming weak∗ con-
ditionally sequentially compact subset.

5.2. Copies of `∞

The interest in this topic starts with the result of Rosenthal in [109]. Drewnowski
proved in [D22] an analogous result for arbitrary linear topological spaces:

Theorem 5.5. Let X be a subspace of `∞(Γ) containing all unit vectors and let
Y be an arbitrary topological vector space. If T : X → Y is a linear continuous
operator and there is a 0-neighborhood U in Y such that for any γ ∈ Γ and any
unit vector eγ holds T (eγ) 6∈ U then for some subset Γ′ ⊂ Γ, card Γ = card Γ′, the
operator T maps

X(Γ′) := {x ∈ X : suppx ⊂ Γ′}

isomorphically.

The result was later modified and extended by Globevnik [56] to the setting of
analytic maps.

Theorem 5.6. Let X be a Banach space, and let A : Bc0(Γ) → X be an analytic
map, BY denotes here the unit ball of Y . If the density of the range of A is bigger
than d then X contains an isomorphic copy of c0(Γ′) for card(Γ′) > d.

Of course, if A above is linear continuous then the result follows from the
previous theorem.
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In fact nowadays many authors prefer to cite Drewnowski’s result instead of the
Rosenthal’s original paper because he presented in [D21] a beautiful and incredible
simple proof of the result. The theorem was applied, for instance, in the work of
Capon [19] where she proved that for any Banach space X with a symmetric basis
not isomorphic to `1 and not contained isomorphically in c0 the `∞ direct sum
Y of X is primary, i.e., for any projection in Y either its image or its kernel is
isomorphic to the whole space. Another place of application is the recent work of
Koszmider [85] who constructed two non-isomorphic spaces of continuous functions
C(K1) and C(K2) such that each one can be embedded complementably into
the other one — this solves in the negative the Schroeder-Bernstein problem for
Banach spaces also in the class of Banach spaces of continuous functions. For
general Banach spaces the problem was solved earlier by Gowers [59].

We suspect that the fact which attracted Drewnowski to Rosenthal’s work
was his lemma about families of finitely additive set functions — the part which
connects Rosenthal’s paper [109] with Drewnowski measure theoretic interests.
From that point on the question of `∞ or c0 subspaces is a constant theme in
Drewnowski’s work — we will see it later also in the section on spaces of vector
valued continuous functions.

The next step was a series of three papers of Drewnowski about containment
of copies of `∞ and c0 in some spaces of operators and in some spaces represented
as spaces of operators. These papers are still regularly cited (in 2012 the paper
[D62] was cited 5 times). The story started with the paper [D62] and its main
theorem:

Theorem 5.7. Let Xand Y be Banach spaces. The space Kw∗(X
′, Y ) contains

an isomorphic copy of `∞ if and only if either X or Y contains such a copy.

This result is clearly inspired by the earlier result of Kalton [73] that the space
of compact operators K(X,Y ) contains a copy of `∞ if and only if either X ′ or Y
contains such a copy but Drewnowski’s result is much more powerful. It implies
Kalton’s result but it also proves the following corollary:

Corollary 5.8. Let X and Y be Banach spaces, K a compact topological space
and Σ a σ-algebra of subsets of some set Ω. Then:

• X⊗̃εY ⊃ `∞ if and only if X ⊃ `∞ or Y ⊃ `∞.
• C(K,X) ⊃ `∞ if and only if C(K) ⊃ `∞ or X ⊃ `∞.
• cca(Σ, X) ⊃ `∞ if and only if X ⊃ `∞.

The corollary was generalized to the Fréchet or DF-space setting in [11]. The
second part of the above corollary was applied by E. M. Galego [51] in order to
show that every Banach space is isomorphic to a subspace of a Banach space Y
such that Y 6' Y 2 but Y ' Y 3. The main theorem was also applied by Ferrando
[38] for deciding when the space of Pettis integrable functions contains a copy of
c0 or `∞. Recently Ferrando has obtained results on containment of c0 and `∞ in
the Musiał space of Pettis integrable functions [39], [40].
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Slightly later Drewnowski tried to extend the third part of the corollary above
to the space ca(Σ, X) of countable additive X-valued measures on Σ. Then two
cases has to be considered separately: the case of σ-algebra Σ admitting a nonzero
atomless finite measure and the case when every non-zero measure on Σ is purely
atomic. In [D64] it is proved that in the second case nothing unexpected happens:

Theorem 5.9. Let every measure on Σ be purely atomic and X be a Banach
space. Then

• ca(Σ, X) ⊃ `∞ if and only if X ⊃ `∞,
• ca(Σ, X) ⊃ c0 if and only if X ⊃ c0.

The other case turned out to be the surprising one see [D64], [D90].

Theorem 5.10. Let Σ admits a nonzero finite atomless measure m and X be
a Banach space. Then the following assertions are equivalent:

(a) ca(Σ, X) ⊃ `∞;
(b) ca(Σ, X) ⊃ c0;
(c) K(`2, X) 6= L(`2, X);
(d) there exist an isomorphic embedding J : `∞ → ca(Σ, X) such that J(c0) =

J(`∞) ∩ cca(Σ,m,X) and J(c0) is complemented in cca(Σ, X);
(e) cca(Σ, X) ⊃ c0;
(f) cca(Σ, X) ⊃ c0 as a complemented copy.

Here cca(Σ,m,X) denotes the space of measures µ ∈ cca(Σ, X) which are
m-absolutely continuous. The most surprising part is of course (c).

Thanks to the work of Drewnowski, Emmanuele and Ferrando we have now
a pretty complete understanding when the spaces of vector measures ca(Σ, X),
cca(Σ, X), ba(Σ, X) contain `∞ or c0 (complemented or uncomplemented). Apart
from the results listed above we know that if ca(Σ, X) contains a complemented
copy of c0 then X contains a copy of c0 [29] (comp. also in [41, Th. 2.4]), ba(Σ, X)
contains a copy of c0 if and only if it contains a copy of `∞ [11], if ba(Σ, X) contains
a complemented copy of c0 then X contains a copy of c0, on the contrary if X
contains a copy of c0 but not a copy of `∞ then ba(Σ, X) contains a complemented
copy of c0 [35]. From the results of Drewnowski follows also [41, Th. 2.1]. The
case of complemented copies of c0 was generalized for many other spaces of vector
measures in [106].

In the proof of the main result in [D64] important role plays an analogue of
Phillips Lemma for vector measures (Lemma 3 in [D64]): for any sequence (µn)
of measures in ca(P(N), X) if µn(E)→ 0 for any set E ⊂ N then ‖µn‖ → 0. This
result was extended for more algebras of subsets of N in the paper [1].

Let us recall that the space of measures can be identified with some spaces
of linear continuous operators and let us come back to spaces of operators as in
the paper [D62]. It was known before [49] that if a Banach space X contains
an isomorphic copy of c0 and Y is an infinite dimensional Banach space then
Kw∗(X

′, Y ) contains a complemented isomorphic copy of c0.
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The results in [D62] clearly launched a long line of research which practi-
cally lasted till now. Emmanuele [29] proved that if c0 embeds in the subspace
Kw∗(X

′, Y ), then either Kw∗(X
′, Y ) = Lw∗(X

′, Y ) or Kw∗(X
′, Y ) is not comple-

mented in Lw∗(X
′, Y ). Moreover, the equality holds if and only if c0 embeds in

one of the spaces X,Y and the other has the Schur property. Then in [30] the
same author proved that if Lw∗(X ′, Y ) contains a complemented copy of c0 then
either X or Y contains an isomorphic copy of c0, the converse holds as well [36].
A little bit later Bonet, Domański, Lindström and Ramanujan [11, Cor.14] proved
that Lw∗(X ′, Y ) contains c0 if and only if either X or Y contains an isomorphic
copy of c0 or Lw∗(X ′, Y ) contains also a copy of `∞ (later the same theorem ap-
pears in [36]). It is worth noting that even if Lw∗(X ′, Y ) contains c0 it need not
contain `∞ as the example provided by [54] X = Y = `1 shows. In general [11]
contains several results on containment of c0, `∞, complementability or equality
of various spaces of operators clearly inspired by the papers of Drewnowski and
by his method as well as generalizations to the Fréchet and dual Fréchet spaces.
Moreover, Ferrando [36] proved that if both X and Y contain a copy of c0 then
Lw∗(X

′, Y ) contains a copy of `∞. For more results on Lw∗(X ′, Y ) andKw∗(X
′, Y )

see [54]. The condition K(`2, X) 6= L(`2, X) and the proof in [D64] and [D90] in-
spires, for instance, two papers. First the paper of Ansari [5] where it was proved
that K(C(K), X) = L(C(K), X) if and only if K(`2, X) = L(`2, X) and opera-
tors T : C(K) → X factorize through a subspace in c0. The second paper [10]
contains among others the following two results together with their Fréchet space
generalizations:

Theorem 5.11. Let X, Y be Banach spaces. If

L(`q, X) 6= K(`q, X), L(`p, Y ) 6= K(`p, Y ), 1 < p, q <∞, 1

p
+

1

q
= 1,

then
`∞ ⊆ Lw∗(X ′, Y ) and c0 ⊆ Kw∗(X

′, Y ).

Theorem 5.12. Let X be a Banach space and let Y be a p-Orlicz Banach space
(i.e., unconditional convergence of

∑
xn in Y implies

∑
‖xn‖p <∞), then

Lw∗(E
′, F ) ⊃ c0 ⇒ K(`q, E) 6= L(`q, E),

again for 1 < p, q,<∞, 1
p + 1

q = 1.

There is also a series of results and consequences of the previous theorems
clarifying when the space L(X,Y ) of all linear continuous operators contains a copy
of c0 see [11], [34], [42] and [37].

The whole research above is closely connected to the long standing open ques-
tion: is it true that, for all Banach spaces X and Y , either K(X,Y ) = L(X,Y )
or K(X,Y ) is an uncomplemented subspace of L(X,Y )? See [32] and the intro-
duction containing a survey of results and [33] as well the introduction to the
paper [10].
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5.3. Spaces of vector valued continuous functions

In the beginning of 1990’ Drewnowski together with the first named author of this
survey started to study spaces of vector valued continuous functions. They studied
spaces of the form C(K,X, τ) of functions f : K → X which are continuous with
respect to a vector topology τ onX weaker than the original one. HereK is usually
a compact topological space, X is usually a Banach space, and we equip C(K,X, τ)
with the topology of uniform convergence with respect to the original topology
of X. The most interesting cases are when τ is the weak topology w on a Banach
space or a weak∗ topology w∗ on a dual Banach space (see a recent paper [67] on
extremal points of the unit ball in C(K,X,w)). Recall again that the considered
spaces of vector valued functions can be identified with some spaces of linear
continuous operators, so the research in this area is closely related to Drewnowski’s
work on spaces of operators and containment of c0 and `∞ therein. The general
still not-proved conjecture is that C(K,X) is complemented in C(K,X, τ) if and
only if both spaces coincide — several results supporting this conjecture were
proved in [D66]. For instance:

Theorem 5.13. For arbitrary Banach space X and arbitrary vector topology τ
on X weaker than the norm topology the space C(βN, X) is complemented in
C(βN, X, τ) if and only if they coincide.

Theorem 5.14. If a Banach space X contains a τ -convergent sequence which
is not norm convergent then for every infinite compact set K the Banach space
C(K,X) is uncomplemented in the Banach space C(K,X, τ).

In particular, if X is an infinite dimensional Banach space then C(K,X ′)
is never complemented in C(K,X ′, w∗). Similarly C(K,X) is complemented in
C(K,X,w) if and only if X has the so-called Schur property (i.e., every weak null
sequence is norm null) and, in particular, it contains copies of `1. More results
supporting the conjecture are collected in [D77].

There is a standard example of an uncomplemented Banach subspace: c0
in `∞. Cembranos [20] and Freniche [49], using the famous Josefson-Nissenzweig
Theorem (Theorem 5.1), proved that for every Banach space X and any infinite
compact set K the space C(K,X) contains a complemented subspace isomorphic
to c0 so C(K,X) is never injective and never contained as complemented subspace
in a dual Banach space. Let us recall that a locally convex space is injective if
and only if it is complemented in every locally convex space containing it. The
problem of describing all injective (Banach, Fréchet, locally convex spaces) is still
open. In [D71] the authors extended the result above to a Fréchet space context:

Theorem 5.15. Let E be a completely regular Hausdorff space with an infinite
compact subset and let X be a non-Montel Fréchet space. Then C(E,X) contains
a complemented subspace isomorphic to c0. In particular, C(E,X) is not injective.
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The authors went one step more and proved:

Theorem 5.16. Let E be as above and let X be a locally convex space containing
an isomorphic copy of `1. Then C(E,X,w) contains a complemented isomorphic
copy of `1, hence is not injective.

The above methods lead to the following result:

Theorem 5.17. Let E be a non-discrete locally compact topological space with
a fundamental sequence of compact sets. Let X be an infinite dimensional Fréchet
space. Then the following assertions are equivalent:

(a) C(E,X) is injective;
(b) C(E,X,w) is injective;
(c) X is isomorphic to the space of all sequences ω and C(E) is injective.

The collaboration of Drewnowski and the first named author on that subject
produced later a long preprint Injectivity of spaces of bounded vector sequences
and spaces of operators which pushes the method developed earlier to its limits.
We get several results on complementability of various ideals of operators in bigger
ideals as well several results on vector valued sequence spaces of the similar spirit
as above and we connect even closer this research with Drewnowski’s papers on c0
and `∞ in spaces of operators. The preprint was never published — partly because
the authors were never satisfied with the outcome. This is Drewnowski’s school of
looking for excellence and completeness of the results.

6. Theory of locally convex spaces

In this section we collect some very nice results of Drewnowski related to locally
convex spaces which do not belong to the main streams of his interest previously
described. Three areas will be treated. First, we consider a result of primariness
which is deeply rooted in the set theory (connected with independence to axioms
questions). Secondly, universality questions — here simplicity of the used tools is
a striking feature. Thirdly, some results on uncountable bases.

6.1. Primariness of `∞/c0

A beautiful little gem is a paper [D65] where Drewnowski and Roberts proved
under the Continuum Hypothesis (CH) that the space `∞/c0 is primary (recall
that it means that for any splitting of the space into a direct sum at least one
summand is isomorphic to the whole space). Let us mention that the space `∞/c0
is isomorphic to the space of continuous functions on the remainder of the Čech-
Stone compactification of natural numbers, in particular, it is a C∗-algebra.

That paper heavily depends on set theoretical considerations. One of the facts
obtained by Drewnowski and Roberts is that `∞ direct sum of copies of `∞/c0
is isomorphic to `∞/c0 provided CH. Grzech proved later [63] that under the
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assumptions of the so-called Open Coloring Axiom (OCA) and 2ω = ω2, an iso-
morphism between `∞(`∞/c0) and `∞/c0 does not exist! It is not known, however,
whether the primariness of `∞/c0 can be established within ZFC without CH. An-
other result, given by Drewnowski and Roberts in [D65] is that, under CH, the
spaces `∞(`∞/c0)/c0(`∞/c0) and `∞/c0 are isometric. Grzech proved also [63]
that, assuming the OCA and 2ω = ω2, an isometry between these spaces does
not exist. Thus the considered problem seems to be an example of a problem
about C∗-algebras which is solved under set-theoretical assumptions or which is
independent to the ZFC axioms. A survey of such problems is provided by [130].

From the results of the paper [D65] it follows also (as P. Koszmider observed)
that in the algebra of all linear continuous operators on `∞/c0 there is the unique
maximal ideal (the set of all operators T such that the identity does not factorize
through T ) see [81, p. 4832].

6.2. Universality questions

In the papers [D24] and [D45] the universality questions were considered — the
negative answers were obtained via a simple count. For instance, in the former
joint paper with Lohman the authors proved that there are exactly 22c

separable
pairwise non-isomorphic locally convex spaces. Thus there cannot be a quotient
universal space in the class of separable locally convex spaces (i.e., a separable lo-
cally convex space U such that every separable locally convex space is isomorphic
to a quotient of U) since otherwise U has to have too many quotients. It is surpris-
ing that using such seemingly elementary tools one can solve question explicitly
mentioned in the monograph of Rolewicz [107]. In a similar way they proved that
there is no quotient universal spaces in the classes of separable metrizable locally
convex spaces or separable normed spaces. In [D45] the author proved that there
is no universal space in the class of locally convex spaces with a basis or with an
unconditional basis (a space U is called universal in a class C if for any space in C
the space U contains a subspace isomorphic to it).

6.3. Bases

In [D50] Drewnowski proved that if two nonseparable Banach spaces have sym-
metric bases and each is isomorphic to a subspace of the other then the bases
are equivalent. In particular, every Banach space with an uncountable symmetric
basis has a unique symmetric basis. This is not true in the countable case.

The paper [D54] is a kind of continuation of [D50]. The author showed that if
a Banach space X has an (uncountable) unconditional basis and contains isomor-
phic copy of `1(A) for some uncountable set A then the basis contains “big” parts
equivalent to `1(J) basis for “big” sets J . An analogous result was also proved for
the c0-case. This is a generalization of Troyanski’s result [125] where the basis is
assumed to be even symmetric. Of course, it follows that X contains comple-
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mented isomorphic copies of `1 or, respectively, c0 spaces. Let us note that later
on Finol and Wójtowicz [47] proved that if a Banach space X with (possibly un-
countable) an unconditional basis contains an isomorphic copy Y of `1(A) then Y
contains an isomorphic copy of `1(A) complemented in X.

7. Drewnowski as a teacher

Finishing our survey we want to add some more personal remarks concerning our
collaboration with Lech Drewnowski. We both met him as students around forty
years ago when we started our mathematical adventure at the Faculty of Mathe-
matics, Physics and Chemistry. At that time he was already a star with a quickly
progressing career and a fame of a very demanding professor. We both soon re-
alized that first of all he demands from himself. His lectures were clear, lively,
interesting, rich with examples, perfectly prepared – such a style of teaching is
characteristic for him till now. Definitely most appealing to us as young people
was (and still is) his never ending enthusiasm for mathematics. Then we wrote
both master and Ph.D. theses under his supervision. Lech is perfectionist so we
faced many remarks concerning mathematical improvements and editorial smooth-
ness. Immediately, we also experienced his erudition – it was always much easier
to ask Drewnowski for some explanations, references etc. instead of laborious
look through the literature – the more so that Drewnowski’s answer was usually
more precise, correct and definitely faster. His “proof power ”, connected with his
erudition, solved many of difficult for us questions. Drewnowski listened to our
problem, next lit up a cigarette, was silent for five to fifteen minutes and ... wrote
a detailed solution on a piece of paper.

Drewnowski’s attitude to his pupils was very democratic, he treated us as
partners, saved us from loosing time. He stimulated his pupils to look for their
own way in mathematics; this was a good strategy – by now five of his pupils
have become professors. We really felt like partners and soon became, we dare
to say, friends. His seminar was a true scientific school: each meeting took some
five hours when we discussed mathematics, presented our new results and current
papers published in journals. During breaks (sometimes they were long) we were
used to argue about all aspects of life.

Both of the authors had pleasure to write joint papers with Lech Drewnowski
– his approach is to go in depth rather than to look for generalizations. As you
have seen above he has the talent to discover unexpected connections and find,
behind a seemingly final solution, something deeper: an opening to the ultimate
reason and perfect elegance of an argument.

Lech is far from a popular image of a mathematician: he is not the man living
exclusively in a world of numbers and mathematical structures. He loves life,
nature and animals, participates in all social events of the Faculty. He is fond of
Tolkien’s novels and Russian literature.

Dear Lech, our Master, we wish you many happy years to come, exciting math-
ematics, good health and all the best.
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