FAMILY OF ELLIPTIC CURVES WITH GOOD REDUCTION EVERYWHERE OVER NUMBER FIELDS OF GIVEN DEGREE

Nao Takeshi

Abstract

We give families of elliptic curves having good reduction everywhere over number fields which are generated by their j-invariants of given degree.

Keywords: elliptic curves, everywhere good reduction, j-invariants.

It is known that the j-invariant $j(E)$ of an elliptic curve E defined over a number field K is an algebraic integer if and only if there exists a finite extension F / K such that E attains good reduction everywhere over F (cf. [3, Proposition VII.5.5]). It follows that every algebraic integer α belongs to $j\left(\mathcal{E}_{F}^{0}\right)$ for some extension field F of $\mathbb{Q}(\alpha)$. Here, \mathcal{E}_{F} is the set of isomorphism classes of elliptic curves defined over F, \mathcal{E}_{F}^{0} is the subset of \mathcal{E}_{F} defined by

$$
\mathcal{E}_{F}^{0}=\left\{E \in \mathcal{E}_{F}: E \text { has good reduction everywhere over } F\right\}
$$

and $j\left(\mathcal{E}_{F}^{0}\right)=\left\{j(E): E \in \mathcal{E}_{F}^{0}\right\}$. However, we have $\alpha \notin j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$ for many algebraic integers α, because it is known that \mathcal{E}_{K}^{0} is a finite set for any K. For example, we have $\alpha \notin j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$ for any rational integer α, because there exist no elliptic curves having good reduction everywhere over \mathbb{Q}, that is, $\mathcal{E}_{\mathbb{Q}}^{0}=\emptyset$. We consider the following problem.

Problem. Find algebraic integers α such that $\alpha \in j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$, i.e., $\alpha=j(E)$ for some elliptic curve E defined over $\mathbb{Q}(\alpha)$ and having good reduction everywhere over $\mathbb{Q}(\alpha)$.

In [2], Rohrlich considered a specific case of the problem. He gave a necessary and sufficient condition for an algebraic integer α to be the j-invariant of an elliptic curve $E \in \mathcal{E}_{\mathbb{Q}(\alpha)}^{0}$ with complex multiplication by the ring of integers of an imaginary
quadratic field. By his result, it is immediately shown that there exist infinitely many algebraic integers α satisfying $\alpha \in j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$. However, since there exist only finitely many imaginary quadratic fields with given class number, his result gives a finite number of algebraic integers $\alpha \in j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$ of given degree. In this paper, we prove the following theorem.
Theorem 1. For any $n \geqslant 2$, there exist infinitely many algebraic integers α of degree n such that $\alpha \in j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$.

Theorem 1 is known to be true for the case $n \leqslant 3$. Tate showed that a root α of the polynomial $x^{2}-1728 x+a^{12}$ with $a \in \mathbb{Z}$ prime to 6 satisfies $\alpha \in j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$. Actually, the elliptic curve defined by the equation

$$
\begin{equation*}
y^{2}+x y=x^{3}-\frac{36}{\alpha-1728} x-\frac{1}{\alpha-1728} \tag{1}
\end{equation*}
$$

has the j-invariant equal to α and has good reduction everywhere over the quadratic field $\mathbb{Q}(\alpha)$ (see the remark following the proof of Proposition 2). The author gave a family of elliptic curves having good reduction everywhere over cubic fields with cubic j-invariants ([4, Theorem 1.2]).

We give two families of elliptic curves having good reduction everywhere in Propositions 2 and 3. The elliptic curves in Proposition 2 are inspired by the example of Tate, and Proposition 3 is a straightforward generalization of the result of the author.

Proposition 2. Let $n, a \in \mathbb{Z}$ with $n \geqslant 2$. Assume that a satisfies $a^{4} \equiv 1(\bmod$ 1728) and $\operatorname{gcd}\left(a, 1728^{n}(n-1)-1\right)=1$. The polynomial

$$
f_{n, a}(x)=x^{n}+\left(\frac{a^{4}-1}{1728}-1728^{n-1}\right) x+1
$$

is irreducible over \mathbb{Q}. For a root α of $f_{n, a}(x)$, let E be the elliptic curve defined by (1). Then $j(E)=\alpha$ and E has good reduction everywhere over $\mathbb{Q}(\alpha)$.
Proposition 3. Let $n, a \in \mathbb{Z}$ with $n \geqslant 2$. The polynomial

$$
g_{n, a}(x)=x^{n}-16^{n-2}(a-16) x^{n-1}+a x-1
$$

is irreducible over \mathbb{Q}. For a root ϵ of $g_{n, a}(x)$, let E_{1} and E_{2} be the elliptic curves defined by the equations

$$
\begin{equation*}
E_{1}: y^{2}+x y=x^{3}+16 \epsilon x^{2}+8 \epsilon x+\epsilon \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2}: y^{2}+x y=x^{3}-8 \epsilon x^{2}+2 \epsilon(8 \epsilon-3) x+\epsilon(4 \epsilon-1) . \tag{3}
\end{equation*}
$$

Then E_{1} and E_{2} have good reduction everywhere over $\mathbb{Q}(\epsilon)$. Moreover, their j-invariants, given by

$$
\begin{equation*}
j_{1}=\frac{\left(4096 \epsilon^{2}-256 \epsilon+1\right)^{3}}{\epsilon(16 \epsilon-1)} \quad \text { and } \quad j_{2}=\frac{\left(256 \epsilon^{2}+224 \epsilon+1\right)^{3}}{\epsilon(1-16 \epsilon)^{4}} \tag{4}
\end{equation*}
$$

respectively, satisfy $\mathbb{Q}(\epsilon)=\mathbb{Q}\left(j_{1}\right)=\mathbb{Q}\left(j_{2}\right)$.

Theorem 1 follows immediately from Proposition 2 since there exist infinitely many $a \in \mathbb{Z}$ satisfying the conditions. In the case $n \geqslant 3$, Theorem 1 also follows from Proposition 3 since the number of the roots ϵ defining the same j-invariant is only finite by (4). When $n=2$, the polynomial $g_{2, a}(x)=x^{2}+16 x-1$ does not depend on $a \in \mathbb{Z}$, so Proposition 3 only gives elliptic curves defined over the quadratic field $\mathbb{Q}(\epsilon)=\mathbb{Q}(\sqrt{65})$. The two propositions give almost distinct algebraic integers α satisfying $\alpha \in j\left(\mathcal{E}_{\mathbb{Q}(\alpha)}^{0}\right)$ (see Proposition 5).

In order to prove the irreducibility of $f_{n, a}(x)$ and $g_{n, a}(x)$ in Propositions 2 and 3 , we use the following lemma which follows immediately from the irreducibility criterion of Perron ([1, Theorem 2]).

Lemma 4. Let $n \in \mathbb{Z}$ with $n \geqslant 2$ and

$$
F(x)=x^{n}+s x^{n-1}+t x \pm 1,
$$

where $s, t \in \mathbb{Z}$. If $|s|>|t|+2$ or $|t|>|s|+2$, then $F(x)$ is irreducible over \mathbb{Q}.
We begin the proofs of the propositions.
Proof of Proposition 2. Set $b=\frac{a^{4}-1}{1728}-1728^{n-1}$. We have $|b|>2$. Indeed, $(x, y)=\left(12^{n}, a^{2}\right)$ is on the elliptic curve $y^{2}=x^{3}+1728 b+1$, but this curve has no integral point of such a form if $|b| \leqslant 2$. Therefore $f_{n, a}(x)=x^{n}+b x+1$ is irreducible by Lemma 4.

The discriminant of (1) is given by

$$
\Delta=\frac{\alpha^{2}}{(\alpha-1728)^{3}} .
$$

We denote by $\operatorname{ord}_{\mathfrak{p}}$ the normalized additive valuation on $\mathbb{Q}(\alpha)$ at \mathfrak{p}. Assume that a prime ideal \mathfrak{p} of $\mathbb{Q}(\alpha)$ satisfies $\operatorname{ord}_{\mathfrak{p}}(\alpha-1728)=0$. The coefficients of (1) are \mathfrak{p}-integral. Moreover, we have $\operatorname{ord}_{\mathfrak{p}}(\Delta)=0$ since α is a unit by the definition. Thus E has good reduction at \mathfrak{p}. Assume that \mathfrak{p} satisfies $\operatorname{ord}_{\mathfrak{p}}(\alpha-1728)>0$. Then we have $\operatorname{ord}_{\mathfrak{p}}(\alpha)=\operatorname{ord}_{\mathfrak{p}}(6)=0$. To prove that E has good reduction at \mathfrak{p}, we have only to show that $\operatorname{ord}_{\mathfrak{p}}(\Delta) \equiv 0(\bmod 12)(c f .[3$, Exercise 7.2]). Since α is a root of $f_{n, a}(x)$, we have

$$
\begin{aligned}
a^{4} \alpha & =-1728 \alpha^{n}+1728^{n} \alpha+\alpha-1728 \\
& =(\alpha-1728)\left(1-1728 \alpha \sum_{i=0}^{n-2} 1728^{i} \alpha^{n-2-i}\right)
\end{aligned}
$$

Hence $\operatorname{ord}_{\mathfrak{p}}(a)>0$, which implies $\operatorname{ord}_{\mathfrak{p}}\left(1728^{n}(n-1)-1\right)=0$ by the assumption on a. On the other hand, we have

$$
1-1728 \alpha\left(\sum_{i=0}^{n-2} 1728^{i} \alpha^{n-2-i}\right) \equiv 1-1728^{n}(n-1)(\bmod \mathfrak{p})
$$

since $\alpha \equiv 1728(\bmod \mathfrak{p})$. Thus $\operatorname{ord}_{\mathfrak{p}}(\alpha-1728)=\operatorname{ord}_{\mathfrak{p}}\left(a^{4}\right)=4 \operatorname{ord}_{\mathfrak{p}}(a)$. This shows that $\operatorname{ord}_{\mathfrak{p}}(\Delta)=2 \operatorname{ord}_{\mathfrak{p}}(\alpha)-3 \operatorname{ord}_{\mathfrak{p}}(\alpha-1728)=-12 \operatorname{ord}_{\mathfrak{p}}(a) \equiv 0(\bmod 12)$ as desired.

Remark. As in the proof above, E with discriminant $\Delta=\frac{\alpha^{2}}{(\alpha-1728)^{3}}$ has good reduction at a prime \mathfrak{p} with $\operatorname{ord}_{\mathfrak{p}}(6)=0$ if $\operatorname{ord}_{\mathfrak{p}}(\alpha) \geqslant 0$ and $2 \operatorname{ord}_{\mathfrak{p}}(\alpha) \equiv 3 \operatorname{ord}_{\mathfrak{p}}(\alpha-$ $1728)(\bmod 12)$. For the example of Tate, this condition is verified by $\alpha(\alpha-1728)=$ a^{12}. Our curves are constructed so that α is a unit and $\operatorname{ord}_{\mathfrak{p}}(\alpha-1728) \equiv 0(\bmod 4)$.
Proof of Proposition 3. When $n=2$ and 3, the polynomial $g_{n, a}(x)$ is irreducible over \mathbb{Q} since $g_{n, a}(\pm 1) \neq 0$. When $n \geqslant 4$, if $a \neq 16$, we have $16^{n-2}|a-16|>$ $|a|+2$. So $g_{n, a}(x)$ is irreducible by Lemma 4. The irreducibility of $g_{n, 16}(x)=$ $x^{n}+16 x-1$ also follows by Lemma 4 .

Let ϵ be a root of $g_{n, a}(x)$. The discriminants of E_{1} and E_{2} are given by $-\epsilon(1-16 \epsilon)$ and $\epsilon(1-16 \epsilon)^{4}$ respectively. Clearly ϵ is a unit by the definition, and $1-16 \epsilon$ is also a unit since $1-16 \epsilon$ is a root of $(-16)^{n} g_{n, a}\left(\frac{1-x}{16}\right) \in \mathbb{Z}[x]$ which is a monic polynomial with constant term $1-16^{n-1}(a-16)+16^{n-1} a-16^{n}=$ 1. Therefore E_{1} and E_{2} have unit discriminants, that is, E_{1} and E_{2} have good reduction everywhere over $\mathbb{Q}(\epsilon)$. By (4), ϵ^{-1} is a root of the polynomial

$$
\begin{equation*}
x^{6}+\left(j_{1}-768\right) x^{5}-2^{4}\left(j_{1}-13056\right) x^{4}-2^{21} 11 x^{3}+2^{24} 51 x^{2}-2^{32} 3 x+2^{36} . \tag{5}
\end{equation*}
$$

Every conjugate of ϵ^{-1} over $\mathbb{Q}\left(j_{1}\right)$ is a unit and a root of (5). On the other hand, (5) have only one 2 -adic unit root since j_{1} is a 2 -adic unit by (4). Therefore $\epsilon^{-1} \in \mathbb{Q}\left(j_{1}\right)$. This means $\mathbb{Q}(\epsilon)=\mathbb{Q}\left(j_{1}\right)$. We can show that j_{2} satisfies $\mathbb{Q}\left(j_{2}\right)=\mathbb{Q}(\epsilon)$ by using the same argument, because ϵ^{-1} is a root of the polynomial of the form

$$
\begin{aligned}
x^{6}-\left(j_{2}-672\right) x^{5}+2^{6}\left(j_{2}+2364\right) & x^{4}-2^{9}\left(3 j_{2}-22624\right) x^{3} \\
& +2^{14}\left(2364+j_{2}\right) x^{2}-2^{16}\left(j_{2}-672\right) x+2^{24}
\end{aligned}
$$

over $\mathbb{Q}\left(j_{2}\right)$ by (4).
Remark (cf. [4, Remark 4.1 (A2)]). E_{1} and E_{2} are isogenous to the elliptic curve

$$
E_{3}: y^{2}+x y=x^{3}-8 \epsilon x^{2}+\epsilon(16 \epsilon-1) x \quad \text { with } j_{3}=\frac{\left(256 \epsilon^{2}-16 \epsilon+1\right)^{3}}{\epsilon^{2}(1-16 \epsilon)^{2}}
$$

which has three $\mathbb{Q}(\epsilon)$-rational points of order 2 . Therefore, we have the four curves E_{1}, E_{2}, E_{3} and

$$
E_{4}: y^{2}+x y=x^{3}-2 \epsilon x^{2}+\epsilon^{2} x \quad \text { with } j_{4}=\frac{\left(16 \epsilon^{2}-16 \epsilon+1\right)^{3}}{\epsilon^{4}(1-16 \epsilon)}
$$

isogenous to each other. So E_{3} and E_{4} also belong to $\mathcal{E}_{\mathbb{Q}(\epsilon)}^{0}$. It is shown that the degree of j_{3} (resp. j_{4}) is greater than or equal to $\frac{n}{2}$ (resp. $\frac{n}{4}$) by applying the same argument as in the proof of Proposition 3. Actually, there is a case that the degrees of j_{3} and j_{4} are $\frac{n}{2}$. For example, when $(n, a)=(4,32)$, we have $\mathbb{Q}\left(j_{3}\right)=\mathbb{Q}\left(j_{4}\right)=\mathbb{Q}(\sqrt{16385})$.

We end this paper by remarking that the number fields given in Propositions 2 and 3 have different number of real places in general.

Proposition 5.

(i) Assume n is odd and $|a|>\sqrt[4]{1728^{n}+1}$. Then the number of real places of the field defined by $f_{n, a}(x)$ is 1 .
(ii) Assume n is even. Then the number of real places of the field defined by $f_{n, a}(x)$ is less than or equal to 2.
(iii) Assume $a \neq 16$ (resp. $a \leqslant-48$ or $a>16$) if n is odd (resp. even). Then the number of real places of the field defined by $g_{n, a}(x)$ is 3 (resp. 4).

Proof. Count the number of the real roots of $f_{n, a}(x)$ and $g_{n, a}(x)$.
Acknowledgment. The author would like to thank Kazuo Matsuno for many helpful suggestions and comments. This work was partially supported by Grant-in-Aid for JSPS Fellows Grant Number 2611708.

References

[1] O. Perron, Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math. 132 (1907), 288-307.
[2] D.E. Rohrlich, Elliptic curves with good reduction everywhere, J. London Math. Soc. 25 (1982), 216-222.
[3] J.H. Silverman, The Arithmetic of Elliptic Curves (2nd edition), Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 2009.
[4] N. Takeshi, Elliptic curves with good reduction everywhere over cubic fields, Int. J. Number Theory 11 (2015), no. 4, 1149-1164.

Address: Nao Takeshi: Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
E-mail: m10ntakeshi@gmail.com
Received: 26 November 2015; revised: 16 March 2016

