Functiones et Approximatio 56.1 (2017), 61-65 doi: 10.7169/facm/1591

FAMILY OF ELLIPTIC CURVES WITH GOOD REDUCTION EVERYWHERE OVER NUMBER FIELDS OF GIVEN DEGREE

NAO TAKESHI

Abstract: We give families of elliptic curves having good reduction everywhere over number fields which are generated by their *j*-invariants of given degree.

Keywords: elliptic curves, everywhere good reduction, *j*-invariants.

It is known that the *j*-invariant j(E) of an elliptic curve E defined over a number field K is an algebraic integer if and only if there exists a finite extension F/K such that E attains good reduction everywhere over F (cf. [3, Proposition VII.5.5]). It follows that every algebraic integer α belongs to $j(\mathcal{E}_F^0)$ for some extension field F of $\mathbb{Q}(\alpha)$. Here, \mathcal{E}_F is the set of isomorphism classes of elliptic curves defined over F, \mathcal{E}_F^0 is the subset of \mathcal{E}_F defined by

 $\mathcal{E}_F^0 = \{ E \in \mathcal{E}_F : E \text{ has good reduction everywhere over } F \}$

and $j(\mathcal{E}_F^0) = \{j(E): E \in \mathcal{E}_F^0\}$. However, we have $\alpha \notin j(\mathcal{E}_{\mathbb{Q}(\alpha)}^0)$ for many algebraic integers α , because it is known that \mathcal{E}_K^0 is a finite set for any K. For example, we have $\alpha \notin j(\mathcal{E}^0_{\mathbb{Q}(\alpha)})$ for any rational integer α , because there exist no elliptic curves having good reduction everywhere over \mathbb{Q} , that is, $\mathcal{E}^0_{\mathbb{Q}} = \emptyset$. We consider the following problem.

Problem. Find algebraic integers α such that $\alpha \in j(\mathcal{E}^0_{\mathbb{Q}(\alpha)})$, i.e., $\alpha = j(E)$ for some elliptic curve E defined over $\mathbb{Q}(\alpha)$ and having good reduction everywhere over $\mathbb{Q}(\alpha)$.

In [2], Rohrlich considered a specific case of the problem. He gave a necessary and sufficient condition for an algebraic integer α to be the *j*-invariant of an elliptic curve $E \in \mathcal{E}^0_{\mathbb{Q}(\alpha)}$ with complex multiplication by the ring of integers of an imaginary

²⁰¹⁰ Mathematics Subject Classification: primary: 11G05, 14H52; secondary: 11R04

quadratic field. By his result, it is immediately shown that there exist infinitely many algebraic integers α satisfying $\alpha \in j(\mathcal{E}^{0}_{\mathbb{Q}(\alpha)})$. However, since there exist only finitely many imaginary quadratic fields with given class number, his result gives a finite number of algebraic integers $\alpha \in j(\mathcal{E}^{0}_{\mathbb{Q}(\alpha)})$ of given degree. In this paper, we prove the following theorem.

Theorem 1. For any $n \ge 2$, there exist infinitely many algebraic integers α of degree n such that $\alpha \in j(\mathcal{E}^0_{\mathbb{Q}(\alpha)})$.

Theorem 1 is known to be true for the case $n \leq 3$. Tate showed that a root α of the polynomial $x^2 - 1728x + a^{12}$ with $a \in \mathbb{Z}$ prime to 6 satisfies $\alpha \in j(\mathcal{E}^0_{\mathbb{Q}(\alpha)})$. Actually, the elliptic curve defined by the equation

$$y^{2} + xy = x^{3} - \frac{36}{\alpha - 1728}x - \frac{1}{\alpha - 1728}$$
(1)

has the *j*-invariant equal to α and has good reduction everywhere over the quadratic field $\mathbb{Q}(\alpha)$ (see the remark following the proof of Proposition 2). The author gave a family of elliptic curves having good reduction everywhere over cubic fields with cubic *j*-invariants ([4, Theorem 1.2]).

We give two families of elliptic curves having good reduction everywhere in Propositions 2 and 3. The elliptic curves in Proposition 2 are inspired by the example of Tate, and Proposition 3 is a straightforward generalization of the result of the author.

Proposition 2. Let $n, a \in \mathbb{Z}$ with $n \ge 2$. Assume that a satisfies $a^4 \equiv 1 \pmod{1728}$ and $gcd(a, 1728^n(n-1)-1) = 1$. The polynomial

$$f_{n,a}(x) = x^n + \left(\frac{a^4 - 1}{1728} - 1728^{n-1}\right)x + 1$$

is irreducible over \mathbb{Q} . For a root α of $f_{n,a}(x)$, let E be the elliptic curve defined by (1). Then $j(E) = \alpha$ and E has good reduction everywhere over $\mathbb{Q}(\alpha)$.

Proposition 3. Let $n, a \in \mathbb{Z}$ with $n \ge 2$. The polynomial

$$g_{n,a}(x) = x^n - 16^{n-2}(a-16)x^{n-1} + ax - 1$$

is irreducible over \mathbb{Q} . For a root ϵ of $g_{n,a}(x)$, let E_1 and E_2 be the elliptic curves defined by the equations

$$E_1: \ y^2 + xy = x^3 + 16\epsilon x^2 + 8\epsilon x + \epsilon$$
 (2)

and

$$E_2: y^2 + xy = x^3 - 8\epsilon x^2 + 2\epsilon(8\epsilon - 3)x + \epsilon(4\epsilon - 1).$$
(3)

Then E_1 and E_2 have good reduction everywhere over $\mathbb{Q}(\epsilon)$. Moreover, their *j*-invariants, given by

$$j_1 = \frac{\left(4096\epsilon^2 - 256\epsilon + 1\right)^3}{\epsilon(16\epsilon - 1)} \qquad and \qquad j_2 = \frac{\left(256\epsilon^2 + 224\epsilon + 1\right)^3}{\epsilon(1 - 16\epsilon)^4} \qquad (4)$$

respectively, satisfy $\mathbb{Q}(\epsilon) = \mathbb{Q}(j_1) = \mathbb{Q}(j_2)$.

Family of elliptic curves with good reduction everywhere over number fields of given degree 63

Theorem 1 follows immediately from Proposition 2 since there exist infinitely many $a \in \mathbb{Z}$ satisfying the conditions. In the case $n \ge 3$, Theorem 1 also follows from Proposition 3 since the number of the roots ϵ defining the same *j*-invariant is only finite by (4). When n = 2, the polynomial $g_{2,a}(x) = x^2 + 16x - 1$ does not depend on $a \in \mathbb{Z}$, so Proposition 3 only gives elliptic curves defined over the quadratic field $\mathbb{Q}(\epsilon) = \mathbb{Q}(\sqrt{65})$. The two propositions give almost distinct algebraic integers α satisfying $\alpha \in j(\mathcal{E}^0_{\mathbb{Q}(\alpha)})$ (see Proposition 5).

In order to prove the irreducibility of $f_{n,a}(x)$ and $g_{n,a}(x)$ in Propositions 2 and 3, we use the following lemma which follows immediately from the irreducibility criterion of Perron ([1, Theorem 2]).

Lemma 4. Let $n \in \mathbb{Z}$ with $n \ge 2$ and

$$F(x) = x^n + sx^{n-1} + tx \pm 1.$$

where $s, t \in \mathbb{Z}$. If |s| > |t| + 2 or |t| > |s| + 2, then F(x) is irreducible over \mathbb{Q} .

We begin the proofs of the propositions.

Proof of Proposition 2. Set $b = \frac{a^4-1}{1728} - 1728^{n-1}$. We have |b| > 2. Indeed, $(x, y) = (12^n, a^2)$ is on the elliptic curve $y^2 = x^3 + 1728b + 1$, but this curve has no integral point of such a form if $|b| \leq 2$. Therefore $f_{n,a}(x) = x^n + bx + 1$ is irreducible by Lemma 4.

The discriminant of (1) is given by

$$\Delta = \frac{\alpha^2}{(\alpha - 1728)^3}.$$

We denote by $\operatorname{ord}_{\mathfrak{p}}$ the normalized additive valuation on $\mathbb{Q}(\alpha)$ at \mathfrak{p} . Assume that a prime ideal \mathfrak{p} of $\mathbb{Q}(\alpha)$ satisfies $\operatorname{ord}_{\mathfrak{p}}(\alpha - 1728) = 0$. The coefficients of (1) are \mathfrak{p} -integral. Moreover, we have $\operatorname{ord}_{\mathfrak{p}}(\Delta) = 0$ since α is a unit by the definition. Thus E has good reduction at \mathfrak{p} . Assume that \mathfrak{p} satisfies $\operatorname{ord}_{\mathfrak{p}}(\alpha - 1728) > 0$. Then we have $\operatorname{ord}_{\mathfrak{p}}(\alpha) = \operatorname{ord}_{\mathfrak{p}}(6) = 0$. To prove that E has good reduction at \mathfrak{p} , we have only to show that $\operatorname{ord}_{\mathfrak{p}}(\Delta) \equiv 0 \pmod{12}$ (cf. [3, Exercise 7.2]). Since α is a root of $f_{n,a}(x)$, we have

$$a^{4}\alpha = -1728\alpha^{n} + 1728^{n}\alpha + \alpha - 1728$$
$$= (\alpha - 1728) \left(1 - 1728\alpha \sum_{i=0}^{n-2} 1728^{i}\alpha^{n-2-i}\right)$$

Hence $\operatorname{ord}_{\mathfrak{p}}(a) > 0$, which implies $\operatorname{ord}_{\mathfrak{p}}(1728^n(n-1)-1) = 0$ by the assumption on a. On the other hand, we have

$$1 - 1728\alpha \left(\sum_{i=0}^{n-2} 1728^{i} \alpha^{n-2-i}\right) \equiv 1 - 1728^{n} (n-1) \pmod{\mathfrak{p}}$$

since $\alpha \equiv 1728 \pmod{\mathfrak{p}}$. Thus $\operatorname{ord}_{\mathfrak{p}}(\alpha - 1728) = \operatorname{ord}_{\mathfrak{p}}(a^4) = 4 \operatorname{ord}_{\mathfrak{p}}(a)$. This shows that $\operatorname{ord}_{\mathfrak{p}}(\Delta) = 2 \operatorname{ord}_{\mathfrak{p}}(\alpha) - 3 \operatorname{ord}_{\mathfrak{p}}(\alpha - 1728) = -12 \operatorname{ord}_{\mathfrak{p}}(a) \equiv 0 \pmod{12}$ as desired.

Remark. As in the proof above, E with discriminant $\Delta = \frac{\alpha^2}{(\alpha - 1728)^3}$ has good reduction at a prime \mathfrak{p} with $\operatorname{ord}_{\mathfrak{p}}(6) = 0$ if $\operatorname{ord}_{\mathfrak{p}}(\alpha) \ge 0$ and $2 \operatorname{ord}_{\mathfrak{p}}(\alpha) \equiv 3 \operatorname{ord}_{\mathfrak{p}}(\alpha - 1728) \pmod{12}$. For the example of Tate, this condition is verified by $\alpha(\alpha - 1728) = a^{12}$. Our curves are constructed so that α is a unit and $\operatorname{ord}_{\mathfrak{p}}(\alpha - 1728) \equiv 0 \pmod{4}$.

Proof of Proposition 3. When n = 2 and 3, the polynomial $g_{n,a}(x)$ is irreducible over \mathbb{Q} since $g_{n,a}(\pm 1) \neq 0$. When $n \geq 4$, if $a \neq 16$, we have $16^{n-2}|a-16| > |a| + 2$. So $g_{n,a}(x)$ is irreducible by Lemma 4. The irreducibility of $g_{n,16}(x) = x^n + 16x - 1$ also follows by Lemma 4.

Let ϵ be a root of $g_{n,a}(x)$. The discriminants of E_1 and E_2 are given by $-\epsilon(1-16\epsilon)$ and $\epsilon(1-16\epsilon)^4$ respectively. Clearly ϵ is a unit by the definition, and $1-16\epsilon$ is also a unit since $1-16\epsilon$ is a root of $(-16)^n g_{n,a}\left(\frac{1-x}{16}\right) \in \mathbb{Z}[x]$ which is a monic polynomial with constant term $1-16^{n-1}(a-16)+16^{n-1}a-16^n=1$. Therefore E_1 and E_2 have unit discriminants, that is, E_1 and E_2 have good reduction everywhere over $\mathbb{Q}(\epsilon)$. By (4), ϵ^{-1} is a root of the polynomial

$$x^{6} + (j_{1} - 768)x^{5} - 2^{4}(j_{1} - 13056)x^{4} - 2^{21}11x^{3} + 2^{24}51x^{2} - 2^{32}3x + 2^{36}.$$
 (5)

Every conjugate of ϵ^{-1} over $\mathbb{Q}(j_1)$ is a unit and a root of (5). On the other hand, (5) have only one 2-adic unit root since j_1 is a 2-adic unit by (4). Therefore $\epsilon^{-1} \in \mathbb{Q}(j_1)$. This means $\mathbb{Q}(\epsilon) = \mathbb{Q}(j_1)$. We can show that j_2 satisfies $\mathbb{Q}(j_2) = \mathbb{Q}(\epsilon)$ by using the same argument, because ϵ^{-1} is a root of the polynomial of the form

$$x^{6} - (j_{2} - 672)x^{5} + 2^{6}(j_{2} + 2364)x^{4} - 2^{9}(3j_{2} - 22624)x^{3} + 2^{14}(2364 + j_{2})x^{2} - 2^{16}(j_{2} - 672)x + 2^{24}$$

over $\mathbb{Q}(j_2)$ by (4).

Remark (cf. [4, Remark 4.1 (A2)]). E_1 and E_2 are isogenous to the elliptic curve

$$E_3: y^2 + xy = x^3 - 8\epsilon x^2 + \epsilon(16\epsilon - 1)x \quad \text{with } j_3 = \frac{\left(256\epsilon^2 - 16\epsilon + 1\right)^3}{\epsilon^2(1 - 16\epsilon)^2}$$

which has three $\mathbb{Q}(\epsilon)$ -rational points of order 2. Therefore, we have the four curves E_1, E_2, E_3 and

$$E_4: y^2 + xy = x^3 - 2\epsilon x^2 + \epsilon^2 x$$
 with $j_4 = \frac{\left(16\epsilon^2 - 16\epsilon + 1\right)^3}{\epsilon^4 (1 - 16\epsilon)}$

isogenous to each other. So E_3 and E_4 also belong to $\mathcal{E}^{0}_{\mathbb{Q}(\epsilon)}$. It is shown that the degree of j_3 (resp. j_4) is greater than or equal to $\frac{n}{2}$ (resp. $\frac{n}{4}$) by applying the same argument as in the proof of Proposition 3. Actually, there is a case that the degrees of j_3 and j_4 are $\frac{n}{2}$. For example, when (n, a) = (4, 32), we have $\mathbb{Q}(j_3) = \mathbb{Q}(j_4) = \mathbb{Q}(\sqrt{16385})$. Family of elliptic curves with good reduction everywhere over number fields of given degree 65

We end this paper by remarking that the number fields given in Propositions 2 and 3 have different number of real places in general.

Proposition 5.

- (i) Assume n is odd and $|a| > \sqrt[4]{1728^n + 1}$. Then the number of real places of the field defined by $f_{n,a}(x)$ is 1.
- (ii) Assume n is even. Then the number of real places of the field defined by $f_{n,a}(x)$ is less than or equal to 2.
- (iii) Assume $a \neq 16$ (resp. $a \leq -48$ or a > 16) if n is odd (resp. even). Then the number of real places of the field defined by $g_{n,a}(x)$ is 3 (resp. 4).

Proof. Count the number of the real roots of $f_{n,a}(x)$ and $g_{n,a}(x)$.

Acknowledgment. The author would like to thank Kazuo Matsuno for many helpful suggestions and comments. This work was partially supported by Grant-in-Aid for JSPS Fellows Grant Number 2611708.

References

- O. Perron, Neue Kriterien f
 ür die Irreduzibilit
 ät algebraischer Gleichungen, J. Reine Angew. Math. 132 (1907), 288–307.
- [2] D.E. Rohrlich, *Elliptic curves with good reduction everywhere*, J. London Math. Soc. 25 (1982), 216–222.
- [3] J.H. Silverman, The Arithmetic of Elliptic Curves (2nd edition), Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 2009.
- [4] N. Takeshi, Elliptic curves with good reduction everywhere over cubic fields, Int. J. Number Theory 11 (2015), no. 4, 1149–1164.
- Address: Nao Takeshi: Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.

E-mail: m10ntakeshi@gmail.com

Received: 26 November 2015; revised: 16 March 2016