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FAMILY OF ELLIPTIC CURVES WITH GOOD REDUCTION
EVERYWHERE OVER NUMBER FIELDS OF GIVEN DEGREE

Nao Takeshi

Abstract: We give families of elliptic curves having good reduction everywhere over number
fields which are generated by their j-invariants of given degree.
Keywords: elliptic curves, everywhere good reduction, j-invariants.

It is known that the j-invariant j(E) of an elliptic curve E defined over a number
fieldK is an algebraic integer if and only if there exists a finite extension F/K such
that E attains good reduction everywhere over F (cf. [3, Proposition VII.5.5]).
It follows that every algebraic integer α belongs to j(E0

F ) for some extension field
F of Q(α). Here, EF is the set of isomorphism classes of elliptic curves defined
over F , E0

F is the subset of EF defined by

E0
F = {E ∈ EF : E has good reduction everywhere over F}

and j(E0
F ) = {j(E) : E ∈ E0

F }. However, we have α 6∈ j(E0
Q(α)) for many algebraic

integers α, because it is known that E0
K is a finite set for any K. For example,

we have α 6∈ j(E0
Q(α)) for any rational integer α, because there exist no elliptic

curves having good reduction everywhere over Q, that is, E0
Q = ∅. We consider the

following problem.

Problem. Find algebraic integers α such that α ∈ j(E0
Q(α)), i.e., α = j(E) for

some elliptic curve E defined over Q(α) and having good reduction everywhere
over Q(α).

In [2], Rohrlich considered a specific case of the problem. He gave a necessary
and sufficient condition for an algebraic integer α to be the j-invariant of an elliptic
curve E ∈ E0

Q(α) with complex multiplication by the ring of integers of an imaginary
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quadratic field. By his result, it is immediately shown that there exist infinitely
many algebraic integers α satisfying α ∈ j(E0

Q(α)). However, since there exist only
finitely many imaginary quadratic fields with given class number, his result gives
a finite number of algebraic integers α ∈ j(E0

Q(α)) of given degree. In this paper,
we prove the following theorem.

Theorem 1. For any n > 2, there exist infinitely many algebraic integers α of
degree n such that α ∈ j(E0

Q(α)).

Theorem 1 is known to be true for the case n 6 3. Tate showed that a root α
of the polynomial x2 − 1728x + a12 with a ∈ Z prime to 6 satisfies α ∈ j(E0

Q(α)).
Actually, the elliptic curve defined by the equation

y2 + xy = x3 −
36

α− 1728
x−

1

α− 1728
(1)

has the j-invariant equal to α and has good reduction everywhere over the quadratic
field Q(α) (see the remark following the proof of Proposition 2). The author gave
a family of elliptic curves having good reduction everywhere over cubic fields with
cubic j-invariants ([4, Theorem 1.2]).

We give two families of elliptic curves having good reduction everywhere in
Propositions 2 and 3. The elliptic curves in Proposition 2 are inspired by the
example of Tate, and Proposition 3 is a straightforward generalization of the result
of the author.

Proposition 2. Let n, a ∈ Z with n > 2. Assume that a satisfies a4 ≡ 1 (mod
1728) and gcd

(
a, 1728n(n− 1)− 1

)
= 1. The polynomial

fn,a(x) = xn +

(
a4 − 1

1728
− 1728n−1

)
x+ 1

is irreducible over Q. For a root α of fn,a(x), let E be the elliptic curve defined
by (1). Then j(E) = α and E has good reduction everywhere over Q(α).

Proposition 3. Let n, a ∈ Z with n > 2. The polynomial

gn,a(x) = xn − 16n−2(a− 16)xn−1 + ax− 1

is irreducible over Q. For a root ε of gn,a(x), let E1 and E2 be the elliptic curves
defined by the equations

E1 : y2 + xy = x3 + 16εx2 + 8εx+ ε (2)

and

E2 : y2 + xy = x3 − 8εx2 + 2ε(8ε− 3)x+ ε(4ε− 1). (3)

Then E1 and E2 have good reduction everywhere over Q(ε). Moreover, their
j-invariants, given by

j1 =

(
4096ε2 − 256ε+ 1

)3
ε(16ε− 1)

and j2 =

(
256ε2 + 224ε+ 1

)3
ε(1− 16ε)4

(4)

respectively, satisfy Q(ε) = Q(j1) = Q(j2).
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Theorem 1 follows immediately from Proposition 2 since there exist infinitely
many a ∈ Z satisfying the conditions. In the case n > 3, Theorem 1 also follows
from Proposition 3 since the number of the roots ε defining the same j-invariant
is only finite by (4). When n = 2, the polynomial g2,a(x) = x2 + 16x − 1 does
not depend on a ∈ Z, so Proposition 3 only gives elliptic curves defined over
the quadratic field Q(ε) = Q(

√
65). The two propositions give almost distinct

algebraic integers α satisfying α ∈ j(E0
Q(α)) (see Proposition 5).

In order to prove the irreducibility of fn,a(x) and gn,a(x) in Propositions 2
and 3, we use the following lemma which follows immediately from the irreducibil-
ity criterion of Perron ([1, Theorem 2]).

Lemma 4. Let n ∈ Z with n > 2 and

F (x) = xn + sxn−1 + tx± 1,

where s, t ∈ Z. If |s| > |t|+ 2 or |t| > |s|+ 2, then F (x) is irreducible over Q.

We begin the proofs of the propositions.

Proof of Proposition 2. Set b = a4−1
1728 − 1728n−1. We have |b| > 2. Indeed,

(x, y) = (12n, a2) is on the elliptic curve y2 = x3 + 1728b + 1, but this curve has
no integral point of such a form if |b| 6 2. Therefore fn,a(x) = xn + bx + 1 is
irreducible by Lemma 4.

The discriminant of (1) is given by

∆ =
α2

(α− 1728)3
.

We denote by ordp the normalized additive valuation on Q(α) at p. Assume that
a prime ideal p of Q(α) satisfies ordp(α − 1728) = 0. The coefficients of (1) are
p-integral. Moreover, we have ordp(∆) = 0 since α is a unit by the definition.
Thus E has good reduction at p. Assume that p satisfies ordp(α − 1728) > 0.
Then we have ordp(α) = ordp(6) = 0. To prove that E has good reduction at p,
we have only to show that ordp(∆) ≡ 0 (mod 12) (cf. [3, Exercise 7.2]). Since α
is a root of fn,a(x), we have

a4α = −1728αn + 1728nα+ α− 1728

= (α− 1728)

(
1− 1728α

n−2∑
i=0

1728iαn−2−i

)
.

Hence ordp(a) > 0, which implies ordp(1728n(n − 1) − 1) = 0 by the assumption
on a. On the other hand, we have

1− 1728α

(
n−2∑
i=0

1728iαn−2−i

)
≡ 1− 1728n(n− 1) (mod p)
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since α ≡ 1728 (mod p). Thus ordp(α − 1728) = ordp(a4) = 4 ordp(a). This
shows that ordp(∆) = 2 ordp(α) − 3 ordp(α − 1728) = −12 ordp(a) ≡ 0 (mod 12)
as desired. �

Remark. As in the proof above, E with discriminant ∆ = α2

(α−1728)3 has good
reduction at a prime p with ordp(6) = 0 if ordp(α) > 0 and 2 ordp(α) ≡ 3 ordp(α−
1728) (mod 12). For the example of Tate, this condition is verified by α(α−1728) =
a12. Our curves are constructed so that α is a unit and ordp(α−1728) ≡ 0 (mod 4).

Proof of Proposition 3. When n = 2 and 3, the polynomial gn,a(x) is irre-
ducible over Q since gn,a(±1) 6= 0. When n > 4, if a 6= 16, we have 16n−2|a−16| >
|a| + 2. So gn,a(x) is irreducible by Lemma 4. The irreducibility of gn,16(x) =
xn + 16x− 1 also follows by Lemma 4.

Let ε be a root of gn,a(x). The discriminants of E1 and E2 are given by
−ε(1− 16ε) and ε(1− 16ε)4 respectively. Clearly ε is a unit by the definition, and
1 − 16ε is also a unit since 1 − 16ε is a root of (−16)ngn,a

(
1−x
16

)
∈ Z[x] which

is a monic polynomial with constant term 1 − 16n−1(a − 16) + 16n−1a − 16n =
1. Therefore E1 and E2 have unit discriminants, that is, E1 and E2 have good
reduction everywhere over Q(ε). By (4), ε−1 is a root of the polynomial

x6 + (j1 − 768)x5 − 24(j1 − 13056)x4 − 22111x3 + 22451x2 − 2323x+ 236. (5)

Every conjugate of ε−1 over Q(j1) is a unit and a root of (5). On the other
hand, (5) have only one 2-adic unit root since j1 is a 2-adic unit by (4). Therefore
ε−1 ∈ Q(j1). This means Q(ε) = Q(j1). We can show that j2 satisfies Q(j2) = Q(ε)
by using the same argument, because ε−1 is a root of the polynomial of the form

x6 − (j2 − 672)x5 + 26(j2 + 2364)x4 − 29(3j2 − 22624)x3

+ 214(2364 + j2)x2 − 216(j2 − 672)x+ 224

over Q(j2) by (4). �

Remark (cf. [4, Remark 4.1 (A2)]). E1 and E2 are isogenous to the elliptic curve

E3 : y2 + xy = x3 − 8εx2 + ε(16ε− 1)x with j3 =

(
256ε2 − 16ε+ 1

)3
ε2(1− 16ε)2

which has three Q(ε)-rational points of order 2. Therefore, we have the four curves
E1, E2, E3 and

E4 : y2 + xy = x3 − 2εx2 + ε2x with j4 =

(
16ε2 − 16ε+ 1

)3
ε4(1− 16ε)

isogenous to each other. So E3 and E4 also belong to E0
Q(ε). It is shown that

the degree of j3 (resp. j4) is greater than or equal to n
2 (resp. n

4 ) by applying
the same argument as in the proof of Proposition 3. Actually, there is a case
that the degrees of j3 and j4 are n

2 . For example, when (n, a) = (4, 32), we have
Q(j3) = Q(j4) = Q(

√
16385).
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We end this paper by remarking that the number fields given in Propositions 2
and 3 have different number of real places in general.

Proposition 5.

(i) Assume n is odd and |a| > 4
√

1728n + 1. Then the number of real places of
the field defined by fn,a(x) is 1.

(ii) Assume n is even. Then the number of real places of the field defined by
fn,a(x) is less than or equal to 2.

(iii) Assume a 6= 16 (resp. a 6 −48 or a > 16) if n is odd (resp. even). Then
the number of real places of the field defined by gn,a(x) is 3 (resp. 4).

Proof. Count the number of the real roots of fn,a(x) and gn,a(x). �
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