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Abstract: Let K be a global field, V an infinite proper subset of the set of all primes of K, and
S a finite subset of V . Denote the maximal Galois extension of K in which each p ∈ S totally
splits by Ktot,S . Let M be an algebraic extension of K. Let VM (resp. SM ) be the set of primes

of M which lie over primes in V (resp. S). For each q ∈ VM let ÔM,q = {x ∈ M̂q | |x|q ≤ 1},

where M̂q is a completion of M at q, and let OM,V = {x ∈ M | |x|q ≤ 1 for each q ∈ VM}.

For σ = (σ1, . . . , σe) ∈ Gal(K)e, let Ks(σ) = {x ∈ Ks | σi(x) = x, i = 1, . . . , e}. Then,
for almost all σ ∈ Gal(K)e (with respect to the Haar measure), the field M = Ks(σ) ∩ Ktot,S

satisfies the following local global principle: Let V ⊆ An be an affine absolutely irreducible
variety defined over M . Suppose that there exist xq ∈ V (ÔM,q) for each q ∈ VM

rSM and

xq ∈ Vsimp(ÔM,q) for each q ∈ SM such that |xi,q |q < 1, i = 1, . . . , n, for each archimedean
prime q ∈ VM . Then V (OM,V ) 6= ∅.
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Introduction

Hilbert’s tenth problem asked for the existence of an algorithm to solve diophan-
tine equations, that is equations with coefficients in Z whose solutions are sought
in Z. The development of recursion theory since 1930 and works of Martin Davis,
Hilary Putnam, and Julia Robinson finally led Juri Matijasevich in 1972 to a nega-
tive answer to that problem. This invoked Julia Robinson to ask whether Hilbert’s
tenth problem has a positive solution over the ring Z̃ of all algebraic integers. In-
deed, on page 367 of her joint paper [4] with Davis and Matijasevich she guessed
that there should be one.

Using capacity theory, Rumely [24], [25] proved in 1987 a local global principle
for Z̃: If an absolutely irreducible affine variety V over Q̃ has an integral point
over every completion of Q̃, then V has a point with coordinates in Z̃. This led
Rumely to an algorithm for solving diophantine problems over Z̃.
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In 1988-89 Moret-Bailly [16], [17], [18] reproved Rumely’s theorem with ratio-
nality conditions using methods of algebraic geometry.

Green, Pop, and Roquette [6] consider a global field K, a set V of primes of K
which does not include all of the primes of K, and a finite subset S of V . Each
p ∈ V is an equivalence class of absolute values of K. Let | |p be an absolute
value representing p. If p is archimedean and complex, let Kp be the algebraic

closure K̃ of K. If p is archimedean and real, let Kp be a real closure of K at
p. If p is nonarchimedean, let Kp be a Henselian closure of K at p. Now let
N = Ktot,S =

⋂
p∈S

⋂
τ∈Gal(K) Kτ

p be the field of totally S-adic numbers. It is
the maximal Galois extension of K in which each p ∈ S totally decomposes. Here
Gal(K) = Gal(Ks/K) is the absolute Galois group of K. Consider the subset
ON,V of N consisting of all x ∈ N such that |x|q ≤ 1 for each prime q of N whose
restriction to K lies in V . The main result of [6] is a local-global principle for ON,V :
If an affine absolutely irreducible variety V defined over K has a Kp-rational point
xp with |xp|p ≤ 1 for each p ∈ V such that xp is simple if p ∈ S and |xp|p < 1 if p

is archimedean, then V has a simple ON,V-rational point. The language of proof
of [6] is that of the theory of algebraic function fields of one variable.

The present work generalizes the methods of [6] and proves a local-global prin-
ciple and an approximation theorem for diophantine equations of subrings of fields
lying “deeper” than Ktot,S . To explain the latter objects recall that Gal(K) is
equipped with a Haar measure. For each σ ∈ Gal(K)e we denote the fixed field
of σ1, . . . , σe in Ktot,S by M = Ktot,S(σ). As in the preceeding paragraph, let
OM,V be the set of all x ∈ M with |x|q ≤ 1 for each prime q of M lying over
some p ∈ V . For a fixed integer e ≥ 0 we prove that for almost all σ ∈ Gal(K)e

the field M = Ktot,S(σ) satisfies a weak approximation theorem: Let V be an
affine absolutely irreducible variety defined over K and let T be a finite subset of
V . For each p ∈ S ∩ T let xp be a simple Kp-rational point of V and for each
p ∈ T rS let xp be a Kp-rational point of V (which need not be simple). Finally
let ε > 0. Then there exists x ∈ V (M) such that |x − xp|p < ε for each p ∈ T .
The local-global principle for OM,V follows from the weak approximation theorem.
Another corollary is that M is PSC. This means that if V is an absolutely irre-
ducible variety defined over M with a simple Kτ

p -rational point for each p ∈ S and
every τ ∈ Gal(K), then V has an M -rational point.

The exact formulation of our results appears in Section 3, where we prove
a “strong approximation theorem” from which all other results follow. The proof
follows quite closely the proof of the analogous results in [12]. In that work we han-
dled only the case where V contains no archimedean primes and where Ktot,S(σ) is
replaced by its maximal purely inseparable extension Ktot,S(σ)ins. The advantage
of the latter field is that it is perfect. In our case we have to face the possibility
that prime divisors of algebraic function fields over Ktot,S(σ) ramify when going
over to the algebraic closure. This brings in extra technical complications into the
proof.

The extra difficulty in the proof of our results over that of [6] is that we have to
find Ktot,S(σ)-rational points on varieties and not only Ktot,S-rational points. In
addition, Ktot,S(σ), unlike Ktot,S , is not Galois over K. But note that Ktot,S(σ) =
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Ks(σ) ∩ Ktot,S , where Ks(σ) is the fixed field in Ks of σ1, . . . , σe. What makes
our proof work is Corollary 1.6 of [13] which says that for almost all σ ∈ Gal(K)e

the field Ks(σ) is “PAC over OK,V ”. This implies that Ktot,S(σ) is “weakly-PSC
over OK,V ”. Both notions are explained in Section 1 along with the exact citation
from [13].

One of the main ingredients of the proof of our result is the solvability of each
“(S,V)-Skolem density problem for Ktot,S(σ)” (explained in Section 1). The PAC
over OK,V property of Ks(σ) suffices in [13] to prove not only that for almost all
σ ∈ Gal(K)e each (S,V)-Skolem density problem for Ktot,S(σ) is solvable but
that each (S,V)-Skolem density problem for Ktot,S [σ] is solvable. The latter field
is the intersection of Ktot,S with the maximal Galois extension Ks[σ] of K in
Ks(σ). However, as is shown in [1], the field Ks[σ] is not PAC over OK,V , hence
we can not deduce that Ktot,S [σ] is weakly-PSC over OK,V . Unfortunately the
weakly-PSC over OK,V property enters again in the proof of the present work in
Section 8. Thus, we are unable to prove that for almost all σ ∈ Gal(K)e the
local-global principle holds for the fields Ktot,S [σ]. That question remains open.

1. Weakly PSC fields over holomorphy domains

The objects of our results are defined over a global field K. The property of the
field M = Ktot,S(σ) (when σ is taken at random in Gal(K)e) that lies behind the
local-global principle is being “weakly PSC over OM,V ”. We introduce the notion
and quote all results we need about this notion from [13].

Data 1.1. We fix the following data for the rest of this work:

(a) K is a global field.

(b) Ks is the separable closure and K̃ is the algebraic closure of K.

(c) Gal(K) = Gal(Ks/K) is the absolute Galois group of K. For each nonneg-
ative integer e the group Gal(K)e has a unique Haar measure µ such that
µ(Gal(K)e) = 1. Given σ ∈ Gal(K)e, we write Ks(σ) for the fixed field of
σ1, . . . , σe in Ks.

(d) P = PK is the set of all primes (finite and infinite) of K. A finite (resp. infi-
nite) prime p of a field E is an equivalence class of nonarchimedean
(resp. archimedean) absolute values | |p of E. The unit disc Dp is the p-open
set {x ∈ E | |x|p ≤ 1} (resp. {x ∈ E | |x|p < 1}) if p is finite (resp. infinite).
We denote the set of all finite primes of K by Pfin and the set of all infinite
primes of K by Pinf . Thus, Pinf = ∅ and Pfin = P when char(K) > 0. For each
p ∈ P we choose an absolute value | |p which belongs to p.

(e) V is a proper subset of P.

(f) Let R be a subset of P. Set Rfin = R ∩ Pfin and Rinf = R ∩ Pinf . For each
algebraic extension L of K let RL be the set of all primes of L which lie over
primes in R. For L = K̃ we set R̃ = RK̃ . If q ∈ PL lies over p ∈ P, we write
q|p and p = q|K . We denote the unique absolute value which represents q and
extends | |p by | |q.
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If L is a normal extension of K, then Aut(L/K) acts on RL according to
the rule

|x|pσ = |xσ−1

|p, for p ∈ RL and x ∈ L.

We may choose a subset R0 of RL which contains exactly one extension of
each prime in R. Then, for each q ∈ RL there are p ∈ R0 and σ ∈ Aut(L/K)
with q = pσ. We say that R0 represents RL over K.

We call OL,R = {x ∈ L | |x|q ≤ 1 for each q ∈ RL} the R-holomorphy
domain of L. It is closed under multiplication. If R ⊆ Pfin, then OL,R is a
ring.

We call

DL,R =
⋂

q∈RL

Dq = {x ∈ L | |x|q ≤ 1 ∀q ∈ Rfin,L and |x|q < 1 ∀q ∈ Rinf,L}

the open R-holomorphy domain of L.
For a = (a1, . . . , an) ∈ Ln let |a|R = max

q∈RK(a)

max
1≤i≤n

|ai|q = max
q̃∈R̃

max
1≤i≤n

|ai|q̃.

For f(X) =
∑n

i=0 aiX
i ∈ L[X ], we set |f |R = |(a0, . . . , an)|R.

Proposition 1.2 (Strong approximation theorem [2, p. 67]). Let T be a
finite subset of V. For each p ∈ T consider an element ap of K and let ε be a
positive real number. Then there exists x ∈ OK,V rT such that |x − ap|p < ε for
each p ∈ T .

Data 1.3. We add the following data to Data 1.1 and fix it for the rest of this
work:

(a) Let p ∈ P.
p̃ is a fixed extension of p to a prime of K̃. If q̃ ∈ P̃ and q̃|p, then there is a
σ ∈ Gal(K) such that q̃ = p̃σ.
K̂p is the completion of K at p inside the completion of K̃ at p̃. Then | |p
uniquely extends to an absolute value | |p of K̂p and then uniquely to an

absolute value of K̃K̂p. The restriction of the latter to K̃ coincides with | |p̃.

If p ∈ Pinf , then either K̂p
∼= R or K̂p

∼= C; in the former case p is real, in
the latter case p is complex.
Kp = Ks ∩ K̂p. It is well defined up to a K-isomorphism. If p ∈ Pfin, then Kp

is an Henselian closure of K at p. Since K̂p/Kp is a separable extension [8,

Lemma 2.2], so is K̂p/K. If p ∈ Pinf is real, then Kp is a real closure of K at
p; if p ∈ Pinf is complex, then Kp = Ks.
Ktp =

⋂
σ∈Gal(K) Kσ

p .

(b) S is a finite subset of V .

(c) N = Ktot,S =
⋂

p∈S Ktp. This is the maximal Galois extension of K in which
each p ∈ S totally decomposes. If S = ∅, we let N = Ks.
Note that if L is a subextension of N/K, then Ltot,SL

= N .

(d) For each σ ∈ Gal(K)e we put Ktot,S(σ) = Ks(σ) ∩ Ktot,S .
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Definition 1.4. Let M be an algebraic extension of K and O a subset of M .
We say that M is PAC over O if for every absolutely irreducible polynomial
h ∈ M [T, X ] and every nonzero g ∈ M [T ] there exists (a, b) ∈ O × M such that
h(a, b) = 0 and g(a) 6= 0.

Let M be a subextension of N/K and O a subset of M . We say that M is
weakly PSC over O if for every absolutely irreducible polynomial h ∈ M [T, X ]
monic in X such that all of the roots of h(0, X) are simple and belong to N and
every g ∈ M [T ] with g(0) 6= 0, there exists (a, b) ∈ O × M such that h(a, b) = 0
and g(a) 6= 0.

Remark 1.5. If O ⊆ O′ ⊆ M and M is weakly PSC over O, then it is also weakly
PSC over O′.

By [13, Cor. 1.6], Ks(σ) is PAC over OK,V for almost all σ ∈ Gal(K)e. This
implies the following result.

Lemma 1.6 ([13, Lemma 1.12 (a)]). For almost all σ ∈ Gal(K)e the field
Ktot,S(σ) is weakly PSC over OK,V .

Lemma 1.7 (Quasi uniform approximation [13, Lemma 1.14]). Let M be a
subextension of N/K which is weakly PSC over OM,V and let T be a finite subset
of V which contains S. Let x ∈ N and ε > 0. Then M has a finite subset B
(depending on T , x, ε) such that for each q̃ ∈ T̃ there is b ∈ B with |b − x|q̃ < ε.

Lemma 1.8 ([13, Prop. 1.15 and Remark 1.11 (b)]). Let M be a subextension
of N/K which is weakly PSC over OM,V . Let p ∈ V rS and q̃ an extension of p

to K̃. Suppose q̃ = p̃σ for σ ∈ Gal(K). Then Kσ
p M = Ks and M is q̃-dense in K̃.

Lemma 1.9 ([21, Lemma 3.5]). Let M be a subextension of N/K and suppose
that M is weakly PSC over a subset O. Let Γ be an absolutely irreducible projective
curve defined over M , let F be the function field of Γ over M , and let t be an
element in F r M whose zeros are simple and belong to Γsimp(N). Also, let A be
a finite subset of M×. Then there exists P ∈ Γsimp(M) such that t(P ) ∈ Or A.

Definition 1.10. A data for an (S,V)-Skolem density problem for an algebraic
extension M of K consists of a quadruple (T , f ,a, γ) in which

(a) T is a finite subset of V containing S;
(b) f = (f1, . . . , fm) and fi ∈ K̃[X1, . . . , Xn] is p-primitive, i.e. |fi|p = 1, for

each p ∈ Ṽfin r T̃ , i = 1, . . . , m;
(c) a point a = (a1, . . . , an) ∈ Mn; and
(d) a positive real number γ.

A solution is a point x ∈ On
M,Vfin rT with |x−a|T < γ and fi(x) ∈ O×

K̃,Vfin rT
,

i = 1, . . . , m.
M is called an S-Skolem field with respect to V if every (S,V)-Skolem

density problem for M has a solution.

Proposition 1.11 ([13, Thm. 3.7]). If M is a subextension of N/K which is
weakly PSC over OM,V , then M is an S-Skolem field with respect to V.
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2. Rumely’s local global principle

We give an exact formulation of the major results of this work. This requires a
variety of data and notation in addition to those introduced in Section 1.

Data 2.1. We introduce data and notation, and keep the assumptions we make
here for the rest of this work:

(a) For each q ∈ VN we fix an extension q̃ ∈ Ṽ. For each subextension L of
N/K let L̂q be the completion of L at q|L inside the completion of K̃ at q̃.
The latter completion has a unique absolute value | |q which coincides with

| |q|K on K. Let Lq = Ks

⋂
L̂q and DL,q = {x ∈ Lq | |x|q ≤ 1} if q ∈ Vfin,N

and DL,q = {x ∈ Lq | |x|q < 1} if q ∈ Vinf,N . Then Lq ⊆ Nq and Lq is
the fixed field in Ks of the decomposition group {τ ∈ Gal(L) | q̃τ = q̃}. If
q ∈ Vfin,N , then Lq is a Henselian closure of L at q|L and DL,q is its valuation

ring. We extend each σ ∈ Gal(N/L) to σ̃ ∈ Aut(L̃/L) which satisfies q̃σ̃ = q̃σ.
Then σ̃ maps Lq isomorphically onto Lqσ and DL,q onto DL,qσ . If L is a
finite subextension of N/K and q|L is non-complex, then Aut(Lq/L) = 1 [7,
Prop. 14.5 and Prop. 15.6].

(b) For an abstract absolutely irreducible variety W defined over K and for each
extension L of K we let W (L) (resp. Wsimp(L)) be the set of all L-rational
(resp. simple L-rational) points of W . Whenever we say that W is an affine
absolutely irreducible variety we also mean that W is embedded in some affine
space. Then, if D is a subset of L, a D-rational point of W is an L-rational
point of W whose coordinates lie in D. We denote the set of all D-rational
points of W by W (D). Similar notation is imposed for closed subsets of W .

(c) M is a subextension of N/K which is weakly PSC over OM,V .
(d) W is a finite subset of V which contains S.
(e) Let V be an affine absolutely irreducible variety defined over K. Then VK,S,W

is the set of all points (zq)q∈WN
∈

∏
q∈WN

Vsimp(Nq) for which
(1) there exists a finite subextension L of M/K such that zq ∈ Vsimp(Lq)

and zqσ = z
σ
q for each q ∈ WN and σ ∈ Gal(N/L).

Each (zq)q∈WN
that satisfies (1) is said to be L-rational.

(f) VD,S,W = VK,S,W ∩
∏

q∈WN
Vsimp(DN,q).

We will extend these data in the sequel by more data and assumptions, as
necessary.

Here is our main theorem.

Theorem 2.2 (Strong approximation theorem). Let V be an affine absolutely
irreducible variety defined over K and embedded in An. Consider a (zq)q∈WN

∈
VK,S,W and an ε > 0. Then:

(a) There exists z ∈ V (M) such that |z − zq|q < ε for each q ∈ WN .
(b) If V (DN,q) 6= ∅ for each q ∈ VN rWN , then there exists z ∈ V (M) such that

|z − zq|q < ε for each q ∈ WN and z ∈ Dn
N,q for each q ∈ VN rWN .

(c) If V (DN,q) 6= ∅ for each q ∈ VN rWN and zq ∈ Dn
N,q for each q ∈ WN , then

there exists z ∈ V (DM,V) such that |z − zq|q < ε for each q ∈ WN .
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Part (c) is an interesting special case of Part (b). In Section 9 we first prove
(c), and then conclude (b) and (a).

Remark 2.3. (a) We may replace K in Data 2.1 by any finite subextension L of
M/K and extend all the objects that have been defined over K to L. Then
the assumptions made on them remain true and N does not change. It follows
that Theorem 2.2 for K implies the theorem for L. Also, we may start from a
variety V which is defined over M and then replace K by a finite subextension
of M/K over which V is already defined.

(b) It suffices to prove Theorem 2.2 only for points (zq)q∈WN
which are K-rational.

Indeed, if (zq)q∈WN
is L-rational for some finite subextension L of M/K, then

we may apply the theorem in its restricted form to L rather than to K and
approximate (zq)q∈WN

by a point in V (M) as (a), (b), (c) of the theorem
require.

(c) Let q ∈ VN . If q ∈ SN , then Kq ⊆ Mq ⊆ Nq ⊆ Kq, so Mq = Nq. If q /∈ SN ,
then Mq = Nq = Ks (Lemma 1.8).

(d) We use the assumption SN ⊆ WN (Data 2.1(d)) only to simplify notation. In
applications that do not make this assumption we use Lemma 9.1 to restore
it.

The strong approximation theorem yields a weak one, which we prove in Sec-
tion 9.

Theorem 2.4 (Weak approximation theorem). Let T be a finite subset of
VM and let V be an affine absolutely irreducible variety defined over M .

(a) If Vsimp(DM,p) 6= ∅ for each p ∈ SM and V (DM,p) 6= ∅ for each p ∈ VM rSM ,
then each point in

∏

p∈T ∩SM

Vsimp(DM,p) ×
∏

p∈T rSM

V (DM,p)

can be approximated by a point in V (DM,V).

(b) If Vsimp(Mp) 6= ∅ for each p ∈ SM , then Vsimp(M) is dense in

∏

p∈T ∩SM

Vsimp(Mp) ×
∏

p∈T r SM

V (Mp) .

Taking T in Theorem 2.4 to be nonempty gives a local-global principle.

Theorem 2.5 (Local-global principle). Let V be an affine absolutely irreducible
variety defined over M . Suppose Vsimp(DM,p) 6= ∅ for each p ∈ SM and V (DM,p) 6=
∅ for each p ∈ VM rSM . Then V (DM,V) 6= ∅.

Remark 2.6 ([12, Remark 1.6]). It is possible to replace each Mp in Theorems 2.4

and 2.5 by its completion M̂p.



26 Moshe Jarden, Aharon Razon

An algebraic extension L of K is said to be PSC, if every absolutely irreducible
variety V defined over L with a simple Lp-rational point for each p ∈ SL has an
L-rational point.

Taking T in Theorem 2.4 to be a finite nonempty subset of SM and assum-
ing that Vsimp(Mp) 6= ∅ for each p ∈ SM , we get that Vsimp(M) is dense in the
nonempty set

∏
p∈T Vsimp(Mp). Therefore, Vsimp(M) 6= ∅. This proves the follow-

ing result:

Corollary 2.7. The field M is PSC.

Corollary 2.8. Let V ⊆ Pfin be a proper subset of P and let V be an affine
absolutely irreducible variety defined over M . If Vsimp(ON,V) is nonempty, then
so is V (OM,V).

Examples of weakly PSC fields are given by Lemma 1.6.

Corollary 2.9. For almost all σ ∈ Gal(K)e, the field M = Ktot,S(σ) satisfies the
consequences of Theorems 2.2, 2.4, and 2.5, and Corollary 2.7. In particular, M
is PSC.

3. Restatement of the approximation theorem for integral points on
curves

This section starts the long proof of the strong approximation theorem for DM,V-
integral points on a curve (Theorem 2.2(c) for dim(V ) = 1), from which all of
the other results follow. We first reformulate the theorem in this case in terms of
function fields, state a somewhat stronger result and finally describe the five steps
needed to prove the stronger result. To fix notation we add additional data to
Data 1.1, 1.3, and 2.1.

Data 3.1. The following data and notation remain in force until the end of Sec-
tion 8.

C is an absolutely irreducible affine curve in An defined over K,
x = (x1, . . . , xn) is a generic point of C over K and over each completion K̂p,
F0 = K(x) is the function field of C over K,
F = MF0 = M(x) is the function field of C, considered as a curve over M ,
genus(F/M) is the genus of F/M ,
s = 2 genus(F/M) + 2 is a useful constant,
Γ is a normal projective model of F/M ,
M ′ is a field that contains M and is linearly disjoint from F ,
F ′ = M ′F is the function field obtained by extension of scalars to M ′,
Γ(M ′) is the set of all M ′-rational points of Γ,
Γ(F ′/M ′) is the set of all prime divisors of F ′/M ′,
Div(F ′/M ′) is the group of divisors of F ′/M ′,
P ∗

1 , . . . , P ∗
e are the distinct poles of x1, . . . , xn in Γ(F/M),

P ∗
i,1, . . . , P

∗
i,di

are the distinct prime divisors of K̃F/K̃ which lie over P ∗
i ,
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ei is the ramification index of P ∗
i,j over P ∗

i ,
D∗ = P ∗

1 + · · · + P ∗
e

ε0 is a positive real number.

Remark 3.2. (a) For each divisor A of F ′/M ′ we consider the vector space

LM ′(A) = {f ∈ F ′ | div(f) + A ≥ 0}

over M ′. It has a finite dimension, which is denoted by dimM ′(A). The group
Div(F/M) naturally embeds in Div(F ′/M ′). If M ′/M is separable, then since M ′

is linearly disjoint from F over M , a basis of LM (A) is also a basis of LM ′(A) and
genus(F ′/M ′) = genus(F/M) [3, p. 132]. Thus dimM (A) = dimM ′(A) and we can
drop the reference to the ground field from the dimension of A.

(b) P ∗
i = ei(P

∗
i1 + · · · + P ∗

i,di
), hence deg(P ∗

i ) = diei

Remark 3.3. Suppose M ′/M is separable. Then the extension of Γ to M ′ is still
normal [14, p. 147, Cor.]. We identify each point of Γ(M ′) with a prime divisor P
of F ′/M ′ of degree 1. If f ∈ F ′, then f(P ) is the value of the rational function f
of Γ at P , if we view P as a point on the curve, or the value of the place associated
with P at the element f of F ′, if we view P as a prime divisor of F ′/M ′. In both
cases f(P ) is an element of M ′ ∪ {∞}. This element is ∞ exactly when P is a
pole of f . Thus, if P ∈ Γ(K̃) does not belong to {P ∗

ij | i = 1, . . . , e; j = 1, . . . , di},

then x(P ) = (x1(P ), . . . , xn(P )) is a point in C(K̃).
Now suppose that M ′ is equipped with an absolute value | |p. The p-adic

topology of M ′ induces a topology on Γ(M ′) whose basis consists of the sets

{P ∈ Γ(M ′) | |f1(P )|p < 1, . . . , |fm(P )|p < 1}

with f1, . . . , fm ∈ F ′. Here we make the convention that |∞|p = ∞. This is
actually the weakest topology on Γ(M ′) such that each f ∈ F ′ defines a continuous
function

f : Γ(M ′) → M ′ ∪ {∞}, P 7→ f(P ),

where the neighborhoods of ∞ are, as usual, the complements of the closed neigh-
borhoods of 0.

Next suppose that for each p ∈ VN we are given a point zp ∈ C(DN,p) such
that (zq)q∈WN

∈ CD,S,W (Data 2.1(f)). Our goal is to approximate (zq)q∈WN

by an element of C(DM,V). If p ∈ WN , then zp ∈ Csimp(DN,p). Hence, there
exists a unique Pp ∈ Γ(Np) such that x(Pp) = zp [10, p. 457, Cor. A3]. If
p ∈ VN rWN , then Np = Ks (Remark 2.3(c)) and we may choose Pp ∈ Γ(Np)
such that x(Pp) = zp. In all cases, x(Pp) ∈ Dn

N,p.
By definition, there exists a finite subextension L of M/K such that zqσ = z

σ
q

for each q ∈ WN and each σ ∈ Gal(N/L). By Data 3.1, LqF0 is a regular
extension of Lq and therefore it is linearly disjoint from Nq over Lq. Hence,
each σ ∈ Gal(N/L) extends to an isomorphism σ: NqF0 → NqσF0 that maps
Lq onto Lqσ and fixes each element of F0 (Use Data 2.1(a)). It follows that
x(Pqσ ) = zqσ = z

σ
q = x(Pq)σ = x(P σ

q ). Therefore, Pqσ = P σ
q .
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By remark 2.3(b), we may assume that L = K and conclude that Theo-
rem 2.2(c) for V = C is equivalent to the following theorem:

Theorem 3.4 (Approximation theorem for function fields of one vari-
able). Suppose that for each p ∈ VN there exists Pp ∈ Γ(Np) such that x(Pp) ∈
Dn

N,p. Assume that Pqσ = P σ
q for each q ∈ WN and σ ∈ Gal(N/K). Then, there

exists P ∈ Γ(M) such that x(P ) ∈ Dn
p for all p ∈ VN and |x(P ) − x(Pq)|q < ε0

for each q ∈ WN . In particular, P /∈ {P ∗
1 , . . . , P ∗

e }.

Our method of proof forces us to prove a stronger theorem than Theorem 3.4.

Theorem 3.5. Suppose for each p ∈ VN there exists Pp ∈ Γ(Np) such that x(Pp) ∈
Dn

N,p. Assume that Pqσ = P σ
q for each q ∈ WN and each σ ∈ Gal(N/K). Then

there exists a nonzero function f ∈ F with the following properties:

(1a) There exists a positive integer m (which can be chosen to be arbitrarily large)
such that div∞(f) = mD∗.

(1b) Each of the zeros of f is N -rational and simple, that is div0(f) =
∑l

i=1 Pi

with distinct Pi ∈ Γ(N).

(1c) For all p ∈ VN we have x(Pi) ∈ Dn
N,p, i = 1, . . . , l, and

(1d) |x(Pi) − x(Pq)|q ≤ ε0, i = 1, . . . , l, if q ∈ WN .

Moreover, one of the zeros of f is M -rational.

To prove Theorem 3.5 we fix the data of the assumption of the theorem:

Data and Assumption 3.6. For each p ∈ VN we fix a point Pp of Γ(Np) such
that x(Pp) ∈ Dn

N,p. We assume that Pqσ = P σ
q for each q ∈ WN and each

σ ∈ Gal(N/K). This data will remain in force until the end of Section 8.

Definition 3.7 (Admissible functions). Let p ∈ VN . A function f ∈ NF is
p-admissible if

(2a) there exists a positive integer m such that div∞(f) = mD∗ (we say that f is
of level m),

(2b) each zero of f is simple and belongs to Γ(Np),

(2c) x(P ) ∈ Dn
N,p for each zero P ∈ Γ(Np) of f , and

(2d) if p ∈ WN , then |x(P ) − x(Pp)|p < ε0 for each zero P ∈ Γ(Np) of f .

Let T be a subset of VN . We say that f is T -admissible if f is p-admissible
for each p ∈ T . In this case we also say that f is admissible along T .

Definition 3.8 (Small sets). A subset T of VN is small if it satisfies one of
the following equivalent conditions:

(3a) T |L is a finite set for each finite subextension L of N/K.

(3b) T is contained in a set T ′ =
⋃

a∈A{p ∈ VN | |a|p > 1} for some nonempty
finite subset A of N .
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Thus, for each finite subextension L of N/K there is a finite subset T0 of T
which contains exactly one extension of each element of T |L. So, T ⊆ {qσ | q ∈
T0 and σ ∈ Gal(L)}. We say that T0 represents T |L. If T = {qσ | q ∈ T0 and σ ∈
Gal(L)}, we say that T is L-rational.

Starting with an arbitrary small set T as above, we may enlarge A to a finite
set which is invariant under Gal(K). Then the set T ′ of (3b) becomes K-rational.
Thus, each small subset of VN is contained in a K-rational small subset of VN .

Finally, an (L-rational) big subset of VN is the complement of an (L-
rational) small set.

The proof of Theorem 3.5 constructs f in five steps. In each of them f is
admissible along a set T which is larger than the set of the preceding step. Of
course, f is changed from one step to the next one. Thus, in each step we actually
construct not only one function, but a family of functions, which are close to each
other in the “T -topology”. Our construction follows the construction of Roquette
et al. [23] over K̃. We use Remark 2.3(c) to approximate functions in NF by
admissible functions in F .

The headings of the steps below describe the set T along which f is admissible.

1. A single valuation. To construct a function f ∈ NF which is p-ad-
missible for a single valuation p ∈ VN we use the Rumely-Jacobi existence
theorem for algebraic functions and the theorem about the continuity of
the zeros of algebraic functions. The former forces us to assume that the
completion of K at p|K is a local field. The latter holds over Np. We prove
that if f ′ is sufficiently p-close to f , then it is also p-admissible. Then we
use the p-density of M in N to choose f ∈ F .

2. Finitely many valuations. We use the weak approximation theorem.
3. Small sets. An essential tool in this step is Lemma 1.7.
4. A big set of valuations. We use here the theory of good reduction.
5. The whole set VN . In order to combine the big set of valuations with

its complement (which is small) we use Proposition 1.11.

Finally we use Lemma 1.9 in order to choose f with an M -rational zero.

4. Finitely many valuations

The existence of an admissible function at a single valuation is a consequence of
the Jacobi-Rumely-Pop existence theorem. We use the principle of variation of
constants (Corollary 4.4) to approximate several functions, each admissible at a
single valuation, by a function which is admissible at each of these valuations.

Before we do that, we fix further data and make more assumptions on the top
of those already made in Data 2.1, Data 3.1, and Data 3.6.

Data and Assumption 4.1. We choose a finite extension K1 of K which is
contained in M and over which Γ is defined. Then F1 = K1(x) is the function
field of C and of Γ over K1 and F = MF1. Since D∗ is M -rational, we may assume
in addition that D∗ is K1-rational.
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Let σ ∈ Gal(K1). Since K̃ and F1 are linearly disjoint over K1, σ extends
uniquely to an element of Aut(K̃F/F1) which we also denote by σ. This σ acts
on Γ(K̃) such that fσ(P σ) = f(P )σ for all f ∈ K̃F and P ∈ Γ(K̃). Extend the
action of σ to the group of divisors of K̃F/K̃ by linearity. Then div(f)σ = div(fσ)
for each f ∈ K̃F . Assumption 4.1 implies that (D∗)σ = D∗.

Lemma 4.2. Let E/L be an algebraic function field of one variable (in particu-
lar we assume that E/L is regular) and A a positive divisor of E/L of degree l.

Suppose A decomposes in L̃E as a sum of l distinct prime divisors: A =
∑l

i=1 P̃i.

For each i let Pi be the restriction of P̃i to L. Then the residue field of E at Pi is
separable over L.

Proof. We have to prove only the case where p = char(L) > 0. Extending L to
its separable closure does not change the degree of A [3, p. 126, Thm.] nor its
factorization over Ls. So, we may assume that L = Ls and we have to prove that
deg(Pi) = 1, i = 1, . . . , l.

Let A =
∑k

i=1 aiQi be the factorization of A in E into a sum of prime divi-

sors with distinct Q1, . . . , Qk and positive integers a1, . . . , ak. Since L̃/L is purely
inseparable, each Qi extends uniquely to a prime divisor Q̃i of L̃E/L̃ whose rami-

fication index qi is a power of p [3, p. 111]. Thus, Qi = qiQ̃i and A =
∑k

i=1 aiqiQ̃i

is a factorization of A over L̃E. Comparing the two factorization of A, we find
that k = l and after relabeling, Pi = Qi, P̃i = Q̃i, and ai = qi = 1, i = 1, . . . , l.
Since l = deg(A) =

∑l
i=1 deg(Pi), we find that deg(Pi) = 1, i = 1, . . . , l, as

contended. �

Proposition 4.3 (Continuity of zeros of algebraic functions). Let (M ′, | |p)
be an absolute valued field which is separable over K1 and let F ′ = M ′F1. Suppose
(M ′, | |p) is Henselian, real closed or algebraically closed. Consider an element

0 6= f ∈ F ′, set A = div∞(f), and suppose div0(f) =
∑l

i=1 Pi, where Pi are

distinct prime divisors of F ′/M ′ of degree 1. Write f =
∑d

j=1 cjuj, where cj ∈ M ′

and u1, . . . , ud form a basis for the M ′-vector space LM ′(A). For each 1 ≤ i ≤ l
let Ui ⊆ Γ(M ′) be a p-open neighborhood of Pi. Then there exists ε > 0 such that

if c′1, . . . , c
′
d ∈ M ′ satisfy |c′j − cj |p < ε, j = 1, . . . , d and f ′ =

∑d
j=1 c′juj, then

div∞(f ′) = A and div0(f
′) =

∑l
i=1 P ′

i with P ′
i ∈ Ui.

Proof. The result for the the algebraically closed case appears in [20, Thm. 1.1]
and in [6, Thm. 7.1]. The proofs rely on the fact that the statements of the
proposition are elementary in the language of absolute valued fields. Unfortunately,
no proof or reference is given in those articles to that fact, although it is highly
nontrivial. The interested reader may find the missing proof in [9, Part G of the
proof of Proposition 3.5].

The Henselian case is reduced to the algebraically closed case in [6, Cor. 7.2].
That proof actually applies only in the case where M ′ is perfect. We modify that
proof to cover all cases, including the real closed case.
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The absolute value | |p of M ′ uniquely extends to an absolute value | |p of

the algebraic closure M̃ of M ′. For each 1 ≤ i ≤ l, the inequalities that define Ui

define a p-adic open neighborhood Ũi of Pi in Γ(M̃) such that Ũi∩Γ(M ′) = Ui and
Ũσ

i = Ũi for each σ ∈ Aut(M̃/M ′). Since the Pi’s are distinct and the p-topology
is Hausdorff, we can make the Ui’s smaller, if necessary, to assume that the Ũi’s
are disjoint. Moreover, since M ′/K1 is separable, P1, . . . , Pl are M ′-normal, hence
also smooth (= nonsingular). That is, each Pi satisfies the Jacobian condition in
an appropriate affine neighborhood [19, p. 233, Cor. 1]. That condition does not
change under extension of the base field. Thus, P1, . . . , Pl are also smooth over
M̃ . Therefore, we may make the Ui smaller to assume that each point of Ũi is
smooth, hence M̃ -normal. Thus, we may again identify each point of Ũi with a
prime divisor of FM̃/M̃ .

The elements u1, . . . , ud being linearly independent over M ′ remain linearly
independent over M̃ (because F ′/M ′ is regular). In addition, they belong to
LM̃ (A), so they can be extended to a basis u1, . . . , ud, ud+1, . . . , ur of LM̃ (A).

For each 1 ≤ i ≤ l, the proposition for (M̃, | |p) gives an ε > 0 (which can be

chosen to be independent of i) such that if c′1, . . . , c
′
r ∈ M̃ satisfy |c′j − cj |p < ε for

j = 1, . . . , d, |c′j |p < ε for j = d+1, . . . , r, and f ′ =
∑r

j=1 c′juj, then div∞(f ′) = A

and div0(f
′) =

∑l
i=1 P ′

i with P ′
i ∈ Ũi for i = 1, . . . , l. In particular, P ′

i is M̃ -
normal and

deg(div0(f
′)) = deg(div∞(f ′))

= deg(A) = deg(div∞(f)) = deg(div0(f)) = l. (4.1)

If, in addition, c′1, . . . , c
′
d ∈ M ′ and c′d+1, . . . , c

′
r = 0, then f ′ ∈ M ′F . By (4.1),∑l

i=1 deg(P ′
i ) = l. In addition, P ′

1, . . . , P
′
l lie in disjoint sets Ũ1, . . . , Ũl, so they are

distinct. By Lemma 4.2, P ′
1, . . . , P

′
l ∈ Γ(M ′

s). Moreover, for each σ ∈ Gal(M ′),

we have (P ′
i )

σ ∈ Ũi, hence (P ′
i )

σ = P ′
i . Consequently, P ′

i ∈ Ũi ∩ Γ(M ′) = Ui, as
desired. �

Corollary 4.4 (Principle of variation of constants). Let f ∈ NF be a p-
admissible function for a prime p ∈ VN . Set A = div∞(f), let u1, . . . , ud ∈ NF be

a basis for LN (A), and write f =
∑d

j=1 cjuj with cj ∈ N . Then there exists ε > 0

such that if c′1, . . . , c
′
d ∈ N satisfy |c′j − cj|p < ε, j = 1, . . . , d and f ′ =

∑d
j=1 c′juj,

then f ′ is p-admissible and div∞(f ′) = A.

Proof. By assumption, div0(f) =
∑l

i=1 Pi, with Pi ∈ Γ(Np) distinct and x(Pi) ∈
Dn

N,p. Also, |x(Pi) − x(Pp)|p < ε0 if p ∈ WN , i = 1, . . . , l. Now we apply
Proposition 4.3 to the case where M ′ = Np and the Ui are disjoint p-open neigh-
borhoods of Pi which are contained in the p-open subset {P ∈ Γ(Np) | x(P ) ∈
Dn

N,p and |x(P ) − x(Pp)|p < ε0 if p ∈ WN}. �

Proposition 4.5 (Existence theorem for a single valuation). Let p ∈ VN .
Then there exists a positive integer mp such that for each multiple m of mp there
exists a p-admissible function f ∈ F such that div∞(f) = mD∗.
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Proof. Recall that Pp ∈ Γ(Np) = Γ(Mp) (Data 3.6 and Remark 2.3(c)). Choose a

finite subextension L of M/K1 such that Pp is Lp-rational. Let L̂ be the completion
of Lp.

Since L is a global field, L̂ is a local field. Since x(Pp) ∈ Dn
N,p the p-open

subset

U = {P ∈ Γ(L̂) | x(P ) ∈ Dn
N,p and |x(P ) − x(Pp)|p < ε0 if p ∈ WN}

of Γ(L̂) is not empty. Theorem 2.1 of [6] improves the existence theorem of Jacobi-
Rumely and gives a nonconstant function g ∈ L̂F1 whose pole divisor is a multiple
of D∗. (Note that by Assumption 4.1, D∗ is L̂-rational.) Moreover, the zeros,
P1, . . . , Pl of g are L̂-rational, simple, and belong to U . By [6, Remark 2.5], there
exists a positive integer mp such that for each multiple m of mp the function g
can be chosen with div∞(g) = mD∗

Let u1, . . . , ud ∈ LF1 be a basis for LL(mD∗). Assume without loss that L̂ is
linearly disjoint from LF1 over L. Since L̂/L is separable, u1, . . . , ud also form a

basis for L
L̂
(mD∗). Hence, there exist b1, . . . , bd ∈ L̂ such that g =

∑d
j=1 bjuj .

Use the density of L in L̂ to choose c ∈ Ld ⊆ Md which is p-close to b. Let
f =

∑d
j=1 cjuj. Apply Proposition 4.3 to g, f , and L̂ instead of to f, f ′, and M ′

(choose Ui disjoint and contained in U) to conclude that div∞(f) = mD∗, each of
the zeros of f is simple and belongs to U . In particular, f is p-admissible. �

Lemma 4.6. Let L be an extension of K1 in M , p ∈ VN , and σ ∈ Gal(N/L).
Extend σ to an element of Aut(NF/LF1) with the same notation. Suppose that
a function f ∈ NF is p-admissible. Then fσ is pσ-admissible. In particular, if
f ∈ LF1, then f is pσ-admissible.

Proof. Since LF1 is linearly disjoint from Np over L, we may extend σ to an

isomorphism σ: NpF → NpσF . By assumption div(f) =
∑l

j=1 Pj − mD∗, where
the Pj are distinct elements of Γ(Np), m is a positive integer, x(Pj) ∈ Dn

N,p and

|x(Pj) − x(Pp)|p < ε0 if p ∈ WN . Apply σ to get div(fσ) =
∑l

j=1 P σ
j − mD∗,

x(P σ
j ) ∈ Dn

N,pσ , and |x(P σ
j ) − x(Ppσ )|pσ < ε0 if p ∈ WN . Also, P σ

1 , . . . , P σ
l are

distinct. Therefore, fσ is pσ-admissible. �

Proposition 4.7 (Existence theorem for finitely many valuations). Let T
be a finite subset of VN . Then, for each m0, there exists a T -admissible function
f ∈ F of level ≥ m0.

Proof. Let T0 be a subset of T which represents T |M (Definition 3.8). For each
p ∈ T0 let mp be the positive integer that Proposition 4.5 gives. Choose a common
multiple m ≥ m0 of the mp’s. For each p ∈ T0 take fp ∈ F which is p-admissible

of level m. Let u1, . . . , ud be a basis for LM (mD∗) and write fp =
∑d

j=1 cpjuj

with cpj ∈ M .
Apply the weak approximation theorem to T0|M and choose c ∈ Md which is

p-close to cp for each p ∈ T0. By Corollary 4.4, f =
∑d

j=1 cjuj is p-admissible
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for each p ∈ T0 and div∞(f) = mD∗. By Lemma 4.6, with M replacing L, f is
p-admissible for each p ∈ T . �

5. Small sets

We use Proposition 4.7 and the weak approximation theorem to prove an existence
and density theorem for admissible functions in F along a given small set. An
essential tool in this step is Lemma 1.7.

Lemma 5.1. Let E/L be a function field of one variable and let m be an integer
≥ 2 genus(E/L). Consider positive divisors D1, . . . , Dl of E/L with deg(Di) = ri.
Suppose D1, . . . , Dl are relatively prime in pairs. Then

dim(LL(mDi)/LL((m − 1)Di)) = ri, i = 1, . . . , l. (5.1)

Let yi1, . . . , yi,ri
be a basis for LL(mDi) modulo LL((m − 1)Di) and set D =

D1+· · ·+Dl. Then, yij, i = 1, . . . , l, j = 1, . . . , ri form a basis for LL(mD) modulo
LL((m − 1)D). Moreover, if each Di is a prime divisor, then div∞(yij) = mDi

for all i and j.

Proof. By Riemann-Roch, (5.1) above and (5.2) below are true:

dim(LL(mD)/LL((m − 1)D)) = deg(D). (5.2)

Since yij ∈ LL(mD), it suffices to prove that they are linearly independent modulo
LL((m − 1)D). Indeed, suppose

l∑

i=1

ri∑

j=1

aijyij ≡ 0 mod LL((m − 1)D) (5.3)

with aij ∈ L. Write Di =
∑li

k=1 eikPik with positive integers eik and distinct prime
divisors Pik of E/L. Denote the normalized valuation of E/L corresponding to Pik

by vik. Then vik(yi′j) ≥ 0 if i′ 6= i. It follows from (5.3) that vik(
∑ri

j=1 aijyij) ≥

−(m− 1)eik. Hence,
∑ri

j=1 aijyij belongs to LL((m− 1)Di). By the choice of the
yij , this implies that aij = 0 for j = 1, . . . , ri.

Finally, if Di is a prime divisor, then in the above notation, vi1(yij) ≥ −m and
vi1(yij) 6≥ −m + 1. Hence, vi1(yij) = −m and div∞(yij) = mDi. �

We use Lemma 5.1 to construct a basis for LM (mD∗) modulo LM ((m− 1)D∗)
which will belong to a finitely generated subgroup of F× that does not depend on
m. This requires an additional data.

Data 5.2. Let s = 2genus(F/M)+2. By Remark 3.2(b), deg(P ∗
i ) = diei for each

1 ≤ i ≤ e. Then for each s ≤ r ≤ 2s − 1 let

Bir = {uijkr | j = 1, . . . , di, k = 1, . . . , ei} be a basis for LM (rP ∗
i )

modulo LM ((r − 1)P ∗
i ) in particular div∞(uijkr) = rP ∗

i
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Now write each m ≥ s as m = qs + r with q ≥ 0 and s ≤ r ≤ 2s − 1. Then let

uijkm = uq
i11suijkr

Bim = {uijkm | j = 1, . . . , di, k = 1, . . . , ei}

Bm = B1m ∪ · · · ∪ Bem

B0 = basis for LM ((s − 1)D∗) which contains 1

K2 = a finite subextension of M/K1 such that B0 ∪ Bs ∪ · · · ∪ B2s−1 ⊆ K2F1

F2 = K2F1

Lemma 5.3. Let m ≥ s. Then:

(a) div∞(uijkm) = mP ∗
i and Bim is a basis for LM (mP ∗

i ) modulo LM ((m−1)P ∗
i ),

i = 1, . . . , e, j = 1, . . . , di, k = 1, . . . , ei.
(b) Bm is a basis of LM (mD∗) modulo LM ((m − 1)D∗).
(c) F2 contains a basis for LM (mD∗).

Proof of (a). Let m = qs + r as in Data 5.2. Then uq
i11suijkr , j = 1, . . . , di,

k = 1, . . . , ei, belong to LM (mP ∗
i ) and are linearly independent over M modulo

LM ((m − 1)P ∗
i ). We conclude from (5.1) applied to P ∗

i rather than to Di that
these elements form a basis for LM (mP ∗

i ) modulo LM ((m − 1)P ∗
i ).

Proof of (b) Apply Lemma 5.1 to D∗ = P ∗
1 + · · · + P ∗

e rather than to D =
D1 + · · · + Dl.

Proof of (c) By our choice of B0 and by (b), B0 ∪ Bs ∪ · · · ∪ Bm ⊆ F2 and is a
basis for LM (mD∗). �

Notation 5.4. Following Lemma 5.3, we set for each m ≥ s − 1

νm = dim(LM (mD∗))

By Riemann-Roch, νm ≥ 2. Then we list the elements of B0∪Bs∪Bs+1∪Bs+2∪· · ·
as u1, u2, u3, . . . such that u1 = 1, B0 = {u1, . . . , uνs−1}, and

Bm = {uνm−1+1, . . . , uνm
} = {uijkm | i = 1, . . . , e, j = 1, . . . , di, k = 1, . . . , ei}

for m ≥ s. By Data 5.2, all of the ui belong to F2 and {u1, . . . , uνm
} is a basis for

LM ′(mD∗) for each separable algebraic extension M ′ of M .

Proposition 5.5. Let T be a small subset of VN . Then, for each m0 there exists
a T -admissible function f ∈ F of level m ≥ m0.

Moreover, write f =
∑νm

i=1 ciui with ci ∈ M . Then there exists ε > 0 such that
if c

′ ∈ Nνm satisfies |c′ − c|T < ε, then f ′ =
∑νm

i=1 c′iui is also a T -admissible
function of level m.

Proof. Let T2 be a finite subset of T which represents T |K2 (Definition 3.8).
By Proposition 4.7, there exists a T2-admissible function g ∈ F of level m ≥
max(m0, s − 1). Write g =

∑νm

i=1 aiui with ai ∈ M . By Corollary 4.4, there
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exists δ > 0 such that for each q ∈ T2 if a
′ ∈ Nνm satisfies |a′ − a|q < δ, then

g′ =
∑νm

i=1 a′
iui is q-admissible of level m.

Let K ′
2 be a finite Galois subextension of N/K2 which contains a1, . . . , aνm

.
Then A = {aσ | σ ∈ Gal(N/K2)} = {aσ | σ ∈ Gal(K ′

2/K2)} is a finite subset of
N . We have not assumed M to be normal over K. Hence, A need not be a subset
of M . However, by Lemma 1.7, Mνm has a finite subset B with the following
property: For all q ∈ T2, τ ∈ Gal(N/K2), and a

′ ∈ A there exists bqτ ,a′ ∈ B
such that |bqτ ,a′ − a

′|qτ < δ. Choose a finite subextension K3 of M/K2 such that
B ⊆ Kνm

3 .

Now let p ∈ T . Then there exists σ ∈ Gal(N/K2) and q ∈ T2 such that p = qσ.

Since a
′ = a

σ belongs to A, we have |bp,a′ − a
σ|qσ < δ, so |bσ−1

p,a′ − a|q < δ. Hence,

by the first paragraph,
∑νm

i=1 bσ−1

p,a′,iui is a q-admissible function of level m. Since
ui ∈ F2 (Notation 5.4), we have uσ

i = ui, i = 1, . . . , νm. Hence, by Lemma 4.6,
with K2 rather than L, the element fp =

∑νm

i=1 bq,a′,iui of K3F1 is a p-admissible
function of level m.

Next choose a finite subset T3 of T which represents T |K3 . By the preceding
paragraph, for each q ∈ T3 there exists a q-admissible function fq =

∑νm

i=1 cq,iui

of level m with cq,i ∈ K3. By Corollary 4.4, there exists ε > 0 such that if q ∈ T3

and c
′ ∈ Nνm satisfy |c′ − cq|q < ε, then f ′ =

∑νm

i=1 c′iui is a q-admissible function
of level m.

By the weak approximation theorem there exists c ∈ Kνm

3 such that |c−cq|q <
ε for each q ∈ T3. Then f =

∑νm

i=1 ciui is q-admissible of level m for each q ∈ T3.
For each σ ∈ Gal(N/K3) we have fσ = f . Hence, by Lemma 4.6, f is qσ-
admissible. It follows that f is T -admissible.

Finally suppose that c
′ ∈ Nνm and |c′ − c|p < ε for each p ∈ T . Write p = qσ

with q ∈ T3 and σ ∈ Gal(N/K3). Then |(c′)σ−1

−c|q < ε and hence
∑νm

i=1(c
′
i)

σ−1

ui

is q-admissible of level m. Consequently, by Lemma 4.6, f ′ =
∑νm

i=1 c′iui is p-
admissible of level m. �

6. Good reduction

Consider a finite prime p of K̃F such that p|K ∈ V rS. Thus, p is an equivalence
class of valuations of K̃F and | |p is a multiplicative representative of p. In other

words, | |p is a map of K̃F into an ordered multiplicative Abelian group satisfying
the usual rules of an absolute value. We use a bar over objects associated with
K̃F to denote their reduction modulo p.

The function field K̃F/K̃ has a good reduction at p if the following conditions
hold:

(1a) There exists f ∈ K̃F which is p-regular. That is, |f |p = 1, f̄ ∈ K̃F is

transcendental over K̃, and [K̃F : K̃(f)] = [K̃F : K̃(f̄)]. Thus K̃F is a

function field of one variable over K̃.

(1b) genus(K̃F/K̃) = genus(K̃F/K̃).
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In this case we also say that p is a good extension of p|K̃ to K̃F . Note that

if g ∈ K̃F and ḡ is transcendental over K̃, then g is p-regular if and only if
deg(div0(g)) = deg(div0(ḡ)) or, equivalently, deg(div∞(g)) = deg(div∞(ḡ)).

The support of a divisor A of K̃F/K̃ is the set P1, . . . , Pl of distinct prime

divisors of K̃F/K̃ such that A =
∑l

i=1 kiPi with nonzero integers ki.
Corollary 6.2 connects regularity and admissibility of functions. It relies on a

sort of a reciprocity lemma:

Lemma 6.1 ([22, Cor. 3.9]). Suppose that K̃F/K̃ has a good reduction at a
finite prime p. Let f, g be elements of K̃F such that f is p-regular and |g|p = 1.

Then, for each P ∈ Γ(K̃)

Supp(div∞(g)) ⊆ Supp(div∞(f)) and f(P ) = 0 imply |g(P )|p ≤ 1.

We extend each finite prime p ∈ VN rWN to the Henselian closure Np = Ks

(recall that by Data 2.1(d), SN ⊆ WN ) and then, in the unique possible way, to
K̃. In this way we regard p also as a prime of K̃.

Corollary 6.2. Let p ∈ VN rWN be a finite prime with a good extension to K̃F .
Suppose |xi|p = 1 if xi 6= 0, for i = 1, . . . , n. Let f ∈ NF be a p-regular function
of level m (Definition 3.7). Suppose each of the zeros of f is simple. Then f is
p-admissible.

Proof. Since Np = Ks, we have to verify only Condition (2c) of Definition 3.7.
By assumption div∞(f) = mD∗. Hence, by Data 3.1,

Supp(div∞(f)) =

n⋃

i=1

Supp(div∞(xi)).

By assumption, |xi|p = 1 if xi 6= 0. Hence, if P ∈ Γ(K̃) is a zero of f , then
|xi(P )|p ≤ 1 (Lemma 6.1). If xi = 0, then |xi(P )|p = 0 < 1. Consequently, f is
p-admissible. �

In the remaining of this section we explore when functions are regular. This
depends on the following extension of the reduction map of elements modulo p to
divisors.

Proposition 6.3 ([22, p. 247]). Suppose K̃F/K̃ has a good reduction at p. Then

there is a natural homomorphism A 7→ Ā of Div(K̃F/K̃) into Div(K̃F/K̃) with
the following properties:

(a) deg(A) = deg(Ā).
(b) A ≥ 0 implies Ā ≥ 0.
(c) |f |p = 1 implies div(f) = div(f̄).

Lemma 6.4 ([12, Lemma 5.4]). Suppose K̃F/K̃ has a good reduction at p

and let f be an element of K̃F such that f̄ is transcendental over M̄ . Then
div0(f̄) ≤ div0(f) and div∞(f̄) ≤ div∞(f). Equality holds if and only if f is
p-regular.
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Lemma 6.5 ([12, Lemma 5.5]). Suppose K̃F/K̃ has a good reduction at p. Let
A be a positive divisor of K̃F/K̃. For each i between 1 and l let mi be a positive
integer and let fi ∈ K̃F be a p-regular function such that div∞(fi) = miA. Let
m = m1 + · · · + ml. Then f = f1 · · · fl is also p-regular and div∞(f) = mA.

The following result is a well known consequence of the Bertini-Noether the-
orem. For example, it appears in [23] without a proof. See [12, Prop. 5.7] for a
sketch of the proof.

Proposition 6.6. Let t1, . . . , tl be nonconstant functions of K̃F and let P1, . . . , Pm

be distinct prime divisors of K̃F/K̃. Then there exists a finite subset A of K×

such that if p ∈ Ṽ satisfies |a|p = 1 for each a ∈ A, then p has a good extension

to K̃F which we also denote by p such that ti is p-regular, i = 1, . . . , l, and the
reduced primes P̄1, . . . , P̄m are distinct.

7. Criteria for regularity

We give here two criteria for regularity of functions of K̃F . The first one is
formulated in terms of a basis of LK̃(meiP

∗
ij) modulo LK̃((mei−1)P ∗

ij) (Data 3.1).
Here it is important that deg(P ∗

ij) = 1. The second one, which is built on the first
one, is formulated in terms of a basis of LK̃(mP ∗

i ) modulo LK̃((m − 1)P ∗
i ). In

both criteria m has to be large.
In the following lemma we use the integers e and ei from Data 3.1, but the

lemma is valid for arbitrary positive integers e and ei.

Lemma 7.1. Let E/L be an algebraic function field of one variable, Qij, i =
1, . . . , e, j = 1, . . . , di, distinct prime divisors of E/L, and m a positive integer.

Set D =
∑e

i=1

∑di

j=1 eiQij, and C =
∑e

i=1

∑di

j=1(mei − 1)Qij. For all i and j let

tij ∈ E and cij ∈ L. Let g ∈ LL(C) and set f =
∑e

i=1

∑di

j=1 cijtij + g. Suppose
div∞(tij) = meiQij for all i, j. Then, div∞(f) = mD if and only if cij 6= 0 for
all i, j.

Proof. First suppose cij 6= 0 for all i, j. Denote the normalized valuation of
E/L associated with Qij by vij . Then vij(tij) = −mei and vij(ti′j′) ≥ 0 if
(i′, j′) 6= (i, j). In addition, vij(g) ≥ −mei + 1. Hence, vij(f) = −mei. Finally,
v(f) ≥ 0 for each valuation v of E/L which is different from all of the vij ’s.
Consequently, div∞(f) = mD.

Conversely, if cij = 0 for some i, j, then div∞(f) ≤ mD − Qij . �

Lemma 7.2 (First criterion for regularity). Let m be an integer
≥ 2 genus (F/M), and let tij be an element of K̃F such that div∞(tij) = meiP

∗
ij,

i = 1, . . . , e, j = 1, . . . , di. Set C =
∑e

i=1

∑di

j=1(mei − 1)P ∗
ij . Suppose K̃F/K̃ has

good reduction at a finite prime p such that the reduced primes P ∗
ij are distinct and

the tij are p-regular. Let

f =

e∑

i=1

di∑

j=1

cijtij + g (7.1)
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with cij ∈ K̃ such that |cij |p = 1 and g ∈ LK̃(C) with |g|p ≤ 1. Then

(a) {tij | i = 1, . . . , e; j = 1, . . . , di} is a basis for LK̃(mD∗) modulo LK̃(C), and
(b) f is p-regular of level m.

Proof of (a). By assumption,

mei > mei − 1 ≥ 2 genus(F/M) − 1 ≥ 2 genus(K̃F/K̃) − 1

[3, p. 132, Thm. 1]. In addition, deg(P ∗
ij) = 1, because K̃ is algebraically closed.

Hence, by Riemann-Roch

dim(LK̃(meiP
∗
ij))−dim(LK̃((mei−1)P ∗

ij)) = deg(meiP
∗
ij)−deg((mei−1)P ∗

ij) = 1.

By Data 3.1, D∗ =
∑e

i=1 P ∗
i . By Remark 3.2(b), P ∗

i =
∑di

j=1 eiP
∗
ij , i = 1, . . . , e.

Since the P ∗
ij are distinct, Lemma 5.1 applied to {P ∗

ij | j = 1, . . . , di} and mei

rather than to {D1, . . . , Dl} and m, implies that {tij | j = 1, . . . , di} form a basis

for LK̃(mP ∗
i ) modulo LK̃(

∑di

j=1(mei − 1)P ∗
ij), i = 1, . . . , e.

By Riemann-Roch again,

dim(LK̃(mD∗)/LK̃(C)) =

e∑

i=1

di∑

j=1

mei −
e∑

i=1

di∑

j=1

(mei − 1) =

e∑

i=1

di .

Since tij ∈ LK̃(mD∗), it suffices to prove that they are linearly independent mod-

ulo LK̃(C). Indeed, suppose
∑e

i=1

∑di

j=1 aijtij ≡ 0 mod LK̃(C) with aij ∈ K̃.

Denote the normalized valuation of K̃F/K̃ corresponding to P ∗
ik by vik. Then

vik(ti′j) ≥ 0 if i′ 6= i. Since vik(
∑e

i′=1

∑di′

j=1 ai′jti′j) ≥ −(mei − 1), we have

vik(
∑di

j=1 aijtij) ≥ −(mei − 1). Hence,
∑di

j=1 aijtij ∈ LK̃(
∑di

j=1(mei − 1)P ∗
ij). By

the preceding paragraph, this implies that aij = 0 for j = 1, . . . , di.

Proof of (b). By Lemma 7.1, div∞(f) = mD∗.

Now reduce (7.1) modulo p to obtain f̄ =
∑e

i=1

∑di

j=1 c̄ij t̄ij + ḡ. By assumption

A = div(g)+C ≥ 0. If |g|p < 1, then ḡ = 0. Otherwise, |g|p = 1 and div(ḡ)+ C̄ =
Ā ≥ 0 (Proposition 6.3). Hence, in both cases ḡ ∈ L

K̃
(C̄). Since tij is p-regular,

div∞(t̄ij) = meiP ∗
ij (Lemma 6.4). By assumption, c̄ij 6= 0 for all i, j. Hence, we

may apply Lemma 7.1 to K̃F/K̃ and conclude that div∞(f̄) = mD∗ = div∞(f).
Thus, by Lemma 6.4, f is p-regular of level m. �

Data 7.3. We write each m ≥ s = 2 genus(F/M) + 2 as m = qs + r with q ≥ 0
and s ≤ r ≤ 2s − 1.

(a) We use the Riemann-Roch theorem to choose tijr ∈ K̃F which satisfy
div∞(tijr) = reiP

∗
ij , i = 1, . . . , e, j = 1, . . . , di, r = s, . . . , 2s − 1.

(b) Let tijm = tqijstijr , i = 1, . . . , e, j = 1, . . . , di.
(c) By Remark 3.2(b), P ∗

i = ei(P
∗
i1 + · · · + P ∗

idi
). By Riemann-Roch, {tijr} is a

basis of LK̃(reiP
∗
ij) modulo LK̃((rei−1)P ∗

ij). Hence, by Lemma 5.1, {tijr | j =

1, . . . , di} is a basis for LK̃(rP ∗
i ) modulo LK̃(

∑di

j=1(rei −1)P ∗
ij). According to
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Data 5.2, div∞(uijkr) = rP ∗
i , so uijkr ∈ LK̃(rP ∗

i ). Thus, there exist unique

bijkj′r ∈ K̃ such that

uijkr ≡
di∑

j′=1

bijkj′rtij′r mod LK̃(

di∑

l=1

(rei − 1)P ∗
il). (7.2)

By Lemma 7.1, bijkj′r 6= 0.
(d) We set Yi = (Yi11, . . . , Yi,di,ei

), i = 1, . . . , e and consider the linear form

λilr(Yi) =

di∑

j=1

ei∑

k=1

Yijkbijklr , l = 1, . . . , di �

Lemma 7.4 (Second criterion for regularity). Let m ≥ s = 2 genus(F/M)+2
and let aijk, aµ ∈ K̃, i = 1, . . . , e, j = 1, . . . , di, k = 1, . . . , ei, µ = 1, . . . , νm−1,
and let uµ, µ = 1, 2, 3, . . . , be as in Notation 5.4. Consider the element

f =

e∑

i=1

di∑

j=1

ei∑

k=1

aijkuijkm +

νm−1∑

µ=1

aµuµ (7.3)

of K̃F . Suppose K̃F has a good reduction at a finite prime p such that the following
conditions are satisfied:

(a) The P ∗
ij are distinct,

(b) tijr is p-regular, in particular |tijr |p = 1,
(c) |uµ|p ≤ 1,
(d) |bijkj′r|p = 1,
(e) |aijk|p ≤ 1 and |aµ′ |p ≤ 1, and
(f) |λilr(ai)|p = 1, where ai = (ai11, . . . , ai,di,ei

),

for µ = 1, . . . , ν2s−1, µ′ = 1, . . . , νm−1, i = 1, . . . , e, j, j′, l = 1, . . . , di, k =
1, . . . , ei, and r = s, . . . , 2s− 1. Then f is p-regular of level m.

Proof. Let C =
∑e

i=1

∑di

j=1(mei − 1)P ∗
ij . Write m = qs + r with q ≥ 0 and

s ≤ r ≤ 2s − 1. By (b) and Data 7.3(a), tijs is p-regular with div∞(tijs) = seiP
∗
ij

and tijr is p-regular with div∞(tijr) = reiP
∗
ij . Hence, by Lemma 6.5, tijm = tqijstijr

is p-regular with div∞(tijm) = meiP
∗
ij , for i = 1, . . . , e, j = 1, . . . , di.

By Data 5.2 and by (7.2)

uijkm = uq
i11suijkr (7.4)

≡
( di∑

j′=1

bi11j′stij′s
)q( di∑

j′=1

bijkj′rtij′r
)

mod LK̃(

di∑

l=1

(mei − 1)P ∗
il).

A general term of the expansion of the right hand side of (7.4) has the form
bt, where b = bi,1,1,j′1,s · · · bi,1,1,j′q,sbi,j,k,j′

q+1,r and t = ti,j′1,s · · · ti,j′q ,sti,j′
q+1,r and

1 ≤ j′1, . . . , j
′
q+1 ≤ di. For each l between 1 and di denote the normalized valuation
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of K̃F/K̃ associated with P ∗
il by wil. Then, wij(tijr) = −rei, wij(tijs) = −sei,

and wil(tijr) ≥ 0, wil(tijs) ≥ 0, if l 6= j. Hence,

wil(bt) = wil(tij′1s) + · · · + wil(tij′qs) + wil(tij′
q+1r) ≥ −(qs + r)ei = −mei

and equality holds if and only if j′1 = · · · = j′q+1 = l. If the condition j′1 = · · · =
j′q+1 = l is satisfied for no l, then for each 1 ≤ l ≤ di we have wil(bt) ≥ −mei + 1

and w(bt) ≥ 0 for each valuation w 6= wi1, . . . , widi
of K̃F/K̃. This implies that

bt ∈ LK̃(
∑di

l=1(mei − 1)P ∗
il) ⊆ LK̃(C). If j′1 = · · · = j′q+1 = l for some l between 1

and di, then bt = bq
i11lsbijkj′rtilm (Data 7.3(b)). It follows that

uijkm ≡
di∑

l=1

bq
i11lsbijklrtilm mod LK̃(C).

In addition, by Notation 5.4, u1, . . . , uνm−1 ∈ LK̃((m − 1)D∗) ⊆ LK̃(C). Hence,
by (7.3),

f ≡
e∑

i=1

di∑

j=1

ei∑

k=1

aijkuijkm ≡
e∑

i=1

di∑

j=1

ei∑

k=1

di∑

l=1

aijkbq
i11lsbijklrtilm (7.5)

≡
e∑

i=1

di∑

l=1

bq
i11ls

( di∑

j=1

ei∑

k=1

aijkbijklr

)
tilm ≡

e∑

i=1

di∑

l=1

bq
i11lsλilr(ai)tilm

≡
e∑

i=1

di∑

l=1

ciltilm mod LK̃(C),

with cil = bq
i11lsλilr(ai). By (d) and (f), |cil|p = 1, i = 1, . . . , e, l = 1, . . . , di.

By (c), |uµ|p ≤ 1, µ = 1, . . . , ν2s−1. Hence, by Notation 5.4, |uijkr |p ≤ 1 for
i = 1, . . . , e, j = 1, . . . , di, k = 1, . . . , ei, and r = s, . . . , 2s − 1. By Data 5.2
and Notation 5.4, for each κ ≥ s the function uκ is a product of functions which
belong to the set {uijks, . . . , uijk,2s−1 | i = 1, . . . , e, j = 1, . . . , di, k = 1, . . . , ei}.
Hence |uκ|p ≤ 1. In particular |uijkm|p ≤ 1. Hence, by (7.3) and (e), |f |p ≤ 1.

Therefore, by (7.5) and (b), g = f −
∑e

i=1

∑di

l=1 ciltilm belongs to LK̃(C) and
satisfies |g|p ≤ 1. We conclude from Lemma 7.2 that f is p-regular of level m. �

8. Admissible functions along VN

To create a VN -admissible function we first use Proposition 6.6 to define a big
subset U of VN which takes into account all conditions of Lemma 7.4 which do
not concern a. Then, for T = VN rU , we select f of the form (7.3) of Section 7,
such that f is T -admissible. The final step is to use Proposition 1.11, Lemma 7.4,
and Corollary 6.2 to change the aijk’s such that f becomes also U-admissible (and
hence VN -admissible) and then to use Lemma 1.9 to change the aµ’s such that in
addition f has an M -rational zero.
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Data 8.1. We extend each finite prime p ∈ VN rWN to a prime of the Henselian
closure Np = Ks (Remark 2.3(c)) with the same name. We use Proposition 6.6 to
choose a big subset U of Vfin,N rWN (which may be empty if Vfin is finite) such
that the following statements hold for each p ∈ U and for s = 2 genus(F/M) + 2,
i = 1, . . . , e, r = s, . . . , 2s − 1, j, j′ = 1, . . . , di, k = 1, . . . , ei, µ = 1, . . . , ν2s−1,
and ν = 1, . . . , n:

(1a) p has a good extension to K̃F named p,
(1b) The P ∗

ij are distinct,
(1c) tijr is p-regular,
(1d) |uµ|p ≤ 1 (Notation 5.4),
(1e) |bijkj′r|p = 1,
(1f) |xν |p = 1 if xν 6= 0.

Note that bijkj′r 6= 0 (Data 7.3(c)). So, we may achieve condition (1e). Make
U smaller, if necessary, to assume that U is K-rational (Definition 3.8). Then,
T = VN rU is a K-rational small subset of VN which contains WN .

Notation 8.2. For each positive integer m ≥ s = 2 genus (F/M) + 2 we denote
the space Aνm−1 ×

∏e
i=1 Adi ×Aei by Am. The zero coordinate of a point a ∈ Am

is a νm−1-tuple a0 = (a1, . . . , aνm−1) and for each i ≥ 1 the ith coordinate is a
(di × ei)-matrix ai = (aijk)1≤j≤di, 1≤k≤ei

.

Proposition 8.3 (Density of admissible functions).
Let m0 ≥ s = 2 genus(F/M)+2. Then there exists m ≥ m0, a point c ∈ Am(M),
and ε > 0 with the following property: If a ∈ Am(N) satisfies

(2a) |a − c|T < ε and
(2b) |a|p ≤ 1 and |λilr(ai)|p = 1 for each p ∈ U , for i = 1, . . . , e, l = 1, . . . , di,

and r = s, . . . , 2s − 1,

then the function

(3) f =
∑e

i=1

∑di

j=1

∑ei

k=1 aijkuijkm +
∑νm−1

µ=1 aµuµ

is VN -admissible of level m.

Proof. Rename the function f that Proposition 5.5 supplies as h and rewrite h
in the form

h =
e∑

i=1

di∑

j=1

ei∑

k=1

cijkuijkm +

νm−1∑

µ=1

cµuµ,

with c ∈ Am(M). Retain also the role of m and ε from Proposition 5.5.
Now suppose that a ∈ Am(N) satisfies Condition (2) and f is as in (3). By

Proposition 5.5, f is T -admissible of level m. In particular, each of the zeros of
f is N -rational and simple. By Data 8.1, (2b), and Lemma 7.4, f is p-regular of
level m for each p ∈ U . By Data 8.1, K̃F/K̃ has a good reduction at each p ∈ U .
Since f is of level m and |xi|p = 1 if xi 6= 0 for i = 1, . . . , n, Corollary 6.2 implies
that f is p-admissible. Consequently, f is VN -admissible. �
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Proposition 8.4 (Existence of admissible functions). For each m0 there
exists a VN -admissible function f ∈ F of level m ≥ m0 which has an M -rational
zero.

Proof. Let m1 be an integer which is greater than m0 and 2 genus(F/M)+2. Let
m ≥ m1, c ∈ Am(M), and ε be as in Proposition 8.3. Then νm−1 = dim((m −
1)D∗) ≥ 2 (Notation 5.4).

By (1e), the coefficients of the λilr(Yi) (Data 7.3(d)) are T -units. The same
holds for the polynomials Yijk. Also, by Data 8.1, T is a K-rational small subset
of VN which contains SN . Thus,

(T , (λilr(Yi), Yijk), c, ε)i=1,...,e; j,l=1,...,di; k=1,...,ei

is an (S,V)-Skolem density problem for M (Definition 1.10). By Proposition 1.11,
there exists for each i between 1 and e a point ai ∈ Mdi×M ei such that |ai−ci|T <
ε
2 , and |aijk|p = 1 and |λilr(ai)|p = 1 for each p ∈ U and for r = s, . . . , 2s − 1,
j, l = 1, . . . , di, k = 1, . . . , ei.

The field L = K(c1, . . . , cνm−1) is a finite subextension of M/K. Since T is K-
rational, we may apply the strong approximation theorem to L (Proposition 1.2)
and find c

′
0 ∈ Lνm−1 such that |c′0−c0|T < ε

2 and |c′0|p ≤ 1 for each p ∈ U . Choose
0 6= l ∈ OK such that |l|T < ε

2 (recall that T |K is a finite set).

Let g =
∑e

i=1

∑di

j=1

∑ei

k=1 aijkuijkm and f ′ = g +
∑νm−1

µ=1 c′µuµ. Since the
uµ and the uijkm are linearly independent over M , u1 = 1, and aijk 6= 0, we
have f ′ ∈ F r M . Let t = − 1

l
f ′. By Proposition 8.3, f ′ is VN -admissible of

level m. In particular, all of the zeros of f ′ (hence, also of t) are simple and in
Γ(N). By Data 2.1(c), M is weakly PSC over OM,V . Hence, by Lemma 1.9,
there exists P ∈ Γ(M) which is a pole of none of the functions t, g, u1, . . . , uνm−1

such that t(P ) ∈ OM,V . Let a1 = lt(P ) + c′1, a2 = c′2, . . . , aνm−1 = c′νm−1
, and

a0 = (a1, . . . , aνm−1). Then |a1 − c1|T = |lt(P ) + c′1 − c1|T < ε, so |a0 − c0|T < ε
and |a0|p ≤ 1 for each p ∈ U . Since u1 = 1, we have

g + (lt + c′1) + c′2u2 + · · · + c′νm−1
uνm−1 = lt + f ′ = 0.

Hence, P is a zero of the function

f = lt(P ) + f ′ = g +

νm−1∑

µ=1

aµuµ.

Thus a = (a0,a1, . . . ,ae) ∈ Am(M) satisfies (2) and f has the form (3). By
Proposition 8.3, f is VN -admissible of level m. �

Proposition 8.4 is a reformulation of Theorem 3.5. The latter implies Theo-
rem 3.4, which is a reformulation of Theorem 2.2(c) for curves. We state the latter
for the record.

Proposition 8.5 (Strong approximation theorem for integral points on
curves). Let C be an absolutely irreducible affine curve defined over K. Suppose
that C(DN,p) 6= ∅ for each p ∈ VN rWN . Consider (zq)q∈WN

∈ CD,S,W and
ε > 0. Then there exists z ∈ C(DM,V) such that |z − zq|q < ε for each q ∈ WN .
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9. The approximation theorems and the local global principle for arbi-
trary affine varieties

In this section we use the strong approximation theorem for integral points on
curves (Proposition 8.5) to prove the approximation theorem for integral points
on arbitrary varieties. Then we prove all other theorems of Section 2.

Lemma 9.1. Let V be an absolutely irreducible variety defined over K. Let R1 be
a finite subset of VN whose elements are mutually nonconjugate over K. For each
p ∈ R1 let zp ∈ V (Np). Let R = {pσ | p ∈ R1, σ ∈ Gal(N/K)}. Then we can find
a finite extension L of M/K and extend the point (zp)p∈R1 into a point (zq)q∈R

such that zq ∈ V (Lq) and zqσ = z
σ
q for each q ∈ R and each σ ∈ Gal(N/L).

Proof. We first prove that M/K has a finite subextension L such that z
σ
p ∈

V (Lpσ) for each p ∈ R1 and each σ ∈ Gal(N/K). It suffices to do it in the case
that R1 consists of one prime p.

If p is an infinite prime, then there exists a finite subextension L of M/K such
that Lp = Mp = Np is either real closed or algebraically closed. Then, Lpσ = Npσ

for each σ ∈ Gal(N/K).
Now suppose p is a finite prime. Then Np could be an infinite extension of

Kp, so there might be no field L as in the preceding paragraph. However, we
may choose a finite Galois subextension E of N/K with zp ∈ V (Ep). Let y be
a primitive element of E/K. Let ε > 0 be a real number which is smaller than
|y − y′|p for all conjugates y′ of y over K with y′ 6= y. By Lemma 1.7 applied to
all conjugates of y instead of to x, there exists a finite subset B of M with the
following property: For each q ∈ VN which lies over p|K and each conjugate y′ of
y over K there exists b ∈ B such that |b − y′|q < ε. Then L = K(B) is a finite
subextension of M/K.

Consider a σ ∈ Gal(N/K) and let q = pσ, y′ = yσ. Choose b ∈ B such that
|b − y′|q < ε. By Krasner’s lemma [15, p. 43], Kq(y

σ) ⊆ Kq(b) ⊆ LKq = Lq.
Hence z

σ
p ∈ V (Kq(y

σ)) ⊆ V (Lpσ).
Now choose a finite subset R2 of R that contains R1 and represents R|L

(Definition 3.8). For each q ∈ R2 rR1 there exists a unique p ∈ R1 such that
q|K = p|K . Choose λ ∈ Gal(N/K) such that q = pλ and set zq = z

λ
p . Then

zq ∈ V (Lq).
If σ ∈ Gal(N/L) satisfies qσ = q, then σ ∈ Gal(N/N ∩ Lq). Hence, the

extension of σ to Nq (Data 2.1(a)) fixes the elements of Lq. In particular z
σ
q = zq.

It follows that if for arbitrary q ∈ R2 and τ ∈ Gal(N/L) we define zqτ = z
τ
q , then

zp is well defined for each p ∈ R, it coincides with the original zp if p ∈ R1, and
satisfies zpσ = z

σ
p for each p ∈ R and σ ∈ Gal(N/L). �

We return now to the notation of Data 2.1, copy over Theorem 2.2, and prove it.

Theorem 9.2 (Strong approximation theorem). Let V be an absolutely ir-
reducible affine variety defined over K. Consider (zq)q∈WN

∈ VK,S,W and ε > 0.

(a) There exists z ∈ V (M) such that |z − zq|q < ε for each q ∈ WN .
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(b) If V (DN,p) 6= ∅ for each p ∈ VN rWN , then there exists z ∈ V (M) such that
|z − zq|q < ε for each q ∈ WN and z ∈ Dn

N,p for each p ∈ VN rWN .
(c) If V (DN,p) 6= ∅ for each p ∈ VN rWN , and zq ∈ Dn

N,q for each q ∈ WN , then
there exists z ∈ V (DM,V) such that |z − zq|q < ε for each q ∈ WN .

Proof. By assumption zq ∈ Vsimp(Nq) for each q ∈ WN . Also, there exists a
finite subextension L of M/K such that zq ∈ Vsimp(Lq) and z

σ
q = zqσ for each

q ∈ WN and σ ∈ Gal(N/L). Our primary goal is to find a point z ∈ V (M) such
that |z − zq|q < ε for each q ∈ WN .

Proof of (c). Here we assume in addition that V (DN,p) 6= ∅ for each p ∈
VN rWN and zq ∈ Vsimp(DN,q) for each q ∈ WN . We have to approximate the
points zq with z ∈ V (DM,V).

Choose a point z0 ∈ V (Ks) and recall that Np = Ks for each p ∈ VN rWN

(Remark 2.3(c)). Let

U = {p ∈ Vfin,N rWN | |zσ
0 |p ≤ 1 for each σ ∈ Gal(L)}, T = VN rU .

Then T is an L-rational small set which contains WN . Choose a finite subset
W1 of WN which represents WN |L and a finite subset R1 of R = T rWN which
represents R|L (Definition 3.8). Set T1 = W1 ∪R1.

For each p ∈ R1 choose zp ∈ V (DN,p). Now apply Lemma 9.1 to L and
R1, extend L (hence, also W1, R1, and T1), if necessary, and extend the point
(zp)p∈T1 to a point (zp)p∈T such that zp ∈ V (Lp) and zpσ = z

σ
p for all p ∈ T

and σ ∈ Gal(N/L). In particular, each zp belongs to V (DL,p), hence to V (DN,p).
Finally, if p ∈ U , then Np = Ks. Thus, let zp = z0.

In an appendix to [12] we show that there exists an affine absolutely irreducible
curve C which is defined over L, hence also over M , which lies on V and passes
through z0 and through zp for each p ∈ T1. Moreover, zp is simple on C for each
p ∈ W1. For an arbitrary p′ ∈ VN the point zp′ is conjugate over L to a point zp

for some p ∈ T1 ∪ U . Hence zp′ belongs to C(DN,p′) and is simple if p′ ∈ WN , so
(zq)q∈WN

∈ CD,S,W .
By Proposition 8.5 and Remark 2.3(a), there exists z ∈ C(DM,V) which satisfies

|z − zq|q < ε for each q ∈ WN . Then z ∈ V (DM,V), as desired.

Proof of (b). Here we only assume that V (DN,p) 6= ∅ for each p ∈ VN rWN .
We have to approximate the points zq by a point z ∈ V (M) such that |z|p ≤ 1 for
each p ∈ Vfin,N rWN and |z|p < 1 for each p ∈ Vinf,N rWN .

The set R = Vinf,N rWN is K-rational and small. Choose a finite subset
R1 of R which represents R|L. For each p ∈ R1, let zp ∈ V (DN,p). Since

Np = Ks = K̃ (if R 6= ∅, then char(K) = 0) and Vsimp(Ks) is Zariski open in
V (Ks) [5, Lemma 2.2], Vsimp(Np) is p-dense in V (Np). Hence, we may assume that
zp ∈ Vsimp(Np) and |zp|p < 1. By Lemma 9.1, we may extend L, if necessary, and
extend the point (zp)p∈R1 to a point (zq)q∈R such that zq ∈ Vsimp(Lq), |zq|q < 1,
and zqσ = z

σ
q for each q ∈ R and each σ ∈ Gal(N/L).

Let T = R∪WN . Since (zq)q∈T is L-rational, the set {|zq|q | q ∈ T } is finite.
Hence, α = min(1, 1/|zq|q)q∈T is a well defined positive real number ≤ 1. Also,
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we may assume that ε < 1 − |zq|q for each q ∈ R. By Proposition 1.11 applied
to X instead of to fi, there exists a ∈ M such that |a|q < α for each q ∈ T and
|a|p = 1 for each p ∈ Vfin,N rWN .

Consider the automorphism λ of An defined by λ(x) = ax. It maps V onto
an affine absolutely irreducible variety V ′ which is defined over K(a). For each
p ∈ Vfin,N rWN we have V ′(DN,p) 6= ∅. If q ∈ T , then z

′
q = azq ∈ V ′

simp(DN,q).
Moreover, if σ ∈ Gal(L(a)), then z

′
qσ = (z′q)

σ.

Since T is small, the set {|a|q | q ∈ T } is finite. Hence, by (c), there exists
z
′ ∈ V ′(DM,V) such that |z′ − z

′
q|q < ε|a|q for each q ∈ T . It follows that

z = a−1
z
′ ∈ V (M) and |z− zq|q < ε for each q ∈ T . Hence, |z− zq|q < ε for each

q ∈ WN and |z|q ≤ |z− zq|q + |zq|q < 1 for each q ∈ R. Finally, since a is a p-unit
for each finite prime outside WN , we have |z|p ≤ 1 for each p ∈ Vfin,N rWN .

Proof of (a). Choose z0 ∈ V (Ks) and recall that Np = Ks for each p ∈ VN rWN .
Then U = {p ∈ Vfin,N rWN | |zσ

0 |p ≤ 1 for all σ ∈ Gal(K)} is a well defined K-
rational big subset of VN . Hence, T = VN rU and R = T rWN are K-rational
small subsets of VN .

As in the proof of (b), α = min(1, 1/|z0|p)p∈R is a well defined positive real
number ≤ 1. By Proposition 1.11, there exists a ∈ M such that |a|p < α for each
p ∈ R and |a|p = 1 for each p ∈ Vfin,N rR. Consider the automorphism λ of
An defined by λ(x) = ax over K(a). It maps V onto an absolutely irreducible
variety V ′ which is defined over K(a). If q ∈ WN , then z

′
q = azq ∈ V ′

simp(Nq).
Moreover, if σ ∈ Gal(L(a)), then z

′
qσ = (z′q)

σ. If p ∈ R, then Np = Ks and hence,
z
′
p = az0 ∈ V ′(Np) and satisfies |z′p|p = |azp|p < α|zp|p ≤ 1. Similarly, if p ∈ U ,

then z
′
p = az0 ∈ V ′(Np) and |z′p|p ≤ 1.

By (b), there exists z
′ ∈ V ′(M) such that |z′ − z

′
q|q < ε|a|q for each q ∈ WN .

Hence, z = a−1
z
′ belongs to V (M) and satisfies |z − zq|q < ε for each q ∈ WN .

This concludes the proof of the theorem. �

Next we show how to deduce the weak approximation theorem from the strong
approximation theorem.

Proof of Theorem 2.4(a). There exists a finite subextension K ′ of M/K over
which V is defined and such that the map res: T → T |K′ is injective. Assume
without loss that K ′ = K. Extend each p ∈ T to a prime of N , if necessary, to
assume that T ⊂ VN . Recall that DM,p = DN,p for each p ∈ VN (Remark 2.3(c)).

For each p ∈ T ∩ SN let zp ∈ Vsimp(DN,p) and for each p ∈ T rSN let
zp ∈ V (DN,p). Also, let ε be a positive real number. We have to find z ∈ V (DM,V)
such that |z − zp|p < ε for each p ∈ T .

Let T ′ = {pσ | p ∈ T , σ ∈ Gal(N/K)}. Then W ′ = SN ∪T ′ and R = SN rT ′

are K-rational small sets. Choose a finite subset R1 of R that represents R|K .
Then W1 = R1 ∪· (T ∩ SN ) ∪· (T rSN ) represents W = W ′|K .

If p ∈ T rSN , then Np = Ks (Remark 2.3(c)). Since Vsimp(Ks) is Zariski open
in V (Ks), it is p-dense in V (Ks) [5, Lemma 2.2]. Hence, we can assume without
loss that zp is simple. Finally, for each p ∈ R1 we choose zp ∈ Vsimp(DN,p).
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By Lemma 9.1, the point (zq)q∈W1 extends to a point (zq)q∈W′ of VK,S,W .
Theorem 9.2(c) gives a point z ∈ V (DM,V) such that |z−zq|q < ε for each q ∈ W ′

and in particular for each q ∈ T .

Proof of Theorem 2.4(b). Replace the use of Theorem 9.2(c) in the proof of
(a) by a use of Theorem 9.2(a). �
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