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Abstract: Let K be a global field, V an infinite proper subset of the set of all primes of K, and
S a finite subset of V. Denote the maximal Galois extension of K in which each p € S totally
splits by Kot,5. Let M be an algebraic extension of K. Let Vs (resp. Spr) be the set of primes
of M which lie over primes in V (resp. S). For each q € Vs let Oprq = {z € My | |z]q < 1},
where My is a completion of M at q, and let Opry = {x € M| |z|q < 1 for each q € Vyr}.

For o = (01,...,0¢) € Gal(K)¢, let Ks(o) = {z € Ks| oi(z) = z,¢ =1,...,e}. Then,
for almost all o € Gal(K)¢ (with respect to the Haar measure), the field M = Ks(o) N Kiot,s
satisfies the following local global principle: Let V' C A"™ be an affine absolutely irreducible
variety defined over M. Suppose that there exist xq € V(@M,q) for each q € Vj; NSy and

Xq € Vsimp(@M,q) for each q € Sps such that |z;4|q < 1,4 = 1,...,n, for each archimedean
prime q € Vps. Then V(Our,y) # 0.
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Introduction

Hilbert’s tenth problem asked for the existence of an algorithm to solve diophan-
tine equations, that is equations with coefficients in Z whose solutions are sought
in Z. The development of recursion theory since 1930 and works of Martin Davis,
Hilary Putnam, and Julia Robinson finally led Juri Matijasevich in 1972 to a nega-
tive answer to that problem. This invoked Julia Robinson to ask whether Hilbert’s
tenth problem has a positive solution over the ring Z of all algebraic integers. In-
deed, on page 367 of her joint paper [4] with Davis and Matijasevich she guessed
that there should be one.

Using capacity theory, Rumely [24], [25] proved in 1987 a local global principle
for Z: If an absolutely irreducible affine variety V' over Q has an integral point
over every completion of Q, then V has a point with coordinates in Z. This led
Rumely to an algorithm for solving diophantine problems over Z.
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In 1988-89 Moret-Bailly [16], [17], [18] reproved Rumely’s theorem with ratio-
nality conditions using methods of algebraic geometry.

Green, Pop, and Roquette [6] consider a global field K, a set V of primes of K
which does not include all of the primes of K, and a finite subset S of V. Each
p € V is an equivalence class of absolute values of K. Let ||, be an absolute
value representing p. If p is archimedean and complex, let K, be the algebraic
closure K of K. If p is archimedean and real, let K, be a real closure of K at
p. If p is nonarchimedean, let K, be a Henselian closure of K at p. Now let
N = Kiot,5 = npes ﬂTeGal(K) K be the field of totally S-adic numbers. It is
the maximal Galois extension of K in which each p € S totally decomposes. Here
Gal(K) = Gal(K,/K) is the absolute Galois group of K. Consider the subset
On,v of N consisting of all z € N such that |z|; <1 for each prime q of N whose
restriction to K lies in V. The main result of [6] is a local-global principle for Oy y:
If an affine absolutely irreducible variety V' defined over K has a K-rational point
xp with |xp|, <1 for each p € V such that x, is simple if p € S and |x,|, < 1ifp
is archimedean, then V has a simple Oy y-rational point. The language of proof
of [6] is that of the theory of algebraic function fields of one variable.

The present work generalizes the methods of [6] and proves a local-global prin-
ciple and an approximation theorem for diophantine equations of subrings of fields
lying “deeper” than Kios. To explain the latter objects recall that Gal(K) is
equipped with a Haar measure. For each o € Gal(K)¢ we denote the fixed field
of 01,...,0¢ in Kiot,s by M = Kior,s5(0). As in the preceeding paragraph, let
O,y be the set of all € M with |z|q < 1 for each prime q of M lying over
some p € V. For a fixed integer e > 0 we prove that for almost all o € Gal(K)°
the field M = Kio,s(0) satisfies a weak approximation theorem: Let V' be an
affine absolutely irreducible variety defined over K and let 7 be a finite subset of
V. For each p € SN T let x, be a simple K-rational point of V' and for each
p € TS let x, be a K,-rational point of V' (which need not be simple). Finally
let € > 0. Then there exists x € V(M) such that |x — x|, < € for each p € 7.
The local-global principle for O,y follows from the weak approximation theorem.
Another corollary is that M is PSC. This means that if V' is an absolutely irre-
ducible variety defined over M with a simple K -rational point for each p € S and
every 7 € Gal(K), then V has an M-rational point.

The exact formulation of our results appears in Section 3, where we prove
a “strong approximation theorem” from which all other results follow. The proof
follows quite closely the proof of the analogous results in [12]. In that work we han-
dled only the case where V contains no archimedean primes and where Kot s(0) is
replaced by its maximal purely inseparable extension Kot 5(0)ins- The advantage
of the latter field is that it is perfect. In our case we have to face the possibility
that prime divisors of algebraic function fields over Ko s(0) ramify when going
over to the algebraic closure. This brings in extra technical complications into the
proof.

The extra difficulty in the proof of our results over that of [6] is that we have to
find Kiot,s(0)-rational points on varieties and not only Ko s-rational points. In
addition, Ko s(o), unlike Kot s, is not Galois over K. But note that Koy s(0) =
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K, (o) N Kiot,s, where K (o) is the fixed field in K, of 01,...,0.. What makes
our proof work is Corollary 1.6 of [13| which says that for almost all o € Gal(K)®
the field Ks(o) is “PAC over Ok y”. This implies that Kot s(0) is “weakly-PSC
over Ok y”. Both notions are explained in Section 1 along with the exact citation
from [13].

One of the main ingredients of the proof of our result is the solvability of each
“(8,V)-Skolem density problem for Ko s(o)” (explained in Section 1). The PAC
over O,y property of K(o) suffices in [13] to prove not only that for almost all
o € Gal(K)° each (S,V)-Skolem density problem for Ky s(o) is solvable but
that each (S, V)-Skolem density problem for Ko s[o] is solvable. The latter field
is the intersection of Kio,s with the maximal Galois extension Ki[o] of K in
K,(o). However, as is shown in [1], the field K,[o] is not PAC over Ok,y, hence
we can not deduce that Ky s[o] is weakly-PSC over Ok y. Unfortunately the
weakly-PSC over Ok, property enters again in the proof of the present work in
Section 8. Thus, we are unable to prove that for almost all o € Gal(K)¢ the
local-global principle holds for the fields Ko, s[o]. That question remains open.

1. Weakly PSC fields over holomorphy domains

The objects of our results are defined over a global field K. The property of the
field M = Kiot,s(0) (when o is taken at random in Gal(K')¢) that lies behind the
local-global principle is being “weakly PSC over Oy y”. We introduce the notion
and quote all results we need about this notion from [13].

Data 1.1. We fix the following data for the rest of this work:

(a) K is a global field.

(b) K, is the separable closure and K is the algebraic closure of K.

(¢) Gal(K) = Gal(K,/K) is the absolute Galois group of K. For each nonneg-
ative integer e the group Gal(K)¢ has a unique Haar measure p such that
w(Gal(K)¢) = 1. Given o € Gal(K)®¢, we write K (o) for the fixed field of
O1y...,0¢ in K.

(d) P =gk is the set of all primes (finite and infinite) of K. A finite (resp. infi-
nite) prime p of a field F is an equivalence class of nonarchimedean
(resp. archimedean) absolute values | |, of E. The unit disc D, is the p-open
set {x € E| |z|p <1} (resp. {o € E| |z|, < 1}) if p is finite (resp. infinite).
We denote the set of all finite primes of K by Pg, and the set of all infinite
primes of K by Pi¢. Thus, Piys = () and Pg, = P when char(K) > 0. For each
p € P we choose an absolute value | |, which belongs to p.

(e) V is a proper subset of P.

(f) Let R be a subset of P. Set Ran, = R N Pay and Ring = R N Piys. For each
algebraic extension L of K let Ry be the set of all primes of L which lie over
primes in R. For L = K we set R = Ryi. If g € Pp lies over p € P, we write
q|p and p = q|x. We denote the unique absolute value which represents ¢ and
extends | [, by | |q-
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If L is a normal extension of K, then Aut(L/K) acts on Ry according to
the rule
|z|pe = |27 |, for p € Ry and z € L.

We may choose a subset Ry of R which contains exactly one extension of
each prime in R. Then, for each q € Ry, there are p € Ry and 0 € Aut(L/K)
with g = p?. We say that Ry represents R over K.

We call Oy r = {x € L| |z|q < 1 for each ¢ € Ry} the R-holomorphy
domain of L. It is closed under multiplication. If R C Pg,, then O r is a
ring.

We call

Drr= () Dy={z€L||zly <1Vq€E Rpnr and |z]g < 1Vq € Rin,}
q€ERL

the open R-holomorphy domain of L.

_ n _ | — .
For a = (a1,...,a,) € L" let |a|g = qer%a;)fa) max lailq Ianea%( max il

For f(X) =" ,a;X" € L[X], we set | f|r = |(ao,...,an)|r-

Proposition 1.2 (Strong approximation theorem [2, p. 67]). Let 7 be a
finite subset of V. For each p € T consider an element a, of K and let € be a
positive real number. Then there exists v € Oy~ 7 such that |x — apl, < € for
eachp e T.

Data 1.3. We add the following data to Data 1.1 and fix it for the rest of this
work:

(a)

()

Let p e P.

p is a fixed extension of p to a prime of K. If § € P and §lp, then there is a

o € Gal(K) such that g = p°.

K'p is the completion of K at p inside the completion of K at p. Then | 1p

uniquely extends to an absolute value | |, of Kp and then uniquely to an

absolute value of K K,. The restriction of the latter to K coincides with | |5-
If p € Piyt, then either K'p =R or Kp 2~ C; in the former case p is real, in

the latter case p is complex.

K, =K:nN Kp. It is well defined up to a K-isomorphism. If p € Pgy,, then K,

is an Henselian closure of K at p. Since Kp /K, is a separable extension |8,

Lemma 2.2], so is K'p/K. If p € Piys is real, then K, is a real closure of K at

p; if p € Piyr is complex, then K, = K,.

Ky = ﬂaEGal(K) Ky

S is a finite subset of V.

N = Kior,s = ﬂpes Kip. This is the maximal Galois extension of K in which

each p € S totally decomposes. If S = ), we let N = K.

Note that if L is a subextension of N/K, then Liot,s, = N.

For each o € Gal(K)® we put Kiot,5(0) = Ks(0) N Kiot,s-
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Definition 1.4. Let M be an algebraic extension of K and O a subset of M.
We say that M is PAC over O if for every absolutely irreducible polynomial
h € M[T,X] and every nonzero g € M[T] there exists (a,b) € O x M such that
h(a,b) =0 and g(a) # 0.

Let M be a subextension of N/K and O a subset of M. We say that M is
weakly PSC over O if for every absolutely irreducible polynomial h € M[T, X]
monic in X such that all of the roots of h(0, X) are simple and belong to N and
every g € M[T] with ¢g(0) # 0, there exists (a,b) € O x M such that h(a,b) =0
and g(a) # 0.

Remark 1.5. If O C O’ C M and M is weakly PSC over O, then it is also weakly
PSC over O'.

By [13, Cor. 1.6], Ks(o) is PAC over Ok y for almost all o € Gal(K)¢. This
implies the following result.

Lemma 1.6 ([13, Lemma 1.12 (a)]). For almost all o € Gal(K)® the field
Kiot,s(0) is weakly PSC over O,y .

Lemma 1.7 (Quasi uniform approximation [13, Lemma 1.14]). Let M be a
subextension of N/K which is weakly PSC over Oy and let T be a finite subset
of V which contains S. Let © € N and € > 0. Then M has a finite subset B
(depending on T, x,¢) such that for each § € T there is b € B with |b — x5 < ¢.

Lemma 1.8 ([13, Prop. 1.15 and Remark 1.11 (b)]). Let M be a subextension
of N/K which is weakly PSC over Opy. Let p € VNS and q an extension of p
to K. Suppose q = p? for o € Gal(K). Then KJM = K, and M is q-dense in K.

Lemma 1.9 (|21, Lemma 3.5]). Let M be a subextension of N/K and suppose
that M is weakly PS C over a subset O. Let T be an absolutely irreducible projective
curve defined over M, let F be the function field of T' over M, and let t be an
element in F' M whose zeros are simple and belong to U'simp(N). Also, let A be
a finite subset of M*. Then there ezists P € Dgimp(M) such that t(P) € O A.

Definition 1.10. A data for an (S,V)-Skolem density problem for an algebraic
extension M of K consists of a quadruple (T ,f,a,v) in which
(a) T is a finite subset of V containing S;
(b)) f=(fr,...,fm) and f; € K[X1,...,X,] is p-primitive, i.e. |fi]l, =1, for
eachp € Vau NT,i=1,...,m;
(¢) a point a = (a1,...,an) € M"; and
(d) a positive real number .
A solution is a pointx € Oy, with |x—a|7 <7 and fi(x) € OF Van T
i=1,....,m. ’
M is called an S-Skolem field with respect to V if every (S,V)-Skolem
density problem for M has a solution.

Proposition 1.11 ([13, Thm. 3.7]). If M is a subextension of N/K which is
weakly PSC over Opy, then M is an S-Skolem field with respect to V.
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2. Rumely’s local global principle

We give an exact formulation of the major results of this work. This requires a
variety of data and notation in addition to those introduced in Section 1.

Data 2.1. We introduce data and notation, and keep the assumptions we make
here for the rest of this work:

(a) For each q¢ € Vy we fix an extension q € V. For each subextension L of
N/K let L be the completion of L at q|z inside the completion of K at §.
The latter completlon has a unique absolute value ||; which coincides with
|lgjx on K. Let Lq = Ksﬂf/q and Dy q = {z € Lq| |z|q < 1} if ¢ € Vaan
and Drq = {o € Lq| |z|q < 1} if ¢ € Vingnv. Then Ly € Ny and Ly is
the fixed field in K, of the decomposition group {r € Gal(L)| g7 = q}. If
q € Vin, N, then Ly is a Henselian closure of L at q|;, and Dy, 4 is its valuation
ring. We extend each o € Gal(N/L) to & € Aut(L/L) which satisfies §7 = q°.
Then ¢ maps Lg isomorphically onto Lqe and Dy q onto Dy q-. If L is a
finite subextension of N/K and q|. is non-complex, then Aut(Lq/L) =1 |7,
Prop. 14.5 and Prop. 15.6].

(b) For an abstract absolutely irreducible variety W defined over K and for each
extension L of K we let W(L) (resp. Wsimp(L)) be the set of all L-rational
(resp. simple L-rational) points of W. Whenever we say that W is an affine
absolutely irreducible variety we also mean that W is embedded in some affine
space. Then, if D is a subset of L, a D-rational point of W is an L-rational
point of W whose coordinates lie in D. We denote the set of all D-rational
points of W by W (D). Similar notation is imposed for closed subsets of W.

(c) M is a subextension of N/K which is weakly PSC over Op p.

(d) W is a finite subset of V which contains S.

(e) Let V be an affine absolutely irreducible variety defined over K. Then Vi s w
is the set of all points (zq)qewny € [I;ew, Veimp(IVq) for which

(1) there exists a finite subextension L of M/K such that zq € Viimp(Lq)
and zqs = z7 for each g € Wy and o € Gal(N/L).
Each (Zq)quN that satisfies (1) is said to be L-rational.
() Vbsw = Visw N ey Veimp(Dn,q)-

We will extend these data in the sequel by more data and assumptions, as
necessary.
Here is our main theorem.

Theorem 2.2 (Strong approximation theorem). Let V' be an affine absolutely
irreducible variety defined over K and embedded in A". Consider a (zq)qewy €
Vi,s,w and an € > 0. Then:

(a) There exists z € V(M) such that |z — zq|q < € for each ¢ € Wy

(b) If V(Dn,q) # 0 for each q € VN ~ Wy, then there exists z € V(M) such that
|z—z|q<€foreachq€WNandZED for each q € Vny N Wh.

(c) If V(Dn.g) # 0 for each q € Vv ~Wn and zq € DY, for each q € Wy, then
there exists z € V(D y) such that |z — zg|q < € for each q€Wn.
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Part (c) is an interesting special case of Part (b). In Section 9 we first prove

and then conclude (b) and (a).

Remark 2.3. (a) We may replace K in Data 2.1 by any finite subextension L of

M/K and extend all the objects that have been defined over K to L. Then
the assumptions made on them remain true and N does not change. It follows
that Theorem 2.2 for K implies the theorem for L. Also, we may start from a
variety V which is defined over M and then replace K by a finite subextension
of M/K over which V is already defined.

It suffices to prove Theorem 2.2 only for points (zq)qew, Which are K-rational.
Indeed, if (zq)qewy is L-rational for some finite subextension L of M /K, then
we may apply the theorem in its restricted form to L rather than to K and
approximate (zq)qew,y by @ point in V(M) as (a), (b), (c¢) of the theorem
require.

Let q € Vy. If g € Sy, then Ky C My C Nq C Kq, 50 Mq = Ny. If q ¢ S,
then My = Nq = K, (Lemma 1.8).

We use the assumption Sy C Wy (Data 2.1(d)) only to simplify notation. In
applications that do not make this assumption we use Lemma 9.1 to restore
it.

The strong approximation theorem yields a weak one, which we prove in Sec-

tion 9.

Theorem 2.4 (Weak approximation theorem). Let 7 be a finite subset of
Vv and let V' be an affine absolutely irreducible variety defined over M.

(a) If Vaimp(Darp) # 0 for each p € Sy and V(Darp) # 0 for each p € Vs > S,

then each point in

H ‘/;irrlp(DM,p) X H V(DM,P)

peETNS M peET NSMm

can be approzimated by a point in V(Dary).

(b) If Viimp (M) # O for each p € Sy, then Vsimp(M) is dense in

H Vaimp (Mp) % H V(M).

peETNSM peT NSnm

Taking T in Theorem 2.4 to be nonempty gives a local-global principle.

Theorem 2.5 (Local-global principle). Let V be an affine absolutely irreducible
variety defined over M. Suppose Vimp(Dar,p) # 0 for eachp € Sy and V(D p) #
0 for each p € Vay ~Sn. Then V(Dary) # 0.

Remark 2.6 ([12, Remark 1.6]). It is possible to replace each M, in Theorems 2.4
and 2.5 by its completion Mp.
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An algebraic extension L of K is said to be PSC, if every absolutely irreducible
variety V defined over L with a simple Ly-rational point for each p € Sr has an
L-rational point.

Taking 7 in Theorem 2.4 to be a finite nonempty subset of Sp; and assum-
ing that Viimp(M,) # 0 for each p € Sy, we get that Viimp(M) is dense in the
nonempty set Hp c7 Veimp(My). Therefore, Viimp(M) # (). This proves the follow-
ing result:

Corollary 2.7. The field M is PSC.

Corollary 2.8. Let V C Pg, be a proper subset of P and let V be an affine
absolutely irreducible variety defined over M. If Vimp(On,v) is nonempty, then
s0is V(Om,y).

Examples of weakly PSC fields are given by Lemma 1.6.

Corollary 2.9. For almost all o € Gal(K)®, the field M = Ko s(0) satisfies the
consequences of Theorems 2.2, 2.4, and 2.5, and Corollary 2.7. In particular, M
is PSC.

3. Restatement of the approximation theorem for integral points on
curves

This section starts the long proof of the strong approximation theorem for Dy y-
integral points on a curve (Theorem 2.2(c) for dim(V') = 1), from which all of
the other results follow. We first reformulate the theorem in this case in terms of
function fields, state a somewhat stronger result and finally describe the five steps
needed to prove the stronger result. To fix notation we add additional data to
Data 1.1, 1.3, and 2.1.

Data 3.1. The following data and notation remain in force until the end of Sec-

tion 8.

C is an absolutely irreducible affine curve in A" defined over K,
x = (x1,...,2,) is a generic point of C' over K and over each completion K'p,
Fy = K(x) is the function field of C over K,

F = MFy, = M(x) is the function field of C, considered as a curve over M,
genus(F/M) is the genus of F'/M,

s = 2genus(F/M) + 2 is a useful constant,

T is a normal projective model of F/M,

M’ is a field that contains M and is linearly disjoint from F',
F'=MF is the function field obtained by extension of scalars to M’,
(M) is the set of all M’'-rational points of T",

T(F'/M") is the set of all prime divisors of F'/M’,

Div(F' /M) is the group of divisors of F'/M’,

Py, ... Pr are the distinct poles of z1,...,z, in I'(F/M),

*

Py, Pl are the distinct prime divisors of KF/f( which lie over P},
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e is the ramification index of F;; over Py,
D* =P+ -+ P
€0 is a positive real number.

Remark 3.2. (a) For each divisor A of F’/M’ we consider the vector space
Lan(A) = {f € F'| div(f) + A4 > 0}

over M’. Tt has a finite dimension, which is denoted by dimu;(A). The group
Div(F'/M) naturally embeds in Div(F’/M’). If M'/M is separable, then since M’
is linearly disjoint from F' over M, a basis of L7(A) is also a basis of Lps/(A) and
genus(F'/M') = genus(F/M) [3, p. 132]. Thus dimp;(A) = dimp(A) and we can
drop the reference to the ground field from the dimension of A.

(b) P = ei(Pjy + -+ P}y,), hence deg(P}) = die;

Remark 3.3. Suppose M'/M is separable. Then the extension of T to M’ is still
normal [14, p. 147, Cor.]. We identify each point of T'(M’) with a prime divisor P
of F'/M’ of degree 1. If f € F’, then f(P) is the value of the rational function f
of I at P, if we view P as a point on the curve, or the value of the place associated
with P at the element f of F”, if we view P as a prime divisor of F’/M’. In both
cases f(P) is an element of M’ U {oo}. This element is co exactly when P is a
pole of f. Thus, if P € T'(K) does not belong to (Psli=1,...ej=1,...,di},
then x(P) = (z1(P),...,z,(P)) is a point in C(K).

Now suppose that M’ is equipped with an absolute value | |,. The p-adic
topology of M’ induces a topology on I'(M’) whose basis consists of the sets

{PeT(M)] [Ai(P)lp <1, [fm(P)lp <1}

with fi,..., fm € F’. Here we make the convention that |oo|, = co. This is
actually the weakest topology on I'(M’) such that each f € F’ defines a continuous
function

I F(M/)HM/U{OO}, P f(P),

where the neighborhoods of oo are, as usual, the complements of the closed neigh-
borhoods of 0.

Next suppose that for each p € Vn we are given a point z, € C(Dy ) such
that (zq)qewy € Cp,sw (Data 2.1(f)). Our goal is to approximate (zq)qewy
by an element of C(Dasy). If p € Wy, then z, € Camp(Dn,p). Hence, there
exists a unique P, € I'(N,) such that x(P,) = z, [10, p. 457, Cor. A3|. If
p € Vv~ Why, then N, = K, (Remark 2.3(c)) and we may choose P, € T'(N,)
such that x(Pp) = zy. In all cases, x(P,) € DY .

By definition, there exists a finite subextension L of M/K such that zq. = z]
for each q € Wy and each ¢ € Gal(N/L). By Data 3.1, LyFy is a regular
extension of L, and therefore it is linearly disjoint from Ny over Lq. Hence,
each ¢ € Gal(IN/L) extends to an isomorphism ¢: NgFy — Nyo Fy that maps
Lq onto Lg- and fixes each element of Fy (Use Data 2.1(a)). It follows that

X(Pyo) = z¢0 = 25 = x(Py)? = x(Py]). Therefore, Pye = Py .
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By remark 2.3(b), we may assume that L = K and conclude that Theo-
rem 2.2(c) for V' = C is equivalent to the following theorem:

Theorem 3.4 (Approximation theorem for function fields of one vari-
able) Suppose that for each p € Vy there exists P, € T'(Ny) such that x(P,) €

. Assume that Py = Py for each q € Wx and o € Gal(N/K). Then, there
e:msts P e T'(M) such that X(P) € Dy for all p € Vn and [x(P) — x(Py)]q < €0
for each ¢ € Wi. In particular, P ¢ {Pl*, . PR

€

Our method of proof forces us to prove a stronger theorem than Theorem 3.4.

Theorem 3.5. Suppose for eachp € Vy there exists P, € I'(N,) such that x(P,) €
. Assume that Pyo = Py for each q € Wy and each o € Gal(N/K). Then
there exists a nonzero functzon f € F with the following properties:

(1a) There exists a positive integer m (which can be chosen to be arbitrarily large)
such that dive (f) = mD*.

(1b) Each of the zeros of f is N-rational and simple, that is divo(f) = Zi:l P;
with distinct P; € T(N).

(1c) For all p € VN we have x(P;) € DNP, i=1,...,1, and

(1d) |x(P;) —x(Py)|lq < €0, i=1,...,1, if g € Wn.

Moreover, one of the zeros of f is M -rational.
To prove Theorem 3.5 we fix the data of the assumption of the theorem:

Data and Assumption 3.6. For each p € Vy we fix a point P, of I'(IV,) such
that x(P) € Dy ,. We assume that Pj» = P for each q € Wy and each
o € Gal(N/K). This data will remain in force untll the end of Section 8.

Definition 3.7 (Admissible functions). Let p € V. A function f € NF is
p-admissible if

(2a) there exists a positive integer m such that diveo(f) = mD* (we say that f is
of level m),

(2b) each zero of f is simple and belongs to T'(N,),
(2c) x(P) € DY, for each zero P € I'(Ny) of f, and
(2d) if p € Wy, then |x(P) —x(P,)]y < €0 for each zero P € T'(N,) of f.

Let T be a subset of V. We say that f is T-admissible if f is p-admissible
for each p € T. In this case we also say that f is admissible along T .

Definition 3.8 (Small sets). A subset T of Vi is small if it satisfies one of
the following equivalent conditions:

(3a) T|L is a finite set for each finite subextension L of N/K.

(3b) T is contamlef in a set T' = J,caib € V| laly > 1} for some nonempty
finite subset A of N.
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Thus, for each finite subextension L of N/K there is a finite subset Ty of T
which contains exactly one extension of each element of T|r. So, T C {q°| q €
Ty and o € Gal(L)}. We say that 1o represents T |r. IfT ={q°| q € Ty and 0 €
Gal(L)}, we say that T is L-rational.

Starting with an arbitrary small set T as above, we may enlarge A to a finite
set which is invariant under Gal(K). Then the set T' of (3b) becomes K -rational.
Thus, each small subset of Vi is contained in a K-rational small subset of Vi .

Finally, an (L-rational) big subset of Vi is the complement of an (L-
rational) small set.

The proof of Theorem 3.5 constructs f in five steps. In each of them f is
admissible along a set 7 which is larger than the set of the preceding step. Of
course, f is changed from one step to the next one. Thus, in each step we actually
construct not only one function, but a family of functions, which are close to each
other in the “7-topology”. Our construction follows the construction of Roquette
et al. [23] over K. We use Remark 2.3(c) to approximate functions in NF by
admissible functions in F'.

The headings of the steps below describe the set 7 along which f is admissible.

1. A SINGLE VALUATION. To construct a function f € NF which is p-ad-
missible for a single valuation p € Vy we use the Rumely-Jacobi existence
theorem for algebraic functions and the theorem about the continuity of
the zeros of algebraic functions. The former forces us to assume that the
completion of K at p|k is a local field. The latter holds over N,. We prove
that if f’ is sufficiently p-close to f, then it is also p-admissible. Then we
use the p-density of M in N to choose f € F.

FINITELY MANY VALUATIONS. We use the weak approximation theorem.
SMALL SETS. An essential tool in this step is Lemma 1.7.

A BIG SET OF VALUATIONS. We use here the theory of good reduction.
THE WHOLE SET Vy. In order to combine the big set of valuations with
its complement (which is small) we use Proposition 1.11.

OU N

Finally we use Lemma 1.9 in order to choose f with an M-rational zero.

4. Finitely many valuations

The existence of an admissible function at a single valuation is a consequence of
the Jacobi-Rumely-Pop existence theorem. We use the principle of variation of
constants (Corollary 4.4) to approximate several functions, each admissible at a
single valuation, by a function which is admissible at each of these valuations.

Before we do that, we fix further data and make more assumptions on the top
of those already made in Data 2.1, Data 3.1, and Data 3.6.

Data and Assumption 4.1. We choose a finite extension K; of K which is
contained in M and over which I" is defined. Then F; = K;(x) is the function
field of C' and of T over K7 and F' = M Fj. Since D* is M-rational, we may assume
in addition that D* is K;-rational.
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Let 0 € Gal(K;). Since K and Fy are linearly disjoint over K, o extends
uniquely to an element of Aut(KF/F}) which we also denote by . This o acts
on I'(K) such that f7(P?) = f(P)? for all f € KF and P € I'(K). Extend the
action of o to the group of divisors of KF/K by linearity. Then div(f)? = div(f?)
for each f € KF. Assumption 4.1 implies that (D*)° = D*.

Lemma 4.2. Let E/L be an algebraic function field of one variable (in particu-
lar we assume that E/L is reqular) and A a positive divisor of E/L of degree l.
Suppose A decomposes in LE as a sum of | distinct prime divisors: A = Zz 1 P
For each i let P; be the restriction of P; to L. Then the residue field of E at Pz 18
separable over L.

Proof. We have to prove only the case where p = char(L) > 0. Extending L to
its separable closure does not change the degree of A [3, p. 126, Thm.| nor its
factorization over Lg. So, we may assume that L = Ly and we have to prove that
deg(P)=1,i=1,...,1.

Let A = Zle a;@Q; be the factorization of A in F into a sum of prime divi-
sors with distinct Q1, ..., Qx and positive integers a1, ..., ax. Since L/L is purely
inseparable, each QQ; extends uniquely to a prime d1v1sor Qz of LE /L whose rami-
fication index ¢; is a power of p [3, p. 111]. Thus, Q; = ¢:Q; and A = Zi:l a;iqi Qs
is a factorization of A over LE. Comparing the two factorization of A, we find
that k = [ and after relabeling, P, = Q;, P, = Q;,and a; = ¢; = 1,5 =1,...,1L.
Since | = deg(A) = 22:1 deg(P;), we find that deg(P;)) = 1, ¢ = 1,...,1, as
contended. [

Proposition 4.3 (Continuity of zeros of algebraic functions). Let (M, | |,)
be an absolute valued field which is separable over Ky and let F' = M'Fy. Suppose
(M',] |p) is Henselian, real closed or algebraically closed. Consider an element
0# feF, set A= divee(f), and suppose divo(f) = 22:1 P;, where P; are
distinct prime divisors of F' /M’ of degree 1. Write f = Z;l:l cju;, where c; € M’
and uy,...,uq form a basis for the M'-vector space Lpp(A). For each 1 < i <1
let U; CT(M') be a p-open neighborhood of P;. Then there exists € > 0 such that
if hyeenscy € M satisfy | —cjlp <&, j=1,...,d and ' = Z;j | Ciug, then
dive (f') = A and divo(f') = ', P! with P/ € Uj.
Proof. The result for the the algebraically closed case appears in [20, Thm. 1.1]
and in [6, Thm. 7.1]. The proofs rely on the fact that the statements of the
proposition are elementary in the language of absolute valued fields. Unfortunately,
no proof or reference is given in those articles to that fact, although it is highly
nontrivial. The interested reader may find the missing proof in [9, Part G of the
proof of Proposition 3.5].

The Henselian case is reduced to the algebraically closed case in [6, Cor. 7.2].
That proof actually applies only in the case where M’ is perfect. We modify that
proof to cover all cases, including the real closed case.
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The absolute value ||, of M’ uniquely extends to an absolute value ||, of
the algebraic closure M of M’. For each 1 < < [, the inequalities that define U;
define a p-adic open neighborhood U; of P, in T'(M ) such that U;NT(M') = U; and
U" U; for each o € Aut(M /M'). Since the P’s are distinct and the p-topology
is Hausdorff, we can make the U;’s smaller, if necessary, to assume that the U,’s
are disjoint. Moreover, since M'/K is separable, Py, ..., P, are M’-normal, hence
also smooth (= nonsingular). That is, each P; satisfies the Jacobian condition in
an appropriate affine neighborhood [19, p. 233, Cor. 1]. That condition does not
change under extension of the base field. Thus, Pi,..., P, are also smooth over
M. Therefore, we may make the U; smaller to assume that each point of U; is
smooth, hence M-normal. T hus, we may again identify each point of U; with a
prime d1v1sor of FM/M

The elements uq,...,uq being linearly independent over M’ remain linearly
independent over M (because F'/M’ is regular). In addition, they belong to
L,7(A), so they can be extended to a basis w1, ..., uq, Uds1, ..., ur of L7(A).

For each 1 < i < I, the proposition for (M, ||,) gives an ¢ > 0 (which can be
chosen to be independent of 4) such that if ¢}, ..., c. € M satisfy | —cjlp < e for

j=1...,d|cjly <eforj=d+1,...,r,and f' =377, ]uj,thendlvoo(f):A
and dlvo( N = Zz L\ P/ with P} € U; for i = 1,...,1. In particular, P/ is M-

3 3
normal and

deg(divo(f")) = deg(diva(f)
— deg(A) = deg(divac(f)) = deg(divo(f)) = . (4.1)

If, in addition, c},...,c; € M" and ¢ ,,...,c;. =0, then f" € M'F. By (4.1),
Zi:l deg(P/) = I. In addition, P}, ..., P/ lie in disjoint sets Uy, ..., Uy, so they are
distinct. By Lemma 4.2, P{,..., P/ € I'(M]). Moreover, for each o € Gal(M’),
we have (P/)? € U;, hence (P/)? = P/. Consequently, P/ € U; NT'(M') = U, as

(3

desired. [

Corollary 4.4 (Principle of variation of constants). Let f € NF be a p-
admissible function for a primep € Vy. Set A = diveo(f), let uq,...,uq € NF be
a basis for Ln(A), and write f = E?Zl cju; with ¢; € N. Then there exists € > 0
such that if ¢y, .., cy € N satisfy |c; —cjly <&, j=1,...,d and f' = Ej 1 Cig,
then f' is p-admissible and dive(f') = A.

Proof. By assumption, dive(f) = Zizl P;, with P; € T'(IV,) distinct and x(FP;) €
DY - Also, [x(P) —x(B)]y < €0 if p € Wy, i = 1,...,l. Now we apply
Proposition 4.3 to the case where M’ = N, and the U; are disjoint p-open neigh-
borhoods of P, which are contained in the p-open subset {P € I'(N,)| x(P) €
DY, and [x(P) —x(P)]p <o if p € Wi} [ |

Proposition 4.5 (Existence theorem for a single valuation). Let p € Vy.
Then there exists a positive integer my such that for each multiple m of my there
exists a p-admissible function f € F such that diveo (f) = mD*.
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Proof. Recall that P, € T'(V,) = I'(M,,) (Data 3.6 and Remark 2.3(c)). Choose a
finite subextension L of M /K- such that P, is L,-rational. Let L be the completion
of Ly.

Since L is a global field, L is a local field. Since x(P,) € Dy, the p-open
subset

U={PeT(L)| x(P) € Dy, and [x(P) —x(Py)|p < eo if p € Wn}

of I'(L) is not empty. Theorem 2.1 of [6] improves the existence theorem of Jacobi-
Rumely and gives a nonconstant function g € LF, whose pole divisor is a multiple
of D*. (Note that by Assumption 4.1, D* is ﬁ—rational.) Moreover, the zeros,
Pi,..., P of g are L-rational, simple, and belong to U. By [6, Remark 2.5], there
exists a positive integer m, such that for each multiple m of m, the function g
can be chosen with dive(g) = mD*

Let uq,...,uq € LF; be a basis for L7, (mD™*). Assume without loss that Lis
linearly disjoint from LFj over L. Since ﬁ/L is separable, uq,...,uq also form a
basis for £; (mD*). Hence, there exist by,...,bq € L such that g = Z;l:l bju;.
Use the density of L in L to choose ¢ € L4 C M9 which is p-close to b. Let
f= E?Zl cju;. Apply Proposition 4.3 to g, f, and L instead of to f, f’, and M’
(choose U; disjoint and contained in U) to conclude that dive (f) = mD*, each of
the zeros of f is simple and belongs to U. In particular, f is p-admissible. |

Lemma 4.6. Let L be an extension of K1 in M, p € Vn, and o € Gal(N/L).
Eztend o to an element of Aut(NF/LFy) with the same notation. Suppose that
a function f € NF is p-admissible. Then f7 is p?-admissible. In particular, if
f € LFy, then f is p°-admissible.

Proof. Since LF; is linearly disjoint from NN, over L, we may extend o to an
isomorphism o: NyF — N,o F. By assumption div(f) = 22:1 P; — mD*, where
the P; are distinct elements of I'(Ny ), m is a positive integer, x(P;) € D}, and
|x(P;) —x(Pp)|p < €0 if p € Wn. Apply o to get div(f7) = 22:1 P —mD*,
x(P7) € DY yos and [x(P7) — x(Pyo )|pe < €0 if p € Wy. Also, P7,..., P are
distinct. Therefore, f? is p?-admissible. |

Proposition 4.7 (Existence theorem for finitely many valuations). Let T
be a finite subset of V. Then, for each myg, there exists a T-admissible function
f € F of level > my.

Proof. Let 7y be a subset of 7 which represents 7 |5; (Definition 3.8). For each
p € 7o let my be the positive integer that Proposition 4.5 gives. Choose a common
multiple m > mg of the my’s. For each p € 7y take f, € F which is p-admissible
of level m. Let u1,...,uq be a basis for Ly;(mD*) and write f, = Z;l:l Cpjilj
with Cpj € M.

Apply the weak approximation theorem to 7o|as and choose ¢ € M? which is

p-close to ¢, for each p € 7. By Corollary 4.4, f = Ed

j=1Cju;y is p-admissible
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for each p € 7y and diveo(f) = mD*. By Lemma 4.6, with M replacing L, f is
p-admissible for each p € 7. |

5. Small sets

We use Proposition 4.7 and the weak approximation theorem to prove an existence
and density theorem for admissible functions in F' along a given small set. An
essential tool in this step is Lemma 1.7.

Lemma 5.1. Let E/L be a function field of one variable and let m be an integer
> 2genus(E/L). Consider positive divisors D1, ..., D; of E/L with deg(D;) = r;.
Suppose D1, ..., Dy are relatively prime in pairs. Then

dlm(ﬁL(sz)/ﬁL((m— ].)Dz)) =T, 1= ].,...,l. (51)

Let yi1,...,Yir, be a basis for Lr(mD;) modulo L1((m —1)D;) and set D =
Di+---+Dy;. Then, yij,i=1,...,1,j=1,...,r; form a basis for L1, (mD) modulo
Lr,((m — 1)D). Moreover, if each D; is a prime divisor, then dive(yij) = mD;
for alli and j.

Proof. By Riemann-Roch, (5.1) above and (5.2) below are true:
dim(Lr(mD)/Lr((m —1)D)) = deg(D). (5.2)

Since y;; € L (mD), it suffices to prove that they are linearly independent modulo
L, ((m —1)D). Indeed, suppose

l i

Z Zaijyij =0 mod Lr((m —1)D) (5.3)

i=1 j=1

with a;; € L. Write D; = E%:l eir P;r with positive integers e;;, and distinct prime
divisors P, of E/L. Denote the normalized valuation of E/L corresponding to Py
by vik. Then v (yir;) > 0 if i’ # i. It follows from (5.3) that Uzk(E;:1 aijYij) >
—(m —1)ei. Hence, 377" a;;y;; belongs to Lr((m —1)D;). By the choice of the
Yij, this implies that a;; =0 for j =1,...,7;.

Finally, if D; is a prime divisor, then in the above notation, v;1 (y;;) > —m and
vi1 (i) 2 —m + 1. Hence, vi1(yi;) = —m and divee(ys5) = mD,;. [ ]

We use Lemma 5.1 to construct a basis for £;(mD*) modulo Ly ((m —1)D*)
which will belong to a finitely generated subgroup of F'* that does not depend on
m. This requires an additional data.

Data 5.2. Let s = 2genus(F/M)+ 2. By Remark 3.2(b), deg(P;") = d;e; for each
1 <i<e. Then for each s <r <2s—1 let
Bir ={uijir | j=1,...,d;, k=1,...,¢e;} be a basis for Ly (rP;")

modulo L/ ((r — 1)P;) in particular diveo (wijer) = 7B}
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Now write each m > s as m = ¢qs +r with ¢ > 0 and s <r < 2s — 1. Then let

Uijkm = U115 Wighr
Bim =A{twijkm | 7=1,...,di, k=1,... ¢}
By = Bim U+ U Bem
By = basis for Lp;((s —1)D*) which contains 1
K> = a finite subextension of M/K; such that By U BsU---U Bgs_1 C KoF}
F, = Ky Fy

Lemma 5.3. Let m > s. Then:

(a) diveo(Uijkm) = MP; and By, is a basis for Lyr(mP;") modulo Ly ((m—1)P}),
i:l,...,e,j:l,...,di, k;:l,...,ei.

(b) B, is a basis of Lyr(mD*) modulo Lpr((m — 1)D*).

(¢) F5 contains a basis for Ly(mD*).

Proof of (a). Let m = gs + r as in Data 5.2. Then ulj; wijkr, 7 = 1,...,d;,
k=1,... ¢, belong to Las(mP;) and are linearly independent over A modulo
Ly((m — 1)PF). We conclude from (5.1) applied to P rather than to D; that
these elements form a basis for £ (mP;) modulo Ly ((m — 1)P;).

Proof of (b) Apply Lemma 5.1 to D* = P;" 4+ --- + P rather than to D =

€

Dy +---+Dy.
Proof of (c¢) By our choice of By and by (b), ByUBs;U---UB,, C F, and is a
basis for L (mD™). |

Notation 5.4. Following Lemma 5.3, we set for each m > s — 1
Vi = dim(Lp (mD™))

By Riemann-Roch, v,,, > 2. Then we list the elements of ByUB;UBs1UBg12U- -+
as Ui, ug, us, ... such that u; = 1, Bg = {u1,...,uy,_, }, and

Bm:{ul,m_1+1,...,ul,m}:{uijkm| i:l,...,e, jzl,...,di, k:l,...,ei}

for m > s. By Data 5.2, all of the u; belong to F» and {u1,...,u,, } is a basis for
Ly (mD*) for each separable algebraic extension M’ of M.

Proposition 5.5. Let T be a small subset of V. Then, for each mq there exists
a T -admissible function f € F of level m > myg.

Moreover, write f = ZZ;"’I c;u; with ¢; € M. Then there exists € > 0 such that
if ¢ € N"m satisfies |¢' — |7 < &, then f' = Y™ ciu; is also a T-admissible
function of level m.

Proof. Let 73 be a finite subset of 7 which represents 7 |x, (Definition 3.8).
By Proposition 4.7, there exists a 7z-admissible function g € F of level m >
max(mg,s — 1). Write ¢ = > a;u; with a; € M. By Corollary 4.4, there
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exists § > 0 such that for each q € 75 if a’ € N”» satisfies |[a’ — a|; < J, then
g = > aju; is g-admissible of level m.

Let K/ be a finite Galois subextension of N/K» which contains ay,...,a,,,.
Then A = {a%| 0 € Gal(N/K»)} = {a” | 0 € Gal(K}/K3)} is a finite subset of
N. We have not assumed M to be normal over K. Hence, A need not be a subset
of M. However, by Lemma 1.7, M*™ has a finite subset B with the following
property: For all ¢ € T3, 7 € Gal(N/K>), and a’ € A there exists by- a0 € B
such that |bgr o» —a’[q- < d. Choose a finite subextension K3 of M /K, such that
B C Kim.

Now let p € 7. Then there exists o € Gal(N/K3) and q € ’Tg such that p = g°.

Since a’ = a” belongs to A, we have |bpar —a%[qe < J, 50 |bY ., —alq < 6. Hence,

p.a’
by the first paragraph, Y . bg a, zuz is a g-admissible function of level m. Since
u; € Fy (Notation 5.4), we have uf = u;, ¢ = 1,...,v,. Hence, by Lemma 4.6,

with K rather than L, the element fo= ZV bq ar,iu; of K3F is a p-admissible
function of level m.

Next choose a finite subset 73 of 7 which represents 7 |k,. By the preceding
paragraph, for each q € 73 there exists a g-admissible function fq = Y. ¢q.iu;
of level m with ¢q; € K3. By Corollary 4.4, there exists € > 0 such that if q € 73
and ¢’ € N”m satisfy |¢/ —cqlq < &, then f/ = >"7" cju; is a g-admissible function
of level m.

By the weak approximation theorem there exists ¢ € K3™ such that |[c—cq|q <
e for each q € 73. Then f = >/ c;u; is g-admissible of level m for each q € 7.
For each 0 € Gal(N/K3) we have f° = f. Hence, by Lemma 4.6, f is q°-
admissible. It follows that f is 7-admissible.

Finally suppose that ¢’ € N¥™ and |¢/ — c|,J < ¢ for each p € 7. Write p = q°
with q € T3 and ¢ € Gal(N/K3). Then |(¢/)”  —c|q < & and hence 37 ( ALEETE
is g-admissible of level m. Consequently, by Lemma 4.6, f' = EZH chu; is p-
admissible of level m. |

6. Good reduction

Consider a finite prime p of KF such that plxk € VN S. Thus, p is an equivalence
class of valuations of KF and | |p is a multiplicative representative of p. In other
words, ||, is a map of KF into an ordered multiplicative Abelian group satisfying
the usual rules of an absolute value. We use a bar over objects associated with
KF to denote their reduction modulo p.

The function field K F/ K has a good reduction at p if the following conditions
hold:

(1a) There exists f € KF which is p-regular. That is, Ifly =1, f€ KF is
transcendental over K, and [f(F_f((f)] = [KF : K(f)]. Thus KF is a

function field of one var@e over K.
(1b) genus(KF/K) = genus(K F/K).
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In this case we also say that p is a good extension of p|z to KF. Note that

if g € KF and g is transcendental over K, then g is p-regular if and only if
deg(divo(g)) = deg(divo(g)) or, equivalently, deg(dive(g)) = deg(diveo(g))-

The support of a divisor A of R’F/K’ is the set Pp,..., P, of distinct prime
divisors of K F/ K such that A = Zi:l k; P; with nonzero integers k;.

Corollary 6.2 connects regularity and admissibility of functions. It relies on a
sort of a reciprocity lemma:

Lemma 6.1 ([22, Cor. 3.9]). Suppose that KF/K has a good reduction at a
finite prime p. Let f,g be elements of KF such that f is p-reqular and |g|, = 1.
Then, for each P € T(K)

Supp(dives(g)) € Supp(dives(f)) and f(P) = 0 imply |g(P)], < 1.

We extend each finite prime p € Vy N\ Wy to the Henselian closure N, = K
(recall that by Data 2.1(d), Sy € Wy) and then, in the unique possible way, to
K. In this way we regard p also as a prime of K.

Corollary 6.2. Let p € Vy ~ Wy be a finite prime with a good extension to KF.
Suppose |z;|, =1 ifx; #0, fori=1,...,n. Let f € NF be a p-regular function
of level m (Definition 3.7). Suppose each of the zeros of f is simple. Then f is
p-admissible.

Proof. Since N, = K, we have to verify only Condition (2c) of Definition 3.7.
By assumption dive.(f) = mD*. Hence, by Data 3.1,

Supp(dives (f)) = | Supp(diveo ().
=1

By assumption, |z;|, = 1 if 2; # 0. Hence, if P € I'(K) is a zero of f, then
|z;(P)]p <1 (Lemma 6.1). If ; = 0, then |z;(P)|, = 0 < 1. Consequently, f is
p-admissible. |

In the remaining of this section we explore when functions are regular. This
depends on the following extension of the reduction map of elements modulo p to
divisors.

Proposition 6.3 ([22, p. 247]). Suppose KF/K has a good reduction at p. Then
there is a natural homomorphism A — A of Div(KF/K) into Div(KF/K) with
the following properties:

(a) deg(A) = deg(A).

(b) A>0 implies A> 0. ~
(c) |flp =1 implies div(f) = div(f).

Lemma 6.4 ([12, Lemma 5.4]). Suppose_K'F/K’ has a good reduction at p
and let f be an element of KF such that f is transcendental over M. Then

divo(f) < divo(f) and divee(f) < diveo(f). FEquality holds if and only if f is
p-regular.
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Lemma 6.5 ([12, Lemma 5.5]). Suppose KF/K has a good reduction at p. Let
A be a positive divisor of K’F/K' For each i between 1 and [ let m; be a positive
integer and let f; € KF be a p-reqular function such that diveo (fi) = m;A. Let
m=my+---+my. Then f = f1--- fi is also p-regular and div(f) = mA.

The following result is a well known consequence of the Bertini-Noether the-
orem. For example, it appears in [23] without a proof. See [12, Prop. 5.7] for a
sketch of the proof.

Proposition 6.6. Letty, ..., t; be nonconstant functions off(F andlet Py, ..., P,
be distinct prime divisors of K’F/K' Then there exists a finite subset A of K*
such that if p € V satisfies lalp, =1 for each a € A, then p has a good extension
to KF which we also denote by p such that t; is p-reqular, i = 1,...,1, and the
reduced primes Py, ..., Py, are distinct.

7. Criteria for regularity

We give here two criteria for regularity of functions of KF. The first one is
formulated in terms of a basis of L (me; P;) modulo L ((me; —1)P};) (Data 3.1).
Here it is important that deg(F;;) = 1. The second one, which is built on the first
one, is formulated in terms of a basis of Lz (mP;) modulo Lz((m — 1)P;). In
both criteria m has to be large.

In the following lemma we use the integers e and e; from Data 3.1, but the
lemma is valid for arbitrary positive integers e and e;.

Lemma 7.1. Let E/L be an algebraic function field of one variable, Q;;, i =
1,...,e, j = 1,...,d;, distinct prime divisors of E/L, and m a positive integer.
Set D=>3¢_, 221:1 €;Qij, and C =37 Z;l;l(mei —1)Qj. For alli and j let
tij € E and ¢;j € L. Let g € L(C) and set f = 5_, E?Zl cijtiy + 9. Suppose
diveo(tij) = me;iQi; for all i,j. Then, dive(f) = mD if and only if c;; # 0 for
all i,7.

Proof. First suppose ¢;; # 0 for all 4,j5. Denote the normalized valuation of
E/L associated with Q;; by v;;. Then v;;(t;;) = —me; and v;;(ty;7) > 0 if
(¢',75") # (¢,7). In addition, v;;(g) > —me; + 1. Hence, v;;(f) = —me;. Finally,
v(f) > 0 for each valuation v of E/L which is different from all of the v;;’s.
Consequently, diveo(f) = mD.

Conversely, if ¢;; = 0 for some 1, j, then diveo(f) < mD — Qy;. [ |

Lemma 7.2 (First criterion for regularity). Let m be an integer
> 2genus (F/M), and let t;; be an element of KF such that dive(ti;) = me; Py,
i=1,...,e,j=1,...,d;. Set C=3%7_, Z?;l(mei —1)P};. Suppose KF/K has
good reduction at a finite prime p such that the reduced primes P are distinct and
the t;; are p-regular. Let

e d;
fzzzcijtij +g (7.1)

i=1 j=1
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with c;j € K such that |cijl, = 1 and g € Lz(C) with |gl, < 1. Then
(a) {tij| i=1,...,e; j=1,...,d;} is a basis for Lz(mD*) modulo Lz(C), and
(b) f is p-regular of level m.
Proof of (a). By assumption,
me; > me; — 1 > 2genus(F/M) — 1 > 2genus(KF/K) — 1

[3, p. 132, Thm. 1]. In addition, deg(F;;) = 1, because K is algebraically closed.
Hence, by Riemann-Roch

dim(L z (me; Pj;))—dim(L z ((me; —1) P;;)) = deg(me; P;;) —deg((me; —1)P};) =1

)

By Data 3.1, D* = ¢_, P¥. By Remark 3.2(b), P} = 2]71 e P, i=1,... €

Since the P[; are distinct, Lemma 5.1 applied to {P| j = 1,...,d;} and me;
rather than to {D;,..., D;} and m, implies that {t;;| j =1,..., di} form a basis
for £z (mP;*) modulo ﬁR(Zj ((me; —1)P5),i=1,... e

By Riemann-Roch again,

e d;
dim(Lz (mD*)/Lz( szei ZZ me; — 1) Zd
i=1 j=1 i=1 j=1 =1

Since t;; € Lz(mD™), it suffices to prove that they are linearly independent mod-
ulo L;z(C). Indeed, suppose >, Z;jzl aijti; = 0 mod Lz (C) with a;; € K.
Denote the normalized valuation of KF/K corresponding to P} by vix. Then
vig(tij) > 0 if & # 4. Since vy (35—, E?"la”t”) > —(me; — 1), we have
vik (30 aijtiy) > —(me; — 1). Hence, S0 ajjti; € L (X0 1(mel 1)P%). By
the preceding paragraph, this implies that a;; =0 for j =1,...,d;.

Proof of (b). By Lemma 7.1, diveo (f) = mD*.

Now reduce (7.1) modulo p to obtain f = >, Z? 1 Cijtij + 7. By assumption
A =div(g)+C > 0. If [g], <1, then g = 0. Otherwise, |g|, = 1 and div(g) +C =
A > 0 (Proposition 6.3). Hence in both cases g € L= (C) Since t;; is p-regular,
dives (ti5) = mezP* (Lemma 6.4). By assumption, ¢;; # 0 for all ¢,j. Hence, we
may apply Lemma 7.1 to f(F/f( and conclude that dive,(f) = mD* = dive (f).
Thus, by Lemma 6.4, f is p-regular of level m. |

Data 7.3. We write each m > s = 2genus(F/M) +2 asm = gs+r with ¢ > 0
and s <r <2s-—1.

(a) We use the Riemann-Roch theorem to choose ¢;;, € KF which satisfy
diveo (tijr) = re; P”,i: 1,...,e,5=1,...,d;,r=s,...,25 — 1.

(b) Let tijm = ti; tijr, i =1,...,e,5=1,...,d;.

(c) By Remark 3.2(b), P’ = e;(P;} + -+ + Py, ). By Riemann-Roch, {¢;;-} is a

basis of L (re; P;;) modulo £ ((rei—l)Pi’;-)./ Hence, by Lemma 5.1, {t;;, | j =

.,d;} is a basis for Lz (rP;) modulo £z (Zj 1 (rei =1)P%). According to
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Data 5.2, dives (tijrr) = TP;", 80 wijir € Lz (rP;"). Thus, there exist unique
bijij'r € K such that

i

d; d;
Uijkr = Z bijkj’v"tij’r mod ﬁ Z re; — (72)
j’'=1 =1

By Lemma 7.1, b # 0.
(d) Weset Y; = (Yi11,...,Yid,e;), 4 =1,...,e and consider the linear form

dL €4
Xir (Y3) E Yiinbijkir l=1,...,d; n

Jj=1 k=1

Lemma 7.4 (Second criterion for regularity). Let m > s = 2 genus(F'/M)+2
and let ajr,a, € K, i =1,...,e,j=1,...,d;, k=1,...,e5, p =1,...,Um_1,
and let u,, p=1,2,3,..., be as in Notation 5.4. Consider the element

Vm—1

[= Z 2 Z QijkWijkm + Z au Uy, (73)

=1 j=1 k=1

of KF. Suppose KF has a good reduction at a finite prime p such that the following
conditions are satisfied:

(a) The P_[; are distinct,
(b) tijr is p-regular, in particular |t;jr|p, = 1,
(c) |uu|P <1,

(d) [bijkjrrlp =1,

(e) |aijily <1 and |ay|p, <1, and

(f) Nir(ai)lp = 1, where a; = (a1, - - -, @i dy e, ),
forw=1,... v051, ' =1,...Um_1, i =1,....e, 5,5,1=1,...,d;, k =
1,....e;, andr =s,...,2s — 1. Then f is p-regular of level m.

Proof. Let C = Y7, Z?;l(mei — 1)P5. Write m = gs + r with ¢ > 0 and
s <r <2s—1. By (b) and Data 7.3(a), t;js is p-regular with dive(tijs) = sezP”
and ¢;;, is p-regular with dive (¢5,) = re; Pj;. Hence, by Lemma 6.5, tijm = t”StWﬂ
is p-regular with dives(tijm) = me; P, fori=1,...,e,j=1,...,d;.

7/]’
By Data 5.2 and by (7.2)

.. — 4 ..
WUijkem = WUj11sWijkr (74)
d; dl
= ( g billj’stij s g bz]k]’v"tzj r mOd E mez -
= l=l

=1

A general term of the expansion of the right hand side of (7.4) has the form
bt, where b = bi1151 6 bin 1y .sbijkg, o and t =i s tij stij . and
1<41,---, jclz 11 < d;. For each [ between 1 and d; denote the normalized valuation
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of f(F/f( associated with P by wy. Then, w;;(tijr) = —rei, wi;(tijs) = —se;,
and wi (tijr) > 0, wi(tijs) > 0, if I # j. Hence,

wir(bt) = wir(tijys) + -+ waltiyys) + waltiy, ) = —(qs +r)e; = —me;

and equality holds if and only if j; = --- = j;,; = [. If the condition j; = --- =
j</1+1 = [ is satisfied for no [, then for each 1 <1 < d; we have w;;(bt) > —me; + 1
and w(bt) > 0 for each valuation w # w1, ..., w;q, of KF/K. This implies that
bt € E[((Zfil(mei —1)P;) C Li(C). If ji =+ = jiyq = | for some [ between 1
and d;, then bt = b}, ,.bijrj rtim (Data 7.3(b)). It follows that

d;
— q
WUijkm = billlsb’ijklrtilm mod ﬁf((C)
=1

In addition, by Notation 5.4, uy,...,u,,_, € Lz((m —1)D*) C L;z(C). Hence,
by (7.3),

e di e e d; e d;
= = E E ' q
/= Zzzaijk“iﬂ'km = § , E 3171115 bijkirtitm (7.5)
i=1 j=1 k=1 i=1 j=1 k=1 I=1
e d; d; e e d;
= Z E :billls( E aijibijrir ) titm = g E b 11sNitr (A titm
i=11=1 J=1 k=1 i=1 1=1
e d;
=D catim mod Li(C),
i=1 =1

with ¢ = bl Aar(a;). By (d) and (f), |eal, = 1,4 =1,...,e, 1 = 1,...,d;.
By (c), |luulp < 1, p = 1,...,v25_1. Hence, by Notation 5.4, |u;jer|p < 1 for
i=1,...,e, j=1,....d;, k=1,...,¢e;, and r = s,...,2s — 1. By Data 5.2
and Notation 5.4, for each k > s the function u, is a product of functions which
belong to the set {wijks,. .., Uijkos—1]| i =1,...,e, 5 =1,...,di, k =1,...,¢e}.
Hence |ux|p < 1. In particular |w;jeml|p < 1. Hence, by (7.3) and (e), |f], < 1.
Therefore, by (7.5) and (b), g = f— ¢, 27:1 citiim belongs to L;z(C) and
satisfies |g|, < 1. We conclude from Lemma 7.2 that f is p-regular of level m. W

8. Admissible functions along Vn

To create a Vy-admissible function we first use Proposition 6.6 to define a big
subset U of Vy which takes into account all conditions of Lemma 7.4 which do
not concern a. Then, for 7 = Vx N U, we select f of the form (7.3) of Section 7,
such that f is 7-admissible. The final step is to use Proposition 1.11, Lemma 7.4,
and Corollary 6.2 to change the a;;,’s such that f becomes also U-admissible (and
hence Vy-admissible) and then to use Lemma 1.9 to change the a,’s such that in
addition f has an M-rational zero.
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Data 8.1. We extend each finite prime p € Vy N\ Wpy to a prime of the Henselian
closure N, = K, (Remark 2.3(c)) with the same name. We use Proposition 6.6 to
choose a big subset U of Van v >~ Wy (which may be empty if Vg, is finite) such
that the following statements hold for each p € U and for s = 2 genus(F/M) + 2,
i=1,....,e,7=5,...,25—1, 5,7/ =1,....d;, k=1,...,e;, p=1,...,v05 1,
andv=1,...,n:

la) p has a good extension to KF named P,
1b) The P} are distinct,

lc) tijr is p-regular,

1d) |uulp <1 (Notation 5.4),

le ) |bwk3 T|P =1,

1f) |xl,|p—11faju7é0.

Note that b;jxj» # 0 (Data 7.3(c)). So, we may achieve condition (le). Make
U smaller, if necessary, to assume that I/ is K-rational (Definition 3.8). Then,
7T = Vn N U is a K-rational small subset of Vy which contains Why.

(
(
(
(
(
(

Notation 8.2. For each positive integer m > s = 2 genus (F/M) + 2 we denote
the space AVm-1 x []7_, A% x A% by A,,. The zero coordinate of a point a € A,,
is a vy,—1-tuple ag = (a1,...,a,,,_,) and for each ¢ > 1 the ith coordinate is a
(dz X ei)—matrix a; = (aijk)lgjgdi’ 1<k<e;-

Proposition 8.3 (Density of admissible functions).
Let mg > s = 2genus(F/M)+2. Then there exists m > mg, a point ¢ € Ay, (M),
and £ > 0 with the following property: If a € A,,(N) satisfies

(2a) |la—c|r <e and
(2b) lal, <1 and [Aar(a;)lp =1 for eachp €U, fori=1,...,e, 1l =1,...,d,,

andr=s,...,2s —1,

then the function

(B) f=2ia Z] 1 2t @ik Uijkm + Zumll Apty
is Vn-admissible of level m.

Proof. Rename the function f that Proposition 5.5 supplies as h and rewrite h
in the form

Vm—1

h = Zizcwkuz]km + Z Cpu gy,

1=1 j=1 k=1

with ¢ € A,,(M). Retain also the role of m and e from Proposition 5.5.

Now suppose that a € A,,(N) satisfies Condition (2) and f is as in (3). By
Proposition 5.5, f is 7-admissible of level m. In particular, each of the zeros of
f is N-rational and simple. By Data 8.1, (2b), and Lemma 7.4, f is p-regular of
level m for each p € U. By Data 8.1, KF/K has a good reduction at each p € .
Since f is of level m and |z;|, = 1if x; # 0 for i = 1,...,n, Corollary 6.2 implies
that f is p-admissible. Consequently, f is Vy-admissible. |
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Proposition 8.4 (Existence of admissible functions). For each mg there
exists a Vy-admissible function f € F of level m > mqg which has an M -rational
zero.

Proof. Let m; be an integer which is greater than mg and 2 genus(F/M)+2. Let
m > my, ¢ € Ay (M), and € be as in Proposition 8.3. Then vy, = dim((m —
1)D*) > 2 (Notation 5.4).

By (1e), the coefficients of the A;-(Y;) (Data 7.3(d)) are 7-units. The same
holds for the polynomials Y;;,. Also, by Data 8.1, 7 is a K-rational small subset
of Vn which contains Sy. Thus,

(T, (Nitr (Y4), Yij ) €,€)i=1,.. e dl=1,....dss k=1,....e;

is an (.5, V)-Skolem density problem for M (Definition 1.10). By Proposition 1.11,
there exists for each i between 1 and e a point a; € M®% x M¢ such that lai—ci|T <
5, and |agjxlp = 1 and [Ag-(a;)|p = 1 for each p € U and for r = s,...,25 — 1,
j,Z: 1;---7di7 k= 1,...,61'.

The field L = K(c1,..., ¢y, ,) is a finite subextension of M/K. Since T is K-
rational, we may apply the strong approximation theorem to L (Proposition 1.2)
and find ¢ € L¥~* such that |[cj —co|r < § and |cp|, < 1 for each p € U. Choose
0 # 1 € Ok such that |l|7 < § (recall that T |f is a finite set).

Let g = >°7 Z?zl il Gijrtiem and ff = g + Z:”;;l ¢, uy. Since the
u, and the uijrm are linearly independent over M, u; = 1, and as, # 0, we
have f' € FNM. Let t = —1f’. By Proposition 8.3, f’ is Vy-admissible of
level m. In particular, all of the zeros of f’ (hence, also of t) are simple and in
I'(N). By Data 2.1(c), M is weakly PSC over Ousy. Hence, by Lemma 1.9,

there exists P € I'(M) which is a pole of none of the functions ¢, g, u1,..., Uy, ,
such that t(P) € On,y. Let a1 = It(P) + ¢j,a2 = ¢5,...,ay,,_, = ¢, _, and
ap = (a1,...,0ay,,_,). Then |a1 — 1|7 = |lt(P) + ¢ — 1|7 < &, 80 |ag — co|7 < €

and |ag|, < 1 for each p € U. Since u; = 1, we have
g+ (lt+cy) +cyus+---+¢,  uy, , =Ilt+ f=0.

Hence, P is a zero of the function

Vm—1
f=0P)+f =g+ > auu,.
p=1
Thus a = (ag,ai,...,a.) € Ay,(M) satisfies (2) and f has the form (3). By
Proposition 8.3, f is Vy-admissible of level m. [ |

Proposition 8.4 is a reformulation of Theorem 3.5. The latter implies Theo-
rem 3.4, which is a reformulation of Theorem 2.2(c) for curves. We state the latter
for the record.

Proposition 8.5 (Strong approximation theorem for integral points on
curves). Let C be an absolutely irreducible affine curve defined over K. Suppose
that C(Dnyp) # O for each p € Vn ~\Why. Consider (zq)qewy € Cp,s,w and
€ > 0. Then there exists z € C(Dpyy) such that |z — zq|q < € for each q € Wi
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9. The approximation theorems and the local global principle for arbi-
trary affine varieties

In this section we use the strong approximation theorem for integral points on
curves (Proposition 8.5) to prove the approximation theorem for integral points
on arbitrary varieties. Then we prove all other theorems of Section 2.

Lemma 9.1. Let V' be an absolutely irreducible variety defined over K. Let Ry be
a finite subset of Viy whose elements are mutually nonconjugate over K. For each
pERyletzy, € V(N,). Let R={p| p € R1, 0 € Gal(N/K)}. Then we can find
a finite extension L of M/K and extend the point (zp)per, into a point (zq)qer
such that zq € V(Lq) and zqo = z for each q € R and each o € Gal(N/L).

Proof. We first prove that M/K has a finite subextension L such that zy €
V(Ly-) for each p € Ry and each 0 € Gal(N/K). It suffices to do it in the case
that Ry consists of one prime p.

If p is an infinite prime, then there exists a finite subextension L of M/K such
that L, = M, = N, is either real closed or algebraically closed. Then, Ly = Ny
for each 0 € Gal(N/K).

Now suppose p is a finite prime. Then NN, could be an infinite extension of
K,, so there might be no field L as in the preceding paragraph. However, we
may choose a finite Galois subextension E of N/K with z, € V(E,). Let y be
a primitive element of E/K. Let € > 0 be a real number which is smaller than
ly — /|, for all conjugates y’ of y over K with 3’ # y. By Lemma 1.7 applied to
all conjugates of y instead of to x, there exists a finite subset B of M with the
following property: For each g € Vy which lies over p|x and each conjugate y' of
y over K there exists b € B such that |b — 3’| < e. Then L = K(B) is a finite
subextension of M/K.

Consider a o0 € Gal(N/K) and let q = p°, ¢y’ = y°. Choose b € B such that
|b—y'lq < e. By Krasner’s lemma [15, p. 43|, Kq(y?) € Kq(b) € LKq = Lq.
Hence z; € V(Ky(y7)) € V(Lyo).

Now choose a finite subset Ro of R that contains R; and represents R|p,
(Definition 3.8). For each q € R\ R; there exists a unique p € R such that
dlk = p|x. Choose A € Gal(N/K) such that q = p* and set zq = z;‘. Then
zq € V(Lg).

If 0 € Gal(N/L) satisfies q° = q, then ¢ € Gal(N/N N Ly). Hence, the
extension of o to Ny (Data 2.1(a)) fixes the elements of Lq. In particular z§ = z4.
It follows that if for arbitrary q € Rz and 7 € Gal(N/L) we define z4- = z7, then
z, is well defined for each p € R, it coincides with the original z, if p € R, and
satisfies zy,o = zy for each p € R and o € Gal(N/L). [ |

We return now to the notation of Data 2.1, copy over Theorem 2.2, and prove it.

Theorem 9.2 (Strong approximation theorem). Let V' be an absolutely ir-
reducible affine variety defined over K. Consider (z2q)qewy € Vi,s,w and € > 0.

(a) There exists z € V(M) such that |z — zq|q < € for each ¢ € Wy
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(b) If V(Dn ) # 0 for each p € VN Wy, then there exists z € V(M) such that
|z — zqlqg <€ for each q € Wy and z € D]’fﬂp for each p € VN Wi

(¢c) If V(Dn,p) # 0 for each p € Vy N Wy, and zq € DY, for each ¢ € Wy, then
there exists z € V(Dyy) such that |z — zq4|q < € for each q € Wi

Proof. By assumption zq € Viimp(INg) for each q € Wy. Also, there exists a
finite subextension L of M/K such that z; € Vimp(Lq) and z§ = zgo for each
q € Wy and o € Gal(N/L). Our primary goal is to find a point z € V(M) such
that |z — zq|q < € for each g € Wh.

Proof of (c). Here we assume in addition that V(Dy,) # 0 for each p €
Vn Wy and zq € Viimp(Dnw,q) for each g € Wy. We have to approximate the
points z, with z € V(D).

Choose a point zy € V(K) and recall that N, = K, for each p € Vv N\ Wy
(Remark 2.3(c)). Let

U={p € Vinn “Wn| |z§|p <1 for each o € Gal(L)}, T=VyU.

Then 7 is an L-rational small set which contains Wy. Choose a finite subset
Wi of Wy which represents Wy |1, and a finite subset Ry of R = 7 ~ Wy which
represents R|;, (Definition 3.8). Set 73 = Wi UR;.

For each p € Ry choose z, € V(Dn,p). Now apply Lemma 9.1 to L and
Ri1, extend L (hence, also Wy, R1, and 77), if necessary, and extend the point
(zp)per; to a point (zp)per such that z, € V(Ly) and zye = z7 for all p € 7
and o € Gal(N/L). In particular, each z, belongs to V(Dy, ), hence to V(Dy ).
Finally, if p € U, then N, = K,. Thus, let z, = zg.

In an appendix to [12] we show that there exists an affine absolutely irreducible
curve C' which is defined over L, hence also over M, which lies on V and passes
through zo and through z, for each p € 7;. Moreover, z, is simple on C for each
p € Wi. For an arbitrary p’ € Vy the point z,/ is conjugate over L to a point z,
for some p € 7y UU. Hence z,/ belongs to C(Dy ) and is simple if p’ € Wy, so
(2q)aewy € Cp,s -

By Proposition 8.5 and Remark 2.3(a), there exists z € C'(Dyy,y) which satisfies
|z — zq|q < € for each q € Wy. Then z € V(Ds,v), as desired.

Proof of (b). Here we only assume that V(Dy,,) # 0 for each p € Vn ~ Wy
We have to approximate the points z, by a point z € V(M) such that |z|, <1 for
each p € Vi v N Wy and |z|, < 1 for each p € Ving,nv > Wh.

The set R = Vint,y N Wy is K-rational and small. Choose a finite subset
R1 of R which represents R|;. For each p € Rq, let z, € V(Dn,). Since
N, = K, = K (if R # 0, then char(K) = 0) and Vimp(K;) is Zariski open in
V(Ks) [5, Lemma 2.2], Viimp (INy ) is p-dense in V (N, ). Hence, we may assume that
Zy € Viimp(Vp) and |z,|, < 1. By Lemma 9.1, we may extend L, if necessary, and
extend the point (zp)per, to a point (zq)qer such that zq € Viimp(Lq), |2qlq < 1,
and zqs = zg for each g € R and each o € Gal(N/L).

Let 7 = RUWNny. Since (zq)qe7 is L-rational, the set {|zq|q| g € 7} is finite.
Hence, a = min(1,1/|2q|q)qe7 is a well defined positive real number < 1. Also,
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we may assume that € < 1 — |z4|q for each ¢ € R. By Proposition 1.11 applied
to X instead of to f;, there exists a € M such that |a|q < a for each q € 7 and
lal, =1 for each p € Van,nv > Wi

Consider the automorphism A of A" defined by A(x) = ax. It maps V onto
an affine absolutely irreducible variety V' which is defined over K (a). For each
P € Vin,y X Wn we have V/(Dyy) # 0. If ¢ € T, then zg = azq € Vi, (DN g)-
Moreover, if o € Gal(L(a)), then zy, = (z;)7.

Since 7 is small, the set {|a|q| q € 7} is finite. Hence, by (c), there exists
z' € V'(Dum,y) such that |z' — z;[q < €laq for each ¢ € 7. It follows that
z=a"'z' € V(M) and |z — z4|q < & for each q € T. Hence, |z — z4|q < ¢ for each
q € Wy and |z|q < |z —24|q+|2q]q < 1 for each g € R. Finally, since a is a p-unit
for each finite prime outside Wy, we have |z|, <1 for each p € Van, nv > Wi

Proof of (a). Choose zg € V(K,) and recall that N, = K for each p € Vn N~ Wh.
Then U = {p € Van,n S Wn | |2|, < 1for all o0 € Gal(K)} is a well defined K-
rational big subset of V. Hence, 7 = Vy NU and R = 7 ~ Wy are K-rational
small subsets of Vy.

As in the proof of (b), a = min(1,1/|2o|p)per is a well defined positive real
number < 1. By Proposition 1.11, there exists a € M such that |a|, < « for each
p € R and |a|, = 1 for each p € Vgn,nv N R. Consider the automorphism X of
A™ defined by A(x) = ax over K(a). It maps V onto an absolutely irreducible
variety V' which is defined over K(a). If ¢ € Wy, then z; = azq € Vi, (Ng).
Moreover, if o € Gal(L(a)), then zy, = (z;)?. If p € R, then N, = K and hence,
z, = azg € V'(Np) and satisfies |z,], = |azp|, < a|zp|, < 1. Similarly, if p € U,
then zj, = azo € V'(Ny) and |z, [, < 1.

By (b), there exists z’ € V(M) such that |z’ — zg|q < elalq for each q € Wy
Hence, z = a~'2’ belongs to V(M) and satisfies |z — zq|q < € for each q € Wy

This concludes the proof of the theorem. |

Next we show how to deduce the weak approximation theorem from the strong
approximation theorem.

Proof of Theorem 2.4(a). There exists a finite subextension K’ of M/K over
which V' is defined and such that the map res: 7 — 7|k is injective. Assume
without loss that K’ = K. Extend each p € 7 to a prime of N, if necessary, to
assume that 7 C Vy. Recall that Dy, = Dyp for each p € Vi (Remark 2.3(c)).

For each p € 7T NSy let zy € Vimp(Dn,p) and for each p € 7 NSy let
zy € V(Dn,p). Also, let € be a positive real number. We have to find z € V(D y)
such that |z — z,|, < e for each p € 7.

Let 7" ={p° | pe T, 0 € Gal(N/K)}. Then W =SyUT and R=Sy T’
are K-rational small sets. Choose a finite subset R; of R that represents R|x.
Then Wi = R1 U (7T NSy) U (T ~Sy) represents W = W'|k.

Ifp € 7~ Sy, then N, = K, (Remark 2.3(c)). Since Viimp (/) is Zariski open
in V(K,), it is p-dense in V(K) [5, Lemma 2.2]. Hence, we can assume without
loss that z, is simple. Finally, for each p € R1 we choose z, € Viimp(Dn,p)-
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By Lemma 9.1, the point (zq)qew, extends to a point (zq)qens of Vi sw.
Theorem 9.2(c) gives a point z € V(D) such that |z —z4|q < € for each g € W/
and in particular for each q € 7.

Proof of Theorem 2.4(b). Replace the use of Theorem 9.2(c) in the proof of
(a) by a use of Theorem 9.2(a). [ |
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