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Abstract: In this note we investigate problems related to the unique factorization of some
semigroups of classical L-functions. The semigroups of Artin and automorphic L-functions as
well as the semigroup generated by the Hecke L-functions of finite order are studied. The main
result of the paper shows that in the latter semigroup the unique factorization into primitive
elements does not hold. This closes a possible way of attacking the famous Dedekind conjecture
concerning the divisibility of the Dedekind zeta functions.
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1. Introduction

A well known result by Ram Murty [9] states that the Selberg orthonormality
conjecture (SOC for short) for the Selberg class 8 implies the Artin conjecture
on the holomorphy of the Artin L-functions (see below for definitions and other
information). A perhaps less known but interesting statement in the same paper
is that the unique factorization conjecture for 8§ (UF for short) implies the De-
dekind conjecture asserting that the Riemann zeta function ((s) always divides
the Dedekind zeta function (x(s) of an algebraic number field K (note that SOC
implies UF and that the Artin conjecture implies the Dedekind conjecture, see
e.g. Chapter 7 of Murty-Murty [10]). Ram Murty’s argument is as follows. Let
K be the normal closure over Q of K. By the Aramata-Brauer theorem (see
(2-1) below), both ((s) and (x(s) divide (3(s), in the sense that there exist
entire functions F,G € § such that (z(s) = ((s)F(s) and (5(s) = (x(s)G(s).
Therefore ((s)F(s) = (x(s)G(s), and hence ((s) | (x(s) by UF, since ((s) is
primitive and has a pole at s = 1. However, such an argument apparently re-
quires the non-vanishing at s = 1 of the functions in 8, otherwise one cannot a
priori exclude situations like: (g (s) is primitive and G(s) = ((s)H(s) with H(s)
primitive and H(1) = 0 (and hence F(s) = (x(s)H(s)). Since at present the
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non-vanishing at s = 1 is not known in the general framework of §, Ram Murty’s
statement apparently requires an additional non-vanishing hypothesis (unfortuna-
tely, the uncorrect proof has been reported also on p.183 of Murty-Murty [10] and
in Proposition 4.2 of [6]).

We refer to the survey papers by Kaczorowski [5], Kaczorowski-Perelli [6] and
Perelli [12], [13] for the definition of the Selberg class § and for its basic properties.
Here we recall only that § is, roughly speaking, the multiplicative semigroup of

the Dirichlet series
— ar(n)
P =3
n=1

with analytic continuation, a functional equation of Riemann’s type and an Euler
product, that every function F' € § has a factorization into primitive functions (the
irreducible elements of the semigroup 8) and that most of the classical L-functions
belong to 8 (at least modulo classical conjectures). Moreover, as anticipated above,
the following important conjectures are expected to hold:

(unique factorization, UF) the factorization of every F' € § into primitive
functions is unique;

(Selberg orthonormality conjecture, SOC) for primitive F,G € § we have

ar(p)ac(p)
2

P _ dr.c loglog z + o(loglog x) (1.1)

pPsT

where dp g =1 if F(s) = G(s) and dpc = 0 otherwise. As remarked above, it is
well known that SOC implies UF.

We use the following notation. We denote by (U) the multiplicative semi-
group generated by a set U, and by (U) the group of quotients of (U). L (s, x)
denotes the Hecke L-functions associated with the algebraic number field K; x
is a Hecke character of finite or infinite order, and Lk(s,x) is of finite or in-
finite order accordingly. H and H; denote the sets of the Hecke L-functions
and of the Hecke L-functions of finite order, respectively. Art denotes the set of
the Artin L-functions L(s, p, K/k), while Aut denotes the set of the automor-
phic L-functions L(s,p). Moreover, the irreducible elements of a semigroup of
L-functions are called primitive functions. The following characterization is very
easy to prove:

a semigroup of L-functions has unique factorization if and only if
the logarithms of the primitive functions are linearly independent over Q.

A closer look at the Aramata-Brauer theorem, see (2.1) below, shows that the
above reported argument by Ram Murty can be adapted to suitable semigroups of
L-functions, smaller than the Selberg class, where the non-vanishing hypothesis
can be proved. For example one can prove that

if the semigroup (Hy) has unique factorization,
then the Dedekind conjecture is true.
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Such a result is tempting, since (H) is not an axiomatically defined semigroup
like 8§, and hence one should to be able to decide if the unique factorization holds
for (Hy). Unfortunately, it turns out that the unique factorization does not hold
for (Hy). Essentially, this is due to the existence of primitive functions in (Hjy)
which can be factorized in larger semigroups. This phenomenon also explains why
there is no incompatibility between the classical Artin conjecture and the distinct
zeros conjecture from the Selberg class theory. Indeed, roughly speaking, on the
one hand the distinct zeros conjecture asserts that distinct primitive functions in
8 have no common zeros. On the other hand, the Artin conjecture states that the
right hand side of the Artin-Brauer theorem (2.2) below is entire, even if some of
the integers m; are negative. These two conjectures would be incompatible if the
primitive functions of (Hy) remain primitive in 8, but the above phenomenon
shows that they may well be coherent.

In this note we investigate some problems related to the unique factorization
of some semigroups of classical L-functions. Perhaps the results we get are already
known to experts in algebraic number theory; however, we couldn’t find references
in the literature, and gathering such results in one place might anyway be useful.

Acknowledgment. This research was partially supported by the Istituto Na-
zionale di Alta Matematica, by a MIUR grant Cofin2004, by the Foundation for
Polish Science and by KBN grant 1 PO3A 008 26.

2. Results

We first recall very briefly some analytic properties of the Hecke, Artin and auto-
morphic L-functions. The analytic properties of the Hecke L-functions (see e.g.
Chapter 1 of [10]) are rather well understood. Indeed, the Hecke L-functions are
known to belong to the Selberg class. Moreover, the standard zero-free region is
available in this case. Special cases of Hecke L-functions are the Dedekind zeta
functions (k(s), and the following well known theorem by Aramata-Brauer holds:
if L/K is a Galois extension then

Culs) _ Y
CK(S) _IZILK]'( 7XJ) (21)

where n; € N and Lg,(s,x;) are suitable Hecke L-functions with non-trivial
characters x; of finite order. Therefore, the Dedekind conjecture follows easily in
the Galois case. From the Artin reciprocity law (see Chapter 2 of [10]) we know
that the Hecke L-functions of finite order are special cases of Artin L-functions.
Moreover, it is also known that

H; C (Hf) C Art,

For example, every Dirichlet L-function L(s,x) is a Hecke L-function of finite
type, but in general L(s,x)? is not a Hecke L-function.
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The knowledge of the analytic properties of the Artin L-functions (see e.g.
Chapter 2 of [10]) is definitely less complete than in the Hecke L-functions case.
In fact, such L-functions belong to the Selberg class modulo the Artin conjecture,
asserting that L(s, p, K/k) is entire if p does not contain the trivial representation
(in which case the only singularity is a pole at s = 1). Good part of our present
knowledge of the analytic properties of the Artin L-functions comes from the
following classical theorem of Artin-Brauer: if K/k is a Galois extension then

L(s,p,K/k) = HLK (s,x;)™ (2.2)

where mj; € Z and Lk, (s,x;) are suitable Hecke L-functions of finite order,
which we may clearly assume to be primitive in (Hy) and distinct. Moreover, K
are intermediate fields, with K/K; Galois. As already remarked above, we recall
that the Artin conjecture implies the Dedekind conjecture in the general case (see
Section 2 of Chapter 2 of [10]).

We refer to Iwaniec-Sarnak [4] for a survey of the analytic properties of the
automorphic L-functions. Here we only recall that such functions belong to the Sel-
berg class modulo the Ramanujan conjecture. Moreover, a well established theory
for the Rankin-Selberg convolution is available in this case. The Langlands conjec-
tures predict that Art C Aut. In fact, in a sense the automorphic L-functions are
expected to be the most general L-functions, according to a conjecture asserting
that the Selberg class 8§ coincides with Aut.

Next we sketch a heuristic argument suggesting that the unique factoriza-
tion does not hold for (Hy); precisely, assuming SOC we show by a theoretical
argument that a primitive function in (Hy) is not necessarily primitive in §; for
an unconditional explicit example we refer to (2.16)—(2.19) below. In a way, this
situation is similar to Hilbert’s famous example of the semigroup of the integers
n =1 (mod 4): unique factorization does not hold there, and the reason is that
there are non-prime integers which are irreducible elements of such a semigroup.
Let p # 1 be irreducible and such that the Artin L-function L(s, p, K/Q) is not
a Hecke L-function of finite order. Then apply the Artin-Brauer theorem (2.2),
with Ly, (s,x;) primitive in (Hy), and hence

H LKj(SaX] JL(S ,O,K/Q H LK S XJ . (23)

m; <0 m; >0

Assuming SOC, by Theorem 3.1 of Ram Murty [9] we have that L(s, p, K/Q) is a
primitive function of 8. Recalling that Hy C 8 and regarding (2.3) as a factoriza-
tion in §, we therefore have that L(s,p, K/Q) divides one of the Ly, (s,x;) in 8,
say L, (s,x1). But L(s, p, K/Q) is not a Hecke L-function, hence L(s,p, K/Q)
divides properly Lg, (s, x1), which is therefore primitive in (Hy) but not in §. In
Theorem 2 below we also give an explicit example of a function in (Hy) with two
distinct factorizations.

Now we turn to some simple facts about the semigroups (Hy), (Art) and
(Aut).
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Fact 1. Let K/k be a Galois extension and let G = Gal(K/k). Let L be a normal
extension of Q containing K. Then L/k and L/Q are Galois extensions, and let
H = Gal(L/k), F = Gal(L/Q). Let L(s, p, K/k) be an Artin L-functon. By the
properties of the Artin L-functions (see Chapter 2 of [10]) we have

L(s, p, K/k) = L(s, Lift2 p, L/k) = L(s,Ind ; LiftZ p, L/Q),

where Liftg p and Ind ¥ p denote the lift and the induction of the representation
p, respectively. Hence we may restrict our considerations only to Artin L-functions
over Q, thus simply writing L(s,p) for the Artin L-functions (when there is
no confusion with the automorphic L-functions), the base field being always Q.
Therefore, every Artin L-function can be defined by an Euler product over Q.
Moreover, the product of two Artin L-functions is still an Artin L-function, and
hence Art is already a semigroup:

Art = (Art),

and (Hy) is a subsemigroup of Art.
As a consequence of Fact 1, in what follows the Artin L-functions L(s, p)
will always be assumed to have base field Q.

Fact 2. From the properties of the Artin L-functions (see Chapter 2 of [10])
it is well known that the primitive functions of Art are the Artin L-functions
associated with irreducible representations. Moreover, every representation can be
written in a unique way (up to equivalence) as a sum of irreducible representations.
We therefore have

Art has unique factorization, (2.4)

and its primitive functions are the L-functions associated with irreducible repre-
sentations. Note that (2.4) could be used to prove the Dedekind conjecture by the
argument reported in the Introduction. However, one would need to assume the
Artin conjecture, which we already know to imply the Dedekind conjecture.

Fact 3. Take two Artin L-functions

L(s,pr) = [ [ 1‘1 (1- )‘j7ks(p))—1

p j=1 p

with pp distinct and irreducible for k£ = 1,2. Consider their Rankin-Selberg co-

nvolution
_ Aj1(p)Ai2(p)y -1
Lopom) =[] I (- 20020
4 j:l ..... d1 p
i=1,...,d2

which is still an Artin L-function thanks to the Artin formalism, and let G be
its Galois group. Suppose that L(s, p1 ® py) has a pole at s = 1, thus p; ® p,
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contains the trivial representation pg. In terms of characters we therefore have

_ 1 1
0#<P®Pnp>= 17 > Xowor, (0)x0(0) = @l > X (0)x7,(0)
oeG ceG

=< p1,p2 >,
which implies that the two representations contain a common factor, contradiction.
Thus L(s,p1 ® py) is holomorphic at s = 1 in this case. By the Artin-Brauer

theorem and the well known analytic properties (and zero-free regions) of the
Hecke L-functions of finite order, standard methods therefore assure that

Z py275,(P) = o(loglog )

p<T

and hence, by the definition of L(s, p1 ® D),

Z Ap, (p)ap2(p) — O(lOglOg{E) (25)

p<T p

if p1 and po are distinct and irreducible, where a,(n) denotes the Dirichlet coef-
ficients of L(s, p).

On the other hand, if p; = ps = p is irreducible then the Chebotarev density
theorem (see Chapter 2 of [10]) implies that

2
Z ap(;n) ~ loglog . (2.6)

P
Therefore, from (2.5) and (2.6) we have that
the orthogonality relation (1.1) holds for the semigroup Art. (2.7)

Note that one could easily deduce (2.4) from (2.7), in the same way as SOC implies
UF (see e.g. Section 4 of [6]). Note also that in terms of the Artin L-functions,
relation (2.7) can be expressed as follows:

given two irreducible representations py and p2, L(s,p1 @ Ps)
has a simple pole at s =1 if and only if p1 = p2.

Further, assuming the Artin conjecture one may ask if the primitive functions of
Art are still primitive in §; this is the case under the assumption of SOC, as
proved by Murty [9].

Fact 4. We first recall that the product of automorphic L-functions is still an
automorphic L-function, hence

Aut = (Aut).
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The semigroup Aut has properties similar to Art. In fact, by the properties of
the Rankin-Selberg convolution in Aut it is easy to see that

Aut has unique factorization.

Moreover, a standard exercise in prime number theory shows that under the Ra-
manujan conjecture the orthogonality relation (1.1) holds for the semigroup Aut.
These facts are perhaps the best evidence in favour of SOC and UF for §.

Fact 5. Consider now the set H? of the Hecke L-functions of finite order defined
over a fixed algebraic number field K and the semigroup (ch( ) generated by H;{ .

Given Lk (s,x1) and Lg(s,x2) in H?, we define the Rankin-Selberg convolution
over K as

oy - [~ 2050

where p runs over the prime ideals of the ring of integers of K and Np is its
norm. Then Lg (s, x1X2) is holomorphic at s = 1 if x1 # x2 (since x1X2 # Xo,
the trivial character, in this case), while it has a simple pole at s =1 if x1 = x2
(since now Xx1X5 = X0 ). Thus the functions of ch( satisfy a kind of orthonormality
over K , and this implies by standard arguments that

(H? ) has unique factorization.

Now we turn to a more detailed discussion of (Hy) and Art. From the Artin
reciprocity law and the Artin-Brauer theorem we know that

(Hy) C Art C (Hy).

In fact, the inclusions are easy, the first inequality follows from the existence of
Artin L-functions with positive and negative exponents in (2.2), and for the second
inequality it suffices to note that 1/{(s) is not an Artin L-function. Moreover, we
know that Art has unique factorization, while we will prove in Theorem 2 below
that factorization in (Hj) is not unique. The following natural question therefore
arises:

is Art the smallest unique factorization semigroup containing (Hy)?

We suspect that the answer is yes. In general, given a reduced semigroup S (i.e.
such that the units of S reduce to the identity, which is clearly the case of (Hy))
and a unique factorization semigroup D, a divisor theory for S is an injective
homomorphism 0 : S — D such that ¢ | b in S if and only if d(a) | 9(b) in
D, and for every d € D there exist elements ay,...,a, € S such that d = g.c.d.
(0(ar),...,0(an)). We refer to Halter-Hoch [2] for a survey of such a theory, whose
better known example is probably the case of the semigroups of the principal ideals
and of the ideals of the ring of integers of an algebraic number field. For example,
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the injection i: (Hy) — Art is not a divisor theory.

Consider indeed an Artin L-function not in (Hy); by the Artin-Brauer theorem
in the form (2.3) we have that

H Lk, (s,x;)"™ divides H Lk, (s,x;)™

m; <0 m; >0

in Art, but clearly not in (H;). We conjecture that
(Hy) has no divisor theory;

this is probably related with the previous question.

It is known that a divisor theory of a semigroup (if it exists) is uniquely
defined up to semigroup isomorphism, see Clifford [1]. It is also known that the
Riemann zeta function ((s) is primitive in the Selberg class (see e.g. [6]), hence it
is primitive in (Hy). Thus if a divisor theory of (Hy) exists such that 0(¢(s)) is
primitive in D, then every divisor theory of (Hy) has this property. We remark
that if the above conjecture is false and the divisor theory for (Hy) exists and
satisfies such a property, then it is not difficult to deduce the Dedekind conjecture.
In fact we have

Theorem 1. Suppose that the divisor theory 0 : (Hy) — D exists and 9(((s))
is primitive in D. Then the Dedekind conjecture holds true.

Proof. Arguing as in the Introduction, by the Aramata-Brauer theorem applied
to (5 (s)/((s) and to ((s)/Ck(s) we have

(s) T L, (52x3) = ) [ L (5:0)

where the Lx,(s,x;) and the Lg/(s,x;) are Hecke L-functions of finite order.
Since the Hecke L-functions do not vanish at s = 1, the above identity implies
that all the Lk, (s, x;) and Lg/(s,X;) are holomorphic at s = 1. Applying the
homomorphism 0 and recalling that 9(¢(s)) is primitive in the unique factoriza-
tion semigroup D, we have that 9({(s)) divides one of the elements (L (s, x}))
or 0(Ck(s)). In the first case, by the divisor theory we deduce that ((s) divides a
function Ly (s, x;) in (Hy), a contradiction since the Lk (s, x;)’s are holomor-
phic at s = 1 and the Hecke L-functions do not vanish at s = 1. Hence the second
case must occur, and hence by the divisor theory we deduce that ((s) | (k(s) in
(Hy), and the result follows. [ |

Note that Theorem 1 gives in fact a slightly stronger form of the Dedekind
conjecture, namely that the quotient (x(s)/¢(s) is a product of Hecke L-functions
of finite order. This agrees with the case of Galois extensions, but it is not clear to
us if it has to be expected in the general case as well. Note also that the hypothesis
that 9(¢(s)) is primitive in D is important in the proof. Indeed, in order to prove a
result of type of Theorem 1 one needs some control on the factorization of 9({(s))
in D.
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We finally turn to the main result of this paper, namely

Theorem 2. Unique factorization does not hold in (Hy).

Proof. We prove that (Hj) is not UF by constructing an Artin L function be-
longing to (Hy) and admitting two distinct factorizations in (Hy).

We start by choosing a suitable group, which will became the Galois group
of an extension L/Q. Let G = SLg(3), i.e. the group of 2 x 2 matrices with
determinant 1 over the finite field with three elements. A presentation of G is

G = (a® =b* = (ab)® = 1, ab’a™* = b?),

where a = (}]) and b= (_J!). The order of G is 24 and the table of its irreducible

characters is the following (see [3], p.288):

g 1lel| & |S=b|c | |b~b
IClig)] | 1] 4 4 1 4 4 6
X1 111 1 1 1 1 1
X2 l|w| @ 1 w w 1
X3 1 || w 1 w w 1
X4 21| -1 -2 111 0
X5 2 |w| —w -2 —w | w 0
X6 2| w | —w -2 —w | w 0
X7 310 0 3 0 0 —1

(w is a primitive cubic root of 1 and ¢ = ab?)

The characters x1, x2 and 3 are evidently monomial. Also x7 is monomial
(it is induced by a non-trivial 1-dimensional representation of the derived subgroup
of G). On the contrary, x4, X5 are X are not monomial since G does not contain
any subgroup of order 12. Moreover, it is well known that G is solvable (see [3]).

Let H be the subgroup of G generated by a and b?. H is cyclic, a generator
being ¢ = ab?, and its order is 6. Let 11, 12 and 73 be the irreducible characters
of H defined by n1(c) = —w, m2(c) = —@ and n3(c) = —1. The representation
induced in G by every n; has degree [G : H| = 4. Using the Frobenius formula
(Ind $n;,x)e = (mj, x|u)m and the previous table we verify that

Ind G = x4 ® X, (2.8)
Ind §72 = X4 ® X, .
Ind 2773 = X5 D Xs- (2.10)

Let now L be the cyclic group of order 4 generated by b in G. Let v be the
irreducible character of L defined by v(b) = i. The representation induced by v
in G has degree [G : L] = 6 and its decomposition in irreducible representations is

Ind v = x4 ® x5 @ X- (2.11)
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Let K be a number field with Gal(K/Q) = G; such a field exists since
G is solvable (see Shafarevich [14], Th.7), and a possible realization of K is as
decomposition field of the polynomial 284925+232*+1422+1 (see the appendix in
[8]). Let K and K be the subfields of K fixed by H and L, respectively. Hence,
using well known properties of the Artin L-functions, by identities (2.8)—(2.11) we
get that

L(s,v@v,K/K") = L(s,v, K/ K*)?, (2.12)
L(s,v® v, K/K") = L(s,n, K/K")L(s,1m0, K/ K™)L(s,n3, K/K") (2.13)

Note that v and n; with j = 1,2, 3 are induced by 1-dimensional characters, hence
L(s,v, K/K") and L(s,n;, K/K™) are Hecke L-functions of finite order. Theorem
2 will therefore follow from (2.12) and (2.13) if we prove that L(s,v, K/K*%) and
L(s,m;, K/K®) with j =1,2,3 are primitive in (Hy).

Suppose now that L(s,v, K/K%) is not primitive in (Hy). By the Artin
reciprocity law we can identify each Hecke L-function of finite order with an
Artin L-function associated with a 1-dimensional character. Therefore there exist

1-dimensional characters 7; of certain Galois extensions K; — F;, i = 1,...,7,
such that
L(s,v, K/K") = L(s,Ind {v, K/Q) = [ [ L(s,7:, Fi/ KJ). (2.14)
i=1

There is no loss of generality if we assume that every F; is a Galois extension
of Q. Let F' be the compositum of all such fields and of K. Moreover, let G; =
Gal(F;/Q), E; = Gal(F;/K;) and E = Gal(F/Q). By the properties of the Artin
L-functions we can write (2.14) in the form

L(s, LiftgInd $v, F/Q) = L(s,v, K/K*)
= [[ L(s.nd Gimi, Fi/Q) = [ | L(s, Lift&, Ind Gi 7, F/Q),

=1 =1

and hence by (2.11) we obtain

Lift¢ x4 @ LiftGxs @ Liftéxe = LiftSInd §v = @D Lift&, Ind G ;. (2.15)
i=1

The x;, j =4,5,6, are irreducible and non-monomial characters of G, hence each
LiftZy; is irreducible and non-monomial as a character of E. Now we show that
(2.15) is impossible if it is non-trivial, i.e. if > 1.

Suppose that F; = G; for some i, for example for ¢ = 1. Then Liftgllnd gll T
in (2.15) is 1-dimensional; but this is impossible, since the decomposition of
Lift5Ind v into irreducible characters is unique and the characters LiftZy; are
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irreducible and 2-dimensional; hence if (2.15) holds, then [G; : E;] > 2 for
every 4. Suppose now that [G; : E;] = 2 for some ¢, for example for ¢ = 1. Then
Liftg1 Ind g; 71 is 2-dimensional and irreducible (otherwise we fall into the previous

case). Thus (2.15) and the uniqueness of the decomposition of LiftZInd v into
irreducible characters imply that Liftgllnd gi T = Liftng for some j € {4,5,6}.
But this is impossible since every Lift&y; is non-monomial. Hence if (2.15) holds,
then [G; : E;] > 3 for every i. Observing that the degree of LiftZInd v is
6 we conclude that n = 2 and [G; : B;] = 3 for every i. If Liftgllnd gllrl
is reducible then it contains a 1-dimensional character (since LiftglInd gllr is
3-dimensional) which is impossible (since (2.15) shows that the irreducible com-
ponents of Lift5Ind$v are 2-dimensional). As a consequence, LiftglInd (5117'1
must be irreducible, but again this is impossible (the irreducible components of
Liftglnd ¢y are 2-dimensional while Liftgllnd gllﬁ is 3-dimensional).

A similar argument can be used to prove that every L(s,n;, K/Q) with
j=1,2,3 is primitive in (H), and Theorem 2 is proved. ]

It may be of interest to remark that the situation changes completely if we
move from (Hf) to 8, where the functions L(s,n;, K/K®) and L(s,v, K/KT)
are not any more primitive. In fact, identities (2.8)—(2.11) give the factorizations

L(s,m, K/K") = L(s,Ind G, K/Q) = L(s, x4, K/Q)L(s, x5, K/Q)  (2.16)
L(s,n2, K/K™) = L(s,Ind G2, K/Q) = L(s, x4, K/Q)L(s, x6, K/Q)  (2.17)
L(s,n3, K/K™) = L(s,Ind Gns, K/Q) = L(s, x5, K/Q)L(s, x6, K/Q)  (2.18)
L(s,v, K/K') = L(s,Ind v, K/Q)
(

L(s,x4, K/Q)L(s,x5, K/Q)L(s,x6, K/Q) (2.19)

Such L-functions all belong to 8. In fact, it is known that the Hecke L-functions
belong to §; by the Artin reciprocity law the same holds true for every Artin
L-function associated with a monomial representation, hence L(s,n;, K/K™) with
j=1,2,3 and L(s,v, K/KT) belong to the Selberg class. Moreover, the Langlands
correspondence has been proved for irreducible 2-dimensional representations of
solvable groups (the cyclic and dihedral cases by Artin himself via his reciprocity
law, the tetrahedral case by Langlands [7] and the octahedral case by Tunnell
[15]; see also Theorem 2.8 in [11]). Therefore, there exist cuspidal representations
74,5, g of GLa(Ag) such that

L(‘S;XjaK/@):L(Saﬂ-j) ]:47576

This proves that also L(s, x;, K/Q), j = 4,5,6, belong to 8 (being Artin L-func-
tions, the Ramanujan bound holds true, while the analytic continuation comes
from the known analytic properties of the L-functions associated with cuspidal
representations). As a consequence, factorizations (2.12) and (2.13) are not longer
distinct in S.
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We finally remark that the primitivity in 8§ of the functions L(s, x;, K/Q)
with j =4,5,6 can be proved unconditionally by the argument of Murty [9].

In fact, let >, a(n)n™* be the Dirichlet series of L(s, x4, K/Q). The Che-
botarev density theorem implies that

2
Z M ~ loglog x
p

p<z

(see [9]). By the known results on the structure of 8, if L(s, x4, K/Q) = Fi(s)Fa(s)
in 8§ with Fi(s), Fa(s) # 1 identically, then Fj(s), F»(s) have degree 1, hence
F;(s) = L(s +10;,(;) for some Dirichlet characters (; and real numbers 6;. The
trivial zeros of L(s, x4, K/Q) coming from the functional equations are real, so
that 91 = 92 = 0. Then

Z |a(;))| — Z Kl@—;@@” > (24 0(1)) loglog x,

p<z p<z

a contradiction.
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