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Abstract: In this work we establish sufficient conditions to ensure that an entire
spacelike graph immersed with constant mean curvature in a Lorentzian product
space, whose Riemannian fiber has sectional curvature bounded from below, must be
a trivial slice of the ambient space.
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1. Introduction and statements of the results

The last few decades have seen a steadily growing interest in the study
of the geometry of spacelike hypersurfaces immersed in a Lorentzian
space. Apart from physical motivations, from the mathematical point of
view this is mostly due to the fact that such hypersurfaces exhibit nice
Bernstein-type properties, and one can truly say that the first remarkable
results in this branch were the rigidity theorems of Calabi in [10] and
Cheng and Yau in [11], who showed (the former for n < 4, and the latter
for general n) that the only maximal (that is, with zero mean curvature)
complete noncompact spacelike hypersurfaces of the Lorentz—Minkowski
space L"*! are the spacelike hyperplanes. However, in the case that
the mean curvature is a positive constant, Treibergs [20] astonishingly
showed that there are many entire solutions of the corresponding con-
stant mean curvature equation in L"*!, which he was able to classify by
their projective boundary values at infinity.

On the other hand, Xin [21] and Aiyama [1], working independently,
characterized spacelike hyperplanes as the only complete constant mean
curvature spacelike hypersurfaces in L"*! whose Gauss mapping image
is contained in a geodesic ball of the n-dimensional hyperbolic space.
Later on, Aledo and Alfas [6], among other results, showed that a com-
plete constant mean curvature spacelike hypersurface which lies between
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two parallel spacelike hyperplanes of L™t! must be, in fact, a spacelike
hyperplane.

It is also natural to treat these same questions in a wide class of
Lorentzian manifolds. When the ambient space is a Lorentzian product
space, Salavessa [19] considered spacelike graphs in —R x M™ and, under
the assumption that the Cheeger constant of the fiber M™ is zero and
some conditions on the second fundamental form at infinity, she con-
cluded that if the spacelike graph has parallel mean curvature then the
graph must be maximal. When M™ is the hyperbolic space H", for any
constant ¢ € R the author described an explicit foliation of —R x H"
by hypersurfaces with constant mean curvature c¢. Meanwhile, Albu-
jer [2] obtained new explicit examples of complete and non-complete
entire maximal spacelike graphs in —R x H?2.

Afterwards, Albujer and Alfas [3] established Calabi-Bernstein re-
sults for maximal spacelike surfaces immersed into a Lorentzian product
space —R x M?2. In particular, when M? is a Riemannian surface with
nonnegative Gaussian curvature, they proved that any complete max-
imal spacelike surface in —R x M? must be totally geodesic. Besides,
assuming that the fiber M? is non-flat, the authors concluded that it
must be a slice {t} x M?. In [14], Li and Salavessa generalized such
results of [3] to higher dimension and codimension.

In [5], the first author jointly with Albujer and Camargo established
uniqueness results concerning complete spacelike hypersurfaces with con-
stant mean curvature immersed in —R x H". Next, Albujer and Alias [4]
obtained some parabolicity criteria for maximal surfaces immersed into a
Lorentzian product space —R x M2, where M? is supposed to have non-
negative Gaussian curvature. As an application of their main result, they
deduced that every maximal graph over a starlike domain Q C M? is par-
abolic. This allowed them to give an alternative proof of the nonparamet-
ric version of the Calabi—Bernstein theorem for entire maximal graphs
in such ambient space. Later, the first author jointly with Parente [13]
obtained a lower estimate of the index of relative nullity of complete max-
imal spacelike hypersurfaces immersed in a so-called Robertson—Walker
spacetime and, in particular, we also proved a sort of weak extension
of the Calabi-Bernstein theorem in Lorentzian product spaces. More
recently, the authors [12] applied some generalized maximum principles
in order to establish uniqueness results concerning complete spacelike
hypersurfaces with constant mean curvature in —R x M™, extending the
results of [5].

Motivated by these works described above, in this article we deal with
entire spacelike graphs X(u) = {(u(x),z); * € M™} with constant mean
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curvature in a Lorentzian product space —R x M™, whose Riemannian
fiber M™ has sectional curvature bounded from below. According to the
current literature, since the mean curvature H of 3(u) is supposed to be
constant, we call X(u) an entire spacelike H-graph. In this setting, we
obtain the following Calabi-Bernstein type result:

Theorem 1. Let M = —Rx M be a Lorentzian product space, such
that the sectional curvature Ky; of its Riemannian fiber M™ satisfies

Ky > —k, for some positive constant k. Let ¥(u) be an entire spacelike
H-graph over M™, with u bounded and Hy bounded from below. If

(1 1) \Du|2 < ¢
' M= kn—1)+]A2
then u =ty for some tg € R.
Here, Hy = ﬁSg is the mean value of the second elementary sym-

metric function S, on the eigenvalues of the shape operator A of X (u),
Du stands the gradient of the smooth function uv: M™ — R in M™ and
| Du|ps its norm, both with respect to the metric of M™.

In the context of Lorentzian product spaces, we note that our restric-
tion on the sectional curvature Kp; of the fiber M™ in Theorem 1 is
a weaker restriction when compared with the so-called null (timelike)
convergence condition, which means that the Ricci curvature of the am-
bient space is nonnegative on null or lightlike (timelike) directions (for
a thorough discussion about such convergence conditions, see for ex-
ample [7, 8, 9, 15]). Furthermore, through the example described in
Remark 3, we see that Theorem 1 is sharp in the sense that it does not
hold when the function u is unbounded.

The proof of Theorem 1 is given in Section 3. From Theorem 1 jointly
with Theorem 3.3 of [3], it is not difficult to see that we also get the
following result, where 1-maximal means that Ho vanishes identically on
the graph:

Corollary 1. Let M = R x M" be a Lorentzian product space,
such that the sectional curvature Ky; of its Riemannian fiber M™ is
nonnegative. If X(u) is an entire 1-mazximal spacelike H-graph over M™
with u bounded, then X(u) is totally geodesic. In addition, if n = 2 and
K (p) > 0 at some point p € M2, then u = to for some ty € R.

We observe that, when the ambient space is the Lorentz—Minkowski
space L"*!, Corollary 1 reads as follows:

Corollary 2. The only bounded entire 1-maximal spacelike H-graphs
over a spacelike hyperplane of L™ are the spacelike hyperplanes.
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2. Preliminaries

In what follows, we deal with a spacelike hypersurface X" immersed

. . . . sn+1
into an (n + 1)-dimensional Lorentzian product space M "1 of the form
R x M™, where M™ is an n-dimensional connected Riemannian manifold

—n+1 . . . .
and M e is endowed with the Lorentzian metric

(,)=—mp(dt?) + 73, ((, ),
where g and m); denote the canonical projections from R x M onto
each factor, and (, )/ is the Riemannian metric on M™.

For simplicity, we will just write M = R x M™ and (,) =
—dt? + {,)p. In this setting, for each fixed ¢, € R, we say that
Mt = {to} x M™ is a slice, which is a totally geodesic spacelike hyper-
surface of M. We recall that a smooth immersion ¢: ¥® — —Rx M™"
of an n-dimensional connected manifold X" is said to be a spacelike hy-
persurface if the induced metric via ¥ is a Riemannian metric on X",
which, as usual, is also denoted for (, ).

Since 9y = (9/0t)(t,2), (t,x) € =R x M", is a unitary timelike vec-
tor field globally defined on the ambient spacetime, then there exists a
unique timelike unitary normal vector field N globally defined on the
spacelike hypersurface ™ which is in the same time-orientation as 0.
By using Cauchy—Schwarz inequality, we get (NV,0;) < —1 on X". We
will refer to that normal vector field N as the future-pointing Gauss map
of the spacelike hypersurface ™.

Let V and V denote the Levi-Civita connections in —R x M™ and X",
respectively. Then the Gauss and Weingarten formulas for the spacelike
hypersurface ¢: 3" — —R x M™ are given by

(2.1) VxY =VyY — (AX,Y)N
and
(2.2) AX =—-VxN,

for every tangent vector fields X,Y € X(X). Here A: X(X) — X(%)
stands for the shape operator (or Weingarten endomorphism) of X" with
respect to the future-pointing Gauss map N.

As in [17], the curvature tensor R of the spacelike hypersurface X" is
given by

R(X,Y)Z =V xyv)Z - [Vx,Vy]Z,

where | ] denotes the Lie bracket and X, Y, Z € X(X2). Another fact well
known is that the curvature tensor R of the spacelike hypersurface X"
can be described in terms of the shape operator A and the curvature
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tensor R of the ambient spacetime —R x M™ by the so-called Gauss
equation given by

(2.3) R(X,Y)Z = (R(X,Y)Z)" — (AX,Z)AY + (AY, Z)AX,

for every tangent vector fields X,Y, Z € X(X).

Now, we consider two particular functions naturally attached to a
spacelike hypersurface X" immersed into a Lorentzian product space
—R x M™, namely, the (vertical) height function h = (7g)|x and the
support function (N, d;), where we recall that N denotes the future-
pointing Gauss map of 3" and 0 is the coordinate vector field induced
by the universal time on —R x M™.

Let us denote by V and V the gradients with respect to the metrics
of —R x M™ and X", respectively. Then, a simple computation shows
that the gradient of 7g on —R x M™ is given by

va = —(vmg,at}@t = —8t,
so that the gradient of h on X" is
(2.4) Vh= (V)" = -0 = -8, — (N,0;)N,

where () " denotes the tangential component of a vector field in x(ﬂ”“)
along ¥™. Thus, we get

(2.5) [Vh|* = (N,8;)* — 1,

where | | denotes the norm of a vector field on ¥". Since 9; is parallel
on —R x M™, we have that

(2.6) Vxo =0,

for every tangent vector field X € X(X). Writing 0; = —Vh — (N, 0;) N
along the hypersurface " and using formulas (2.1) and (2.2), from (2.4)
and (2.6) we get that

(2.7) VxVh = (N,0,)AX,

for every tangent vector field X € X(X). Therefore, from (2.7) we obtain
that the Laplacian on X" of its height function h is given by

(2.8) Ah = —nH(N,d,),

where H = f% tr(A) denotes the mean curvature of X" with respect to
its future-pointing Gauss mapping N.
Moreover, from (2.4) and (2.6) we also have that

X({N,0p)) = —(A(X),0) = —(X, A9, )) = (X, A(Vh)),
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for all X € X(3). Thus,
(2.9) V(N,d;) = —A(9]) = A(Vh).

Supposing that ™ is a constant mean curvature spacelike hypersur-
face of —R x M™, as a particular case of Corollary 8.2 in [7] we also
obtain that the Laplacian on 3™ of its support function (N, d;) is given
by

(2.10) A(N, ;) = (Ricp (N*, N*) + |A]*)(N, 9;),

where Ricyy is the Ricci curvature of the fiber M™, N* = N + (N, 0;)0;
is the projection of N onto M™ and |A| stands for the Hilbert—Schmidt
norm of the shape operator A of X",

3. Proof of Theorem 1

Let —R x M™ be a Lorentzian product space. We recall that an entire
graph over the fiber M™ is determined by a smooth function u € C*° (M)
and it is given by

Y(u) = {(u(x),z);z € M™} C =R x M™.

The metric induced on M™ from the Lorentzian metric on the ambient
space via X(u) is

(3.1) (,)=—du®+{, ).

Remark 1. It can be easily seen from (3.1) that an entire graph X(u) is
a spacelike hypersurface if, and only if, | Du|3; < 1. Note that, when the
fiber M™ is simply connected, every complete spacelike hypersurface in
—R x M™ is an entire graph in such space (see, for instance, Lemma 3.1
of [3]). However, according to the examples of non-complete entire max-
imal graphs in —R x H? due to Albujer in Section 3 of [2], we see that an
entire spacelike graph in a Lorentzian product space is not necessarily
complete, in the sense that the induced Riemannian metric (3.1) is not
necessarily complete.

If ¥(u) is an entire graph over the fiber M™, with a straightforward
computation we verify that the vector field
1
(3.2) N=—+=——(0;+ Du)

V1 —|Dul3,

defines the future-pointing Gauss map of X(u).
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Let us study the shape operator A of ¥™(u) with respect its orientation
given by (3.2). For any X € X(X(u)), since X = X* — (Du, X*) 010, we
have that

(33) AX = —va = <DU,X*>MvatN —vx*N.

Consequently, from (3.2), (3.3), and with aid of Proposition 7.35 of [17],
we verify that

(3.4) AX =~ po.pu_ Px-DuDupn

V1= [Dulj, (1= [Dul3)?2
where D denotes the Levi-Civita connection in M™ with respect to the
metric (, )as.
From (3.4) we obtain that the mean curvature of ¥(u) is given by

D
(3.5) nH =Div | —— | ,
V1= |Dul},

where Div stands for the divergence operator on M™ with respect to the
metric (, ).

In order to prove Theorem 1, we will need two key lemmas. The first
one gives a suitable lower estimate for the Ricci curvature of a spacelike
hypersurface immersed in —R x M™.

Lemma 1. Let 3™ be a spacelike hypersurface immersed in a Lorentzian
product space —R x M™, whose sectional curvature Ky of its fiber M™
verifies Ky > —k for some positive constant k. Then, for all X € X(X),
the Ricci curvature of X™ satisfies the following inequality

n?H?
(3.6) Ric(X, X) > —k(n — 1)(1 + |VAH)|X|? — T|X|2.
Proof: let us consider X € X(X) and a local orthonormal frame {Ej, ..
E,} of X(X). Then, it follows from Gauss equation (2.3) that

*

Ric(X,X) =Y (R(X,E;)X,E;) + nH(AX, X) + (AX, AX)
=1
n 2772 9
= (R(X,E)X,E;) - z f X%+ ‘AX + %X
=1

Moreover, we have that
(R(X,E)X,E)=(R(X*,EN)X*,EX) ;s

S — K (X, E5 (X X0 (B B — (X, )3,

(3
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On the other hand, since X* = X + (X, 8;)0, Ef = E; + (E;, 0;)0;, and

K3
Vh = -9, , with a straightforward computation we see that

(X", X )(BF B ) v = (L4 (B, VRY) (X + (X, Vh)?)
and
(X* By = (X, B)? + 2(X, Vh)(E;, VR)(X, E;)
+ (X, Vh)?(E;, Vh)?.
Therefore, since we are supposing that Kj; > —k for some positive

constant k, we obtain

Y (RX,E)X, E;) > =k ((n = DIXP + (n = 2)(X, Vh)* + | X |VA]*)
i=1
> —k(n = 1)1 +|VAP)XP,
which jointly with (3.7) yields (3.6). O
The second auxiliary lemma is the well known generalized maximum
principle due to Omori [16] and Yau [22], which is quoted below.

Lemma 2. Let ¥™ be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below and ¥ be a smooth function
on X" which is bounded from below. Then, for each € > 0 there exists a
point p. € X" such that

i121f19 < Y(pe) < irzlfﬁ +e, |[VO(p)| <e, and Ad(pe) > —e.

Now, we are in position to present the proof of Theorem 1.

Proof of Theorem 1: Observe first that, under the assumptions of the
theorem, X(u) is indeed a complete spacelike hypersurface. In fact,
from (3.1) and the Cauchy—Schwarz inequality we get

(3.8) (X, X) = (X", X" — (Du, X")3; = (1 — |Dulf, (X", X s,

for every tangent vector field X on X(u).
On the other hand, we have that the Hilbert—Schmidt norm of the
shape operator A of X(u) satisfies the following algebraic identity

(3.9) |A]> =n?H? — n(n — 1)H,.

Thus, since H is constant and Hs is supposed to be bounded from below,
from (3.9) it holds that sup,es,) [4p/* < +o00. So, from (1.1) we see
that there exists a constant 0 < a < 1 such that |Du|y; < «. Hence,
from (3.8) we get

(X, X) > (1—a®)(X*, X" .
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This implies that L > \/cLps, where L and Ljy; denote the length of a
curve on X(u) with respect to the Riemannian metrics (, ) and (, )ar,
respectively, and ¢ = 1 — o®. As a consequence, since we are supposing
that M™ is complete, then the induced metric on X(u) from the metric
of —R x M™ is also complete.

Now, let us consider on Y(u) the functions n = 1 — e~**, with k € N,
and W = /1 —|Dul3,. Since we are supposing that u is bounded,
we have that the function ¥ = nW is bounded from below. On the
other hand, since H is constant and taking into account hypothesis (1.1)
jointly with (3.12), from Lemma 1 we have that the Ricci curvature
of ¥(u) is also bounded from below. Hence, we can apply Lemma 2 to
the function ¢, obtaining a sequence of points {py .} in X(u) such that,
for each fixed k& > 0,

|v'l9|<pk7a) <eg, ﬁ(pk,s) < ElI(lf)’lS‘ +e¢e, and Aﬁ(pk,a) > —¢.

Computing AvY we obtain

(3.10) AY = A(nW) = WA+ nAW + 2(VW, Vn).
Therefore, since WVn = V9 —nVW, from (3.10) we get
2
2
(3.11) Aﬁ:WAn+77<AW—2|VMVE/| ) +W<VVV,V19>.

On the other hand, since N = —(N, 9;)0; + N* where N* denotes the
projection of N onto the fiber M™, from equation (2.4) it is not difficult
to see that N*' = —(N,8,)Vu and |Vu|> = (N*, N*)5;. Here, we are
taking into account that the height function h of ¥ (u) is nothing but the
function u regarded as a function on X(u). Thus, from (3.2) we obtain
that

|Du|?w 1 w32

3.12 2= =

(3.12) Vul” =1~ [Duf?, W

Consequently, from (2.5) and (3.12) we have that
1

(3.13) (N,0) = W

Hence, taking into account that

1y 1 2|VW|?
> () = (2w =55).

we can use formula (2.10) to rewrite (3.11) as

2
(3.14)  AY = WAn —n(Ricy (N*, N*) + |A]P)W + W(VIM V).
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Hence, along the minimizing sequence {pg.}, from (3.14) we get

(3.15) —e< WAn—n(RicM(N*,N*)—i-|A|2)W—|—%(VT/V,V19>.
So, using Cauchy—Schwartz inequality in (3.15), we obtain that

2
(3.16) — e < WAn —n(Ricy (N*, N*) + |AP)W + %.

On the other hand, since we are assuming that Kj; > —k for some
positive constant k, we have

(3.17) Ricy (N*, N*) > —k(n — 1)|[N*[3; = —r(n — 1)|Vul?.
But, from (1.1) and (3.12) it holds that
|Vul? < /€(|724|_21)
Consequently, from (3.17) we obtain
(3.18) Ricpr (N*, N*) +|A|?> > —k(n — 1)|Vul? + |A]> > 0.

Furthermore, up to translation, we can assume u > 0 and, hence, we
have that n > 0 on X(u). Therefore, from (3.16) and (3.18) we get

W +2|]VW

(3.19) e <W|2|> < A

Using the general formula Af(u) = f'Au+ f”|Vul, we also have that
(3.20) An = e M (kAu — k?|Vul?).
Thus, from (3.19) and (3.20) we obtain

W +2|VW ke

(3.21) —€ <W|2|) < e M (kAu — k| Vul?).

Hence, taking into account (2.8) and (3.5), from (3.21) we must have
(3.22) — e (W 4 2|VW|) < (—nHEW — k*|Dul%,).

We claim that VIV is also bounded. Indeed, from (3.13) we have that

1

2 W=-— N, 0).

(3 3) \Y <N, at>2v< 7at>

Hence, from (2.9) and (3.23) we get
AP

Ve —1)

VW] < W2IA||Vu| < W2
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Thus, letting ¢ — 0 in (3.22) and taking the limsup on &, we obtain
the following estimate

(3.24) 0 < —n|H|limsup W — klimsup | Dul3,.
e—0 e—0

Now, multiplying (3.24) by % and making k& — oo as we take the
lim sup over k we get the next

(3.25) lim sup lim sup | Dul3, = 0.

k—o0 e—0

Consequently, since W2 = 1 — |Dul%;, we have

(3.26) liminf lim inf W2 = 1.

k—oo =0

Since these sequences are minimizing, by Lemma 2 on an arbitrary
point we have the ensuing

W2 (pre) <P°W?2 + e,
which implies that

Dul, <1— W)+ 5
M = 772 pk},E 772

&£

(1 _ efku* )2’

where 7, = infy(,)n and u. = infy,)u. Without loss of generality,
denoting u* = supy,,,) u, we can suppose that v* > u > u, > 0. Thus,

<1-(1- eik“*)QWQ(pk,E) +

£
(1 — e ku")2"

Since € does not appear in the left hand side of (3.27), we can take
lim sup,_,, on both sides of (3.27) obtaining

(3.28) |Dul3; <1—(1— e’k“*)Qlimi(r)lf W2 (pp.c)-
E—r

(3.27) |Dul3; <1—(1—e ) 2W2(p.o) +

In an analogous way, taking limsup,_, ., on (3.28), we finally conclude
that |Du|3, = 0 on X(u), that is, u =ty for some ¢y € R. O

Remark 2. We recall that the Cheeger constant b(M) of a complete
Riemannian manifold M™ is given by
A(0D)
b(M) = inf
(M) =it 7 Dy
where D ranges over all open submanifolds of M™ with compact closure

in M™ and smooth boundary, and where V(D), A(OD) are the volume
of D resp. the area of 0D, relative to the metric of M™.
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Returning to the context of Theorem 1, assuming that there exists
an entire spacelike H-graph with H > 0 and such that (1.1) holds,
from (3.5) we can apply an argument due to Salavessa [18] to get

Du
nHV (D S/anV:/DiV — | dV
(D) D D <\/1—|Du?\4>

A< [—" HAOD),

j{ Du d

= TV =~

ap \ /1 —|Dul3, (n—1)k

where v is the outward unit normal of 9D. Yielding the following lower
estimate for the Cheeger constant of the fiber M™

vn(n—1)k < b(M).
Furthermore, recalling the stability operator J = A + Ric(N,N) +
|A|?, a spacelike H-hypersurface X" is said to be stable if

(3.29) /Ejf-fzo, VfeCin).

We also note that, under the stated hypothesis of Theorem 1, entire
spacelike H-graph is, in fact, a slice and therefore Ric(9;,9;) = 0 and
|A]> = 0. Hence, in this case, from (3.29) we see that such graph is
stable.

Remark 3. According to Example 4.4 of [12], taking 0 < |a| < 1, we
have that the entire vertical graph

S(u) ={(alny,z,y);y > 0} C —R x H?
is such that
|Dulge = |af®

and, hence, X(u) is a complete spacelike surface in —R x H2. Moreover,
with a straightforward computation we verify that ¥2(u) has constant

mean curvature H = 772\/1“77, H; =0, and
Al?

3.30 Dul?, = _IAP .

( ) | Duge 1+ |AJ?

Hence, we conclude that Theorem 1 does not hold when the function
is unbounded.

Furthermore, since (N, d;) is constant on X(u), from formula (2.10)
and taking into account equations (3.12) and (3.30), we get

(3.31) A(N, ;) = (JA]? — |VR|*)(N,8;) = 0.
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Consequently, according to the stability criteria given in (3.29), from
equation (3.31) we also conclude that X (u) constitutes a nontrivial ex-
ample of stable surface in —R x H2. Therefore, concerning the context
of Theorem 1, we see that the stability of the entire spacelike H-graph
cannot alone guarantee the uniqueness result.
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