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AN INTERPOLATION PROPERTY
OF LOCALLY STEIN SETS

VIOREL VAJAITU

Abstract: We prove that, if D is a normal open subset of a Stein space X of pure
dimension such that D is locally Stein at every point of 0D \ Xgg, then, for every
holomorphic vector bundle E over D and every discrete subset A of D \ Xz whose
set of accumulation points lies in 9D \ Xgg, there is a holomorphic section of E
over D with prescribed values on A. We apply this to the local Steinness problem
and domains of holomorphy.
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1. Introduction

Stein spaces are the fundament of the theory of Functions of Sev-
eral Complex Variables. Their cohomology groups with coefficients in
coherent analytic sheaves are trivial in positive dimension (Cartan’s The-
orem B) so that the standard machinery of exact sequences implies that,
for every discrete sequence {x,} of X there is a holomorphic function f
on X with prescribed values on {x,}, that is Stein spaces enjoy a nice
interpolation property.

In this circle of ideas an important question is the characterization
of locally Stein open subsets of Stein spaces. A definitive answer is not
known, so one would like to know “how far are they from being Stein”.

Our main result is the following theorem. (For a complex space X,
Xsg denotes the singular locus of X.)

Theorem 1. Let X be a Stein space of pure dimension. Let D C X be
an open set and w: E —> D a holomorphic vector bundle. Suppose that
D is normal and locally Stein at every point of 0D \ X,.

Then, for every sequence {z,} of D\ Xz whose set of accumulation
points lies in 0D\ Xsg, and for every set of vectors &, € E,, =7 1(z,),
there is a holomorphic section o of E over D such that o(x,) =&, for
all v.
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Remark. Theorem 1 remains true if X is normal and “D is a domain
of holomorphy in X” is substituted for “D is locally Stein at points
of 9D \ X”; see the subsequent Corollary 3. (For definitions see the
end of this section.)

A crucial ingredient to settle Theorem 1 is the following result whose
proof is given in §3.

Proposition 1. Let X be a Stein space of pure dimension and let D
be an open subset of X that is locally Stein at every boundary point
of 0D\ Xsz. Then D\ Xsg admits a complete Kihler metric.

Corollary 1. Let X be a Stein space of pure dimension and D C X
an open set that is normal and locally Stein at every point of 0D \ Xgg.
Then, for every sequence {z,} of points in D\ Xgz converging to a point
of 0D \ Xz and every sequence {c,} of complex numbers, there is a
holomorphic function h on D with h(z,) = ¢, for all v.

This corollary improves Theorem 3.1 in [12] where h is asked only
to be unbounded on the given sequence. Besides it allows us to remove
the relative compactness hypothesis on D in several known results ([2,
Theorems 3.3, 3.4, and 3.14]; [15, Propositions 5.5 and 5.8, and Corollary
5.16]), so for the benefit of the reader we restate them subsequently.

When D is relatively compact, Corollary 1 is stated without proof
in [6, Theorem 3.2.1] and it is proved in [15, Proposition 5.3].

Corollary 2. Let X be a normal Stein space of pure dimension n and
D C X an open set such that O(D) is a Stein algebra. Then D is Stein
in each of the following cases:

a) D is locally Stein or an increasing union of Stein open subsets.
b) D is a domain of holomorphy and n = 2.
¢) D satisfies the strong hypersection condition and n > 3.

Note that part b) is false if n > 3. To give an example, we let C' be
a compact Riemann surface and consider 7: L — C' be a holomorphic
vector bundle of rank n — 1 that is negative in the sense of Grauert. Let
7: L — X be the blowing down of its zero section Z ~ C. Then X is
a normal Stein space of dimension n with only a singular point {z¢} =
7(C). Take a point @ € C and put H = 7(7 (). Clearly H is a
complex hypersurface of X and D := X \ H is biholomorphic to 7= (C"\
{a})\ Z, which is not Stein since Z \ 7~1(«) has codimension n —1 > 2
in the Stein manifold M := 7=1(C \ {a}). Observe also that O(D) is
a Stein algebra isomorphic to O(M), and D is a domain of holomorphy
in X ([9] or Corollary 3 below).
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Corollary 3. In a normal Stein space X an open subset D is a domain
of holomorphy if, and only if, D is locally Stein at every point of 0D\ Xeg
and 0D \ X is dense in 0D.

Corollary 4. Fvery increasing union of Stein open subsets of a normal
Stein space is a domain of holomorphy.

Corollary 5. A normal Stein space X such that O(X) is a Stein algebra
is Stein provided that it is a locally trivial holomorphic bundle with Stein
base and fiber a bounded Stein open set of some complex euclidean space.

We conclude this section with a few definitions. An open subset D of
a complex space X is said to be locally Stein at a point g € 0D if there
is a Stein open neighborhood U of xy such that U N D is Stein. Also
it is said that D satisfies the hypersection condition if, for every Stein
open subset U of X and every complex hypersurface H of U, HN D is
Stein [2].

The notion of domain of holomorphy for domains in complex mani-
folds adapts to normal complex spaces [7], [10]. For not normal complex
spaces it is discussed at large in [15].

A topological C-algebra A is called a “Stein algebra” if A is topolog-
ically isomorphic to O(Z) for some Stein space Z.

2. Linear spaces

By definition (see [5, p. 50]) a complex space L (not necessarily re-
duced) is said to be a linear space over another complex space X if L is a
unitary X X C-module in the category of complex spaces over X, in other
words is a complex space L — X over X together with compositions

a) +: Lxx L — X and

b) : (X xC)xx L=CxL—1L,
such that the module axioms hold. Roughly speaking, a linear space can
be thought of as a “vector bundle with singularities”.

Alternatively (see [8]), we have the following local description, namely
there is an open covering of X by sets U such that, over each U we have
a presentation:

Ly —UxC"™ —UxC",
where the holomorphic map from U x C™ into U x C™ which sends (z, £)
into (z,F(z) - ) is induced by a n x m matrix whose entries fj; are
holomorphic functions on U and L|y is the complex subspace of U x C™
defined by the ideal generated by the holomorphic functions

Zlf]1++sz]ma ]:1,7’”
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To every linear space L — X we associate in a functorial way its
coherent analytic sheaf of germs of holomorphic sections in L. This
correspondence establishes a contravariant functor from the category of
linear spaces over X to the category of coherent analytic sheaves on X
that is an antiequivalence of categories.

The subset Wi, of X of those points admitting an open neighbor-
hood U such that L|y is a vector bundle, is a Zarisky dense open subset
of X; hence X \ Wy, is a rare analytic subset of X.

Now suppose that, for every point z of X we have a hermitian met-
ric hy on L. Then h = {h,}.cx is a hermitian metric on L according
to Grauert and Riemenschneider [8], if there is an open neighborhood U
of each point xg of X, an embedding L|y C U x C? and a positively
definite hermitian form

h = Z hjkwjﬁk

on U x C? with C*° functions ﬁjk on U such that h, = E|LT forallz € U.
By using partitions of unity it is easy to endow L with a hermitian metric.

We say that a linear space L is Nakano semi positive (resp., Nakano
semi negative) if one can endow L with a hermitian metric h such that
L restricted to Q := Wy \ Xy, is negative (resp., positive) with respect
to h|q in the sense of Nakano [11]. This means that each point z,. € Q
admits an open neighborhood U C Q and z = (21, ..., 2,) local coordi-
nates centered at z, and an isomorphism L|yy — U x C” such that for
the matrix (h,i) we have at z,:

1) (hjk(zs)) = (0;) = identity matrix,
2) (dhjr(xz+)) =0, and

3) the hermitian form ) ;:%jz’“

vOZp

(resp., positive semi-definite), for every £ € T,+Q ® C".

(24)&u€,, is negative semi-definite

Lemma 1. FEvery linear space over a Stein space is Nakano semi-positive
and Stein.

Proof: First, let us recall some computational facts. Let €2 be a non-
empty open subset of C" and E =  x C" a trivial holomorphic vector
bundle of rank 7 on . Consider a smooth function h defined on Q with
values in the set of positively definite hermitian matrices of rank r. It
defines a hermitian metric on E by setting

(z,€) — "€h(@)€

and its (1, 1) curvature form has the expression

iO(E,h) = ido(h ' oh).
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Besides, if u is a real-valued smooth function on €2, then
iO(E, he™™) = iO(E, h) + i00ul,.

For the sake of clarity, let us mention the following correspondence be-
tween real (1, 1)-forms and hermitian forms on an open subset of a com-
plex euclidean space with coordinates (w1, ..., w,). To a hermitian form

9=">_ gjkdw; ® dwy,

it corresponds the (1, 1)-form

i _
w = —5 Zgjk dw; N dwy,

so that w(«, 8) = Im g(«, B), and, in particular w(«, o) = g(a, «), which
relates the complex hessian (or hermitian Levi form) and (1, 1)-forms.

Now, it is straightforward to construct a hermitian metric h on L by
using a partition of unity subordinated to a Stein open covering {U;}
of X by local embeddings of L|y, C U; x C". If ¢ > 0 is a smooth,
strictly plurisubharmonic, and exhaustion function on X, there is a
rapidly increasing convex function x: (0,00) — (0,00) such that the
modified hermitian metric he X(#) is as desired. Details of the proof are
left to the interested reader.

The Stein property of the linear spaces is treated in [14] in a more
general setting, namely the following result is proved.

Proposition 2. A linear space over a g-complete base space is q-com-
plete. In particular, if X is Stein, then E is Stein, too.

The normalisation is such that “l-complete” means Stein. (The set-
ting of vector bundles over g-complete spaces is treated in [17].) O

The canonical line bundle Kx on a complex space X is as in [8]. Let
7: X — X be a resolution of singularities of X and put Kx be the
direct image through 7 of the canonical sheaf on X. From Lemma 1 we
get the following result.

Corollary 6. Let X be a Stein space. Then the linear space associated
to Kx or its dual K% is Nakano semi-positive.

3. Proof of Proposition 1

First we recall a well-known criterion for Kéhler completeness.
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Lemma 2. Let (M,w) be a Kdhler manifold and 6 a smooth real-valued
function on M such that

w > 2i-00 A 00.

Then, if 6 represents the geodesic distance with respect to w, for arbitrary
points z1,ze € M, one has 6(z1,z2) > |0(z1) — 0(22)|. In particular, if 0
s exhaustive, then w is complete.

Proposition 3. Let X be a Stein space of pure dimension n and let
D be an open subset of X that is locally Stein at every boundary point
of 0D\ Xgg.

Then there ezists a smooth function ¢: D — R that is strictly pluri-
subharmonic and for every closed subset T of D whose closure in X is
disjoint from Xga, the restriction of ¢ to T is exhaustive.

Proof: First by [1] we note that if V' € X is a Stein open set, then
there are finitely many discrete holomorphic mappings 7;: V. — C”
and holomophic functions f; on V, j = 1,...,m, with the following
properties.

The induced mappings 7;: V' \ {f; = 0} — C™ are locally biholo-
morphic, therefore (V' \ {f; = 0},7;) becomes a domain over C", and
the intersection of all {f; = 0} equals V N X,.

Set U=V NnQand U; = (V\{f; =0})NQ Then Uj is a Stein
domain over C" via 7|y, because V' \ {f; = 0} is a Stein manifold and
Uj is locally Stein in V'\{f; = 0}. Let §; be the boundary distance of the
domain U; over C". Thus —logd; is continuous and plurisubharmonic.

For ke N={1,2,...} set Hj(k) = max{0, —log d; + klog|f;|} that is
defined on U with values in [0, 00) and set

) — max{6™, ..., 091 U — [0, 00).

There is Ny € N such that for every k € N, k > Ny, 9§k) are continuous
and plurisubharmonic on U (see [16, Corollary 4.9]). In particular wg/k ) is
continuous and plurisubharmonic on U. Observe also that d}gc )(m) tends
to infinity as x € U \ Xy goes to a point of V N (90 \ Xgg).

One important feature of this construction is that, if we start with
another Stein open set W € X to get LZJ{(,%/), then for every compact
set M C V. NW, there is Nyw € N such that, for every k,I € N,
k,1 > Nyw, the difference function 4% — ¢! is bounded on M N €.
This follows by using Lemmata 4.5 and 4.8, and Corollary 4.9 from [16].

Now choose a locally finite family {V,}, of relatively compact Stein
open subsets of X that covers Q and either V, N 9Q # () or else V,, € Q.
Then select open sets V! € V. € V,, such that {V},, still cover Q. Fix
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functions ., € C°(X,R) with compact support Ko, V. C K, C Va,
to =1 on V! and p, = —1 on V.. There are k, € N such that setting
Vo = 81“) each difference function ¢, — g is bounded on K,NKgNQ.

Thus, if : X — [0, 00) is strictly plurisubharmonic, continuous and
exhaustive, there are constants C, > 0 (we take C, = 0if V, € Q)
and a strictly increasing convex function y: [0,00) — [0, 00) such that
we can patch the continuous plurisubharmonic functions ¥, + Cy e +
x(¢|v, ) defined on V,, to a continuous strictly plurisubharmonic function
¢: Q@ — [0,00) by setting for x € Q:

p(r) = x(¥(x)) + sgp{wa(w) + Cata(z)}.

This has the desired properties except smoothness. But this can be
achieved since by [13, Satz 4.2] we can approximate ¢ in the C%-topology
by a smooth strictly plurisubharmonic function, whence the proof. [

End of proof of Proposition 1: Without any loss in generality we may
assume that D is connected. Now, since every closed analytic subset
of a Stein space of finite dimension is the common zero set of finitely
many holomorphic functions (as it follows by a simple Baire argument
and mathematical induction), there are fi, ..., f;, holomorphic functions
on X such that Xy, = {z € X; fi(z) = --- = f(x) = 0}. Let o :=
|fil>+ -+ |fm(2)|?. Let U and V be open neighborhoods of Xy, in X
with V' C U and such that o < 1 on U. Then select p € C°°(X,R) such
that p > 0on X, p =1o0nV, and Supp(p) C U. Define o = (1—p+pa)/3
sothat 0 <o <1/eon X, 0= (|fi]*+ -+ |fm(z)]?)/3 on V, and o is
constant and equals 1/3 on X \ U. Therefore o is plurisubharmonic
on V' U (X '\ Supp(p)).

Put §# =logo. Thus § < —1 on X, and if {x, } is a sequence of points
in D\ X, converging to a point z, € D N X, then {—0(z,)} tends to
infinity.

Let v > 0 be a smooth strictly plurisubharmonic exhaustion function
on X. We may assume that

_ 1 _
100y + —=1000
IV
is semi-positive (replace v by x(7) for a suitable smooth strictly increas-
ing convex function x from (0, 00) into (0, 00), if necessary).

Now we claim that the following closed (1, 1)-form w defined on D\ X4
is Kéahler complete, where

w =100(¢* + 7% +v — V-0).
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Indeed, first it is easily checked that
00—/ —0) — — 000 + L(—6)3/290 A D
i00(—V—0) = 2@@3% L (=000 1 9,
so that we deduce immediately that w is positively definite.
To check the completeness of w notice that, if § denotes the geodesic
distance induced by w, for arbitrary points z1, zo € D\ X, the following
inequality holds:

8(21, 22) Zmax{|6(21) = 9(22)], [ (21) =1 (22) ], V2 |(=0(21)) F = (~0(z2) [}
We then conclude since for a sequence {z;}; of points in D \ Xy, con-
verging to a point of 9D U X, at least one of the sequences {¢(z;)};,
{v(z;)};, or {—6(z;)}; is unbounded. O

4. Proof of Theorem 1

First we recall Demailly’s version of the d problem with singular
weights on Kéahler complete manifolds [3].

Theorem 2. Let (E,h) be a semi-positive hermitian holomorphic line
bundle over a complete Kdhler manifold (M,w) of dimension n, that is
iO(E,h) > 0. Consider a function ¢: M — R U {—oc0} that is C*™
outside a discrete set S of M and near every point p € S,
p(z) = Aplog 2],

where A, is a positive constant and z = (21, ..., zn) are local coordinates
centered at p. Assume that iO(E, he™?) = iO(E, h)+i0dp > 0 on M\ S
and let A\: M — [0, 1] be a continuous function such that on M\ S one
has

iO(E, h) + i00¢ > Aw.
Then, for each C* form v of type (n,1) with values in E on M such
that Ov = 0 and

1
/ ~[v[fe"¥dV,, < oo,
MA
there is a C* form u of type (n,0) with values in E on M such that

Ou=v and )
/ lul?e% dV, S/ X‘U|26_¢ dv,.
M M

Now we start with the proof of Theorem 1. Since on D \ X, we have
the natural isomorphism of holomorphic vector bundles E ~ (E® K% )®
Kx the idea is to use Theorem 2 to solve a d problem for (0,1) forms
with coefficients in F':= E ® K% on D\ Xy, and due to Nakano semi
positivity of that bundle (see Lemma 1), to check the hypotheses of
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the theorem reduces to a proper choice of a smooth convex increasing
function in order to satisfy the curvature inequalities and convergence
of a certain integral. Since D is normal, the holomorphic section we
construct on D \ Xy, with values in E extends to a holomorphic section
in E over D.

To proceed, let {z;}; be a sequence of points of D \ X, whose set of
accumulation points, which is a closed subset of X, and by hypothesis is
contained in dD and disjoint from X,. Then, select relatively compact
open neighborhoods V; and U; of z; in D\ X such that U; are mutually
disjoint and contained in D \ X, and V; C U;. We choose U; such
that T := UjUj is a closed subset of D, and whose closure in X is
disjoint from Xg,. Moreover, we may assume that, for each index j,
Uj is the domain of a coordinate chart centered at z; and 2() be complex
coordinates centered at x; on Uj.

Now, let p; be a smooth function whose support lies in U; and equals 1
on V;. We define a smooth section o in E over D\ X by 0 =Y p;&;.
This induces a holomorphic form & of type (n,0) on D\ X, with co-
efficients in F', where n is the complex dimension of X. Consider the
smooth (n, 1)-form with coefficients in F' defined by v = do. Then v has
support in 7" := U;(U; \ V;) C T. Now solve the d equation du = v with
singular estimates and for that we choose in the statement of Theorem 2
the constants A, = n and obtain a smooth (n,0) form v« with coefficients
in F such that u(z;) = 0 for all indices j. Then 7 = & — u induces a
holomorphic section 7 in E over D\ Xz with o(z;) = ¢; for all indices j.
Since D is normal, the extension of 7 to D is as desired.

Now, we go on as follows. Keeping the notations from §3 (proof of
Proposition 1), the function + is positive, smooth of class C>°, strictly
plurisubharmonic and exhaustive for X, and we set:

1 =¢"+79%p\x, and Py =(y—V-0)|p\x.,

Let x: [0,00) — (0,00) be an increasing, smooth of class C'*°, and
convex function, to be chosen later in proof. We put

wy = w + 100 x(®1), where w = i09(P1 + P2).
Consider the singular weight function
®o =) np;-log V|,

where p; = 1 on V}, p; > 0 on X, and its support lies in U;, where U;
and Vj are as above. Define

U = q’o =+ (1)2 =+ 3)(((1)1),

and let the singular hermitian metric on F be he™Y.
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We would like to apply Theorem 2 for A the constant function, A = 1,
and for that we need to select y carefully; we wish the inequality

1000 > w,,

and, in order to achieve this we require that i@gx(q)l) > 904, a con-
dition that is fulfilled if we impose that xy — id be positive, increasing,
and convex, and the inequality

(%) 100 ®¢ + 109 x (1) > 0,

that can be easily realized if x’ is large enough taking into account the
computations from §3.
Then we need the convergence of the integral

/ [v|?e~ Y dV,,
D\ X

which, as a matter of fact, is an integral over 77 and ®; and ®, are
smooth there, and where dV, is the volume element associated to the
complete Kahler form w,. By straightforward computations we obtain

dVy <C-(1+x 0@y 4+ x" 0 ®y)"dV

for some positive continuous function C' on D \ X, where dV is the
volume element associated to the Kéhler form w. Therefore, the con-
vergence will follow by using the following lemma due to Demailly [4,
p. 374].

Lemma 3. For any continuous function \: [0,00) — (0,00), there
exists a C*-smooth convex function x: [0,00) — R such that

min(x, X, X)) > A and (1+x +x")"e X <1/\
The proof of Theorem 1 is completed. O
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