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Abstract: We study regularized determinants of Laplacians acting on the space
of Hilbert–Maass forms for the Hilbert modular group of a real quadratic field. We

show that these determinants are described by Selberg type zeta functions introduced

in [5, 6].
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1. Introduction

Determinants of the Laplacian ∆ acting on the space of Maass forms
on a hyperbolic Riemann surface X are studied by many authors. (See
for example [15, 2, 11, 10].) It is known that the determinants of ∆
are described by the Selberg zeta function (cf. [16]) for X.

On the other hand, two Laplacians ∆(1), ∆(2) act on the space of
Hilbert–Maass forms on the Hilbert modular surface XK of a real qua-
dratic field K. For this reason, it seems that there are no explicit for-
mulas for “Determinants of Laplacians” on XK until now. In this article
we consider regularized determinants of the first Laplacian ∆(1) acting

on its certain subspaces V
(2)
m , indexed by m ∈ 2N. We show that these

determinants are described by Selberg type zeta functions for XK intro-
duced in [5, 6].

Let K/Q be a real quadratic field with class number one and OK
be the ring of integers of K. Let D be the discriminant of K and
ε > 1 be the fundamental unit of K. We denote the generator of
Gal(K/Q) by σ and put a′ := σ(a) for a∈K. We also put γ′ =

(
a′ b′

c′ d′

)
for γ =

(
a b
c d

)
∈ PSL(2,OK). Let ΓK = {(γ, γ′) | γ ∈ PSL(2,OK)} be

the Hilbert modular group of K. It is known that ΓK is a co-finite
(non-cocompact) irreducible discrete subgroup of PSL(2,R)×PSL(2,R)
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and ΓK acts on the product H2 of two copies of the upper half plane H
by component-wise linear fractional transformation. ΓK has only one
cusp (∞,∞), i.e. ΓK-inequivalent parabolic fixed point. XK := ΓK\H2

is called the Hilbert modular surface.
Let (γ, γ′) ∈ ΓK be hyperbolic-elliptic, i.e., |tr(γ)| > 2 and |tr(γ′)|<2.

Then the centralizer of hyperbolic-elliptic (γ, γ′) in ΓK is infinite cyclic.

Definition 1.1 (Selberg type zeta function for ΓKwith the weight (0,m)).
For an even integer m ≥ 2, we define

(1.1) Zm(s) :=
∏

(p,p′)∈PΓHE

∞∏
n=0

(
1−ei(m−2)ωN(p)−(n+s)

)−1

for Re(s)>1.

Here, (p, p′) run through the set of primitive hyperbolic-elliptic ΓK-
conjugacy classes of ΓK , and (p, p′) is conjugate in PSL(2,R)2 to

(p, p′) ∼
((

N(p)1/2 0
0 N(p)−1/2

)
,

(
cosω − sinω
sinω cosω

))
.

Here, N(p) > 1, ω ∈ (0, π), and ω /∈ πQ. The product is absolutely
convergent for Re(s) > 1.

Analytic properties of Zm(s) are known.

Theorem 1.2 ([6, Theorems 5.3 and 6.5]). For an even integer m ≥ 2,
Zm(s) a priori defined for Re(s) > 1 has a meromorphic extension over
the whole complex plane.

In this article, we also consider “the square root of Z2(s)”.

Definition 1.3 (
√
Z2(s)).√

Z2(s) :=
∏

(p,p′)∈PΓHE

∞∏
n=0

(
1−N(p)−(n+s)

)−1/2

= exp

(
1

2

∑
(p,p′)

∞∑
k=1

1

k

N(p)−ks

1−N(p)−k

)
for Re(s) > 1.

(1.2)

By [6, Theorem 6.5] and the fact that the Euler characteristic of XK is
even (see Lemma 2.2), we see that d

ds logZ2(s) has even integral residues

at any poles. Therefore, we find that
√
Z2(s) has a meromorphic con-

tinuation to the whole complex plane.

Let us introduce the completed Selberg type zeta functions Ẑ
1
2
2 (s)

and Ẑm(s) (m ≥ 4), which are invariant under s → 1 − s. (See [6,
Theorems 5.4 and 6.6].)
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Definition 1.4 (Completed Selberg zeta functions).

(1.3) Ẑ
1
2
2 (s) :=

√
Z2(s)Z

1
2

id(s)Z
1
2

ell(s; 2)Z
1
2

par/sct(s; 2)Z
1
2

hyp2/sct(s; 2)

with

Z
1
2

id(s) := (Γ2(s)Γ2(s+ 1))ζK(−1), Z
1
2

ell(s; 2) :=

N∏
j=1

νj−1∏
l=0

Γ
(
s+l
νj

) νj−1−2l

2νj ,

Z
1
2

par/sct(s; 2) := ε−s, Z
1
2

hyp2/sct(s; 2) := ζε(s).

(1.4) Ẑm(s) := Zm(s)Zid(s)Zell(s;m)Zhyp2/sct(s;m) (m ≥ 4)

with

Zid(s) := (Γ2(s)Γ2(s+ 1))2ζK(−1),

Zell(s;m) :=

N∏
j=1

νj−1∏
l=0

Γ
(
s+l
νj

) νj−1−αl(m,j)−αl(m,j)
νj ,

Zhyp2/sct(s;m) := ζε

(
s+

m

2
− 1
)
ζε

(
s+

m

2
− 2
)−1

.

Here, Γ2(s) is the double Gamma function (for definition, we refer to [12]
or [7, Definition 4.10, p. 751]), the natural numbers ν1, ν2, . . . , νN are
the orders of the elliptic fixed points in XK and the integers αl(m, j),
αl(m, j)∈{0, 1, . . . , νj−1} are defined in (2.1), ζK(s) is the Dedekind zeta
function of K, ζε(s) := (1− ε−2s)−1 and ε is the fundamental unit of K.

Let m ∈ 2N. We recall that two Laplacians

(1.5) ∆
(1)
0 :=−y2

1

(
∂2

∂x2
1

+
∂2

∂y2
1

)
, ∆(2)

m :=−y2
2

(
∂2

∂x2
2

+
∂2

∂y2
2

)
+im y2

∂

∂x2

are acting on L2
dis(ΓK\H2; (0,m)), the space of Hilbert–Maass forms

for ΓK with weight (0,m). (See Definition 2.6.) We consider a certain
subspace of L2

dis(ΓK\H2; (0,m)) given by

(1.6) V (2)
m =

{
f(z1, z2)∈L2

dis(ΓK\H2; (0,m)) | ∆(2)
m f=

m

2

(
1− m

2

)
f
}
.

The set of eigenvalues of ∆
(1)
0

∣∣
V

(2)
m

are enumerated as

0 < λ0(m) ≤ λ1(m) ≤ · · · ≤ λn(m) ≤ · · ·
Let s be a fixed sufficiently large real number. We consider the spectral
zeta function by using these eigenvalues.

(1.7) ζm(w, s) =

∞∑
n=0

1

(λn(m) + s(s− 1))w
(Re(w)� 0).

We can show that ζm(w, s) is holomorphic at w=0. (See Proposition 4.3.)
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Let us define the regularized determinants of the Laplacian ∆
(1)
0

∣∣
V

(2)
m

.

Definition 1.5 (Determinants of restrictions of ∆
(1)
0 ). Let m ∈ 2N. For

s� 0, define

(1.8) Det
(
∆

(1)
0

∣∣
V

(2)
m

+s(s−1)
)

:=exp

(
− ∂

∂w

∣∣∣
w=0

∞∑
n=0

1

(λn(m)+s(s−1))w

)
.

We see later that Det
(
∆

(1)
0

∣∣
V

(2)
m

+ s(s − 1)
)

can be extended to an

entire function of s. (See Corollary 1.7.)
Our main theorem is as follows.

Theorem 1.6 (Main Theorem). Let �m := ∆
(1)
0

∣∣
V

(2)
m

for m ∈ 2N. We

have the following determinant expressions of the completed Selberg type
zeta functions.

(1) Ẑ
1
2
2 (s) = e(s− 1

2 )2ζK(−1)+C2
Det(�2 + s(s− 1))

s(s− 1)
.

(2) Ẑ4(s) = e2(s− 1
2 )2ζK(−1)+C4

s(s− 1) Det(�4 + s(s− 1))

Det(�2 + s(s− 1))
.

(3) For m ≥ 6, Ẑm(s) = e2(s− 1
2 )2ζK(−1)+Cm

Det(�m + s(s− 1))

Det(�m−2 + s(s− 1))
.

Here, the constants Cm are given by

C2 = −1

2
log ε+

N∑
j=1

ν2
j − 1

12νj
log νj ,

Cm =

N∑
j=1

ν2
j − 1− 12α0(m, j){νj − α0(m, j)}

6νj
log νj (m ≥ 4),

the natural numbers ν1, ν2, . . . , νN are the orders of the elliptic fixed
points in XK , and the integers α0(m, j) ∈ {0, 1, . . . , νj − 1} are defined
in (2.1).

We know the following Weyl’s law:

N+
m(T ) := #{j | λj(m) ≤ T} ∼ (m−1)

2 ζK(−1)T (T →∞).

(See [6, Theorem 6.11].) Therefore, we may say that Zm(s) (m ≥ 4)
have “more” zeros than poles.

We have several corollaries from Theorem 1.6 by direct calculation.
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Corollary 1.7. Let �m = ∆
(1)
0

∣∣
V

(2)
m

for m ∈ 2N. For m ∈ 2N, we have

(1) Det(�2 + s(s− 1)) = s(s− 1)e−(s− 1
2 )2ζK(−1)−C2Ẑ

1
2
2 (s).

(2) Det(�m+s(s−1))=e−(m−1)(s− 1
2 )2ζK(−1)−(C2+C4+···+Cm)Ẑ

1
2
2 (s)Ẑ4(s)

· · · Ẑm(s) for m ≥ 4.

It follows from the above corollary that Det(�m + s(s− 1)) (m ∈ 2N)
can be extended to entire functions of s.

By putting s = 1 in the above, we have

Corollary 1.8. For m ∈ 2N, we have

(1) Det(�2) = e−
1
4 ζK(−1)−C2 Ress=1 Ẑ

1
2
2 (s).

(2) Det(�4) = e−
3
4 ζK(−1)−(C2+C4) Ress=1 Ẑ

1
2
2 (s)Ẑ ′4(1).

(3) Det(�m) = e−
m−1

4 ζK(−1)−(C2+C4+···+Cm) Ress=1 Ẑ
1
2
2 (s)Ẑ ′4(1)Ẑ6(1)

· · · Ẑm(1) for m ≥ 6.

Here, �m = ∆
(1)
0

∣∣
V

(2)
m

for m ∈ 2N.

Finally, we have a few comments on related works. Let ZY (s) be the
Selberg zeta function for a modular curve Y . As kindly pointed out
by the referee, the special value Z ′Y (1) is evaluated by an arithmetic
Riemann–Roch formula in the realm of Arakelov geometry in [3, 4].
Therefore, we might imagine that our results on regularized determinants
and special Selberg type zeta values should play the role of the missing
holomorphic analytic torsion of sheaves of higher weight Hilbert modular
forms, in a conjectural arithmetic Riemann–Roch formula à la Gillet–
Soulé.

For this reason, to work out the case for congruence subgroups of ΓK
of a quadratic field K with arbitrary class number would be interesting
and make the range of application wider. We hope to treat this problem
in a future paper since our results depend on “explicit Selberg trace
formulas” for ΓK with class number one in [6].

2. Preliminaries

We fix the notation for the Hilbert modular group of a real quadratic
field in this section. We also recall the definition of Hilbert–Maass forms
for the Hilbert modular group and review “Differences of the Selberg
trace formula”, introduced in [6], which play a crucial role in this article.

2.1. Hilbert modular group of a real quadratic field. Let K/Q be
a real quadratic field with class number one and OK be the ring of inte-
gers of K. Put D be the discriminant of K and ε > 1 be the fundamental
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unit of K. We denote the generator of Gal(K/Q) by σ and put a′ := σ(a)

for a ∈ K. We also put γ′ =
(
a′ b′

c′ d′

)
for γ =

(
a b
c d

)
∈ PSL(2,OK).

Let G be PSL(2,R)2 = (SL(2,R)/{±I})2 and H2 be the direct prod-
uct of two copies of the upper half plane H := {z ∈ C | im(z) > 0}. The
group G acts on H2 by

g.z = (g1, g2).(z1, z2) =

(
a1z1 + b1
c1z1 + d1

,
a2z2 + b2
c2z2 + d2

)
∈ H2

for g = (g1, g2) =
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

))
and z = (z1, z2) ∈ H2.

A discrete subgroup Γ ⊂ G is called irreducible if it is not com-
mensurable with any direct product Γ1 × Γ2 of two discrete subgroups
of PSL(2,R). We have classification of the elements of irreducible Γ.

Proposition 2.1 (Classification of the elements). Let Γ be an irreducible
discrete subgroup of G. Then any element of Γ is one of the following:

(1) γ = (I, I) is the identity.

(2) γ = (γ1, γ2) is hyperbolic ⇔ |tr(γ1)| > 2 and |tr(γ2)| > 2.

(3) γ = (γ1, γ2) is elliptic ⇔ |tr(γ1)| < 2 and |tr(γ2)| < 2.

(4) γ = (γ1, γ2) is hyperbolic-elliptic ⇔ |tr(γ1)| > 2 and |tr(γ2)| < 2.

(5) γ = (γ1, γ2) is elliptic-hyperbolic ⇔ |tr(γ1)| < 2 and |tr(γ2)| > 2.

(6) γ = (γ1, γ2) is parabolic ⇔ |tr(γ1)| = |tr(γ2)| = 2.

Note that there are no other types in Γ (parabolic-elliptic, etc.).
Let us consider the Hilbert modular group of the real quadratic fieldK

with class number one,

ΓK :=

{
(γ, γ′) =

((
a b
c d

)
,

(
a′ b′

c′ d′

))
|
(
a b
c d

)
∈ PSL(2,OK)

}
.

It is known that ΓK is an irreducible discrete subgroup of G =
PSL(2,R)2 with the only one cusp ∞ := (∞,∞), i.e. ΓK-inequivalent
parabolic fixed point. XK = ΓK\H2 is called the Hilbert modular sur-
face.

We have a lemma about the Euler characteristic of the Hilbert mod-
ular surface XK .

Lemma 2.2. Let E(XK) be the Euler characteristic of the Hilbert mod-
ular surface XK = ΓK\H2. Then we have E(XK) ∈ 2N.

Proof: By noting the formula E(XK) = 2ζK(−1) +
∑N
j=1

νj−1
νj

(see (2),

(4) in [9, pp. 46–47]), E(XK) is a positive integer. Let YK and Y −K be
the non-singular algebraic surfaces resolved singularities, in the canonical



Determinants of Laplacians on Hilbert Modular Surfaces 621

minimal way, of compactifications of ΓK\H2 and ΓK\(H×H−) respec-
tively. Here H− is the lower half plane. Let χ(YK) and χ(Y −K ) be the

arithmetic genera of YK and Y −K respectively. By formulas (12) and (14)
in [9, p. 48], we have

E(XK) = 2(χ(YK) + χ(Y −K )).

We complete the proof.

We fix the notation for elliptic conjugacy classes in ΓK . LetR1, R2, . . . ,
RN be a complete system of representatives of the ΓK-conjugacy classes
of primitive elliptic elements of ΓK . ν1, ν2, . . . , νN (νj ∈ N, νj ≥ 2) de-
note the orders of R1, R2, . . . , RN . We may assume that Rj is conjugate
in PSL(2,R)2 to

Rj ∼

((
cos π

νj
− sin π

νj

sin π
νj

cos π
νj

)
,

(
cos

tjπ
νj

− sin
tjπ
νj

sin
tjπ
νj

cos
tjπ
νj

))
, (tj , νj) = 1.

For an even natural number m ≥ 2 and l ∈ {0, 1, . . . , νj − 1}, we define
αl(m, j), αl(m, j) ∈ {0, 1, . . . , νj − 1} by

l +
tj(m− 2)

2
≡ αl(m, j) (mod νj),

l − tj(m− 2)

2
≡ αl(m, j) (mod νj).

(2.1)

We divide hyperbolic conjugacy classes of ΓK into two subclasses
according to their types.

Definition 2.3 (Types of hyperbolic elements). For a hyperbolic ele-
ment γ, we define that:

(1) γ is type 1 hyperbolic ⇔ whose all fixed points are not fixed by
parabolic elements.

(2) γ is type 2 hyperbolic ⇔ not type 1 hyperbolic.

We denote by ΓH1, ΓE, ΓHE, ΓEH, and ΓH2, type 1 hyperbolic ΓK-con-
jugacy classes, elliptic ΓK-conjugacy classes, hyperbolic-elliptic ΓK-con-
jugacy classes, elliptic-hyperbolic ΓK-conjugacy classes and type 2 hy-
perbolic ΓK-conjugacy classes of ΓK respectively.

2.2. The space of Hilbert–Maass forms. Fix the weight (m1,m2) ∈
(2Z)2. Set the automorphic factor jγ(zj) =

czj+d
|czj+d| for γ ∈ PSL(2,R)

(j = 1, 2).

Let ∆
(j)
mj := −y2

j

(
∂2

∂x2
j

+ ∂2

∂y2j

)
+ imj yj

∂
∂xj

(j = 1, 2) be the Laplacians

of weight mj for the variable zj .
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Let us define the L2-space of automorphic forms of weight (m1,m2)
with respect to the Hilbert modular group ΓK .

Definition 2.4 (L2-space of automorphic forms of weight (m1,m2)).
L2(ΓK\H2; (m1,m2)) is defined to be the set of functions f : H2 → C,
of class C∞ satisfying:

(i) f((γ, γ′)(z1, z2)) = jγ(z1)m1jγ′(z2)m2f(z1, z2), ∀(γ, γ′) ∈ ΓK ;

(ii) ∃(λ(1), λ(2)) ∈ R2 such that

∆(1)
m1
f(z1, z2) = λ(1)f(z1, z2), ∆(2)

m2
f(z1, z2) = λ(2)f(z1, z2);

(iii) ||f ||2 =
∫

ΓK\H2 f(z)f(z) dµ(z) <∞.

Here, dµ(z) = dx1dy1
y21

dx2dy2
y22

for z = (z1, z2) ∈ H2.

Then, it is known that:

Proposition 2.5. Let L2
dis(ΓK\H2; (m1,m2)) be the subspace of the dis-

crete spectrum of the Laplacians and L2
con(ΓK\H2; (m1,m2)) be the sub-

space of the continuous spectrum.Then, we have a direct sum decompo-
sition:

L2(ΓK\H2; (m1,m2))=L2
dis(ΓK\H2; (m1,m2))⊕L2

con(ΓK\H2; (m1,m2))

and there is an orthonormal basis {φj}∞j=0 of L2
dis(ΓK\H2; (m1,m2)).

Definition 2.6 (Hilbert–Maass forms of weight (m1,m2)). Let (m1,m2)∈
(2Z)2. We call

L2
dis(ΓK\H2; (m1,m2))

the space of Hilbert–Maass forms for ΓK of weight (m1,m2).

Let {φj}∞j=0 be an orthonormal basis of L2
dis(ΓK\H2; (m1,m2)) and

(λ
(1)
j , λ

(2)
j ) ∈ R2 such that

∆(1)
m1
φj = λ

(1)
j φj and ∆(2)

m2
φj = λ

(2)
j φj .

We write λ
(l)
j = 1

4 + (r
(l)
j )2 and r

(i)
j are defined by

(2.2) r
(l)
j :=


√
λ

(l)
j − 1

4 if λ
(l)
j ≥ 1

4 ,

i
√

1
4 − λ

(l)
j if λ

(l)
j < 1

4 ,

for l = 1, 2.
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2.3. Double differences of the Selberg trace formula. Let m be
an even integer. We studied and derived the full Selberg trace formula for
L2(ΓK\H2; (0,m)) in [6]. Let h(r1, r2) be an even “test function” which
satisfy certain analytic conditions. Roughly speaking, [6, Theorem 2.22]
is as follows:

∞∑
j=0

h(r
(1)
j , r

(2)
j ) = I(h) + IIa(h) + IIb(h) + III(h).

Here, the right hand side is a sum of distributions of h contributed from
several conjugacy classes of ΓK and Eisenstein series for ΓK . Assuming
that the test function h(r1, r2) is a product of h1(r1) and h2(r2), we
derived “differences of STF” [6, Theorem 4.1] and “double differences
of STF” [6, Theorem 4.4]. We explain for this.

Let us consider the subspace of L2
dis(ΓK\H2; (0,m)) given by

V (2)
m =

{
f ∈ L2

dis(ΓK\H2; (0,m)) | ∆(2)
m f =

m

2

(
1− m

2

)
f
}
.

Let h1(r) be an even function, analytic in im(r) < δ for some δ > 0,

h1(r) = O((1 + |r|2)−2−δ)

for some δ > 0 in this domain. Let g1(u) := 1
2π

∫∞
−∞ h1(r)e−iru dr. Then

we have

Proposition 2.7 (Double differences of STF for L2(ΓK\H2; (0, 2))).
Let m = 2. We have
∞∑
j=0

h1(ρj(2))− h1

(
i

2

)

=
vol(ΓK\H2)

16π2

∫ ∞
−∞

rh1(r) tanh(πr) dr

−
∑

R(θ1,θ2)∈ΓE

ie−iθ1

8νR sin θ1

∫ ∞
−∞

g1(u)e−u/2
[

eu − e2iθ1

coshu− cos 2θ1

]
du

− 1

2

∑
(γ,ω)∈ΓHE

logN(γ0)g1(logN(γ))

N(γ)1/2 −N(γ)−1/2
− log εg1(0)

− 2 log ε

∞∑
k=1

g1(2k log ε)ε−k.

Here, {λj(2) = 1/4 + ρj(2)2}∞j=0 is the set of eigenvalues of the Lapla-

cian ∆
(1)
0 acting on V

(2)
2 .
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Proof: See [6, Corollary 6.3].

Proposition 2.8 (Double differences of STF for L2(ΓK\H2; (0,m))).
Let m ∈ 2N and m ≥ 4. We have
∞∑
j=0

h1(ρj(m))−
∞∑
j=0

h1(ρj(m− 2)) + δm,4h1

(
i

2

)

=
vol(ΓK\H2)

8π2

∫ ∞
−∞

rh1(r) tanh(πr) dr

−
∑

R(θ1,θ2)∈ΓE

ie−iθ1ei(m−2)θ2

4νR sin θ1

∫ ∞
−∞

g1(u)e−u/2
[

eu − e2iθ1

coshu− cos 2θ1

]
du

−
∑

(γ,ω)∈ΓHE

logN(γ0)

N(γ)1/2 −N(γ)−1/2
g1(logN(γ))ei(m−2)ω

− 2 log ε

∞∑
k=1

g1(2k log ε)(ε−k(m−1) − ε−k(m−3)).

Here, {λj(q) = 1/4 +ρj(q)
2}∞j=0 is the set of eigenvalues of the Lapla-

cian ∆
(1)
0 acting on V

(2)
q (q = m,m− 2).

Proof: See [6, Theorem 4.4] and [6, (5.3)].

3. Asymptotic behavior of the completed Selberg zeta
functions

We have to know the asymptotic behavior of the completed Selberg

zeta functions Ẑ
1
2
2 (s) and Ẑm(s) (m ≥ 4) when s → ∞, to prove Main

Theorem (Theorem 1.6). We calculate their asymptotic behavior in this
section.

Lemma 3.1 (Stirling’s formula for Γ2(z)). We have

(3.1) log Γ2(z + 1) =
3

4
z2 −

(
z2

2
− 1

12

)
log z + o(1) (z →∞),

where Γ2(z) := exp
(
∂
∂s

∣∣
s=0

∑∞
m,n=0(m + n + z)−s

)
denotes the double

Gamma function.

Proof: Let G(z) be the Barnes G-function defined by

G(z + 1) = (2π)
z
2 e−

z+z2(1+γ)
2

∞∏
k=1

{(
1 +

z

k

)k
e−z+

z2

k2

}
.
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(See [1, p. 268].) Here, γ = −Γ′(1) is the Euler constant. By using the
relation

Γ2(z) = eζ
′(−1)(2π)

z−1
2 G(z)−1

(see [14, Proposition 4.1]) and the asymptotic formula

logG(z+1)=
z

2
log(2π)+ζ ′(−1)−3

4
z2+

(
z2

2
− 1

12

)
log z+o(1) (z →∞),

(see [1, p. 269]) we have the desired formula.

Lemma 3.2 (Asymptotics of the identity factors). We have

logZ
1
2

id(s)=ζK(−1)

{
3

2
s2−s−

(
s2−s+

1

3

)
log s

}
+o(1) (s→∞),(3.2)

logZid(s)=2ζK(−1)

{
3

2
s2−s−

(
s2−s+

1

3

)
log s

}
+o(1) (s→∞).(3.3)

Proof: By Definition 1.4,

logZ
1
2

id(s) = ζK(−1)(log Γ2(s) + log Γ2(s+ 1))

and Lemma 3.1, we have the desired (3.2). We see that the relation

logZid(s) = 2 logZ
1
2

id(s) implies (3.3). It completes the proof.

Lemma 3.3 (Asymptotics of the elliptic factors). We have

logZ
1
2

ell(s; 2) =−
N∑
j=1

ν2
j − 1

12νj
log

s

νj
+ o(1) (s→∞),(3.4)

logZell(s;m)(3.5)

=−
N∑
j=1

ν2
j −1−12α0(m, j){νj−α0(m, j)}

6νj
log

s

νj
+o(1) (s→∞)

for m ∈ 2N and m ≥ 4. Here α0(m, j) ∈ {0, 1, . . . , νj − 1} are defined
in (2.1).

Proof: We use Stirling’s formula of Γ(z) (see [13, p. 12]):

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log(2π) + o(1) (z →∞).
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By Definition 1.4,

logZell(s;m) =

N∑
j=1

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
νj

log Γ

(
s+ l

νj

)
.

We see that {αl(m, j) | 0 ≤ l ≤ νj − 1} = {αl(m, j) | 0 ≤ l ≤ νj − 1} =

{0, 1, 2, . . . , νj − 1} for each j. Thus we have
∑νj−1
l=0 (νj − 1− αl(m, j)−

αl(m, j)) = 0, and find that

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
νj

log Γ

(
s+ l

νj

)

=

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
νj

×
{(

s+ l

νj
− 1

2

)
log

(
s+ l

νj

)
− s+ l

νj
+

1

2
log(2π)

}
+ o(1)

=

νj−1∑
l=0

ν − 1− αl(m, j)− αl(m, j)
νj

×
{(

s+ l

νj
− 1

2

)
log(s+ l)− l

ν
log νj −

l

νj

}
+ o(1)

=

νj−1∑
l=0

νj−1−αl(m, j)− αl(m, j)
νj

{(
s

νj
− 1

2

)
log s+

l

νj
log

s

νj

}
+o(1)

=

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
νj

l

νj
log

s

νj
+ o(1)

=
(νj − 1)2

2νj
log

s

νj
−
νj−1∑
l=0

αl(m, j) + αl(m, j)

νj

l

νj
log

s

νj
+ o(1)

(s→∞).

By (2.1), we can check that

αl(m, j) =

{
α0(m, j) + l (0 ≤ l ≤ νj − α0(m, j)− 1),

α0(m, j)− νj + l (νj − α0(m, j) ≤ l ≤ νj − 1),
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hence we calculate further,

νj−1∑
l=0

l αl(m, j)

ν2
j

=

νj−α0(m,j)−1∑
l=0

l(α0(m, j) + l)

ν2
j

+

νj−1∑
l=νj−α0(m,j)

l(α0(m, j)− νj + l)

ν2
j

=
(νj − 1)(2νj − 1)

6νj
+
α0(m, j)(α0(m, j)− νj)

νj
.

By noting α0(m, j)(α0(m, j)− νj) = α0(m, j)(α0(m, j)− νj), we have

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
νj

log Γ

(
s+ l

νj

)

=
(νj − 1)2

2νj
log

s

νj
−
νj−1∑
l=0

αl(m, j) + αl(m, j)

νj

l

νj
log

s

νj
+ o(1)

=
(νj − 1)2

2νj
log

s

νj

− 2

{
(νj − 1)(2νj − 1)

6νj
+
α0(m, j)(α0(m, j)− νj)

νj

}
log

s

νj
+o(1)

= −
ν2
j − 1− 12α0(m, j){νj − α0(m, j)}

6νj
log

s

νj
+o(1) (s→∞).

Thus we have (3.5). In addition, we note that

logZ
1
2

ell(s; 2) =
1

2
logZell(s;m)

∣∣∣
m=2

.

Since αl(2, j) = l, we see that α0(2, j) = 0 for any j. Therefore we
have (3.4). It completes the proof.
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Proposition 3.4 (Asymptotics of the completed Selberg zeta functions).
We have

log Ẑ
1
2
2 (s) = ζK(−1)

{
3

2
s2 − s−

(
s2 − s+

1

3

)
log s

}

−
N∑
j=1

ν2
j − 1

12νj
log

s

νj
− s log ε+ o(1) (s→∞),

(3.6)

log Ẑm(s)=2ζK(−1)

{
3

2
s2 − s−

(
s2 − s+

1

3

)
log s

}

−
N∑
j=1

ν2
j −1−12α0(m, j){νj−α0(m, j)}

6νj
log

s

νj
+o(1)

(s→∞),

(3.7)

for m ∈ 2N and m ≥ 4. Here α0(m, j) ∈ {0, 1, . . . , νj − 1} are defined
in (2.1).

Proof: We note that log
√
Z2(s), logZm(s) = o(1) (s→∞). By Defini-

tion 1.4 and Lemmas 3.2 and 3.3, we complete the proof.

4. Asymptotic behavior of the regularized determinants

To investigate the analytic nature of the spectral zeta function ζm(w, s)
at w = 0, we introduce the theta function θm(t) in this section. Since the
regularized determinants of the Laplacians Det(�m+s(s−1)) are defined
by the derivative of −ζm(w, s) at w = 0, we need to know the asymp-
totics of − ∂

∂w ζm(w, s)
∣∣
w=0

when s→∞. We calculate their asymptotics
in this section.

Definition 4.1. For m ∈ 2N and t > 0, define

(4.1) θm(t) :=

∞∑
j=0

e−t λj(m).

We investigate the asymptotic behavior of θm(t) as t→ +0 by using
Propositions 2.7 and 2.8, which are called “Double differences of the Sel-
berg trace formula for Hilbert modular surfaces” introduced and proved
in [6].
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Proposition 4.2. We have the following asymptotic formulas.

θ2(t) =
1

2
ζK(−1)

1

t
− log ε

2
√
π

1√
t

+

(
−1

6
ζK(−1) + b0(2) + 1

)
+ o(1) (t→ +0),

(4.2)

θm(t) =
m− 1

2
ζK(−1)

1

t
− log ε

2
√
π

1√
t

+

(
−m− 1

6
ζK(−1)+b0(2)+b0(4) + · · ·+ b0(m)

)
+o(1)

(t→ +0), (m ∈ 2N, m ≥ 4).

(4.3)

Here,

b0(2) = −
N∑
j=1

ν2
j − 1

24νj
,

b0(m) = −
N∑
j=1

ν2
j − 1− 12α0(m, j){νj − α0(m, j)}

12νj
(m ≥ 4).

Proof: For t > 0, let us take the pair of test functions h1(r) = e−t(r
2+1/4)

and g1(u) = 1√
4πt

exp
(
− t

4 −
u2

4t

)
in Proposition 2.7, then we have

(4.4) θ2(t)− 1 = I2(t) + E2(t) +HE2(t) + PS2(t) +HS2(t).

Here,

• I2(t) =
vol(ΓK\H2)

16π2

∫ ∞
−∞

exp(t(r2 + 1/4))r tanh(πr) dr,

• E2(t) =−
∑

R(θ1,θ2)∈ΓE

ie−iθ1

8νR sin θ1

×
∫ ∞
−∞

1√
4πt

exp

(
− t

4
− u2

4t

)
e−u/2

[
eu − e2iθ1

coshu−cos 2θ1

]
du,

• HE2(t) = −1

2

∑
(γ,ω)∈ΓHE

logN(γ0)

N(γ)1/2 −N(γ)−1/2

× 1√
4πt

exp

(
− t

4
− (logN(γ))2

4t

)
,

• PS2(t) = − log ε
1√
4πt

exp

(
− t

4

)
,

• HS2(t) = −2 log ε

∞∑
k=1

1√
4πt

exp

(
− t

4
− (2k log ε)2

4t

)
ε−k.
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Firstly, we see that HE2(t) and HS2(t) are exponentially decreasing
as t→ +0. Secondly, by changing the variable u to

√
tu in E2(t), we see

that there is a constant b0(2) such that E2(t) = b0(2) + o(1) (t → +0).
Thirdly, PS2(t) = − log ε 1√

4πt
(1 − t/4 + o(t)) (t → +0). Lastly, noting

vol(ΓK\H2)
8π2 = ζK(−1) and integration by parts, we have

I2(t) =
1

2
ζK(−1)

1

2t

∫ ∞
−∞

exp

(
−t
(
r2 +

1

4

))
π

cosh2(πr)
dr

=
π

4
ζK(−1)

∞∑
n=0

(−1)ntn−1

n!

∫ ∞
−∞

(r2 + 1
4 )n

cosh2(πr)
dr

=
a−1(2)

t
+ a0(2) + o(1) (t→ +0).

We calculate the coefficients an(2) (n = −1, 0).

a−1(2) =
π

4
ζK(−1)

∫ ∞
−∞

dr

cosh2(πr)

=
π

4
ζK(−1)

4

π

∫ ∞
0

x

(x2 + 1)2
dx =

1

2
ζK(−1),

a0(2) = −π
4
ζK(−1)

{∫ ∞
−∞

r2

cosh2(πr)
dr +

1

4

∫ ∞
−∞

dr

cosh2(πr)

}

= −π
4
ζK(−1)

(
1

6π
+

1

4

2

π

)
= −1

6
ζK(−1).

Here, we used the formula∫ ∞
0

r2

cosh2(πr)
dr =

(22 − 2)π2

(2π)2π

1

6
=

1

12π

in [8, 3.527 no. 5]. Besides, we calculate the coefficient b0(2) appearing
in E2(t).

b0(2) = −
∑

R(θ1,θ2)∈ΓE

ie−iθ1

8νR sin θ1

∫ ∞
−∞

1√
4π

exp

(
−u

2

4

)[
1− e2iθ1

1− cos 2θ1

]
du

= −
N∑
j=1

νj−1∑
k=1

1

4νj

1

1− cos
(

2πk
νj

) = −
N∑
j=1

ν2
j − 1

24νj
.

Summing up each terms appearing in the right hand side of (4.4), we
have the desired formula (4.2).
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Let us prove (4.3) with m = 4. For t > 0, we also take the pair of

test functions h1(r) = e−t(r
2+1/4) and g1(u) = 1√

4πt
exp
(
− t

4 −
u2

4t

)
in

Proposition 2.8 with m = 4, then we have

(4.5) θ4(t)− θ2(t) + 1 = I4(t) + E4(t) +HE4(t) +HS4(t).

Here,

• I4(t) =
vol(ΓK\H2)

8π2

∫ ∞
−∞

exp(−t(r2 + 1/4))r tanh(πr) dr,

• E4(t) = −
∑

R(θ1,θ2)∈ΓE

ie−iθ1e2iθ2

4νR sin θ1

×
∫ ∞
−∞

1√
4πt

exp

(
− t

4
− u2

4t

)
e−u/2

[
eu − e2iθ1

coshu−cos 2θ1

]
du,

• HE4(t) = −
∑

(γ,ω)∈ΓHE

logN(γ0)

N(γ)1/2 −N(γ)−1/2

× 1√
4πt

exp

(
− t

4
− (logN(γ))2

4t

)
e2iω,

• HS4(t) = −2 log ε

∞∑
k=1

1√
4πt

exp

(
− t

4
− (2k log ε)2

4t

)
(ε−3k − ε−k).

Similarly, we see that HE4(t) and HS4(t) are exponentially decreasing
as t→ +0, and there is a constant b0(4) such that E4(t) = b0(4) + o(1)
(t → +0), and I4(t) = ζK(−1)(1/t − 1/3) + o(1) (t → +0). Summing
up each terms appearing in the right hand side of (4.5) and using (4.2)
in the left side, we have the desired formula (4.3) with m = 4. One can
prove (4.3) for m ≥ 6 similarly. We complete the proof.

Proposition 4.3. Let s be a fixed sufficiently large real number. For
m ∈ 2N, let

ζm(w, s) :=

∞∑
n=0

1

(λn(m) + s(s− 1))w
(Re(w)� 0)

be the spectral zeta function for �m.Then ζm(w, s) is holomorphic at w=
0.

Proof: We follow [2, p. 448]. For w ∈ C with Re(w)� 0, we have

(4.6) ζm(w, s) =
1

Γ(w)

∫ ∞
0

θm(t)e−s(s−1)ttw
dt

t
.
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We consider the first three terms of θm(t) in Proposition 4.2. Let

ηp(w, s) :=
1

Γ(w)

∫ ∞
0

t−pe−s(s−1)ttw−1 dt

=
1

Γ(w)
(s(s− 1))p−wΓ(w − p)

(4.7)

with p = 0, 1
2 , 1. Then we see that ηp(w, s)

(
p = 0, 1

2 , 1
)

are holomorphic
at w = 0. The reminder term is

(4.8) ηf (w, s) :=
1

Γ(w)

∫ ∞
0

f(t)e−s(s−1)ttw
dt

t

with f(t) = o(1) (t → +0) and O(1) (t → ∞). Since 1
Γ(w) vanishes

at w = 0, it completes the proof.

Proposition 4.4. Let m be an even natural number. We have

− ∂

∂w
ζ2(w, s)

∣∣∣
w=0

= −ζK(−1)

(
s2 − s+

1

3

)
log s+

1

2
ζK(−1) s2

− s log ε+ (2b0(2) + 2) log s− 1

4
ζK(−1)

+
1

2
log ε+ o(1) (s→∞),

(4.9)

and for m ≥ 4,

− ∂

∂w
ζm(w, s)

∣∣∣
w=0

=−(m− 1)ζK(−1)

(
s2−s+

1

3

)
log s

+
m− 1

2
ζK(−1) s2 − s log ε

+ (2b0(2) + · · ·+ 2b0(m)) log s

− m− 1

4
ζK(−1)+

1

2
log ε+o(1) (s→∞).

(4.10)
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Besides, we have for m ≥ 4,

− ∂

∂w
ζm(w, s)

∣∣∣
w=0

+
∂

∂w
ζm−2(w, s)

∣∣∣
w=0

=− 2ζK(−1)

(
s2 − s+

1

3

)
log s

+ ζK(−1) s2 + (2b0(m)− 2 δ4,m) log s

− 1

2
ζK(−1) + o(1) (s→∞).

(4.11)

Proof: By the formulas (4.7) and (4.8), we find that

∂

∂w
η0(w, s)

∣∣∣
w=0

= − log(s(s− 1))=−2 log s+ o(1) (s→∞),

∂

∂w
η 1

2
(w, s)

∣∣∣
w=0

= −2
√
π(s(s− 1))

1
2 =−2

√
π

(
s− 1

2

)
+o(1) (s→∞),

∂

∂w
η1(w, s)

∣∣∣
w=0

= s(s− 1)(log(s(s− 1))− 1)

= 2s(s− 1) log s+
1

2
− s2 + o(1) (s→∞),

∂

∂w
ηf (w, s)

∣∣∣
w=0

= o(1) (s→∞).

Therefore, by using (4.2), we have

− ∂

∂w
ζ2(w, s)

∣∣∣
w=0

=−1

2
ζK(−1)

(
2s(s−1) log s+

1

2
− s2

)
−
(
s− 1

2

)
log ε

+

(
−1

6
ζK(−1)+b0(2)+1

)
2 log s+o(1) (s→∞)

=−ζK(−1)

(
s2 − s+

1

3

)
log s+

1

2
ζK(−1) s2

− s log ε+ (2b0(2) + 2) log s− 1

4
ζK(−1)

+
1

2
log ε+ o(1) (s→∞).
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For m ≥ 4, by using (4.3), we have

− ∂

∂w
ζm(w, s)

∣∣∣
w=0

= −(m− 1)ζK(−1)

(
s2 − s+

1

3

)
log s

+
m− 1

2
ζK(−1) s2 − s log ε

+ (2b0(2) + · · ·+ 2b0(m)) log s

− m− 1

4
ζK(−1) +

1

2
log ε+ o(1) (s→∞).

We complete the proof.

5. Proof of Main Theorem

In this section we prove Theorem 1.6. We prove the following two
propositions. The first proposition connect the completed Selberg zeta
functions:

Ẑ
1
2
2 (s), Ẑ4(s), . . . , Ẑm(s)

with the regularized determinants of Laplacians:

Det(�2 + s(s− 1)),Det(�4 + s(s− 1)), . . . ,Det(�m + s(s− 1)).

The second proposition determines the explicit relations among them.
Theorem 1.6 is deduced from these two propositions.

Proposition 5.1. Let �m := ∆
(1)
0

∣∣
V

(2)
m

for m ∈ 2N. There exit polyno-

mials P2(s), . . . , Pm(s) such that

Ẑ
1
2
2 (s) = eP2(s) Det(�2 + s(s− 1))

s(s− 1)
,

Ẑ4(s) = eP4(s) s(s− 1) Det(�4 + s(s− 1))

Det(�2 + s(s− 1))
,

Ẑm(s) = ePm(s) Det(�m + s(s− 1))

Det(�m−2 + s(s− 1))
(m ≥ 6).

Proof: Let k be a sufficiently large natural number. We note that(
− 1

2s− 1

d

ds

)k+1

ζm(w, s) = w(w + 1) · · · (w + k)ζm(w + k + 1, s).

Taking − ∂

∂w

∣∣∣
w=0

of both sides, we have

(5.1)

(
− 1

2s−1

d

ds

)k+1

log Det(�m+s(s−1))=−
∞∑
j=0

k!

(λj(m)+s(s−1))k+1
.
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Let m = 2, we use the following double differences of STF with the
certain test function (see [6, Theorem 6.4]):

∞∑
j=0

[
1

ρj(2)2 + (s− 1
2 )2

+

2∑
h=1

ch(s)

ρj(2)2 + β2
h

]
−

[
1

s(s− 1)
+

2∑
h=1

ch(s)

β2
h −

1
4

]

= ζK(−1)

∞∑
k=0

[
1

s+ k
+

2∑
h=1

ch(s)

βh + 1
2 + k

]
+

1

2s− 1

d
ds

√
Z2(s)√
Z2(s)

+

2∑
h=1

ch(s)

2βh

d
dβh

√
Z2( 1

2 + βh)√
Z2( 1

2 + βh)
+

1

2s− 1

N∑
j=1

νj−1∑
l=0

νj−1−2l

2ν2
j

ψ

(
s+ l

νj

)

+

2∑
h=1

ch(s)

2βh

N∑
j=1

νj−1∑
l=0

νj−1−2l

2ν2
j

ψ

( 1
2 + βh + l

νj

)
+

1

2s− 1

d

ds
log(ε−s)

+

2∑
h=1

ch(s)

2βh

d

dβh
log(ε−(βh+1/2)) +

1

2s− 1

d

ds
log

{
1

(1−ε−2s)

}

+

2∑
h=1

ch(s)

2βh

d

dβh
log

{
1

(1−ε−(2βh+1))

}
.

Here, ψ(z) is the digamma function, β1 6=β2 are constants and c1(s), c2(s)

are quadratic polynomials invariant under s→1−s.Operating
(
− 1

2s−1
d
ds

)k
on both sides, we have

(5.2)

∞∑
j=0

k!

(λj(2) + s(s− 1))k+1

=

(
− 1

2s− 1

d

ds

)k
1

2s− 1

d

ds
log(Ẑ

1
2
2 (s) s(s− 1)).

By (5.1) and (5.2), we have(
− 1

2s− 1

d

ds

)k+1

log Det(�2 + s(s− 1))

=

(
− 1

2s− 1

d

ds

)k+1

log(Ẑ
1
2
2 (s) s(s− 1)).

Therefore, we find that there exists a polynomial P2(s) such that

(5.3) log Det(�2 + s(s− 1)) + P2(s) = log(Ẑ
1
2
2 (s) s(s− 1)).



636 Y. Gon

Thus we have

Ẑ
1
2
2 (s) = eP2(s) Det(�2 + s(s− 1))

s(s− 1)
.

Let m ≥ 4 be an even integer. We use the following double differences
of STF with the certain test function (see [6, Theorem 5.2]):

∞∑
j=0

[
1

ρj(m)2 + (s− 1
2 )2

+

2∑
h=1

ch(s)

ρj(m)2 + β2
h

]

−
∞∑
j=0

[
1

ρj(m− 2)2 + (s− 1
2 )2

+

2∑
h=1

ch(s)

ρj(m− 2)2 + β2
h

]

+ δm,4

[
1

s(s− 1)
+

2∑
h=1

ch(s)

β2
h −

1
4

]

= 2ζK(−1)

∞∑
k=0

[
1

s+ k
+

2∑
h=1

ch(s)

βh + 1
2 + k

]

+
1

2s− 1

Z ′m(s)

Zm(s)
+

2∑
h=1

ch(s)

2βh

Z ′m( 1
2 + βh)

Zm( 1
2 + βh)

+
1

2s− 1

N∑
j=1

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
ν2
j

ψ

(
s+ l

νj

)

+

2∑
h=1

ch(s)

2βh

N∑
j=1

νj−1∑
l=0

νj − 1− αl(m, j)− αl(m, j)
ν2
j

ψ

( 1
2 + βh + l

νj

)

+
1

2s− 1

d

ds
log

{
(1− ε−(2s+m−4))

(1− ε−(2s+m−2))

}

+

2∑
h=1

ch(s)

2βh

d

dβh
log

{
(1− ε−(2βh+m−3))

(1− ε−(2βh+m−1))

}
.

Here, β1 6= β2 are constants and c1(s), c2(s) are quadratic polynomials
invariant under s→ 1− s.
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Operating
(
− 1

2s−1
d
ds

)k
on both sides, we have

(5.4)

∞∑
j=0

k!

(λj(m) + s(s− 1))k+1
−
∞∑
j=0

k!

(λj(m− 2) + s(s− 1))k+1

=

(
− 1

2s− 1

d

ds

)k
1

2s− 1

d

ds
(log Ẑm(s)− δm,4 log(s(s− 1))).

By (5.1) and (5.4), there exists a polynomial Pm(s) such that

(5.5) log Det(�m + s(s− 1))− log Det(�m−2 + s(s− 1)) + Pm(s)

= log Ẑm(s)− δm,4 log(s(s− 1)).

We complete the proof.

Proposition 5.2. We have

P2(s)=

(
s− 1

2

)2

ζK(−1)− 1

2
log ε+

N∑
j=1

ν2
j − 1

12νj
log νj ,

Pm(s)=2

(
s− 1

2

)2

ζK(−1)+

N∑
j=1

ν2
j −1−12α0(m, j){νj − α0(m, j)}

6νj
log νj

(m ≥ 4).

Proof: Substituting (3.6) and (4.9) in (5.3), we have

P2(s)=log(Ẑ
1
2
2 (s) s(s− 1))− log Det(�2 + s(s− 1))

=ζK(−1)

{
3

2
s2 − s−

(
s2 − s+

1

3

)
log s

}
−

N∑
j=1

ν2
j − 1

12νj
log

s

νj

− s log ε+2 log s+ ζK(−1)

(
s2 − s+

1

3

)
log s− 1

2
ζK(−1) s2

+ s log ε− (2b0(2) + 2) log s+
1

4
ζK(−1)− 1

2
log ε+ o(1)

=

(
s− 1

2

)2

ζK(−1)− 1

2
log ε+

N∑
j=1

ν2
j − 1

12νj
log νj + o(1) (s→∞).

Since P2(s) is a polynomial, we have the desired formula for P2(s).
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Let m ≥ 4. Substituting (3.7) and (4.11) in (5.5), we have

Pm(s)=log Ẑm(s)− δm,4 log(s(s− 1))

− log Det(�m + s(s− 1)) + log Det(�m−2 + s(s− 1))

=2

(
s− 1

2

)2

ζK(−1)

+

N∑
j=1

ν2
j −1−12α0(m, j){νj−α0(m, j)}

6νj
log νj+o(1) (s→∞).

Since Pm(s) is a polynomial, we have the desired formula for Pm(s). It
completes the proof.
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