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MANIFOLDS
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Abstract

We show that on a Kähler manifold whether the J-flow con-
verges or not is independent of the chosen background metric in
its Kähler class. On toric manifolds we give a numerical char-
acterization of when the J-flow converges, verifying a conjecture
in [19] in this case. We also strengthen existing results on more
general inverse σk equations on Kähler manifolds.

1. Introduction

Let (M,α) be a compact Kähler manifold of dimension n, and suppose
that Ω is a Kähler class on M , unrelated to α. The J-flow, introduced
by Donaldson [10] and Chen [6, 7] is the parabolic equation

∂

∂t
ωt = −

√−1∂∂Λωtα,

with initial condition ω0 ∈ Ω. It was shown by Song–Weinkove [21]
that this flow converges whenever there exists a metric ω ∈ Ω satisfying
Λωα = c, where the constant c only depends on the classes [α],Ω, and
is determined by

(1)

∫
M

cωn − nωn−1 ∧ α = 0.

In addition, Song–Weinkove [21] showed that such an ω exists if and
only if there is a metric χ ∈ Ω such that

(2) cχn−1 − (n− 1)χn−2 ∧ α > 0,

in the sense of positivity of (n − 1, n − 1)-forms. Unfortunately, in
practice it seems to be almost as difficult to produce a metric χ with
this positivity property, as solving the equation Λωα = c, except in the
case when n = 2, when the condition reduces to the class cΩ− [α] being
Kähler. In particular when n > 2, it was unknown whether the existence
of a solution to the equation depends only on the classes Ω, [α], or if it
depends on the choice of α in its class. Our first main result settles this
problem by showing that solvability depends only on the class [α].
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Theorem 1. Suppose that there is a metric ω ∈ Ω such that Λωα = c,
and β ∈ [α] is another Kähler metric. Then there exists an ω′ ∈ Ω such
that Λω′β = c.

This result still leaves open the problem of finding effective necessary
and sufficient conditions for solvability of the equation, or equivalently,
for convergence of the J-flow. In this direction, the second author and
Lejmi [19] proposed the following conjecture for when the equation can
be solved.

Conjecture 2. There exists an ω ∈ Ω satisfying Λωα = c, with c
defined by Equation (1), if and only if for all irreducible subvarieties
V ⊂M with 0 < p = dimV < n we have∫

V
cχp − pχp−1 ∧ α > 0,

for χ ∈ Ω.

It is natural to think of metrics χ satisfying the positivity condition
(2) as subsolutions for the equation Λωα = c. The result of Song–
Weinkove [21] then says that we can solve the equation whenever a
subsolution exists, whereas Conjecture 2 provides a numerical criterion
for the existence of a subsolution. In this sense it is somewhat analogous
to the result of Demailly–Paun [9] characterizing the Kähler cone. At
the same time as shown in [19], the conjecture is related to a circle
of ideas in Kähler geometry, relating the existence of special Kähler
metrics to algebro-geometric stability conditions, such as the Yau–Tian–
Donaldson conjecture [32, 25, 11] on the existence of constant scalar
curvature Kähler metrics.

Our next result is that the conjecture holds for toric manifolds (see
Yao [30] for prior results on toric manifolds). In fact we prove the
following more general result.

Theorem 3. Let M be a compact toric manifold of dimension n,
with two Kähler metrics α, χ. Suppose that the constant c > 0 satisfies

(3)

∫
M

cχn − nχn−1 ∧ α ≥ 0,

and for all irreducible toric subvarieties V ⊂ M of dimension 0 < p ≤
n− 1 we have ∫

V
cχp − pχp−1 ∧ α > 0.

Then there is a metric ω ∈ [χ] such that

(4) Λωα+ d
αn

ωn
= c,

for a suitable constant d ≥ 0. In particular if in (3) we have equality,
then necessarily Λωα = c, and so Conjecture 2 holds for toric mani-
folds M .
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The advantage of this more general result is that the hypotheses are
amenable to an inductive argument. The result for (n− 1)-dimensional
manifolds can be used to construct a suitable barrier function near the
union D ⊂M of the toric divisors, that allows us to reduce the problem
to obtaining a priori estimates on compact subsets of M \D. Theorem 1
allows us to work with torus invariant data, which on M \ D means
that the equation reduces to an equation for convex functions on Rn.
Equation 4 is of the form

(5) Tr
(
(D2u)−1

)
+

d

det(D2u)
= 1,

where u : Rn → R is convex, although we have to deal with variable
coefficients as well. The main estimate is an upper bound for D2u on
compact sets, which we obtain in Proposition 25. Using the Legendre
transform and the constant rank theorem of Bian–Guan [1], this can be
reduced to obtaining a priori C2,α estimates for convex solutions of the
equation

(6) Δh+ ddet(D2h) = 1.

The difficulty is that the operator M 	→ Tr(M)+ddet(M) is neither
concave, nor convex for d > 0, and so the standard Evans–Krylov theory
does not apply. In addition the level sets {M : det(M) = 1− t} are not
uniformly convex as t→ 1, and so the results of Caffarelli–Yuan [5] also
do not apply directly. Instead we obtain the interior C2,α estimates by
showing that det(D2h)1/n is a supersolution for the linearized equation,
to which the techniques of [5] can be applied. This result may be of
independent interest.

Many of our techniques apply to more general equations than Equa-

tion (4), of the form F (A) = c, where A is the matrix Ai
j = αik̄ωjk̄ and

F (A) is a symmetric function of the eigenvalues of A satisfying certain
structural conditions (see Section 3 for details). In particular we can
consider general inverse σk equations of the form

(7)

n∑
k=1

ck

(
n

k

)
αk ∧ ωn−k = cωn,

where ci ≥ 0 are given non-negative constants, and c ≥ 0 is determined
by the ci by integrating the equation over M .

The question of looking at general equations of this form was raised
by Chen [6], and some special cases beyond the J-flow were treated
by Fang–Lai–Ma [14], and also by Guan–Sun [15], Sun [23] on Her-
mitian manifolds. More general non-linear flows related to the inverse
σk-equations were investigated by Fang–Lai [13]. The particular Equa-
tion (4) was studied by Zheng [33]. In [14] it was shown that a solution
to these special cases of equation (7) exist if and only if there is a metric
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χ ∈ Ω satisfying a positivity condition analogous to (2). We show that
such a result holds for the general equation too, as was conjectured by
Fang–Lai–Ma.

Theorem 4. Equation (7) has a solution ω ∈ Ω if and only if we
can find a metric χ ∈ Ω such that

(8) cχn−1 −
n−1∑
k=1

ck

(
n− 1

k

)
χn−k−1 ∧ αk > 0,

in the sense of positivity of (n− 1, n − 1)-forms.

Note that when ck = 0 for k < n, then Equation (7) is simply a
complex Monge–Ampère equation, which can always be solved by Yau’s
Theorem [31]. In this case the positivity condition (8) is always satisfied,
so Theorem 4 is a generalization of Yau’s Theorem. We expect that our
methods can be used to generalize Theorems 1 and 3 to more general
equations of this form, but we will leave a detailed study of this to
future work, except for the following result that is needed in reducing
Theorem 3 to the case of torus invariant α. The proof of this is similar
to, but simpler than that of Theorem 1.

Theorem 5. Suppose that Equation (7) has a solution, and cn > 0.
Then the equation can also be solved if α is replaced by any other metric
β ∈ [α].

A brief summary of the contents of the paper is as follows. In Section 2
we recall some basic convexity properties of the elementary symmetric
functions, which play a key role in the later calculations. In Section 3
we generalize the C2-estimates of Song–Weinkove [21] and prove The-
orem 4. While the basic ideas are similar to those in [21] and also
Fang–Lai–Ma [14], Fang–Lai [13] we hope that our more streamlined
proof highlights the required structural conditions for the equation. In
Section 4 we prove Theorems 1 and 5. A key ingredient is a smooth-
ing construction, based on work of Blocki–Kolodziej [2] on regularizing
plurisubharmonic functions. The remainder of the paper is concerned
with the proof of Theorem 3. We expect that our inductive method
of proof will be helpful in resolving Conjecture 2 on non-toric mani-
folds as well, although there are certainly new difficulties in the general
case.

Acknowledgments. The authors would like to thank Connor Mooney
and Ovidiu Savin for helpful suggestions and Wei Sun for useful com-
ments. The authors are also grateful to D.H. Phong and S.-T. Yau for
their encouragement and support. We would also like to thank the ref-
eree for some helpful corrections. The second named author is supported
by NSF grants DMS-1306298 and DMS-1350696.
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2. Convexity properties

In this section we collect some calculations relating to the inverse
σk-operator. Most of these results are well known, and available in the
literature (for instance see Spruck [22]), but for the reader’s convenience
we present the calculations here.

For an n-tuple of numbers λi, denote by

Sk(λi) =
∑

1≤j1<j2<...<jk≤n

λj1λj2 · · ·λjk ,

the elementary symmetric function of degree k. We have S0 = 1 and
S−1 = 0. For distinct indices i1, . . . , il let us write

Sk;i1,...,il(λi) = Sk(λi)|λi1
=...=λil

=0,

while if i1, . . . , il are not distinct, then Sk,i1,...,il(λi) = 0. Given an n×n
matrix A we will also write Sk(A) for the elementary symmetric function
of the eigenvalues of A, and in addition if A is diagonal then we define
Sk;i1,...,il(A) by letting λi = Aii.

Lemma 6. The derivatives of Sk at a diagonal matrix A are given
by

∂ijSk(A) =

{
Sk−1;i(A), if i = j,

0, otherwise,

∂ij∂rsSk(A) =

⎧⎪⎨⎪⎩
Sk−2;i,r(A), if i = j, r = s, i 
= r,

−Sk−2;i,j(A), if i 
= j, r = j, s = i,

0, otherwise.

Here ∂ij means partial derivative with respect to the ij-component.

Proof. This result follows from the fact that Sk(A) is the coefficient
of (−x)n−k in det(A− xI). q.e.d.

Using this, we can compute the derivatives of the inverse σk operators.

Lemma 7. For 0 ≤ k ≤ n let us write F (A) = Sk(A
−1) =

Sn−k(A)
Sn(A) .

At a diagonal matrix A, with eigenvalues λi, we have

∂ijF (A) =

{
−Sn−k;i(A)

λiSn(A) , if i = j,

0, otherwise,

∂ii∂jjF (A) =
Sn−k;i,j(A)

λiλjSn(A)
, if i 
= j,

∂ij∂jiF (A) =
Sn−k;i(A) + λiSn−k−1;i,j(A)

λiλjSn(A)
, if i 
= j,

∂ii∂iiF (A) = 2
Sn−k;i(A)

λ2
iSn(A)

,

∂ij∂rsF (A) = 0, otherwise.
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The following expresses a strong convexity property of the inverse σk
operators on positive definite matrices.

Lemma 8. Let us write F (A) = Sk(A
−1) as above. Then A 	→ F (A)

is convex on the space of positive definite Hermitian matrices A, and in
fact if A is diagonal with eigenvalues λi > 0, then for any matrix Bij

we have

(9)
∑
p,q,r,s

BrsBqp(∂pq∂rsF (A)) +
∑
i,j

|Bij|2 ∂iiF (A)

λj
≥ 0.

Proof. Suppose that A is diagonal. Given Bij Hermitian, using the
previous result we can compute∑
p,q,r,s

BrsBqp(∂pq∂rsF (A)) =
∑
i,j

BiiBjj
Sn−k;i,j(A) + δijSn−k;i(A)

λiλjSn(A)

+
∑
i,j

|Bij |2Sn−k;i(A) + λiSn−k−1;i,j(A)

λiλjSn(A)
.

≥
∑
i,j

BiiBjj
Sn−k;i,j(A) + δijSn−k;i(A)

λiλjSn(A)

−
∑
i,j

|Bij |2 ∂iiF (A)

λj
.

It remains to show that the matrix Mij = Sn−k;i,j(A) + δijSn−k;i(A)
is non-negative. This is shown in Fang–Lai–Ma [14] as follows. For
any (n − k)-tuple I = {i1, . . . , in−k} ⊂ {1, . . . , n}, denote by λI =
λi1 · · ·λin−k

, and let EI be the matrix whose entries are

(EI)ij =

{
1, if i, j 
∈ I,

0, otherwise.

Then the matrix M is non-negative because

M =
∑

|I|=n−k

λIEI . q.e.d.

The following is an even stronger convexity property of the map A 	→
S1(A

−1), on the set of matrices with eigenvalues bounded away from
zero.

Lemma 9. Given δ > 0, let M be the set of positive Hermitian
matrices with eigenvalues λi > δ. For ε > 0 we let F (A) = S1(A

−1) −
εSn(A

−1). If ε is sufficiently small (depending on δ), then we have

1) F (A) > 0 and ∂iiF (A) < 0 for diagonal A ∈ M.
2) F is convex on M, and in fact F satisfies the inequality (9) for

diagonal A ∈ M.
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Proof. 1) If each eigenvalue is greater than δ, then Sn(A
−1) <

δ−(n−1)S1(A
−1), and so F (A) > 0 for sufficiently small ε. In ad-

dition we have

∂iiF (A) =
−Sn−1;i(A) + ε

λiSn(A)
.

Since Sn−1;i > δn−1, we have ∂iiF (A) < 0 for sufficiently small ε.
2) Using the computation in the previous lemma, we have, if A is

diagonal with eigenvalues λi, that∑
p,q,r,s

BrsBpq(∂pq∂rsF (A)) =
∑
i,j

BiiBjj
δijSn−1;i(A)− ε(1 + δij)

λiλjSn(A)

+
∑
i,j

|Bij |2Sn−1;i(A) + λiSn−2;i,j(A)− ε

λiλjSn(A)
.

≥ 1

Sn(A)

∑
i

|Bii|2
λ2
i

Sn−1;i(A)− ε

Sn(A)

∣∣∣∣∣∑
i

Bii

λi

∣∣∣∣∣
2

− ε

Sn(A)

∑
i

|Bii|2
λ2
i

−
∑
i,j

|Bij |2∂iiF (A)

λj
.

If A ∈ M, then Sn−1;i(A) ≥ δn−1, and so we get the required
inequality (9) if ε is sufficiently small. q.e.d.

3. C2-estimates

In this section we prove an analog of the C2-estimates obtained
by Song–Weinkove [21] for the J-flow, and Fang–Lai–Ma [14], Fang–
Lai [13] for a more general class of inverse σk flows. We will need the
corresponding estimates also for manifolds with boundary, analogous to
results of Guan–Sun [15].

We will work with general operators

F (A) = f(λ1, . . . , λn),

on the space of positive Hermitian matrices, where f is a symmetric
function of the eigenvalues of A. We will require certain structural
conditions to hold for F . We do not expect that these conditions are
optimal, but they are sufficient for our needs. Also, in contrast with the
standard setup in Hessian type nonlinear PDE, we work with a convex,
decreasing operator, rather than a concave, increasing one. This is just
a matter of changing signs, but we found it more convenient to think
about the convex, decreasing operator Tr(A−1) rather than the concave,
increasing −Tr(A−1).

We require that there are constants K,C > 0 (with K =∞ allowed),
and a connected component M of the set {F (A) < K}, such that if
A ∈ M then in coordinates such that A is diagonal, we have
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1) F (A) > 0, and ∂iiF (A) < 0 for all i,
2) For any matrix Bij we have∑

i,j,r,s

BijBsr(∂ij∂rsF (A)) +
∑
i,j

∂iiF (A)

λj
|Bij |2 ≥ 0,

so in particular F is convex on the set M.
3) We have

C−1F (A) <
∑
k

−λk∂kkF (A) < CF (A).

4) If λ1 denotes the smallest eigenvalue, then −λ1∂11F (A) ≥
−C−1λi∂iiF (A) for all i.

5) The function g(x1, . . . , xn) = f(x−11 , . . . , x−1n ) extends to a smooth
function on the orthant {xi ≥ 0 for all 1 ≤ i ≤ n}.

Note that in most of our situations we will be able to take K = ∞,
and M the set of all positive Hermitian matrices. We will only need
the greater generality that we are allowing in Section 4. Let us denote

by A the matrix Ai
j = αik̄gjk̄. This matrix is Hermitian with respect to

the inner product defined by α.

Lemma 10. Suppose that we work at a point in normal coordinates
for the metric α, such that g is diagonal. In addition assume that A ∈
M. Then we have

∂1∂1̄F (A) ≥ −
∑
p

−∂ppF (A)g11̄∂p∂p̄ log g11̄ − CF (A),

where C depends on F , α.

Proof. We compute, using Lemma 7 and Lemma 8:

∂1∂1̄F (A) = ∂1(∂1̄A
p
q∂pqF (A))

= ∂1∂1̄(A
p
q)∂pqF (A) + (∂1A

r
s)(∂1̄A

p
q)∂pq∂rsF (A)

=
[
(∂1∂1̄α

pp̄)gpp̄ + ∂1∂1̄gpp̄

]
∂ppF (A)

+ (∂1gsr̄)(∂1̄gqp̄)∂pq∂rsF (A)

=
[
(∂1∂1̄α

pp̄)gpp̄ + g11̄∂p∂p̄ log g11̄

+ g11̄(∂1gp1̄)(∂1̄g1p̄)
]
∂ppF (A) + (∂1gpq̄)(∂1̄gqp̄)∂pq∂rsF (A)

≥ −
∑
p

−∂ppF (A)g11̄∂p∂p̄ log g11̄ − C
∑
p

−λpdppF (A),

where we used assumption (2) with Bij = ∂1gij̄ . The result follows by
assumption (3) above. q.e.d.
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Suppose now that M is a compact manifold and that α, ω0 are Kähler
metrics on M . Suppose that ωt = ω0 +

√−1∂∂ϕt satisfies the equation

(10)

{
∂ϕt

∂t = −F (At),

ϕ0 = 0,

where At is the matrix (At)
i
j = αik̄gt,jk̄ as above, with gt,jk̄ being the

components of ωt. By our assumptions on F , this equation is parabolic
on the set of metrics satisfying A ∈ M. Our goal is to show the long
time existence of this flow, generalizing the result of Chen [7] for the
J-flow and Fang–Lai [13] for more general flows.

The following shows that if A0 ∈ M, then we will have F (At) < K
for as long as the flow exists, and so in particular At ∈ M as well.

Lemma 11. We have that F (At) ≤ F (A0) for as long as the flow
exists, and |ϕt| < C(t+ 1) for some constant C.

Proof. Differentiating the equation with respect to t we have

∂ϕ̇t

∂t
= −∂ijF (At)α

ik̄ϕ̇t,jk̄.

The maximum principle then implies that infM ϕ̇t ≥ infM ϕ̇0, i.e.,
F (At) ≤ F (A0) as long as the flow is parabolic. In particular, if A0 ∈ M
the flow is parabolic for as long as it exists. Similarly we can bound
supM ϕ̇t which in turn allows us to bound ϕt. q.e.d.

To show the long time existence of the flow, we will obtain time
dependent C2-estimates along the flow.

Proposition 12. There is a constant C such that

Λαωt < C(t+ 1)

along the flow as long as it exists.

Proof. Consider the function

f(x, ξ, t) = log |ξ|2gt −N1t−N2ϕt,

where x ∈ M and ξ ∈ TxM has unit length with respect to α, and
N1, N2 are large constants to be chosen later. Given T > 0, suppose
that f achieves its maximum on [0, T ], at (x, ξ, t0), with t0 > 0. Choose
normal coordinates at x for α such that gt0 is diagonal and ξ = ∂/∂z1.
If we define

h(z, t) = log
g11̄
α11̄

−N1t−N2ϕt,
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then at the origin z = 0 and t = t0 we must have

0 ≤ ∂th(z, t) −
∑
p

−∂ppF (At)∂p∂p̄h(z, t)

= −g11̄F (At)11̄ −N1 −
∑
p

−∂ppF (At)∂p∂p̄[log g11̄ − log α11̄ −N2ϕt]

≤ −N1 + C
∑
p

−∂ppF (At) +N2

∑
p

−∂ppF (At)gt,pp̄

−N2

∑
p

−∂ppF (At)g0,pp̄.

Choosing N2 sufficiently large, we will have

0 ≤ −N1 +N2

∑
p

−∂ppF (At)gt,pp̄ < −N1 + CN2F (At),

using property (3) of F . Since F (At) < K, if N1 is chosen sufficiently
large, we will have a contradiction. It follows that then f(x, ξ, t) achieves
its maximum at t = 0, from which the result follows by the bound we
already have for ϕt. q.e.d.

Using the convexity of F we can apply the Evans–Krylov theorem to
obtain C2,α-estimates for ϕt as long as the flow exists, and higher order
estimates follow from standard Schauder estimates. It follows that the
flow exists for all time.

Proposition 13. There is a solution of Equation (10) for all t > 0.

We will make use of this long time existence result in Section 4. While
one could pursue the existence of solutions to the equation F (A) = c by
studying the convergence of the flow, we will instead primarily use the
continuity method. For this we need elliptic C2-estimates, assuming the
existence of a subsolution of the equation in a certain sense. We will
also need to use the case when M is a manifold with boundary.

Suppose, therefore, that (M,∂M) is a compact Kähler manifold with
possibly empty boundary, and suppose that ω,α are metrics on M sat-
isfying

F (A) = c,

for a constant c. For simplicity we will assume that in the structural
conditions for F we can take K =∞.

To define the notion of subsolution that we use, define the function

f̃(λ1, . . . , λn−1) = lim
λn→∞

f(λ1, . . . , λn) = g(λ−11 , . . . , λ−1n−1, 0),

in terms of the function g in property (5). For a Hermitian matrix B
we will write

F̃ (B) = max f̃(λ1, . . . , λn−1),
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where the max runs over all (n− 1)-tuples (λ1, . . . , λ̂i, . . . , λn) of eigen-
values of B, where 1 ≤ i ≤ n.

Remark. Trudinger [27] studied the Dirichlet problem (over the re-
als) for equations of the eigenvalues of the Hessian satisfying certain
structural conditions, which for example allow for treating the equation

(11) S1((D
2u)−1) = c,

in open domains Ω ⊂ Rn. Writing the equation as f(λ1, . . . , λn) = c in
terms of the eigenvalues of D2u, a key role in the estimates is played by
the function

f∞(λ1, . . . , λn−1) = lim
λn→∞

f(λ1, . . . , λn),

which is the same as our function f̃ above (our equation is the reciprocal

of that studied by Trudinger). In our situation the function f̃ is not only
relevant in deriving estimates, but it is also used to define the notion
of subsolution. We also remark that for the equation to fit into the
framework of Caffarelli–Nirenberg–Spruck [4], one would need f∞ = 0.

For technical reasons we will need a notion of viscosity subsolution
which we give now.

Definition 14. Suppose that χ is a Kähler current with continuous
local potential, i.e., in local charts U we can write χ =

√−1∂∂f with

f ∈ C0(U). We say that χ satisfies F̃ (αip̄χjp̄) ≤ c in the viscosity sense,
if the following holds: suppose that p ∈ M , and h : U → R is a C2

function on a neighborhood U of p, where χ =
√−1∂∂f . If h− f has a

local minimum at p, then F̃ (αip̄∂j∂p̄h) ≤ c at p.

It is clear from the monotonicity of F (and, therefore, F̃ ), i.e., struc-

tural condition (1), that if χ is a smooth metric satisfying F̃ (αip̄χjp̄) ≤ c,
then this inequality is also satisfied in the viscosity sense. We will need
the following, which is a special case of the general fact that a maxi-
mum of a family of viscosity subsolutions is a viscosity subsolution (see
Caffarelli–Cabré [3]).

Lemma 15. Suppose that in an open set U we have smooth metrics

χk =
√−1∂∂fk for k = 1, . . . , N , satisfying F̃ (αip̄χk,jp̄) ≤ c. Then

χ =
√−1∂∂max{fk} satisfies F̃ (αip̄χjp̄) ≤ c in the viscosity sense.

Proof. Fix a point p ∈ U and suppose that h is a smooth function
such that h − max{fk} has a local minimum at p. Without loss of
generality we can assume that max{fk(p)} = f1(p), and then h − f1
also has a local minimum at p. By assumption F̃ (αip̄∂j∂p̄f1)(p) ≤ c,

and so the monotonicity of F̃ implies that F̃ (αip̄∂j∂p̄h)(p) ≤ c. q.e.d.
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Proposition 16. Suppose that ω = ω0 +
√−1∂∂ϕ is smooth, and

satisfies F (A) = c, where Ai
j = αip̄ωjp̄, and F satisfies the structural

conditions with K = ∞. Suppose that we have a strict viscosity subso-

lution χ = ω0 +
√−1∂∂ψ, i.e., that F̃ (αip̄χjp̄) ≤ c − δ in the viscosity

sense, for some δ > 0. Here ψ ∈ C0(M). Then we have an estimate

Λαω < CeN(ϕ−inf ϕ),

where the constants C,N depend on the given data, including χ, δ, as
well as the maximum of Λαω on ∂M .

Proof. Consider the function

f(x, ξ) = log |ξ|2g −Nϕ(x) +Nψ(x),

where x ∈M and ξ ∈ TxM has unit length with respect to α, and N is a
large constant to be chosen later. If this function achieves its maximum
on ∂M , then we will have

Λαω < CeN(ϕ−inf ϕ),

where C depends on sup∂M Λαω and the given data.
Suppose that f achieves its maximum at (x, ξ), where x ∈ M is in

the interior. We can choose normal coordinates at x for α such that g
is diagonal, and ξ = ∂/∂z1. This means that the function

h(z) = log
g11̄
α11̄

−Nϕ+Nψ

has a maximum at the origin. Define

ψ1 = ϕ−N−1 log
g11̄
α11̄

.

Then ψ1 is smooth, and ψ1−ψ has a local minimum at the origin. If we
define χ′ = ω0 +

√−1∂∂ψ1, then the definition of viscosity subsolution

means that F̃ (αip̄χ′jp̄) ≤ c− δ. In addition the function

h̃(z) = log
g11̄
α11̄

−Nϕ+Nψ1

is identically zero. It follows that at the origin

0 =
∑
p

−∂ppF (A)∂p∂p̄h̃

=
∑
p

−∂ppF (A)∂p∂p̄ log g11̄ −
∑
p

−∂ppF (A)∂p∂p̄ log α11̄

−N
∑
p

−∂ppF (A)[gpp̄ − χ′pp̄]

≥ −g11̄CF (A)− C
∑
p

−∂ppF (A)−N
∑
p

−∂ppF (A)(gpp̄ − χ′pp̄),
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where we used Lemma 10. We can assume without loss of generality
that g11̄ > 1. By assumption (3) on F , we know that

∑
p−∂ppF (A)gpp̄

is bounded below. In addition χ′pp̄ also has a fixed positive lower bound
by the assumption that χ is a Kähler current. It follows that for any
ε > 0 we can choose N so large, that we obtain

0 ≥ −N(1 + ε)
∑
p

−∂ppF (A)gpp̄ +N(1− ε)
∑
p

−∂ppF (A)χ′pp̄.

Rearranging this and changing ε slightly, for sufficiently large N we will
have

(12)
∑
p

−∂ppF (A)χ′pp̄ ≤ (1 + ε)
∑
p

−∂ppF (A)gpp̄.

Let us now change notation slightly. Write λi for the eigenvalues of
g, and μi for the eigenvalues of χ′. In addition suppose that λ1 ≤ λ2 ≤
. . . ≤ λn and μ1 ≥ . . . ≥ μn. The convexity of f implies that then
−fi(λ) ≤ −fj(λ) for i < j. In addition from the Schur–Horn theorem
we have that the diagonal entries χ′pp̄ form an n-tuple in the convex hull
of the permutations of the μi, and so in particular∑

p

−fp(λ)μp ≤
∑
p

−fp(λ)χ′pp̄.

For simplicity of notation let us also suppose that c = 1. We then have
the following:

(13)

f(λ1, . . . , λn) = 1,

f̃(μ1, . . . , μn−1) ≤ 1− δ,∑
p

−fp(λ1, . . . , λn)μp ≤ (1 + ε)
∑
p

−fp(λ1, . . . , λn)λp.

Using assumption (3) for F and the positive lower bound for the μi,
we obtain an upper bound for −f1(λi). Together with assumption (4)
for F , this implies a positive lower bound for the lowest eigenvalue λ1.

By assumption (5), there is a number K such that if λn > K, then

f̃(λ1, . . . , λn−1) > 1− τ,

fp(λ1, . . . , λn)− τ < f̃p(λ1, . . . , λn−1) < fp(λ1, . . . , λn) + τ,

since fp(λi) = −λ−2p gp(λ
−1
i ), and the function x2pg(xi) is uniformly con-

tinuous on compact subsets of the orthant {xj ≥ 0 for all 1 ≤ j ≤ n}.
The convexity of the map λi → f̃(λi) implies that if we denote

r(t) = f̃(λi + t(μi − λi)),
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then r(1) ≥ r(0) + r′(0). This means

f̃(μi) ≥ f̃(λi) +
n−1∑
p=1

(μp − λp)f̃p(λi).

From this we get

δ − τ ≤
n−1∑
p=1

−f̃p(μp − λp) ≤
n∑

p=1

−fp(λi)μp −
n−1∑
p=1

−f̃p(λi)λp.

From assumption (5) we also have that λpfp → 0 uniformly as λp →∞,

since λpfp(λi) = −λ−1p gp(λ
−1
i ), and xpg(xi) is uniformly continuous on

compact subsets of {xj ≥ 0 for all 1 ≤ j ≤ n}. So we can choose a
constant K ′ such that −fpλp < τ if λp > K ′. In addition we take K
above so that K > K ′. We then have

δ − τ ≤
n∑

p=1

−fpμp −
n∑

p=1

−fpλp + nτ +
n−1∑
p=1

(f̃p − fp)K
′

≤ ε

n∑
p=1

−fpλp + nτ + (n− 1)τK ′

≤ CεF (A) + nτ + (n− 1)τK ′.

We can choose τ so small (i.e., K above so large), that

(n+ 1)τ + (n− 1)τK ′ <
δ

2
.

We will then have
δ

2
≤ CεF (A) = Cε.

If now ε is sufficiently small (i.e., the constant N above is chosen suffi-
ciently large), then this will be a contradiction.

It follows that if the constant N before is chosen sufficiently large,
then at the maximum of our function f we have a bound g11̄ < K for
some large K. From this it follows that we have an inequality of the
form

Λαg < CeN(ϕ−inf ϕ),

which is what we wanted to prove. q.e.d.

We now prove Theorem 4 under the more general assumption that χ
satisfies the positivity condition (8) in the viscosity sense. For this let
us write

(14) F (A) =

n∑
k=1

ckSk(A
−1),
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for constants ck ≥ 0. Note that if χ is smooth and Bi
j = αip̄χjp̄ then

F̃ (B) ≤ c−δ for some δ > 0 is equivalent to the positivity of (n−1, n−1)
forms

(15) cχn−1 −
n−1∑
k=1

ck

(
n− 1

k

)
χn−k−1 ∧ αk > 0.

In particular, Theorem 4 follows from the following.

Theorem 17. Suppose that we have a Kähler current χ ∈ Ω satisfy-

ing F̃ (αip̄χjp̄) ≤ c − δ in the viscosity sense, for some δ > 0. Suppose
that the constant c satisfies

n∑
k=1

ck

(
n

k

)∫
M

αk ∧ ωn−k
0 = c

∫
M

ωn
0 .

Then there is an ω ∈ Ω satisfying the equation F (αip̄ωjp̄) = c, i.e.,

(16)
n∑

k=1

ck

(
n

k

)
αk ∧ ωn−k = cωn.

Proof. We will use the continuity method to solve the equation

(17) Fd(A) = F (A) + d
αn

ωn
= cd,

for d ∈ [0,∞), where the constant cd is determined by d by integrating
the equation with respect to ωn over M . In particular cd ≥ c. Ac-
cording to Lemma 18 below, Fd(A) satisfies the structural conditions
required by the C2-estimates (with K = ∞ and M the space of all

positive Hermitian matrices). In addition F̃d = F̃ , so χ is a strict vis-
cosity subsolution for the equation Fd(A) = cd, for all d ≥ 0. We will,
therefore, be able to use Proposition 16 to obtain C2-estimates.

Let I = {d ∈ [0,∞) : (17) has a solution}. By Yau’s theorem [31]
we can solve the equation αn/ωn = c∞ for a suitable constant c∞.
The implicit function theorem then implies that we can solve (17) for
sufficiently large d, and that I is open.

To see that I is closed, suppose that ωk = ω0 +
√−1∂∂ϕk are solu-

tions, with corresponding dk → d. Proposition 16 then implies that

Λαωk < CeN(ϕk−inf ϕk),

for uniform C,N . Normalizing so that supϕk = 0, it follows from
Weinkove [29, Lemma 3.4] (see also [28, Proposition 4.2]), that we
have Λαωk < C for a uniform C. The equation then implies a lower
bound ωk > C−1α as well. Since Fd is convex, the Evans–Krylov theo-
rem [12, 18] (see Tosatti–Wang–Weinkove–Yang [26] for a general ver-
sion adapted to complex geometry), together with Schauder estimates
can be used to obtain higher order estimates for the ωk, allowing us to



62 T. C. COLLINS & G. SZÉKELYHIDI

pass to a limit as k → ∞. This shows that I is closed, and so 0 ∈ I,
which was our goal. q.e.d.

Lemma 18. The map F (A) in Equation (14) satisfies the structural
conditions at the beginning of Section 3, on the whole space of positive
Hermitian matrices.

Proof. It is clear that F (A) > 0, and from Lemma 7 we have, at a
diagonal A with eigenvalues λi > 0, that

∂iiF (A) = −
n∑

k=1

ck
Sn−k;i(A)

λiSn(A)
,

which is negative. The required convexity property (2) follows from
Lemma 8.

For property (3), note that∑
i

−λi∂iiF (A) =
∑
k,i

ck
Sn−k;i(A)

Sn(A)

=
n∑

k=1

kck
Sn−k(A)

Sn(A)
=

n∑
k=1

kckSk(A
−1),

using the identity
∑n

i=1 Sl;i(A) = (n− l)Sl(A). It follows that

F (A) ≤ −
∑
i

λi∂iiF (A) ≤ nF (A).

To show property (4), recall that

−λi∂iiF (A) =

n∑
k=1

ck
Sn−k,i(A)

Sn(A)
,

and note that if λ1 is the smallest eigenvalue, then Sn−k;1(A) ≥
Sn−k;i(A) for all i. It follows that −λ1∂11F (A) ≥ −λi∂iiF (A).

Finally, property (5) is clear since we have

g(x1, . . . , xn) = f(x−11 , . . . , x−1n ) =

n∑
k=1

ckSk(x1, . . . , xn),

which extends smoothly to the orthant {xi ≥ 0 for all 1 ≤ i ≤ n}.
q.e.d.

4. The proof of Theorem 1

In the proof of Theorem 1 a key role is played by the parabolic equa-
tion (10). In this section we will consider the operator

Fε(A) = S1(A
−1)− εSn(A

−1),
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for small ε > 0. Note that this operator is not convex on the space of all
positive definite Hermitian matrices. The following lemma shows that
it is still convex, however, on a suitable set of matrices A.

Lemma 19. 1) For all Q > 0, if ε is sufficiently small, then Fε

satisfies the structural conditions in Section 3 on the set where
S1(A

−1) < Q.
2) For all K > 0, if ε is sufficiently small, then Fε satisfies the struc-

tural conditions in Section 3 on the connected component M of
the set {Fε(A) < K} containing the set {S(A−1) < K}.

Proof. For statement (1), note that if S1(A
−1) < Q, then all eigen-

values of A are greater than 1/Q. By Lemma 9, for sufficiently small
ε, the map Fε satisfies the structural conditions (1) and (2) on the set
of matrices with eigenvalues greater than 1/Q. For structural condition
(3), we have∑

k

−λk∂kkFε(A) =
∑
k

Sn−1;k(A)− ε

Sn(A)

=
Sn−1(A)

Sn(A)
− nε

Sn(A)
= S1(A

−1)− nεSn(A
−1).

The required inequality follows since Sn(A
−1) < Qn−1S1(A

−1), and so
if ε is sufficiently small, we will have

1

2
Fε(A) <

∑
k

−λk∂kkF (A) < CF (A).

Although we do not actually need structural assumptions (4) and (5)
below (since we will only use Proposition 13 which does not use them),
they are also easy to check, (5) being immediate. For (4), note that

−λi∂iiFε(A) =
Sn−1;i(A)− ε

Sn(A)
,

and so for sufficiently small ε we will have

1

2
(−λi∂iiS1(A

−1)) ≤ −λi∂iiFε(A) ≤ λi∂iiS1(A
−1),

so (4) follows from the corresponding property of the map A 	→ S1(A
−1),

which we have shown in Lemma 18.
For statement (2) let us take Q = K + 1, and take ε sufficiently

small for (1) to apply. In addition, note that the AM-GM inequality
implies that Sn(A

−1) ≤ n−nS1(A
−1)n, so if S1(A

−1) = K + 1, then
Sn(A

−1) < K ′ for some constant K ′. Let us choose ε even smaller, so
that K + 1− εK ′ > K. This means that if S1(A

−1) = K + 1, then

Fε(A) ≥ K + 1− εK ′ > K.
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Suppose now that A1 is in the connected component of {Fε(A) < K}
containing {S1(A

−1) < K}, i.e., we have positive Hermitian matrices
At for t ∈ [0, 1] such that Fε(At) < K, and S1(A

−1
0 ) < K. Then

from the above we have S1(A
−1
t ) < K + 1 for all t, and in particular

S1(A
−1
1 ) < K + 1. It follows from (1) that Fε satisfies the structural

conditions on this connected component. q.e.d.

Consider now the evolution equation

(18)

{
∂ϕt

∂t = cε − Fε(At),

ϕ0 = 0,

where ωt = ω0 +
√−1∂∂ϕt, and (At)

i
j = αik̄gt,jk̄. In addition the

constant cε is chosen so that∫
M

cεω
n =

∫
M

Fε(A)ω
n.

From the previous lemma we have that if F (A0) < K, and ε is cho-
sen sufficiently small, then Fε satisfies the structural conditions on the
connected component of {Fε(A) < K} containing A0. Proposition 13
then implies that the flow exists for all time. Note that in addition the
proof of Lemma 19 also shows that we can assume S1(A

−1
t ) < K + 1

along the flow.
The parabolic equation (18) is the negative gradient flow of the func-

tional Jε on the Kähler class [ω], defined by the variational formula

d

dt

∣∣∣∣
t=0

Jε(ω + t
√−1∂∂ϕ) =

∫
M

ϕ(Fε(A)− cε)ω
n,

and normalized so that Jε(ω0) = 0 for a fixed choice of ω0. Note that
J0 is the J-functional considered in Song–Weinkove [21].

Definition 20. We say that the function J0 is proper, if there are
constants C, δ > 0 such that if ω = ω0 +

√−1∂∂ϕ, then

J0(ω) ≥ −C + δ

∫
M

ϕ(ωn
0 − ωn)

= −C + δ

∫
M

√−1∂ϕ ∧ ∂̄ϕ ∧ (ωn−1
0 + . . .+ ωn−1),

for all ω ∈ Ω.

The main ingredient in the proof of Theorem 1 is the following.

Proposition 21. Suppose that J0 is proper. Then we can find ω ∈ Ω

such that Ai
j = αik̄ωjk̄ satisfies S1(A

−1) = c, i.e., Λαω = c.
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Proof. For simplicity of notation let us normalize the class Ω and α
so that

∫
M ωn =

∫
M αn = 1. It follows that

cε = c− ε

∫
M

αn

ωn
ωn = c− ε,

for any ε > 0. If ω = ω0 +
√−1∂∂ϕ, then we have

(Jε − J0)(ω) = ε

∫ 1

0

∫
M

ϕ(ωn
t − αn),

where ωt = ω0 + t
√−1∂∂ϕ. Using Yau’s Theorem [31], we can assume

that we chose our base point ω0 so that ωn
0 = αn, so

Jε(ω) = J0(ω) + ε

∫ 1

0

∫
M

ϕ(ωn
t − ωn

0 )

≥ −C + δ

∫
M

√−1∂ϕ ∧ ∂̄ϕ ∧ (ωn−1
0 + . . .+ ωn−1)

− ε

∫ 1

0

∫
M

√−1∂ϕ ∧ ∂̄ϕ ∧ (ωn−1
t + . . .+ ωn−1

0 ).

We claim that the third term above is controlled by the second term.
To see this observe that ωt = (1− t)ω0 + tω, and so

ωn−1−k
t ∧ ωk

0 =

k∑
i=0

pi(t)ω
n−1−k−i ∧ ωk+i

0 ,

where pi(t) is a polynomial in t depending only on n, k. The claim
clearly follows, and so if ε is sufficiently small, then Jε will be proper.

Choose ε even smaller if necessary so that Equation (18) has a solution
ωt = ω0+

√−1∂∂ϕt for all t > 0. Since this flow is the negative gradient
flow of Jε, and this functional is bounded from below, we can find a
sequence of metrics ωk along the flow such that

lim
k→∞

∫
M
(Fε(Ak)− cε)

2 ωn
k = 0.

Since we have S1(A
−1
t ) < K + 1 along the flow for a uniform constant

K, we have a uniform lower bound ωk > κα. It follows that

(19) lim
k→∞

‖Fε(Ak)− cε‖L2(α) = 0,

and from Lemma 11 we know that Fε(Ak) < K. Choosing ε even
smaller, using Lemma 9 we can assume that Fε satisfies the structural
conditions on the set of matrices with eigenvalues bounded below by κ

2 .
The importance of this is that this is a convex set.

Let us write ψk = ϕk − supM ϕk, so that ωk = ω0 +
√−1∂∂ψk, and

supM ψk = 0. The properness of Jε implies that we have a uniform
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constant C such that ∫
M

ψk(ω
n
0 − ωn

k ) < C.

A standard argument using the inequality ω0 +
√−1∂∂ψk > 0 together

with supM ψk = 0 implies that
∫
M ψkω

n
0 is bounded below uniformly. It

follows that we have a uniform bound

(20) −
∫
M

ψkω
n
k < C.

Choosing a subsequence we can assume that the ωk converge weakly to a
current ω0+

√−1∂∂ψ∞, and ψk → ψ∞ in L1. From Guedj–Zeriahi [16,
Corollary 1.8, Corollary 2.7], the bound (20) implies that ψ∞ has zero
Lelong numbers.

We now use the technique of Blocki–Kolodziej [2] to mollify the met-
rics ωk, in order to obtain pointwise bounds from the integral bound
(19). The fact that ψ∞ has zero Lelong numbers will ensure that we
can perform this mollification uniformly in k.

Fix a small number τ > 0, and choose a finite open cover {Wi} of M
such that on each Wi we have local coordinates zj , in which the matrix
of components of α satisfies

(21) (1− τ)δij < αij̄ < (1 + τ)δij .

Let Vi ⊂ Ui ⊂ Wi be relatively compact so that the Vi still cover M .
On each Wi we have ω0 =

√−1∂∂fi for local potentials fi, and so we

have the plurisubharmonic functions u
(k)
i = fi + ψk, which are local

potentials for the ωk. We allow k =∞ here. For sufficiently small δ > 0
(depending on the distance between the boundaries of Ui,Wi, and so on

τ) we can define plurisubharmonic functions u
(k)
i,δ on Ui by

u
(k)
i,δ (z) =

∫
Cn

u
(k)
i (z − δw)ρ(w) dw,

where ρ : Cn → R is a standard mollifier: ρ ≥ 0, ρ(w) = 0 for |w| > 1,
and

∫
ρ(w) dw = 1.

For each i we choose ηi : Ui → R such that ηi ≤ 0, and in addition
ηi = 0 on Vi and ηi = −1 on ∂Ui. Fix γ > 0 to be sufficiently small
(depending on τ) such that γ|√−1∂∂ηi| < τα on Ui for all i.

Consider the function

(22) ψk,δ(z) = max
i
{u(k)i,δ (z)− fi(z) + γηi(z)},

where the maximum is taken over all i for which z ∈ Ui. The results
in Blocki–Kolodziej [2] (see the proof of Theorem 2) imply that if δ is
sufficiently small (depending on τ), then

|(u(∞)
i,δ − fi)− (u

(∞)
j,δ − fj)| < γ

4
,
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on Ui ∩ Uj, since ψ∞ has zero Lelong numbers. The L1-convergence

ψk → ψ∞ implies that we have uniform convergence u
(k)
i,δ → u

(∞)
i,δ of the

mollifications as k → ∞, and so once k is chosen sufficiently large we
will have

|(u(k)i,δ − fi)− (u
(k)
j,δ − fj)| < γ

2
,

on the set Ui ∩ Uj . This implies that if z ∈ ∂Ui ∩ Vj, then

(u
(k)
i,δ − fi + γηi)(z) < (u

(k)
j,δ − fj + γηj)(z),

so all z ∈ M have a neighborhood U such that in the definition of ψk,δ

the maximum can be taken over those j for which u
(k)
j,δ − fj + γηj is

defined on U (i.e., for which U ⊂ Uj). In particular ψk,δ is continuous.
We will now see that in addition for large k and small δ, the form

χ = ω0+
√−1∂∂ψk,δ satisfies F̃ (αip̄χjp̄) ≤ c−δ′ in the viscosity sense for

small δ′ > 0, and so by Theorem 17 we can solve the equation Λωα = c.
Using Lemma 15 it is enough to show that for large k and small δ the

metric χi = ω0+
√−1∂∂(u(k)i,δ +γηi) on Ui satisfies F̃ (αpm̄χi,qm̄) ≤ c−δ′.

Note that F (A) = S1(A
−1) here.

Let us work at a point z ∈ Ui. Define the following four matrix valued
functions, defined in Ui:

Ap
q = αpm̄∂q∂m̄u

(k)
i = αpm̄ωk,qm̄,

Bp
q = ∂q∂p̄u

(k)
i ,

Cp
q = ∂q∂p̄u

(k)
i,δ ,

Dp
q = αpm̄∂q∂m̄(u

(k)
i,δ + γηi).

Because of (21), the definition of the mollification u
(k)
i,δ and our bound

on γ, the eigenvalues of all these matrices are at least κ/2, and we can
choose eigenvectors so that the corresponding eigenvalues are all as close
to each other as we like, if τ is sufficiently small. In particular the same
holds for the reciprocals of the eigenvalues. In what follows, let us
denote by h(τ) a function such that h(τ)→ 0 as τ → 0, and which may
change from line to line. By the structural assumption (5) for Fε, we
will then have

Fε(B) < Fε(A) + h(τ).

The convexity of Fε implies that

Fε(C) ≤
∫
Cn

Fε(B(z−δw))ρ(w) dw ≤
∫
Cn

Fε(A(z−δw))ρ(w) dw+h(τ).

It follows that

Fε(C)− cε ≤ Cτ‖Fε(A)− cε‖L2(α) + h(τ),
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where the constant Cτ blows up as τ → 0. Note that in our notation
here A is the same as Ak in Equation (19). Finally interchanging C with
D will only introduce a small error, again by structural assumption (5),
so we have

Fε(D)− cε ≤ Cτ‖Fε(A)− cε‖L2(α) + h(τ).

Let us write out what this means at z in normal coordinates for α,

such that
√−1∂∂(u(k)i,δ +γηi) is diagonal with eigenvalues λ1, . . . , λn (so

that these are the eigenvalues of D). We have

1

λ1
+ . . .+

1

λn
− ε

λ1 · · ·λn
− c+ ε ≤ Cτ‖Fε(A)− cε‖L2 + h(τ).

Since λi > κ/2, we can first choose ε sufficiently small so that
ε(λ1 · · ·λn)

−1 < 1/λi for all i. We then choose τ so small that h(τ) <
ε/4, and finally, according to (19) we can choose k sufficiently large, so
that Cτ‖Fε(Ak)−cε‖L2 < ε/4. Combining these we have for each i, that∑

j �=i

1

λj
< c− ε

2
.

But this means that χi = ω0+
√−1∂∂(u(k)i,δ +γηi) satisfies F̃ (αpm̄χi,qm̄) <

c − ε/2. This implies that χ = ω0 +
√−1∂∂ψk,δ satisfies F̃ (αip̄χjp̄) ≤

c − ε/2 in the viscosity sense, and so by Theorem 17 there is a metric
ω ∈ Ω solving Λαω = c. q.e.d.

Remark. In the proof above, one could try to find a smooth metric

χ satisfying F̃ (αip̄χjp̄) ≤ c − ε/2, by taking a regularized maximum
in Equation (22). It is not at all clear, however, that the regularized
maximum will satisfy the required subsolution property. This is why we
take the maximum instead and work with subsolutions in the viscosity
sense. In the proof of Theorem 24 we will face a similar problem, and
need to consider viscosity subsolutions.

The proof of Theorem 1 now follows from Proposition 22 below, which
is essentially contained in the work of Song–Weinkove [21] (see also
[24] and Li–Shi–Yao [20] for similar arguments). Let us denote by Jα

the functional J0 above, and by Jβ the same functional with β ∈ [α]
replacing α.

Proposition 22. If there is a metric χ ∈ Ω satisfying Λχα = c, then
Jα is proper. In addition if Jα is proper, then Jβ is proper.

Proof. Suppose that we can find an χ such that Λχα = c. For small
δ > 0 the form α − δχ is positive, and we have Λχ(α − δχ) = c −
nδ. Song–Weinkove [21] showed that in this case the corresponding
functional Jα−δχ is bounded below. This functional is given, up to
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adding a constant, by

Jα−δχ(ω) = Jα(ω)− nδ

∫ 1

0

∫
M

ϕ(χn − ωn
t ),

where ωt = χ+ t
√−1∂∂ϕ and ω = ω1. It follows that

Jα(ω) ≥ −C + nδ

∫ 1

0
t

∫
M

√−1∂ϕ ∧ ∂̄ϕ ∧ (χn−1 + . . .+ ωn−1
t ),

which implies that Jα is proper.
If β = α+

√−1∂∂ψ, and ωt is as above then we have

Jβ(ω1)− Jα(ω1) =

∫ 1

0

∫
M

ϕ(β − α) ∧ ωn−1
t dt

=

∫ 1

0

∫
M

ψ
√−1∂∂ϕ ∧ ωn−1

t dt

=
1

n

∫ 1

0

∫
M

ψ
d

dt
ωn
t dt

=
1

n

∫
M

ψ(ωn
1 − ωn

0 ).

It follows that |Jβ − Jα| < C for some constant depending on ψ, so if
Jα is proper, then so is Jβ. q.e.d.

The proof of Theorem 5 is very similar to the above, but simpler. For
small κ, ε > 0 we consider the operator

Fκ,ε(A) =

n∑
k=1

ckSk(A
−1) + κS1(A

−1)− εSn(A
−1).

We are assuming that cn > 0, so that for sufficiently small ε this op-
erator will satisfy the structural conditions on the space of all positive
Hermitian matrices. In particular for any initial metric ω0 ∈ Ω, the flow

∂ϕt

∂t
= cκ,ε − Fκ,ε(At)

has a solution for all time, with ωt = ω0 +
√−1∂∂ϕt, ϕ0 = 0, and

(At)
i
j = αik̄ωt,jk̄. The constant cκ,ε is chosen so that∫

M
cκ,ε ω

n =

∫
M

Fκ,ε(A)ω
n.

The flow is the negative gradient flow of the function Jκ,ε, defined by

d

dt

∣∣∣∣
t=0

Jκ,ε(ω + t
√−1∂∂ϕ) =

∫
M

ϕ(Fκ,ε(A)− cκ,ε)ω
n,

normalized so that Jκ,ε(ω0) = 0.
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The following result is not stated in this generality in Fang–Lai–
Ma [14], but it follows using exactly the same argument (see also Song–
Weinkove [21]), together with the perturbation method in the proof of
Proposition 22.

Proposition 23. Suppose that there is a metric ω such that

Fκ,ε(α
ik̄ωjk̄) = cκ,ε. Then Jκ,ε is proper.

Proof of Theorem 5. We are assuming that there is a metric ω such that

F (A) = c, where we are writing F = F0,0 and c = c0,0, and Ai
j = αik̄ωjk̄.

Using the implicit function theorem, we can also solve Fκ,ε(A) = cκ,ε,
for sufficiently small κ, ε > 0, and this implies that Jκ,ε is proper. Let
us write J ′κ,ε for the functional defined in the same way as Jκ,ε but with
α replaced by a metric β ∈ [α]. Just as in Proposition 22 we obtain
that J ′κ,ε is also proper. We can then use the negative gradient flow to
obtain a sequence of metrics ωk, such that the matrices Bk defined by
(Bk)

i
j = βip̄ωk,jp̄ satisfy

lim
k→∞

∫
M
(Fκ,ε(Bk)− cκ,ε)

2 ωn
k = 0.

In addition we have Fκ,ε(Bk) < C along the flow, for a uniform constant

C, and so using that Fκ,ε(Bk) > κS1(B
−1
k ), we obtain a uniform lower

bound ωk > C−1β, where C also depends on κ.
Performing the same mollification argument as in the proof of Propo-

sition 21, for any δ > 0 we can obtain a Kähler current χ ∈ [ω] with
continuous local potentials, satisfying

Fκ,ε(β
ip̄χjp̄) ≤ cκ,ε + δ,

in the viscosity sense. We have∫
M

cκ,εω
n =

∫
M

Fκ,ε, ω
n =

∫
M

c ωn +

∫
M

[
κS1(A

−1)− εSn(A
−1)

]
ωn,

and so cκ,ε = c+ κd1 − εd2 for some positive constants d1, d2 > 0, so

Fκ,ε(β
ip̄χjp̄) ≤ c+ δ + κd1 − εd2.

Choosing κ sufficiently small so that κd1 − εd2 < 0, and then δ suffi-
ciently small, we will have

Fκ,ε(β
ip̄χjp̄) ≤ c− δ′,

for some small δ′ > 0. The definition of Fκ,ε then implies

n−1∑
k=1

ckSk(B
−1) ≤ c− δ′,

in the viscosity sense, where Bi
j = βip̄ωjp̄. Theorem 17 then implies

that we can find a metric η ∈ [ω] satisfying F (βip̄ηjp̄) = c. q.e.d.
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5. Toric manifolds

In the remainder of this article we will work on a toric manifold M .
Our goal is to prove Theorem 3. By Theorems 1 and 5 it is sufficient to
work with torus invariant metrics. We restate the theorem here.

Theorem 24. Let M be a toric manifold, and α, χ torus invariant
Kähler metrics on M . Suppose that c > 0 is such that

(23)

∫
M

cχn − nχn−1 ∧ α ≥ 0,

and for all irreducible toric subvarieties V ⊂ M of dimension p =
1, 2, . . . , n− 1 we have ∫

V
cχp − pχp−1 ∧ α > 0.

Then there exists a torus invariant metric ω ∈ [χ] such that

(24) Λωα+ b
αn

ωn
= c,

for some constant b ≥ 0, depending on the choice of c. In particular
either Λωα = c, i.e., we have a solution of the J-equation, or Λωα < c,
depending on whether we have equality in (23).

Proof. The proof proceeds by induction on the dimension of M , the
result being straightforward when dimM = 1. Let us assume that we
already know the result for dimensions less than n, and suppose that
dimM = n. We solve Equation (24), by the continuity method just as
in the proof of Theorem 4.

Using Yau’s theorem, we can find ω ∈ [χ] such that αn

ωn is constant,
which corresponds to the limit c → ∞. From the implicit function
theorem it then follows that there is some c′, such that we can solve
Equation (24) for all ĉ ∈ (c′,∞) with b depending on ĉ. Define c0 to
be the infimum of all such c′ > 0. Our goal is to show that if c0 ≥ c,
and ck → c0, then we have uniform estimates C
,α estimates for the
solutions ωk of the equations

Λωk
α+ bk

αn

ωn
= ck.

Let us denote by D = ∪N
i=1Di the union of all toric divisors on M .

We use the inductive hypothesis to build a suitable subsolution for the
equation in a neighborhood of D. For each Di, the inductive hypothesis
implies that there is some bi > 0, and a form ωi ∈ [χ], such that the
restriction of ωi to Di is positive, and satisfies

Λω|Di
αi|Di + bi

α|n−1Di

ωi|n−1Di

= c.
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This follows from the inductive hypothesis by a simple extension argu-
ment. Though we will not need it, we remark that we can even assume
that the form ωi is Kähler on M [8]. We define

χi = ωi +A
√−1∂∂(γ(di)|di|2),

where di denotes the distance from Di, A is a large constant, and γ :
R→ R is a cutoff function supported near 0. If A is chosen sufficiently
large, then χi will be positive in a small neighborhood Ui of Di and will
satisfy Λαχi < c− κ for some small κ > 0.

Fixing a reference form ω0, we can write χi = ω0+
√−1∂∂ψi for each

i. Consider now the functions

ψ̃i = ψi −Bi + δ
∑
j<i

γ(dj) log dj ,

where Bi, δ > 0 are constants, and let χ̃i = ω0 +
√−1∂∂ψ̃i. We can

choose δ sufficiently small, so that on a neighborhood of Di \ ∪j<iDj ,
the form χ̃i is positive definite and satisfies Λχ̃i

α < c − κ. We choose
Bi inductively, for i = N,N − 1, . . . , 1, starting with BN = 0, so that
on Dj , for all j > i we have ψi −Bi < ψj −Bj.

Suppose that x ∈M is in a neighborhood V of an intersection Di1 ∩
. . . ∩Dik , where i1 < . . . < ik, and suppose that

ψ̃a(x) = max
j

ψ̃j(x).

If V is sufficiently small, then we must have a ≤ i1, since ψ̃j = −∞
along Di for i < j. Together with the choice of the Bi, this implies that
we must have a = i1, if the neighborhood V is sufficiently small. We
can also assume that V is disjoint from Dj for j < i1, so that we have
Λχ̃i1

α < c − κ on V . Using Lemma 15 we have that on a sufficiently

small neighborhood U of D =
⋃

iDi the Kähler current χ = ω0+max ψ̃i

satisfies F̃ (αip̄χjp̄) ≤ c−κ in the viscosity sense, where F (A) = S1(A
−1).

We can, therefore, apply Proposition 16, reducing C2-esimates on U to
the boundary ∂U .

In Proposition 25 below, we will show that we have uniform C l,α

estimates for the ωk outside the neighborhood U of D, and so we can
apply Proposition 16 to the closure of U to obtain bounds of the form

Λαωk < CeN(ϕk−inf ϕk),

on U , where ωk = ω0 +
√−1∂∂ϕk. Since we already have estimates

outside of U , the same inequality is true globally on M . Just as in
the proof of Theorem 4, we can use Weinkove [28, Proposition 4.2] to
obtain the estimate Λαωk < C, and as in the proof of Theorem 17 the
Evans–Krylov theorem and Schauder estimates can be used to obtain
higher order estimates. q.e.d.
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5.1. Interior estimates. In this section we work on a toric manifold
M with torus invariant Kähler metrics α, ω, satisfying the equation

(25) S1(A) + bSn(A) = c,

where Ai
j = ωip̄αjp̄, and b ≥ 0 and c > 0 are constants. Our goal is to

obtain estimates for ω in terms of α, c, b, away from the torus invariant
divisors of M .

Proposition 25. Suppose that α, ω are torus invariant metrics on
M satisfying Equation (25). Then on any compact set K ⊂M disjoint
from the torus invariant divisors, we have bounds

ω > C−1α,

‖ω‖C�,α < C
,

for C,C
 depending on M,α, bounds on c, b, and the Kähler class [ω],
and C
 depends in addition on � ≥ 2.

The proof of this proposition will occupy the rest of this section.
To obtain these estimates, we write our equation in terms of convex
functions onRn, corresponding to the dense complex torusRn×(S1)n in
M . Suppose that α =

√−1∂∂f and ω =
√−1∂∂g, where f, g : Rn → R

are convex. We are assuming that f, g satisfy the equation

S1(A) + bSn(A) = c,

where Ai
j = gipfjp. The function f is fixed, and we want to derive

estimates for the function g on compact sets K ⊂ Rn. By adding an
affine linear function to g, we can assume that g(0) = 0 and ∇g(0) = 0.

Lemma 26. For any compact K ⊂ Rn there exists a C > 0 such
that supK |g| < C.

Proof. The image of ∇g is a convex polytope P , determined by the
Kähler class of ω up to translation by adding affine linear functions to
g. Our normalization ensures that 0 ∈ P , and in particular we get a
gradient bound on g. The result follows immediately. q.e.d.

We next prove a C2-estimate for g on compact sets by a contradiction
argument.

Proposition 27. Suppose that f, g : B → R are convex functions on
the unit ball, satisfying

fijg
ij + b

det(D2f)

det(D2g)
= c,

with b ≥ 0 as above, and suppose infB g = g(0) = 0. Then there is a
C > 0 depending on supB |g|, bounds on c, b, C3,α bounds on f and a
positive lower bound on the Hessian of f , such that

sup
1
2
B

|gij | < C.
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Proof. We can assume that c = 1 by scaling f . We argue by contradic-
tion. Suppose that we have sequences fk, gk satisfying the hypotheses,
including |gk| < N , but |∂2gk(xk)| > k for some xk ∈ 1

2B. Note that
the equation implies that

gk,ij > fk,ij > τδij ,

for some fixed τ > 0, i.e., we have a uniform lower bound on the Hessians
of the gk.

Let hk : Uk → R be the Legendre transform of gk. By shrinking
the ball a bit, we can assume that gk → g uniformly for some strictly
convex g : B → R. Lemma 28 below implies that for sufficiently large k
we have Uk ⊃ ∇g(0.9B), and so ∇g(0.8B) is of a definite distance from
∂Uk for large k. In addition, hk satisfies the equation

(26)
∑
i,j

fk,ij(∇hk(y))hk,ij(y) + bk det(D
2fk(∇hk)) det(D

2hk(y)) = 1.

In addition from the normalization we get hk(0) = ∇hk(0) = 0. We use
Proposition 29 below together with the Schauder estimates, to obtain
uniform C l,α bounds on each hk, on ∇g(0.8B), so we can take a limit
h∞ : ∇g(0.8B)→ R, satisfying an equation of the form∑
ij

f∞,ij(∇h∞(y))h∞,ij(y)+b∞ det(D2f∞(∇h∞(y))) det(D2h∞(y))= 1.

There are two cases:

1) We have a positive lower bound on the Hessian of h∞. This implies
a lower bound on Hesshk for large k, on ∇g(0.8B), i.e., we get an
upper bound on Hess gk at all points x ∈ B for which ∇gk(x) ∈
∇g(0.8B). But by Lemma 28, ∇gk(0.7B) ⊂ ∇g(0.8B) for large k,
so we get an upper bound on Hess gk on 0.7B, which contradicts
our assumption.

2) The Hessian of h∞ is degenerate somewhere. Then we can ap-
ply the constant rank theorem of Bian–Guan [1, Theorem 1.1].
Indeed, for a fixed value of ∇h∞, the equation is of the form

F (A) = Tr(BA) + cdet(A)− 1 = 0,

for a positive definite matrix B and positive constant c. The
assumptions of Theorem 1.1 in [1] are satisfied, since the map
A 	→ F (A−1) is convex in A, according to Lemma 8. It follows
that if the Hessian of h∞ is degenerate at a point, then it must be
degenerate everywhere, and so∫

∇g(0.8B)
det(h∞,ij) = 0.
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This contradicts the fact that ∇gk(0.7B) ⊂ ∇g(0.8B) for large k,
and ∫

∇gk(0.7B)
det(hk,ij) = Vol(0.7B),

but hk → h∞ in C2,α. q.e.d.

Lemma 28. Suppose that fk : B → R are convex, with fk,ij > τδij ,
such that they converge uniformly to f : B → R. If B1 ⊂ B2 ⊂ B3 ⊂ B
are relatively compact balls, then for sufficiently large k the gradient
maps satisfy

∇fk(B1) ⊂ ∇f(B2) ⊂ ∇fk(B3).

Proof. From Gutiérrez [17, Lemma 1.2.2] we have that

lim sup
k→∞

∇fk(K) ⊂ ∇f(K),

for any compact K ⊂ B. Suppose that B1 ⊂ B′ ⊂ B2. The strict
convexity of f implies that ∇f(∂B2) is a positive distance from ∇f(B′).
In particular for each x ∈ ∇f(∂B2), there is a kx, such that x 
∈ ∇fk(B′)
for all k > kx. The strict convexity then implies that there is a (fixed)
radius δ > 0, such that Bδ(x) is disjoint from ∇fk(B1) for all k > kx.
Since ∇f(∂B2) is compact by [17, Lemma 1.1.3], we can find some N
such that ∇fk(B1) is disjoint from ∇f(∂B2) for all k > N . But this
implies

∇fk(B1) ⊂ ∇f(B2),

for k > N .
For the other inclusion we use that for any compact K ⊂ B and open

set U ⊃ K with U ⊂ B, we have

∇f(K) ⊂ lim inf
k→∞

∇fk(U).

Now choose an intermediate ball B′ with B2 ⊂ B′ ⊂ B3. For any
x ∈ ∇f(B2), we have a kx such that x ∈ ∇fk(B

′) for all k > kx. By the
strict convexity we have some δ > 0 such that Bδ(x) ∈ ∇fk(B3). Using
that ∇f(B2) is compact, we can again cover by finitely many such balls,
and we get an N such that ∇f(B2) ⊂ ∇fk(B3) for all k > N . q.e.d.

The higher order estimates required by Proposition 25 follow from
standard elliptic theory. We now show the C2,α-estimates for equa-
tion (26). The difficulty is that the operator is neither concave, nor
convex, and the result of Caffarelli–Yuan [5] also does not apply di-
rectly.

Proposition 29. Suppose that h : B → R is a smooth convex func-
tion on the unit ball in Rn satisfying the equation

(27)
∑
i,j

aij(∇h)hij + b(∇h) det(D2h) = 1,
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where aij, b ∈ C1,α, b ≥ 0 and λ < aij < Λ. Then we have ‖h‖C2,α( 1
2
B) <

C for a constant C depending on λ,Λ and C1,α bounds for aij, b and C1

bounds for h.

As a first step we prove a priori C2,α estimates for the constant coef-
ficient equation.

Proposition 30. Suppose that h : B → R is a smooth convex func-
tion on the unit ball in Rn satisfying the equation

(28) Δh+ bdet(D2h) = 1,

where b ≥ 0 is a non-negative constant. Then we have ‖h‖C2,α( 1
2
B) < C

for a constant C depending on b and |h|C1,α(B).

Proof. We will assume b > 0, since b = 0 is standard. Let f =
det(D2h)1/n, and denote the linearized operator by L, which acts on a
smooth function g by

Lg = Δg + bdet(D2h)hijgij ,

where we use summation convention for repeated indices. We now com-
pute Lf . We work at a point where D2h is diagonal. We also write
Sn = det(D2h) to simplify notation. First, differentiating the equation
we have for each k

hiik + bSnh
ijhijk = 0,

hiikk(1 + bSnh
ii) + bSnh

pphppkh
qqhqqk − bSnh

pphqqh2pqk = 0.

Also, differentiating f , we have

fk =
1

n
S1/n
n hijhijk,

fkk =
1

n
S1/n
n hiihiikk +

1

n2
S1/n
n hpphppkh

qqhqqk − 1

n
S1/n
n hpphqqh2pqk.

We now compute Lf :

Lf = (1 + bSnh
kk)fkk

=
S
1/n
n

n2
(1 + bSnh

kk)
[
nhiihiikk + hpphqq(hppkhqqk − nh2pqk)

]
=

S
1/n
n

n

[
hiibSnh

pphqq(h2pqi − hppihqqi)
]

+
S
1/n
n

n2
(1 + bSnh

ii)hpphqq(hppihqqi − nh2pqi)

=
S
1/n
n

n2
hiihpphqqhppihqqi(−nbSn + bSn)

+
S
1/n
n

n2

∑
i,p,q

hpphqqhppihqqi − S
1/n
n

n

∑
i,p,q

hpphqqh2pqi.
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We have∑
p,q

hpphqqhppihqqi =

(∑
p

hpphppi

)2

≤ n
∑
p

(hpphppi)
2 ≤ n

∑
p,q

hpphqqh2pqi.

It follows from this that Lf ≤ 0.
At this point we can follow the argument in Caffarelli–Yuan [5] closely.

The only difference in the argument is that in [5] the function eKΔu is
a subsolution of the linearized equation for a sufficiently large constant
K. This does not appear to be the case for our equation, but instead we
can use that det(D2u)1/n is a supersolution according to our calculation
above. In [5] this supersolution property is only used in dealing with
“Case 2” in the proof of their Proposition 1. We will see that the same
argument works in our situation as well.

As in [5], we fix ρ, ξ, δ, k0 > 0 to be determined and we set

sk := sup
x∈B

1/2k

Δu(x), 1 ≤ k ≤ k0.

From the equation we know that sk ≤ 1. Define

Ek :=
{
x ∈ B1/2k |Δu(x) ≤ sk − ξ

}
,

and as in Case 2 in [5], assume that for all 1 ≤ k ≤ k0 we have |Ek| >
δ|B1/2k |. Let us define

wk(x) = 22ku
( x

2k

)
.

We apply the above computation to conclude that

L
[
(1−Δwk)

1/n − (1− sk)
1/n

]
≤ 0.

Since (1 − Δwk)
1/n − (1 − sk)

1/n ≥ 0 on B1, we can apply the weak
Harnack inequality to obtain

(1− sk+1)
1/n = inf

B1/2

(1−Δwk)
1/n

≥ (1− sk)
1/n + c‖(1 −Δwk)

1/n − (1− sk)
1/n‖Lp0 (B1),

on B1/2, for uniform constants c, p0 > 0. The right hand side can be
estimated using the assumption on the measure |Ek|, and we get

inf
B1/2

(1−Δwk)
1/n ≥ (1− sk)

1/n + cδ1/p0
ξ

n
,

since we have

(1− sk + ξ)1/n − (1− sk)
1/n ≥ ξ

n
.
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Since 1−sk ≤ 1, there can only be at most a bounded number k0 of such
steps. The remainder of the argument is identical to Cafarelli–Yuan [5].

q.e.d.

We can now prove the interior C2,α estimates for the general equation
in Proposition 29 by using a blow-up argument. We begin by proving a
Liouville rigidity theorem for convex solutions of our equation;

Lemma 31. Suppose that u : Rn → R is a smooth, convex function
satisfying

(29) Δu+ bdet(D2u) = 1,

then u is a quadratic polynomial.

Proof. The lemma follows from a simple rescaling argument, which is
essentially the same as the proof of Gutiérrez [17, Theorem 4.3.1]. By
subtracting a plane we may assume that u(0) = 0 and ∇u(0) = 0. Since
u is convex, the equation implies that |D2u| ≤ √n. By integration we
obtain the bound |∇u|(x) ≤ √n|x|. We consider the function vR(x) :=
R−2u(Rx). By the above, for x ∈ B1 there holds

vR(0) = 0, |∇vR|(x) ≤
√
n, D2vR(x) = D2u(Rx),

and so vR(x) is uniformly bounded in C2(B1). Moreover, vR(x) solves
equation (29) on B1, and so by the interior estimates in Proposition 30
we have a uniform bound for |D2vR|Cα(B1/2). Writing this in terms of

u, we have

Rα|D2u|Cα(B
2−1R) ≤ C,

where C is independent of R. Taking the limit as R → ∞ we see
that we must have D2u = D2u(0) a constant. Hence u is a quadratic
polynomial. q.e.d.

Proof of Proposition 29. To deal with the case of varying coefficients, we
use a blowup argument to reduce to the Liouville result in the constant
coefficient case.

Suppose then that h satisfies equation (27) on B. Let

Nh = sup
x∈B

dx|D3h(x)|,

where dx = d(x, ∂B) is the distance to the boundary of B. Our goal is
to bound Nh from above, so we can assume Nh > 1 say. Let us assume
that the supremum is achieved at a point x = x0 ∈ B. We define the
function

h̃(z) = d−2x0
N2

hh(x0 + dx0
N−1

h z)−A−Aizi,

where A,Ai are constants chosen so that

(30) h̃(0) = 0, ∇h̃(0) = 0.
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The function h̃(z) is defined on the ball BNh
(0) around the origin. By

direct computation we have

D2h̃(z) = D2h(x0+dx0
N−1

h z), D3h̃(z) = dx0
N−1

h D3h(x0+dx0
N−1

h z),

and so |D3h̃(z)| ≤ 2 on B2−1Nh
(0). Moreover, since |D2h̃| = |D2h| < C,

the normalization (30) implies that we have a bound

‖h̃‖C3(B
2−1Nh

) < C,

for a uniform constant C. In addition h̃ satisfies an equation of the form

(31)
∑
i,j

ãij(∇h̃)h̃ij + b̃(∇h̃) det(D2h̃) = 1,

for coefficients ãij , b̃ satisfying the same bounds as aij, b, but

(32)
sup |∇ãij | ≤ dx0

N−1
h sup |∇aij|,

sup |∇b̃| ≤ dx0
N−1

h sup |∇b|.
Differentiating equation (31), we obtain a linear elliptic equation for

the derivatives h̃p, with Cα coefficients (using also our C3 bound for

h̃). The standard Schauder theory then implies C2,α bounds on ∇h̃ on
compact subsets of BNh/4.

For the sake of obtaining a contradiction we suppose that we have
a sequence of convex functions hk on B satisfying (27), such that the

corresponding constants Nhk
> 4k. Then the rescaled functions h̃k are

defined on B4k(0) and have uniform C3,α bounds on Bk(0), and satisfy

|D3h̃k(0)| = 1. By taking a diagonal subsequence, we can extract a

convex limit h̃∞ : Rn → R in C3,α/2, satisfying |D3h̃∞(0)| = 1, and

equation (31) with constant coefficients because of (32). Since h̃∞ is

convex, C3,α/2 on Rn and satisfies the constant coefficient equation

(29) (after a linear change of coordinates), we easily obtain that h̃ is
in fact smooth. In particular, we can apply the Liouville rigidity result

in Lemma 31 to conclude that h̃∞ is a quadratic polynomial. But this

contradicts |D3h̃∞(0)| = 1. q.e.d.
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