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CONVERGENCE OF THE J-FLOW ON TORIC
MANIFOLDS
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Abstract

We show that on a Kédhler manifold whether the J-flow con-
verges or not is independent of the chosen background metric in
its Kéhler class. On toric manifolds we give a numerical char-
acterization of when the J-flow converges, verifying a conjecture
in [19] in this case. We also strengthen existing results on more
general inverse o, equations on Kéhler manifolds.

1. Introduction

Let (M, «) be a compact Kahler manifold of dimension n, and suppose
that Q is a Kahler class on M, unrelated to . The J-flow, introduced
by Donaldson [10] and Chen [6, 7] is the parabolic equation

gtwt = —V/—190A,,q,

with initial condition wy € Q. It was shown by Song-Weinkove [21]
that this flow converges whenever there exists a metric w € {2 satisfying
Ay = ¢, where the constant ¢ only depends on the classes [a], (2, and
is determined by

(1) / cw” —nw" P Aa=0.
M

In addition, Song—Weinkove [21] showed that such an w exists if and
only if there is a metric x € €2 such that

(2) exX" P —(n—1x"2ANa>0,

in the sense of positivity of (n — 1,n — 1)-forms. Unfortunately, in
practice it seems to be almost as difficult to produce a metric xy with
this positivity property, as solving the equation A,a = ¢, except in the
case when n = 2, when the condition reduces to the class ¢€2 — [a] being
Kahler. In particular when n > 2, it was unknown whether the existence
of a solution to the equation depends only on the classes 2, [], or if it
depends on the choice of « in its class. Our first main result settles this
problem by showing that solvability depends only on the class [a].
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Theorem 1. Suppose that there is a metric w € Q) such that A,a = c,

and B € [a] is another Kahler metric. Then there exists an w' € Q such
that A8 = c.

This result still leaves open the problem of finding effective necessary
and sufficient conditions for solvability of the equation, or equivalently,
for convergence of the J-flow. In this direction, the second author and
Lejmi [19] proposed the following conjecture for when the equation can
be solved.

Conjecture 2. There exists an w € Q satisfying Ay, = ¢, with ¢
defined by Equation (1), if and only if for all irreducible subvarieties
VM with0<p=dimV <n we have

/ ex’ —pxP P Aa >0,
v

for x € Q.

It is natural to think of metrics y satisfying the positivity condition
(2) as subsolutions for the equation A,a = c¢. The result of Song—
Weinkove [21] then says that we can solve the equation whenever a
subsolution exists, whereas Conjecture 2 provides a numerical criterion
for the existence of a subsolution. In this sense it is somewhat analogous
to the result of Demailly—Paun [9] characterizing the Kéhler cone. At
the same time as shown in [19], the conjecture is related to a circle
of ideas in Kéahler geometry, relating the existence of special Kéhler
metrics to algebro-geometric stability conditions, such as the Yau—Tian—
Donaldson conjecture [32, 25, 11] on the existence of constant scalar
curvature Kéhler metrics.

Our next result is that the conjecture holds for toric manifolds (see
Yao [30] for prior results on toric manifolds). In fact we prove the
following more general result.

Theorem 3. Let M be a compact toric manifold of dimension n,
with two Kdhler metrics o, x. Suppose that the constant ¢ > 0 satisfies

(3) / ex" —nx"" ' Aa >0,
M

and for all irreducible toric subvarieties V. C M of dimension 0 < p <
n — 1 we have

/ ex? —pxP L Aa > 0.
14

Then there is a metric w € [x] such that

n

(4) Awa + d&n = C,
w

for a suitable constant d > 0. In particular if in (3) we have equality,

then necessarily A, = ¢, and so Conjecture 2 holds for toric mani-
folds M.
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The advantage of this more general result is that the hypotheses are
amenable to an inductive argument. The result for (n — 1)-dimensional
manifolds can be used to construct a suitable barrier function near the
union D C M of the toric divisors, that allows us to reduce the problem
to obtaining a priori estimates on compact subsets of M\ D. Theorem 1
allows us to work with torus invariant data, which on M \ D means
that the equation reduces to an equation for convex functions on R".
Equation 4 is of the form

d
S |
* det(D?u) ’

where v : R" — R is convex, although we have to deal with variable
coefficients as well. The main estimate is an upper bound for D?u on
compact sets, which we obtain in Proposition 25. Using the Legendre
transform and the constant rank theorem of Bian—Guan [1], this can be
reduced to obtaining a priori C%? estimates for convex solutions of the
equation

(6) Ah + ddet(D?h) = 1.

The difficulty is that the operator M — Tr(M)+ddet(M) is neither
concave, nor convex for d > 0, and so the standard Evans—Krylov theory
does not apply. In addition the level sets {M : det(M) = 1 —t} are not
uniformly convex as t — 1, and so the results of Caffarelli-Yuan [5] also
do not apply directly. Instead we obtain the interior C%® estimates by
showing that det(D2h)1/ ™ is a supersolution for the linearized equation,
to which the techniques of [5] can be applied. This result may be of
independent interest.

Many of our techniques apply to more general equations than Equa-
tion (4), of the form F(A) = ¢, where A is the matrix A; = o/’l‘twj,-C and
F(A) is a symmetric function of the eigenvalues of A satisfying certain
structural conditions (see Section 3 for details). In particular we can
consider general inverse o} equations of the form

(5) Tr ((D?u)™1)

n

(7) > o <Z> " AWhTE = ™,

k=1

where ¢; > 0 are given non-negative constants, and ¢ > 0 is determined
by the ¢; by integrating the equation over M.

The question of looking at general equations of this form was raised
by Chen [6], and some special cases beyond the J-flow were treated
by Fang-Lai-Ma [14], and also by Guan—-Sun [15], Sun [23] on Her-
mitian manifolds. More general non-linear flows related to the inverse
or-equations were investigated by Fang—Lai [13]. The particular Equa-
tion (4) was studied by Zheng [33]. In [14] it was shown that a solution
to these special cases of equation (7) exist if and only if there is a metric
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X € Q satisfying a positivity condition analogous to (2). We show that
such a result holds for the general equation too, as was conjectured by
Fang-Lai-Ma.

Theorem 4. FEquation (7) has a solution w € Q if and only if we
can find a metric x € Q such that

n—1

—1
(8) ex" !t — Z Ch (n i >X"_k_1 Aok >0,

k=1

in the sense of positivity of (n — 1,n — 1)-forms.

Note that when ¢, = 0 for & < n, then Equation (7) is simply a
complex Monge-Ampere equation, which can always be solved by Yau’s
Theorem [31]. In this case the positivity condition (8) is always satisfied,
so Theorem 4 is a generalization of Yau’s Theorem. We expect that our
methods can be used to generalize Theorems 1 and 3 to more general
equations of this form, but we will leave a detailed study of this to
future work, except for the following result that is needed in reducing
Theorem 3 to the case of torus invariant «. The proof of this is similar
to, but simpler than that of Theorem 1.

Theorem 5. Suppose that Equation (7) has a solution, and ¢, > 0.
Then the equation can also be solved if o is replaced by any other metric

B € la].

A brief summary of the contents of the paper is as follows. In Section 2
we recall some basic convexity properties of the elementary symmetric
functions, which play a key role in the later calculations. In Section 3
we generalize the C2-estimates of Song~Weinkove [21] and prove The-
orem 4. While the basic ideas are similar to those in [21] and also
Fang-Lai-Ma [14], Fang-Lai [13] we hope that our more streamlined
proof highlights the required structural conditions for the equation. In
Section 4 we prove Theorems 1 and 5. A key ingredient is a smooth-
ing construction, based on work of Blocki-Kolodziej [2] on regularizing
plurisubharmonic functions. The remainder of the paper is concerned
with the proof of Theorem 3. We expect that our inductive method
of proof will be helpful in resolving Conjecture 2 on non-toric mani-
folds as well, although there are certainly new difficulties in the general
case.
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2. Convexity properties

In this section we collect some calculations relating to the inverse
op-operator. Most of these results are well known, and available in the
literature (for instance see Spruck [22]), but for the reader’s convenience
we present the calculations here.

For an n-tuple of numbers \;, denote by

Sk(Ni) = Z Ajr Ajz o A
1<j1<ge<...<jr<n

the elementary symmetric function of degree k. We have Sy = 1 and

S_1 = 0. For distinct indices i1, ...,7; let us write
Skii,eit (Ai) = Sk(Ai) i, =...=x,, =0,
while if 41, ... ,4; are not distinct, then Sy ;, _; (X)) =0. Given an n xn

matrix A we will also write Si(A) for the elementary symmetric function
of the eigenvalues of A, and in addition if A is diagonal then we define
Sk;il,...,il(A) by letting /\2 = A“

Lemma 6. The derivatives of Sy at a diagonal matriz A are given
by
Sk—l;i(A)a 7’fZ = ja

0, otherwise,
Sk—2;i,r(A)7 ZfZ =J,7 = 8,1 7£ T,
0ijOrsSk(A) = § —Sk—2i(A), if i # j,r =j,s =1,

0, otherwise.

8ijsk(A) = {

Here 0;; means partial derivative with respect to the ij-component.

Proof. This result follows from the fact that Si(A) is the coefficient
of (—z)" % in det(A — zI). q.e.d.

Using this, we can compute the derivatives of the inverse o operators.

Lemma 7. For 0 < k < n let us write F(A) = Sp(A™!) = SET’“X;D.
At a diagonal matriz A, with eigenvalues N\;, we have
CSuki(A)
0, F(A) :{ Asata) o =

0, otherwise,

040 F(A) = =502 yf ,
Sn—ki(A) + NiSn—p—1:4(4) ., . .
0305 F(A) = ki )A,)\,S (A)k tia ), if i # j,
iN\jOn
Sn—k;i(A)

;0 F(A) = 2557,
OiOFIA) =205, (4)

0;j0rsF'(A) = 0, otherwise.
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The following expresses a strong convexity property of the inverse oy,
operators on positive definite matrices.

Lemma 8. Let us write F'(A) = Si.(A™1) as above. Then A+ F(A)
s convex on the space of positive definite Hermitian matrices A, and in
fact if A is diagonal with eigenvalues \; > 0, then for any matriz B;;
we have

O Y BrBulOpdF(A) + 3 By T 5

— A
p,q,7,S ,]

Proof. Suppose that A is diagonal. Given B;; Hermitian, using the
previous result we can compute

> BrsByp(0pg0rsF(A)) = ByiiBj;

D,q,T,S ,J

Sn—t;ij(A) + 015 Sn—ki(A)

Sn—k'i(A) + XNiSn—k—1;i (A)
220k itg
+2_ 1Byl AiAj S (A)

1,J

—Sn_k-i ](A) + 51]Sn—kz(A)
> 3. ihi] !
> ; B;;iBj; AiX;Sn(A)

DI
ij J

It remains to show that the matrix M;; = S, —p.i j(A) + 035 Sn—k:i(A)
is non-negative. This is shown in Fang-Lai-Ma [14] as follows. For
any (n — k)-tuple I = {iy,...,i,—x} C {1,...,n}, denote by A\; =
Nip A and let £ be the matrix whose entries are

1, if i, ¢ 1,
(Er)ij = {

11" ln—k?

0, otherwise.

Then the matrix M is non-negative because

M = Z N EJ. q.e.d.
o H[=n—k
The following is an even stronger convexity property of the map A +—
S1(A™1), on the set of matrices with eigenvalues bounded away from
Z€ero.

Lemma 9. Given 6 > 0, let M be the set of positive Hermitian
matrices with eigenvalues \; > 6. For e > 0 we let F(A) = S1(A™!) —
eSp(A™Y). If € is sufficiently small (depending on §), then we have

1) F(A) >0 and 0;F(A) <0 for diagonal A € M.

2) F is convexr on M, and in fact F satisfies the inequality (9) for

diagonal A € M.
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Proof. 1) If each eigenvalue is greater than §, then S,(A™!) <
6~ (=18 (A1), and so F(A) > 0 for sufficiently small e. In ad-
dition we have

—Sn_l;i(A) + €
AiSn(A)

Since Sp—1,; > §"~1 we have 9;;F(A) < 0 for sufficiently small e.

2) Using the computation in the previous lemma, we have, if A is
diagonal with eigenvalues JA;, that

0 F(A) =

S -0ijSn— 1i(A) —€e(1+d;5)
Z BTSBPQ(apanSF ZBZZ / s )\Sn(A) /

piqiris

Sn—l-i(A) + AiSp—2i;(A) — €
B[22t ] .
+2_ 1By AA;Sn(A)

2
|Bm| € Bi;
Z n 1; z ) - Sn(A) 'ZZ: T@
\B“] 0i; F(A)
Z %: |Bz‘j|2T-

If A € M, then S,_1,,(A) > 5"‘1, and so we get the required
inequality (9) if € is sufficiently small. q.e.d.

1,J

| V

3. (?-estimates

In this section we prove an analog of the C?-estimates obtained
by Song—Weinkove [21] for the J-flow, and Fang-Lai-Ma [14], Fang—
Lai [13] for a more general class of inverse oy, flows. We will need the
corresponding estimates also for manifolds with boundary, analogous to
results of Guan—Sun [15].

We will work with general operators

F(A):f()\ly---,)\n)a

on the space of positive Hermitian matrices, where f is a symmetric
function of the eigenvalues of A. We will require certain structural
conditions to hold for F'. We do not expect that these conditions are
optimal, but they are sufficient for our needs. Also, in contrast with the
standard setup in Hessian type nonlinear PDE, we work with a convex,
decreasing operator, rather than a concave, increasing one. This is just
a matter of changing signs, but we found it more convenient to think
about the convex, decreasing operator Tr(A~!) rather than the concave,
increasing —Tr(A™1).

We require that there are constants K,C > 0 (with K = oo allowed),
and a connected component M of the set {F(A) < K}, such that if
A € M then in coordinates such that A is diagonal, we have
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1) F(A) >0, and 0;F(A) < 0 for all 1,
2) For any matrix B;; we have

> BijBo (030 F(A) + ) A( )yBijP >0,
J

1,7,7,8 2y

so in particular F' is convex on the set M.
3) We have

CT'F(A) <Y — M F(A) < CF(A).
k

4) If A\; denotes the smallest eigenvalue, then —\101;F(A) >
—C_l/\lamF(A) for all 3.

5) The function g(z1,...,2,) = f(z7',...,z;") extends to a smooth

function on the orthant {z; > 0 for all 1 <i < n}.

Note that in most of our situations we will be able to take K = oo,
and M the set of all positive Hermitian matrices. We will only need
the greater generality that we are allowing in Section 4. Let us denote
by A the matrix A; = o'k g;5- This matrix is Hermitian with respect to
the inner product defined by a.

Lemma 10. Suppose that we work at a point in normal coordinates
for the metric a, such that g is diagonal. In addition assume that A €
M. Then we have

0101 F Z appF gliapaﬁ log g11 — CF(A),

where C' depends on F, a.
Proof. We compute, using Lemma 7 and Lemma 8:
0101 F(A) = 01(01 A0y I'(A))

— 101 AL) Dy F(A) + (91 AL) (D1 AL)D, 0, F (A)

= [(31&@7” ")gpp + 31319;:;7] Opp'(A)
+ (01957) (01 94p) OpqOrs F(A)

= [(31310/) ?)9ps + 9119505 log 911
+ 9 (019,1) (91915 | Opp F (A) + (91950) (91945) Opa s P (A)

Z - Z —Oppl'(A)g110p0p log g11 — C Z —ApdppF (A),

p

where we used assumption (2) with B;; = 01g;;. The result follows by
assumption (3) above. q.e.d.
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Suppose now that M is a compact manifold and that o, wp are Kéhler
metrics on M. Suppose that w; = wg + v/ —190p; satisfies the equation

Gor = _F(A
(10) ot (4r),
wo =0,

where A; is the matrix (At);" = o/kgm]; as above, with g, ;z being the
components of w;. By our assumptions on F', this equation is parabolic
on the set of metrics satisfying A € M. Our goal is to show the long
time existence of this flow, generalizing the result of Chen [7] for the
J-flow and Fang-Lai [13] for more general flows.

The following shows that if Ay € M, then we will have F(4;) < K
for as long as the flow exists, and so in particular A; € M as well.

Lemma 11. We have that F(A;) < F(Ag) for as long as the flow
exists, and |pi| < C(t+ 1) for some constant C.

Proof. Differentiating the equation with respect to t we have

o9

o = OuF (Ao, ir.

The maximum principle then implies that infy; ¢ > infys g, i.e.,
F(A;) < F(Ap) as long as the flow is parabolic. In particular, if Ag € M
the flow is parabolic for as long as it exists. Similarly we can bound
sup;s ¢+ which in turn allows us to bound ;. q.e.d.

To show the long time existence of the flow, we will obtain time
dependent C?-estimates along the flow.

Proposition 12. There is a constant C such that
Aawt < C(t + 1)
along the flow as long as it exists.

Proof. Consider the function

f(x7§7t) = log ’5‘52” — Nyt — N2(10t7

where x € M and £ € T, M has unit length with respect to «, and
Ny, Ny are large constants to be chosen later. Given T" > 0, suppose
that f achieves its maximum on [0, 7], at (z,&,to), with ¢y > 0. Choose
normal coordinates at = for o such that gy, is diagonal and ¢ = 9/9z".
If we define

h(Z,t) = log & — Nlt — Ng(pt,
Q11
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then at the origin z = 0 and ¢ = tg we must have

0 < Oh(z Z —0,pF(A)0,05h(2, 1)
= —gllF(At N1 Z appF At a Op [log 911 — log 91 — NQQOt]
< Nl + CZ 8ppF At + N2 Z appF At)gt DD

— Ny Z 8ppF (At)g0,pp-

Choosing N2 sufficiently large, we will have

0< =N+ N2> —=ppF(A)gips < —N1+ CNoF(Ay),
p

using property (3) of F. Since F(A;) < K, if N; is chosen sufficiently
large, we will have a contradiction. It follows that then f(x, &, t) achieves
its maximum at ¢ = 0, from which the result follows by the bound we
already have for . q.e.d.

Using the convexity of F' we can apply the Evans—Krylov theorem to
obtain C*“-estimates for ¢, as long as the flow exists, and higher order
estimates follow from standard Schauder estimates. It follows that the
flow exists for all time.

Proposition 13. There is a solution of Equation (10) for all t > 0.

We will make use of this long time existence result in Section 4. While
one could pursue the existence of solutions to the equation F'(A) = ¢ by
studying the convergence of the flow, we will instead primarily use the
continuity method. For this we need elliptic C?-estimates, assuming the
existence of a subsolution of the equation in a certain sense. We will
also need to use the case when M is a manifold with boundary.

Suppose, therefore, that (M,0M) is a compact Kéhler manifold with
possibly empty boundary, and suppose that w, a are metrics on M sat-
isfying

F(A) =c,
for a constant c¢. For simplicity we will assume that in the structural
conditions for F' we can take K = oc.

To define the notion of subsolution that we use, define the function

FA, e A1) = A11310010(&,...,%) = g(A\Th .. A0,

in terms of the function g in property (5). For a Hermitian matrix B
we will write

F(B) = max f(AM, ..., A1),
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where the max runs over all (n — 1)-tuples (Aq,... ,)/\\i, ...y Ap) of eigen-
values of B, where 1 < i < n.

REMARK. Trudinger [27] studied the Dirichlet problem (over the re-
als) for equations of the eigenvalues of the Hessian satisfying certain
structural conditions, which for example allow for treating the equation

(11) Si((D*u)™h) =¢,

in open domains 2 C R™. Writing the equation as f(A1,...,\,) = cin
terms of the eigenvalues of D?u, a key role in the estimates is played by
the function
foo(/\ly e 7/\n—1) = lim f(/\l, ceey )\n),
An—>00

which is the same as our function fabove (our equation is the reciprocal
of that studied by Trudinger). In our situation the function f is not only
relevant in deriving estimates, but it is also used to define the notion

of subsolution. We also remark that for the equation to fit into the
framework of Caffarelli-Nirenberg—Spruck [4], one would need f,, = 0.

For technical reasons we will need a notion of viscosity subsolution
which we give now.

Definition 14. Suppose that y is a Kéhler current with continuous
local potential, i.e., in local charts U we can write x = V=100 f with
f € C°(U). We say that y satisfies F(a”x ;) < c in the viscosity sense,
if the following holds: suppose that p € M, and h : U — R is a C?
function on a neighborhood U of p, where x = V—100f. If h— f has a

local minimum at p, then F(aiﬁ(?j(?ﬁh) <cat p.

It is clear from the monotonicity of F' (and, therefore, F ), i.e., struc-
tural condition (1), that if y is a smooth metric satisfying F (aPyjp) <
then this inequality is also satisfied in the viscosity sense. We will need
the following, which is a special case of the general fact that a maxi-
mum of a family of viscosity subsolutions is a viscosity subsolution (see
Caffarelli-Cabré [3]).

Lemma 15. Suppose that in an open set U we have smooth metrics
Xk = V—190f; for k = 1,... N, satisfying F(o/ﬁxhjp) < c¢. Then
x = V/—100 max{fy.} satisfies F(a'Py;5) < c in the viscosity sense.

Proof. Fix a point p € U and suppose that h is a smooth function
such that h — max{f;} has a local minimum at p. Without loss of
generality we can assume that max{fx(p)} = fi(p), and then h — f;

also has a local minimum at p. By assumption F(a®9;0;f1)(p) < c,
and so the monotonicity of F' implies that F(a?9;0;h)(p) < c. q.e.d.
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Proposition 16. Suppose that w = wy + /—1900yp is smooth, and
satisfies F(A) = ¢, where A;- = aPw;p, and F satisfies the structural
conditions with K = oo. Suppose that we have a strict viscosity subso-
lution X = wo + /—109, i.e., that F(aPy z) < ¢ — & in the viscosity
sense, for some 6 > 0. Here 1 € CO(M). Then we have an estimate

Aqw < CeNlp=infe)

where the constants C, N depend on the given data, including x,d, as
well as the maximum of Aqw on OM.

Proof. Consider the function

fz,€) =log|¢]Z — No(z) + N (),

where x € M and £ € T,, M has unit length with respect to a,, and N is a
large constant to be chosen later. If this function achieves its maximum
on OM, then we will have

Aqw < CeNlp=infe)

where C' depends on supy,; Aqw and the given data.

Suppose that f achieves its maximum at (z,£), where z € M is in
the interior. We can choose normal coordinates at = for « such that g
is diagonal, and ¢ = 9/9z'. This means that the function

h(z) =log 2L — Ny + Ny
a1
has a maximum at the origin. Define

Y1 =~ N'log 1L
a1

Then 11 is smooth, and ¢; — has a local minimum at the origin. If we
define y/ = wo + v/ —10011, then the definition of viscosity subsolution
means that F (aiﬁxgﬁ) < ¢ — 4. In addition the function

fl(z) = loggiI — Ny + Ny,
a1
is identically zero. It follows that at the origin

0= Z — o (A)B,05h
= Z —OppF (A)0p05108 917 — Y —0ppF (A)Dp0510g g
p

- N Z —OppF'(A)[9pp — X;)ﬁ]

—gllCF CZ —OppF'(A Z —OppF (A)(gpp — X;Jﬁ)’
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where we used Lemma 10. We can assume without loss of generality
that g;; > 1. By assumption (3) on F, we know that » —0p,F(A)gpp
is bounded below. In addition anp also has a fixed positive lower bound
by the assumption that y is a K&hler current. It follows that for any
€ > 0 we can choose N so large, that we obtain

0>—-N(1+e¢) Z —OppF'(A)gps + N(1 —¢€) Z —0OppF(A) X pp-

Rearranging this and changing e slightly, for sufficiently large N we will
have

(12) Z _8ppF(A)X;;;5 <(1+¢) Z —OppF'(A) gpp-

Let us now change notation slightly. Write \; for the eigenvalues of
g, and p; for the eigenvalues of x’. In addition suppose that A\; < Ay <

< Ay and pp > ... > p,. The convexity of f implies that then
—fi(A) < —=f;j(A) for i < j. In addition from the Schur-Horn theorem
we have that the diagonal entries anp form an n-tuple in the convex hull
of the permutations of the p;, and so in particular

Z —fp(Npp < Z _fp(/\)X;)ﬁ'

For simplicity of notation let us also suppose that ¢ = 1. We then have
the following:

FOL- A =1,
f(,ulu"'aun—l) < 1 _57
S —f A S A4 = foAy s An) Ay
p

P

(13)

Using assumption (3) for F' and the positive lower bound for the p;,
we obtain an upper bound for —fi()\;). Together with assumption (4)
for I, this implies a positive lower bound for the lowest eigenvalue A;.

By assumption (5), there is a number K such that if \,, > K, then

f(/\l,...,/\n_l) >1—7’,
oMy An) =T < foAs e A1) < fo(My ey An) + 7,

since fp(Ai) = —A; 2g,(A\; 1), and the function 22g(x;) is uniformly con-
tinuous on compact subsets of the orthant {x; > 0 for all 1 < j < n}.
The convexity of the map A\; — f()\;) implies that if we denote

r(t) = O+t — M),
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then (1) > r(0) 4+ r/(0). This means
n—1

Flui) = FON) + D (1 = Ap) ()
p=1

From this we get

n—1 n—1
0—7< Z _fp(:“p ) < Z Jp(A Z fp()‘i))‘p'
p=1 p=1

From assumption (5) we also have that A, f, — 0 uniformly as A\, — oo,
since Ap fp(Ai) = =\ 1 gp(\ 1), and x,g(x;) is uniformly continuous on
compact subsets of {z; > 0 forall1l < j < n}. So we can choose a
constant K’ such that —f,\, < 7 if A\, > K’. In addition we take K
above so that K > K’. We then have

n n n—1
0—T< Z‘fpﬂp_z_fp/\p+n7+2(fp
p=1 p=1 p=1

< eZ—prp+nT+ (n—1)1K'
p=1
< CeF(A) +nt+ (n—1)7K".

We can choose 7 so small (i.e., K above so large), that

n+1)r+(n-1)1K' < g

We will then have
1)
3 < CeF(A) = Ce.

If now e is sufficiently small (i.e., the constant N above is chosen suffi-
ciently large), then this will be a contradiction.

It follows that if the constant N before is chosen sufficiently large,
then at the maximum of our function f we have a bound g;7 < K for
some large K. From this it follows that we have an inequality of the
form

Aag < CeN—infe)

which is what we wanted to prove. q.e.d.

We now prove Theorem 4 under the more general assumption that x
satisfies the positivity condition (8) in the viscosity sense. For this let
us write

(14) F(A) = > auSp(A™),
k=1
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for constants ¢, > 0. Note that if y is smooth and B;- = oziﬁxjﬁ then
F(B) < ¢—36 for some & > 0 is equivalent to the positivity of (n—1,n—1)
forms

i G |
(15) cx > Ck( ’ >>< ot >

k=1
In particular, Theorem 4 follows from the following.

Theorem 17. Suppose that we have a Kdihler current x € §) satisfy-
ing F(a®yjz) < ¢ —§ in the viscosity sense, for some § > 0. Suppose
that the constant ¢ satisfies

n

ch<z>/ ak/\wg_k:c/ wg -
M M

k=1
Then there is an w € Q) satisfying the equation F(aiﬁwjﬁ) =c, i.e.,
n

(16) Z Ck <Z> oF AR = e,

k=1

Proof. We will use the continuity method to solve the equation
(17) Fy(4) = F(A) +d_; = ey

for d € [0,00), where the constant ¢4 is determined by d by integrating
the equation with respect to w™ over M. In particular ¢4 > ¢. Ac-
cording to Lemma 18 below, Fy(A) satisfies the structural conditions
required by the C?-estimates (with K = oo and M the space of all
positive Hermitian matrices). In addition F; = F, so x is a strict vis-
cosity subsolution for the equation Fy(A) = cq4, for all d > 0. We will,
therefore, be able to use Proposition 16 to obtain C?-estimates.

Let I = {d € [0,00) : (17) has a solution}. By Yau’s theorem [31]
we can solve the equation a”/w"™ = ¢y for a suitable constant co.
The implicit function theorem then implies that we can solve (17) for
sufficiently large d, and that [ is open.

To see that I is closed, suppose that wy, = wg + v/—190y;, are solu-
tions, with corresponding d; — d. Proposition 16 then implies that

Agwy < CeN(pr—inf %Ok)’

for uniform C, N. Normalizing so that supy, = 0, it follows from
Weinkove [29, Lemma 3.4] (see also [28, Proposition 4.2]), that we
have Ajwp < C for a uniform C. The equation then implies a lower
bound wy, > C~'a as well. Since Fj is convex, the Evans-Krylov theo-
rem [12, 18] (see Tosatti-Wang-Weinkove—Yang [26] for a general ver-
sion adapted to complex geometry), together with Schauder estimates
can be used to obtain higher order estimates for the wy, allowing us to
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pass to a limit as k — oo. This shows that I is closed, and so 0 € I,
which was our goal. q.e.d.

Lemma 18. The map F(A) in Equation (14) satisfies the structural
conditions at the beginning of Section 3, on the whole space of positive
Hermatian matrices.

Proof. Tt is clear that F/(A) > 0, and from Lemma 7 we have, at a
diagonal A with eigenvalues \; > 0, that

n k‘z
Z%

which is negative. The required convexity property (2) follows from
Lemma 8.
For property (3), note that

Sp_pi(A
X s =T s,zzéﬂ

ki

= Zk Ch Ay O k Z kepSe(A™),
using the identity Z?Zl Sii(A) = (n —1)S1(A). Tt follows that
Z N0y F(A) < nF(A).

To show property (4), recall that

~ Spori(A
~NidF(A) =) Cksk(’é)),
k=1 "

and note that if A; is the smallest eigenvalue, then S,_j.1(A) >
Sn—ki(A) for all i. It follows that —\1011F(A) > —X;0; F'(A).
Finally, property (5) is clear since we have

g(x1,... . xy) = f(:v1 e n chSk (T1,...,2p),

which extends smoothly to the orthant {z; > 0 forall1 < i < n}.
q.e.d.

4. The proof of Theorem 1

In the proof of Theorem 1 a key role is played by the parabolic equa-
tion (10). In this section we will consider the operator

F.(A) =51 (A1) —eS, (A7),
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for small € > 0. Note that this operator is not convex on the space of all
positive definite Hermitian matrices. The following lemma shows that
it is still convex, however, on a suitable set of matrices A.

Lemma 19. 1) For all Q > 0, if € is sufficiently small, then F
satisfies the structural conditions in Section 3 on the set where
S1(A™Y) < Q.

2) For all K > 0, if € is sufficiently small, then F, satisfies the struc-
tural conditions in Section 3 on the connected component M of
the set {F.(A) < K} containing the set {S(A™!) < K}.

Proof. For statement (1), note that if S;(A~') < @, then all eigen-
values of A are greater than 1/Q). By Lemma 9, for sufficiently small
¢, the map F, satisfies the structural conditions (1) and (2) on the set
of matrices with eigenvalues greater than 1/@Q). For structural condition
(3), we have

S A E(A) = 3 Srirld) e
k

_ Sn—l(A) ne _ B
ST B ) e AT,

The required inequality follows since S, (A~!) < Q"~1S;(A71), and so
if € is sufficiently small, we will have

%FE(A) < 2}; AR F(A) < CF(A).

Although we do not actually need structural assumptions (4) and (5)
below (since we will only use Proposition 13 which does not use them),
they are also easy to check, (5) being immediate. For (4), note that

Sn_l-i(A) — €
—Xi0;iFe(A) = ——5—,
W="5a
and so for sufficiently small € we will have

1

2
so (4) follows from the corresponding property of the map A — S;(A71),
which we have shown in Lemma 18.

For statement (2) let us take @ = K + 1, and take e sufficiently
small for (1) to apply. In addition, note that the AM-GM inequality
implies that S,(A™!) < n™"S; (A~ 1", so if S1(A71) = K + 1, then
Sn(A™1) < K’ for some constant K’. Let us choose € even smaller, so
that K + 1 — eK’ > K. This means that if S;(A~!) = K + 1, then

F(A)>K+1-eK' > K.

(—Xi0iiS1 (A7) < =N Fe(A) < X0 S1(A™),
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Suppose now that A; is in the connected component of {F,.(A) < K}
containing {S1(A™!') < K}, i.e., we have positive Hermitian matrices
Ay for t € [0,1] such that F.(4;) < K, and S1(A;") < K. Then
from the above we have Sj(A; ') < K + 1 for all ¢, and in particular
S1(ATY) < K +1. Tt follows from (1) that F, satisfies the structural
conditions on this connected component. q.e.d.

Consider now the evolution equation

(18) {88%? :CE_FE(At)7

20 = 07

where w;, = wg + V—100¢;, and (At)é- = oz“%gt’j,;. In addition the
constant ¢, is chosen so that

From the previous lemma we have that if F'(4y) < K, and € is cho-
sen sufficiently small, then F, satisfies the structural conditions on the
connected component of {F,(A) < K} containing Ay. Proposition 13
then implies that the flow exists for all time. Note that in addition the
proof of Lemma 19 also shows that we can assume Sj(A;') < K +1
along the flow.

The parabolic equation (18) is the negative gradient flow of the func-
tional J. on the Kéhler class [w], defined by the variational formula

dt

Je(w +tv/—100¢) = / O(F(A) — co)w",

t=0 M

and normalized so that J.(wg) = 0 for a fixed choice of wy. Note that
Jo is the J-functional considered in Song—Weinkove [21].

Definition 20. We say that the function [Jy is proper, if there are
constants C, 0 > 0 such that if w = wy + v/—199¢p, then

o) 2 ~C+5 [ ol - ")
M
=—-C+ (5/ V=10 ANdp A (Wit + .. +w™ ),
M

for all w € .
The main ingredient in the proof of Theorem 1 is the following.

Proposition 21. Suppose that Jy is proper. Then we can find w € €}
such that A; = o/’l‘twﬂ-€ satisfies S1(A™1) = ¢, i.e., Agw = c.
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Proof. For simplicity of notation let us normalize the class 2 and «
so that fM w' = fM o = 1. It follows that
aTL
Cc=C—E€ —w":c—e,
MW"

for any € > 0. If w = wy + /=190y, then we have

(T — To)w) = ¢ /0 1 /M ol -

where w; = wy + tv/—190¢. Using Yau’s Theorem [31], we can assume
that we chose our base point wg so that wj = a”, so

Je(w) = Jo(w +e// wi' — wy)

> —C+5/ V=109 Ao A (Wit + .. +w™ Y
M

1
—e/ / V=109 Ndp A (Wit + .+ wih).
0 M

We claim that the third term above is controlled by the second term.
To see this observe that w; = (1 — t)wg + tw, and so

k
n—1— k k 1-k— k+i
wy Awy = Zp,-(t " AWt

where p;(t) is a polynomial in ¢ depending only on n,k. The claim
clearly follows, and so if € is sufficiently small, then J. will be proper.

Choose € even smaller if necessary so that Equation (18) has a solution
wy = wo++/—100¢; for all t > 0. Since this flow is the negative gradient
flow of J., and this functional is bounded from below, we can find a
sequence of metrics wy along the flow such that

lim [ (F.(A) —co)?wp =0.

k—00 M
Since we have S1(A; ') < K + 1 along the flow for a uniform constant
K, we have a uniform lower bound wy > ka. It follows that

(19) lim |[[Fe(Ag) — cell2(a) = 0,
k—o0

and from Lemma 11 we know that F.(A;) < K. Choosing € even
smaller, using Lemma 9 we can assume that F, satisfies the structural
conditions on the set of matrices with eigenvalues bounded below by 5.
The importance of this is that this is a convex set.

Let us write ¥y, = @ — supy @&, S0 that wy = wo + /—199¢y, and
supy; ¥ = 0. The properness of J. implies that we have a uniform
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constant C' such that
/ Yp(wy —wy) < C.
M

A standard argument using the inequality wy + v/—1901, > 0 together
with sup,; ¢ = 0 implies that f 1 Yrwy is bounded below uniformly. It
follows that we have a uniform bound

(20) - /M D < C.

Choosing a subsequence we can assume that the wy converge weakly to a
current wo + v/ —1900ss, and ¥, — Vs in L'. From GuedjZeriahi (16,
Corollary 1.8, Corollary 2.7], the bound (20) implies that 1) has zero
Lelong numbers.

We now use the technique of Blocki-Kolodziej [2] to mollify the met-
rics wg, in order to obtain pointwise bounds from the integral bound
(19). The fact that 1o has zero Lelong numbers will ensure that we
can perform this mollification uniformly in k.

Fix a small number 7 > 0, and choose a finite open cover {W;} of M
such that on each W; we have local coordinates 2/, in which the matrix
of components of « satisfies

(21) (1 — T)(Sij < Q5 < (1 + T)(Sij.

Let V; C U; C W; be relatively compact so that the V; still cover M.
On each W; we have wy = +/—190f; for local potentials f;, and so we

have the plurisubharmonic functions ugk) = f; + ¥, which are local
potentials for the wy. We allow k = oo here. For sufficiently small § > 0
(depending on the distance between the boundaries of U;, W;, and so on

(k)

7) we can define plurisubharmonic functions u; y on U; by

) = [ e - swip(w) o,

where p : C" — R is a standard mollifier: p > 0, p(w) = 0 for |w| > 1,
and [ p(w)dw = 1.

For each ¢ we choose n; : U; — R such that n; < 0, and in addition
n; = 0on V; and ; = —1 on 9U;. Fix v > 0 to be sufficiently small
(depending on 7) such that v|\/=199n;| < T on U; for all i.

Consider the function

(22) Vra(2) = max{uly (=) = filz) + mi(2)},

where the maximum is taken over all 7 for which z € U;. The results
in Blocki-Kolodziej [2] (see the proof of Theorem 2) imply that if J is
sufficiently small (depending on 7), then

00 00 g
(g = 1) = (a5 = £ <
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on U; N Uj, since 1o has zero Lelong numbers. The L'-convergence

Y — s implies that we have uniform convergence ul(.]? — ug%o) of the

mollifications as k& — oo, and so once k is chosen sufficiently large we
will have

k k g

) = f) = @l = £l < 3.

on the set U; N U;. This implies that if z € OU; NV}, then

(ufld = fi+ i) (2) < (g = f+9m))(2).

so all z € M have a neighborhood U such that in the definition of 1y, s

the maximum can be taken over those j for which uy? — f; +mj is
defined on U (i.e., for which U C Uj). In particular v, s is continuous.
We will now see that in addition for large k and small J, the form
X = wo+v/— 109y s satisfies F(a'Pyz) < c—§ in the viscosity sense for
small ¢ > 0, and so by Theorem 17 we can solve the equation A,a = c.
Using Lemma 15 it is enough to show that for large k£ and small § the
metric y; = wo—l—\/—_lag(ug? +vn;) on U; satisfies Fv(ozpmxi,qm) <c—0.
Note that F(A) = S1(A~!) here.

Let us work at a point z € U;. Define the following four matrix valued
functions, defined in U;:

Al = ozpmﬁq@mul(-k) = "Wy, gim,
BY = 8,0,ul",
Cy = 8‘1817“5,]?7
Db = ozpm&]@m(ug? +Yni).
(k)

Because of (21), the definition of the mollification u; s and our bound
on 7, the eigenvalues of all these matrices are at least /2, and we can
choose eigenvectors so that the corresponding eigenvalues are all as close
to each other as we like, if 7 is sufficiently small. In particular the same
holds for the reciprocals of the eigenvalues. In what follows, let us
denote by h(7) a function such that h(7) — 0 as 7 — 0, and which may
change from line to line. By the structural assumption (5) for F,, we
will then have

F.(B) < F.(A) + h(r).
The convexity of F, implies that

F.(C) §/RFE(B(z—6w))p(w)dw S/ F.(A(z—o0w))p(w) dw+h(T).

n

It follows that
Fe(C) —ce < Cr||Fe(A) — CEHLQ(a) + h(7),
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where the constant C'. blows up as 7 — 0. Note that in our notation
here A is the same as A in Equation (19). Finally interchanging C' with
D will only introduce a small error, again by structural assumption (5),
so we have

Fe(D) —ce < Cr||[Fe(A) — CE||L2(a) + h(T).

Let us write out what this means at z in normal coordinates for «,
such that \/—185(%(1? +~m;) is diagonal with eigenvalues A1,..., A\, (so
that these are the eigenvalues of D). We have

S e < ColF(4) — ellye + h(r)

—+ ...+ ————— —c+e ANEF(A) — ce 7).

M A M A - "
Since \; > k/2, we can first choose e sufficiently small so that
e(A1-++Ay)"t < 1/); for all i. We then choose T so small that h(7) <
€/4, and finally, according to (19) we can choose k sufficiently large, so
that Cr||Fe(Ar) —ce|r2 < €/4. Combining these we have for each 4, that

But this means that y; = w0+\/—185(u51?+7m) satisfies ﬁ(apmxi7qm) <

¢ —€/2. This implies that x = wg + v/—1001y, 5 satisfies ﬁ(aiﬁxjﬁ) <
¢ — €/2 in the viscosity sense, and so by Theorem 17 there is a metric
w € Q solving A w = c. q.e.d.

REMARK. In the proof above, one could try to find a smooth metric
x satisfying F(aPx;;) < ¢ — €/2, by taking a regularized maximum
in Equation (22). It is not at all clear, however, that the regularized
maximum will satisfy the required subsolution property. This is why we
take the maximum instead and work with subsolutions in the viscosity
sense. In the proof of Theorem 24 we will face a similar problem, and
need to consider viscosity subsolutions.

The proof of Theorem 1 now follows from Proposition 22 below, which
is essentially contained in the work of Song-Weinkove [21] (see also
[24] and Li-Shi-Yao [20] for similar arguments). Let us denote by 7,
the functional [y above, and by J3 the same functional with 3 € [o]
replacing «.

Proposition 22. If there is a metric x € Q satisfying Aya = c, then
Ja 18 proper. In addition if J, is proper, then Jg is proper.

Proof. Suppose that we can find an x such that Aya = c. For small
d > 0 the form o — dx is positive, and we have Ay (o — 6x) = ¢ —
nd. Song—Weinkove [21] showed that in this case the corresponding
functional J,_s, is bounded below. This functional is given, up to
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adding a constant, by

Ta-sx(w) = Talw —n5// 0

where w; = x + tv/—100p and w = wy. It follows that

1
Jo(w) > —C’—I—né/ t/ V=10 Ao A (X"t 4. W),
o Jm

which implies that J, is proper.
If 6 =a++v/—100v, and wy is as above then we have

Tp(w1) — Ta(wr) / / B —a) Awy “Lat
:/ / P/ —100p A WPt dt

N //M dtwt “
- /Mww ).

It follows that |J3 — Jo| < C for some constant depending on 1, so if
Ja is proper, then so is J3. q.e.d.

The proof of Theorem 5 is very similar to the above, but simpler. For
small k, e > 0 we consider the operator

Z crSp(A™Y) + kS (A7) — €S, (A7h).

We are assuming that ¢, > 0, so that for sufficiently small e this op-
erator will satisfy the structural conditions on the space of all positive
Hermitian matrices. In particular for any initial metric wy € €2, the flow

91

ot
has a solution for all time, with w; = wp + V—=190y;, ¢y = 0, and
(At)é» = aikwt’j,;. The constant ¢,  is chosen so that

/cww”:/ Fic(A)w™.
M M

The flow is the negative gradient flow of the function J, ., defined by
d

dt

= Ck,e — FH,E(At)

Tieelw + tv/=100¢) = / P(Flhe(A) = cre) W,
M

=0
normalized so that J (wp) = 0.
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The following result is not stated in this generality in Fang-Lai-
Ma [14], but it follows using exactly the same argument (see also Song—
Weinkove [21]), together with the perturbation method in the proof of
Proposition 22.

Proposition 23. Suppose that there is a metric w such that
FH,E(aikwj,;) = Cpe. Then Jy e is proper.

Proof of Theorem 5. We are assuming that there is a metric w such that
F(A) = ¢, where we are writing F' = Fy g and ¢ = ¢g 0, and A;- = aikwj];.
Using the implicit function theorem, we can also solve Fj ((A) = ¢y,
for sufficiently small x,e > 0, and this implies that J . is proper. Let
us write J; . for the functional defined in the same way as Jj . but with
a replaced by a metric § € [a]. Just as in Proposition 22 we obtain
that J. . is also proper. We can then use the negative gradient flow to
obtain a sequence of metrics wy, such that the matrices By defined by

(Bk); = B"Pwy, jp satisty
lim (Fy.e(Bg) — c,ﬁg)2 wy = 0.
k—o00 M

In addition we have F,, ((By) < C along the flow, for a uniform constant
C, and so using that Fy (By) > xS1(B; '), we obtain a uniform lower
bound wy > C~13, where C also depends on k.

Performing the same mollification argument as in the proof of Propo-
sition 21, for any § > 0 we can obtain a Kéhler current y € [w] with
continuous local potentials, satisfying

Fﬁ,e(ﬁiﬁXjﬁ) < Ck,e + 5,

in the viscosity sense. We have

/ Cﬁ,swn:/ Fn,sywn:/ Cwn+/ [Hsl(A_l)_GSn(A_l) wny
M M M M

and so ¢, = ¢+ kdy — edy for some positive constants di,ds > 0, so
Fn,e(ﬁiﬁinﬁ) <c+ 90+ kdy — eds.

Choosing  sufficiently small so that xd; — eds < 0, and then § suffi-
ciently small, we will have

Fn,e(ﬂiﬁXjﬁ) <c— 5/7

for some small ¢ > 0. The definition of F} . then implies
n—1
d aSk(B ) <e-7,
k=1

in the viscosity sense, where B;» = B%wj;. Theorem 17 then implies
that we can find a metric n € [w] satisfying F(3%n;5) = c. q.e.d.
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5. Toric manifolds

In the remainder of this article we will work on a toric manifold M.
Our goal is to prove Theorem 3. By Theorems 1 and 5 it is sufficient to
work with torus invariant metrics. We restate the theorem here.

Theorem 24. Let M be a toric manifold, and «,x torus invariant
Kahler metrics on M. Suppose that ¢ > 0 is such that

(23) / X —nx"tAa >0,
M

and for all irreducible toric subvarieties V. C M of dimension p =
1,2,...,n—1 we have

/ ex? —pxP L Aa > 0.
\4

Then there exists a torus invariant metric w € [x| such that

n

(24) Awa + bain = C,
w

for some constant b > 0, depending on the choice of c. In particular
either Aya = ¢, i.e., we have a solution of the J-equation, or A,a < ¢,
depending on whether we have equality in (23).

Proof. The proof proceeds by induction on the dimension of M, the
result being straightforward when dim M = 1. Let us assume that we
already know the result for dimensions less than n, and suppose that
dim M = n. We solve Equation (24), by the continuity method just as
in the proof of Theorem 4.

Using Yau’s theorem, we can find w € [x] such that g—: is constant,
which corresponds to the limit ¢ — oo. From the implicit function
theorem it then follows that there is some ¢/, such that we can solve
Equation (24) for all ¢ € (¢/,00) with b depending on ¢. Define ¢j to
be the infimum of all such ¢ > 0. Our goal is to show that if ¢y > ¢,
and ¢; — ¢p, then we have uniform estimates C“® estimates for the
solutions wy, of the equations

aTL
Akaé + bkﬁ = Ck-

Let us denote by D = Uﬁ\ilDi the union of all toric divisors on M.

We use the inductive hypothesis to build a suitable subsolution for the
equation in a neighborhood of D. For each D;, the inductive hypothesis
implies that there is some b; > 0, and a form w; € [x], such that the
restriction of w; to D; is positive, and satisfies

n—1
D;
n—1

Ajp, cilp; +bi—
ilp,

= C.
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This follows from the inductive hypothesis by a simple extension argu-
ment. Though we will not need it, we remark that we can even assume
that the form w; is Kéhler on M [8]. We define

Xi = wi + AV=180(y(d;)|di[*),

where d; denotes the distance from D;, A is a large constant, and ~ :
R — R is a cutoff function supported near 0. If A is chosen sufficiently
large, then y; will be positive in a small neighborhood U; of D; and will
satisfy Ay x; < ¢ — k for some small £ > 0.

Fixing a reference form wy, we can write x; = wg++/—1901; for each
i. Consider now the functions

i =i — B +0 Y y(d;)logd;,

j<i

where B;,8 > 0 are constants, and let Y; = wg + v/—19091;. We can
choose ¢ sufficiently small, so that on a neighborhood of D; \ U;<;D;,
the form x; is positive definite and satisfies Ay, a < ¢ — k. We choose
B; inductively, for ¢ = N, N — 1,...,1, starting with By = 0, so that
on Dj, for all j > i we have v; — B; < v; — B;.

Suppose that € M is in a neighborhood V' of an intersection D;, N
...ND;,, where iy < ... <1y, and suppose that

() = maxdy(z).

If V is sufficiently small, then we must have a < 4y, since ¢; = —o0
along D; for i < j. Together with the choice of the B;, this implies that
we must have a = i1, if the neighborhood V' is sufficiently small. We
can also assume that V' is disjoint from D; for j < i1, so that we have
A%ila < c¢—ron V. Using Lemma 15 we have that on a sufficiently

small neighborhood U of D = |J, D; the Kéhler current y = wp+max {bv,
satisfies ﬁ(aiﬁxjﬁ) < c—k in the viscosity sense, where F(A) = S1(A71).
We can, therefore, apply Proposition 16, reducing C?-esimates on U to
the boundary OU.

In Proposition 25 below, we will show that we have uniform C%®
estimates for the wy outside the neighborhood U of D, and so we can
apply Proposition 16 to the closure of U to obtain bounds of the form

Agwy < CeN(pr—inf %Ok)’

on U, where w, = wy + v/—100¢,. Since we already have estimates
outside of U, the same inequality is true globally on M. Just as in
the proof of Theorem 4, we can use Weinkove [28, Proposition 4.2] to
obtain the estimate A,wr < C, and as in the proof of Theorem 17 the
Evans—Krylov theorem and Schauder estimates can be used to obtain
higher order estimates. q.e.d.
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5.1. Interior estimates. In this section we work on a toric manifold
M with torus invariant Kéhler metrics o, w, satisfying the equation

(25) S1(A) +bS,(A) = ¢,

where A; = wPaj;, and b > 0 and ¢ > 0 are constants. Our goal is to
obtain estimates for w in terms of «, ¢, b, away from the torus invariant
divisors of M.

Proposition 25. Suppose that a,w are torus invariant metrics on
M satisfying Equation (25). Then on any compact set K C M disjoint
from the torus invariant divisors, we have bounds

w > C o,
Hwncl,a < Cg,

for C,Cy depending on M, «, bounds on c,b, and the Kdhler class |w],
and Cy depends in addition on £ > 2.

The proof of this proposition will occupy the rest of this section.
To obtain these estimates, we write our equation in terms of convex
functions on R, corresponding to the dense complex torus R™x (S1)™ in
M. Suppose that o = /=190 f and w = v/—10dg, where f,g: R* = R
are convex. We are assuming that f, g satisfy the equation

SI(A) + bSn(A) =¢

where A; = ¢ fjp- The function f is fixed, and we want to derive
estimates for the function g on compact sets K C R". By adding an
affine linear function to g, we can assume that ¢(0) = 0 and Vg(0) = 0.

Lemma 26. For any compact K C R" there exists a C > 0 such
that supy |g| < C.

Proof. The image of Vg is a convex polytope P, determined by the
Kahler class of w up to translation by adding affine linear functions to
g. Our normalization ensures that 0 € P, and in particular we get a
gradient bound on g. The result follows immediately. q.e.d.

We next prove a C%-estimate for g on compact sets by a contradiction
argument.

Proposition 27. Suppose that f,g: B — R are convex functions on

the unit ball, satisfying
o det(D?f)
gy S
fisg” + det(D?g) “

with b > 0 as above, and suppose infp g = g(0) = 0. Then there is a
C > 0 depending on supg|g|, bounds on c,b, C** bounds on f and a
positive lower bound on the Hessian of f, such that

sup |gi;| < C.
iB
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Proof. We can assume that ¢ = 1 by scaling f. We argue by contradic-
tion. Suppose that we have sequences fi, g satisfying the hypotheses,
including |gr| < N, but |0%gx(zx)| > k for some z;, € %B. Note that
the equation implies that

Gkij > frij > TOij,

for some fixed 7 > 0, i.e., we have a uniform lower bound on the Hessians
of the gp.

Let hx : Uy — R be the Legendre transform of g;. By shrinking
the ball a bit, we can assume that g, — ¢ uniformly for some strictly
convex g : B — R. Lemma 28 below implies that for sufficiently large &
we have U, D Vg(0.9B), and so Vg(0.8B) is of a definite distance from
OUy, for large k. In addition, hy, satisfies the equation

(26) > Frii(Vhi(y) ki (y) + b det(D? f,(Vhy)) det(D>hy(y)) = 1.
2

In addition from the normalization we get hy(0) = Vhj(0) = 0. We use

Proposition 29 below together with the Schauder estimates, to obtain

uniform C%“ bounds on each hg, on Vg(0.8B), so we can take a limit
heo : Vg(0.8B) — R, satisfying an equation of the form

Z fOOJj(Vhoo (y))hoo,ij (y)+boo det(D2foo(Vhoo (y))) det(D2hoo (y)) =1
]

There are two cases:

1) We have a positive lower bound on the Hessian of h,. This implies
a lower bound on Hess hy, for large k, on Vg(0.8B), i.e., we get an
upper bound on Hess gi at all points € B for which Vgi(z) €
V¢(0.8B). But by Lemma 28, Vg;(0.7B) C V¢(0.8B) for large k,
so we get an upper bound on Hess g; on 0.7B, which contradicts
our assumption.

2) The Hessian of he is degenerate somewhere. Then we can ap-
ply the constant rank theorem of Bian-Guan [1, Theorem 1.1].
Indeed, for a fixed value of Vh,,, the equation is of the form

F(A) = Tr(BA) + cdet(4) — 1 =0,

for a positive definite matrix B and positive constant c¢. The
assumptions of Theorem 1.1 in [1] are satisfied, since the map
A F(A™Y) is convex in A, according to Lemma 8. Tt follows
that if the Hessian of h, is degenerate at a point, then it must be
degenerate everywhere, and so

/ det(hoo,ij) =0.
Vg(0.8B)
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This contradicts the fact that Vg (0.7B) C Vg(0.8B) for large k,
and

/ det(hmj) = VOI(O?B),
Vgi(0.7B8)
but hj — he in C><. q.e.d.

Lemma 28. Suppose that f : B — R are convex, with fi;; > 765,
such that they converge uniformly to f : B — R. If By C Bo C B3 C B
are relatively compact balls, then for sufficiently large k the gradient
maps satisfy

Vfe(B1) C Vf(B2) CV fi(Bs).

Proof. From Gutiérrez [17, Lemma 1.2.2] we have that
limsup Vf(K) C Vf(K),
k—o0

for any compact K C B. Suppose that By C B’ C Bs. The strict
convexity of f implies that V f(0Bz) is a positive distance from V f(B’).
In particular for each x € V f(9Bz), there is a k,, such that x ¢ V f(B’)
for all k& > k. The strict convexity then implies that there is a (fixed)
radius § > 0, such that Bs(z) is disjoint from V fi,(By) for all k > k.
Since V f(0Bsg) is compact by [17, Lemma 1.1.3], we can find some N
such that Vfi,(B1) is disjoint from Vf(0Bs) for all K > N. But this
implies
Vfe(B1) C Vf(Bs),

for k> N.

For the other inclusion we use that for any compact K C B and open
set U D K with U C B, we have

Vf(K) C liminf V£, (U).

Now choose an intermediate ball B’ with By ¢ B’ C Bsz. For any
x € Vf(Bz), we have a k, such that x € V f(B’) for all k > k,. By the
strict convexity we have some § > 0 such that Bs(x) € V fi.(B3). Using
that V f(Bs) is compact, we can again cover by finitely many such balls,
and we get an N such that Vf(Bs) C Vf(Bs) for all k > N.  q.e.d.

The higher order estimates required by Proposition 25 follow from
standard elliptic theory. We now show the C?“-estimates for equa-
tion (26). The difficulty is that the operator is neither concave, nor
convex, and the result of Caffarelli-Yuan [5] also does not apply di-
rectly.

Proposition 29. Suppose that h: B — R is a smooth convex func-
tion on the unit ball in R™ satisfying the equation

(27) > aij(Vh)hij + b(Vh) det(D?h) = 1,

1,J
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where a;j,b € C1*, b >0 and A < a;; < A. Then we have ||h\|cg,a(%B) <
C for a constant C depending on A\, A and CY* bounds for a;j,b and ct
bounds for h.

As a first step we prove a priori C%® estimates for the constant coef-
ficient equation.

Proposition 30. Suppose that h: B — R is a smooth convex func-
tion on the unit ball in R™ satisfying the equation
(28) Ah + bdet(D?*h) = 1,

where b > 0 is a non-negative constant. Then we have HhHCQ,a( B <C

1
2
for a constant C' depending on b and |h|c1.«(p)-

Proof. We will assume b > 0, since b = 0 is standard. Let f =
det(D2h)1/ " and denote the linearized operator by L, which acts on a
smooth function g by

Lg=Ag+ bdet(Dzh)hijgij,
where we use summation convention for repeated indices. We now com-
pute Lf. We work at a point where D?h is diagonal. We also write
S, = det(D?h) to simplify notation. First, differentiating the equation
we have for each k
hiik + bSph hyji, = 0,
hiike(1 4 bSph™) + bSphPPhyehhegr — bSphPPh99h2,, = 0.

Also, differentiating f, we have

1 y

e = =S/ W hijy,
n
1 y 1 1
frk = 55}/%%,-,-% + ﬁsg/"hpphppkhqqhqqk - Es;/"hpphqqhqu.
We now compute Lf:
Lf = (1 +bSuh") fia,

1/n
_ ng (14 bS,h*) {"hiihiikk + WPPRI (hyprhggr — ”h?’qk)]
1/n
= S:;/ [h”bthpphqq(hf,qi - hppihqqi)]
Sﬁ/" .
+ g (L4 DS A ) WPP T (hypihggi — nhii)
sim
_ 7huhpphqqhmn.hqqi(—ann +bSy)
1/n 1/n
+ :2 Z R :1 Z hpphqth%qi'

4,p,q 4,p,q
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We have

2
> PR hypihggi = (Z hpphm,i>
p

P
<n Y (BPPhpp)* <n > hPPRIIR2
P X
It follows from this that Lf < 0.

At this point we can follow the argument in Caffarelli-Yuan [5] closely.
The only difference in the argument is that in [5] the function eX4% is
a subsolution of the linearized equation for a sufficiently large constant
K. This does not appear to be the case for our equation, but instead we
can use that det(D?u)'/" is a supersolution according to our calculation
above. In [5] this supersolution property is only used in dealing with
“Case 2”7 in the proof of their Proposition 1. We will see that the same
argument works in our situation as well.

As in [5], we fix p,&, 0, ko > 0 to be determined and we set

sp:= sup Au(z), 1<k <k
xEBl/2k

From the equation we know that s < 1. Define
Ey = {a; € By x| Au(z) < sy, —f},

and as in Case 2 in [5], assume that for all 1 < k < ky we have |Ey| >
6| By jox|. Let us define

x
wy(x) = 2%Fu (2—k) .
We apply the above computation to conclude that
L= Aw)Yr — (1 - sk)l/”] <0.

Since (1 — Awy)/™ — (1 — s£)Y/" > 0 on By, we can apply the weak
Harnack inequality to obtain

(1= spp)Y™ = inf (1 — Awg)/"

B2
> (1= sp)™ + e (1= Awp) /™ = (1= 5)™ | o0 (1)

on By, for uniform constants ¢,po > 0. The right hand side can be
estimated using the assumption on the measure |Ey|, and we get

inf (1 Awg)/™ > (1— s/ 4 cstm S
B1/2 n

since we have

(1—sp+ O = (1— s > &

3
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Since 1—s; < 1, there can only be at most a bounded number kg of such
steps. The remainder of the argument is identical to Cafarelli-Yuan [5].
q.e.d.

We can now prove the interior C% estimates for the general equation
in Proposition 29 by using a blow-up argument. We begin by proving a
Liouville rigidity theorem for convex solutions of our equation;

Lemma 31. Suppose that u : R™ — R is a smooth, convex function
satisfying

(29) Au + bdet(D?u) = 1,
then u is a quadratic polynomial.

Proof. The lemma follows from a simple rescaling argument, which is
essentially the same as the proof of Gutiérrez [17, Theorem 4.3.1]. By
subtracting a plane we may assume that u(0) = 0 and Vu(0) = 0. Since
u is convex, the equation implies that |D?u| < y/n. By integration we
obtain the bound |Vul|(x) < y/n|z|. We consider the function vg(z) :=
R™2u(Rz). By the above, for x € B; there holds

vr(0) =0,  |Vug|(z) <Vn,  D*wp(z) = D*u(Rx),

and so vg(z) is uniformly bounded in C?(B;). Moreover, vg(x) solves
equation (29) on By, and so by the interior estimates in Proposition 30
we have a uniform bound for ‘D2UR’C‘¥(B1/2)' Writing this in terms of
u, we have
2
Ra|D u|Ca(BTlR)

where C' is independent of R. Taking the limit as R — oo we see
that we must have D?u = D?u(0) a constant. Hence u is a quadratic
polynomial. q.e.d.

<,

Proof of Proposition 29. To deal with the case of varying coefficients, we
use a blowup argument to reduce to the Liouville result in the constant
coefficient case.

Suppose then that h satisfies equation (27) on B. Let

Ny, = sup d,| D3n(z)),
reB

where d,, = d(x,0B) is the distance to the boundary of B. Our goal is
to bound N from above, so we can assume Nj, > 1 say. Let us assume
that the supremum is achieved at a point x = zg € B. We define the
function

h(z) = dy2NEh(zo + duy Ny, 12) — A — Az,

where A, A; are constants chosen so that

(30) n(0)=0,  Vh(0)=0.
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The function h(z) is defined on the ball B ~,, (0) around the origin. By
direct computation we have

D?h(z) = D*h(zo+dey Ny '2),  D3h(2) = dyy Ny L D3h(0+doy Ny L 2),

and so |D3h(z)| < 2 on By-1y;, (0). Moreover, since |D%h| = |D?h| < C,
the normalization (30) implies that we have a bound

”E”CB(B2*1N;1) < Cu

for a uniform constant C. In addition h satisfies an equation of the form
(31) > " Gij(Vh)hi; + b(Vh) det(D*h) = 1,
]
for coefficients 'dij,g satisfying the same bounds as a;;, b, but
sup |Va;;| < aigcoNh_1 sup |Va;|,

(32) ~ .
sup |Vb| < dg, N, sup|Vb|.

Differentiating equation (31), we obtain a linear elliptic equation for
the derivatives Ep, with C® coefficients (using also our C® bound for
71) The standard Schauder theory then implies C%“ bounds on Vh on
compact subsets of By, /4.

For the sake of obtaining a contradiction we suppose that we have
a sequence of convex functions hy on B satisfying (27), such that the
corresponding constants Nj, > 4k. Then the rescaled functions l~zk are
defined on By(0) and have uniform C*® bounds on By(0), and satisfy
|D3h(0)] = 1. By taking a diagonal subsequence, we can extract a
convex limit ho : R™ — R in C3*/2 satisfying |D3hoo(0)| = 1, and
equation (31) with constant coefficients because of (32). Since heo is
convex, C%%/2 on R" and satisfies the constant coefficient equation
(29) (after a linear change of coordinates), we easily obtain that h is
in fact smooth. In particular, we can apply the Liouville rigidity result
in Lemma 31 to conclude that EOO is a quadratic polynomial. But this
contradicts | D3k (0)] = 1. q.e.d.
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