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THE RICCI FLOW ON MANIFOLDS

WITH BOUNDARY

Panagiotis Gianniotis

Abstract

We study the short-time existence and regularity of solutions
to a boundary value problem for the Ricci–DeTurck equation on
a manifold with boundary. Using this, we prove the short-time
existence and uniqueness of the Ricci flow prescribing the mean
curvature and conformal class of the boundary, with arbitrary ini-
tial data. Finally, we establish that under suitable control of the
boundary data the flow exists as long as the ambient curvature and
the second fundamental form of the boundary remain bounded.

1. Introduction

The aim of this paper is to study the deformation for a short period
of time of a Riemannian metric g0 on a compact Riemannian manifold
with boundary using the Ricci flow

∂tg = −2Ric(g),(1.1)

which was introduced by Hamilton in [17]. He established the short-
time existence and uniqueness of solutions with g(0) = g0 and used it
to study three-dimensional manifolds admitting metrics with positive
Ricci curvature. Later on, Shi in [24] proved the short-time existence
of the flow for complete manifolds with uniformly bounded Riemann
tensor. Ever since, it has been proven to be a valuable tool in the study
of the interaction between geometry and topology, providing a natural
geometric deformation of Riemannian manifolds.

A natural question to ask is whether one can deform the geometry
of a manifold with boundary using the Ricci flow, and what would be
appropriate boundary conditions. The obstacle, as in the case without
boundary, is the diffeomorphism invariance of the Ricci tensor, which is
why the equation is not parabolic. One needs to solve a modified para-
bolic equation first, as DeTurck did in [13], and then relate its solution
to the Ricci flow. In the case of manifolds with boundary, though, the
challenge is to impose boundary conditions that on the one hand will
lead to a parabolic boundary value problem for the modified equation,
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and at the same time tie well with the geometric character of the Ricci
flow.

The first work in this direction was by Shen in [23], where he estab-
lished a short-time existence result for compact manifolds with umbilic
boundary. Moreover, he extended Hamilton’s result in [17] to the case
of manifolds with totally geodesic boundary. The convex (and umbilic)
case was studied later by Cortissoz in [12]. However, one would like
to deform more arbitrary metrics than in [23]. To this direction, Pule-
motov in [20] proved a short-time existence result for manifolds with
boundary of merely constant mean curvature.

More work has been done on the two-dimensional Ricci flow, and the
closely related Yamabe flow. Both have been studied under Neumann-
type boundary conditions. See, for instance, the contributions of Brendle
in [6, 7, 8], Tong Li in [19], and Cortissoz in [11]. Also, Giesen and
Topping in [15] study the Ricci flow on general incomplete surfaces from
a different point of view. They show existence of solutions that become
instantaneously complete for positive time and completely classify their
asymptotic behavior. Moreover, Topping in [27] shows that such flows
depend uniquely on the initial data.

Heuristically, the Ricci flow is closely related to the corresponding
“elliptic” problem, the Einstein equations. Boundary value problems for
Einstein metrics have been studied, for instance, by Anderson in [5], An-
derson and Khuri in [3], Schlenker in [22], and Reula in [21]. In particu-
lar, in [5] it is shown that the conformal class and the mean curvature of
the boundary give elliptic boundary conditions for the Bianchi-gauged
Einstein equation. Notice that in the case of three-dimensional mani-
folds with boundary, solving such a boundary value problem also gives
rise to immersions of the boundary data (conformal class and mean cur-
vature) in the canonical simply connected spaces of constant curvature.
We refer the reader to [2] for details on this point of view. A para-
bolic approach may provide further understanding of these geometric
problems.

A solution to the Ricci flow is not expected to be determined uniquely
by the mean curvature only, as in [20], which hints that it should be
supplemented with additional boundary data. In the following, we study
boundary value problems for the Ricci–DeTurck flow and the Ricci flow,
under the boundary conditions proposed in [5]. The main result of this
study is a local existence and uniqueness result for the Ricci flow on
manifolds with boundary. To the knowledge of the author, this is the
first result that allows the flow to start from an arbitrary initial metric.

The methods used can also be applied to study boundary value prob-
lems for geometric flows related to static metrics in General Relativity
(see [3]). However, we won’t pursue this direction here, as we plan to
discuss it in a future paper.
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Let Mn+1 be a compact (n+1)-dimensional manifold with boundary
∂M , and interior Mo. If g is a smooth Riemannian metric on M we
will denote by H(g) the mean curvature of the boundary, and by uT the
part of the tensor u, tangential to the boundary. Moreover, if γ is some
Riemannian metric on ∂M , let [γ] be its conformal class, namely,

[γ] =
{
γ′ = φ2γ , for all positive functions φ on ∂M

}
.

Now, let g0 be an arbitrary smooth Riemannian metric onM , γ(x, t) ∈
C∞(∂M × [0,+∞)) a smooth time-dependent family of metrics on ∂M
and a function η(x, t) ∈ C∞(∂M × [0,+∞)). We assume that they sat-
isfy the zeroth-order compatibility conditions

H(g0) = η|t=0,[
(g0)T

]
= [γ|t=0].

(1.2)

Moreover, let κ > 0 be the constant defined in Section 4.1, which
bounds the W 2,p norm of g0 and appropriate Hölder norms of γ and η.
For the precise definitions of the function spaces used and the restric-
tions on the values of p, ε, and α appearing below, the reader is invited
to consult Section 2.

Theorem 1.1. Let Mn+1, g0, γ, η be as above. Consider an arbitrary
family of background metrics g̃ ∈ C∞(M × [0,+∞)) that satisfies in
addition the zeroth-order compatibility condition g̃(0) = g0. Take K > 0,
and set

Λ = max

{
κ, sup

t

{
||g̃(t)− g0||W 2,p(Mo) + ||∂tg̃(t)||Lp(Mo)

}}
.

Then, there exists a T > 0 which depends only on Λ > 0 and K > 0
and a unique solution g(t), t ∈ [0, T ], of the Ricci–DeTurck equation,

(1.3) ∂tg = −2Ric(g) + LW(g,g̃)g,

where W(g, g̃)l = glrg
pq(Γ(g)rpq −Γ(g̃t)

r
pq), satisfying on ∂M × [0, T ] the

boundary conditions

W(g, g̃) = 0,(1.4)

H(g) = η,(1.5) [
gT

]
= [γ](1.6)

and the estimate ||g − g0||W 2,1
p (MT ) ≤ K. The solution is C∞ away

from the corner ∂M × 0, and extends on M × [0, T ] as a C1+α, 1+α
2

family of metrics. Moreover, if the data g0, γ, η, and g̃ satisfy the nec-
essary higher-order compatibility conditions (see Section 4.2), then g is

Ck+α, k+α
2 up to ∂M × 0.

Now, Theorem 1.1 allows us to prove in Section 5 a short-time ex-
istence result for the Ricci flow on an arbitrary compact Riemannian
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manifold with boundary. Here, the existence time of the flow is con-
trolled in terms of bounds on the geometry of the initial data.

Theorem 1.2. Let g0, γ, η as in Theorem 1.1, and suppose

sup
M
|Ric(g0)|g0 + sup

∂M
|Ric((g0)T )|g0 ≤ C,(1.7)

ig0 , i(g0)T , ib,g0 ≥ C−1,(1.8)

diam(M,g0) ≤ C,(1.9)

|γ|1+ε, 1+ε
2

+ |γ−1|0 + sup
∂M×0

|R(γ)| + |η|ε, ε
2

≤ C,(1.10)

C−1γ|t=0 ≤ (g0)T ≤ Cγ|t=0(1.11)

for some C > 1. Then there exists a smooth solution g(t) to (1.1), for
0 < t ≤ T , that satisfies on ∂M × (0, T ] the boundary conditions (1.5)–
(1.6) and T > 0 depends only on C.

Moreover, as t↘ 0, g(t) converges in the C1,α Cheeger–Gromov sense
to g0 and C∞ away from the boundary. Namely, there exist a smooth
family of diffeomorphisms φt of M , t > 0, such that φ∗

t g(t)→ g0.
Also, if g0, γ, η satisfy the necessary higher-order compatibility con-

ditions for the Ricci tensor Ric to be in the class Ck(MT ) (see Section
5), then we have the following:

1) As t ↘ 0, g(t) converges to g0 in the Ck+2,α Cheeger–Gromov
sense.

2) g ∈ Ck(MT ) ∩ C∞(Mo × [0, T ]), and there exists a Ck+1 dif-
feomorphism φ of M that fixes the boundary and is C∞ in the
interior such that g(0) = φ∗g0. Also, if k ≥ 1, φ is Ck+2 and
g ∈ Ck+1(MT ).

3) The Riemann tensor Rm is in Ck(MT ) and Rm(g(0)) = φ∗ Rm(g0).

Here, ig0 , i(g0)T denote the injectivity radii of (M,g0), (∂M, (g0)T ) re-
spectively, and ib,g0 denotes the “boundary injectivity radius”—namely,
the maximal size of the collar neighborhood of ∂M in which the nor-
mal exponential map from the boundary is a local diffeomorphism. See
Definition 5.1. Also, we write R(γ) for the scalar curvature of γ.

We note that a version of Theorem 1.2 in which the initial data are
obtained in the usual sense—namely, g(0) = g0—does hold. However,
such a solution will generally not be C∞ smooth up to the boundary
even for positive time. This issue is related to the invariance of the
equation under diffeomorphisms and is discussed in Remark 5.3.

We prove Theorem 1.1 in Section 4 with a fixed-point argument,
following the method of Weidemaier in [28] and applying Solonnikov’s
work on linear parabolic systems under general boundary conditions in
[25]. The main advantage compared to an implicit function theorem
approach is that the study of the nonlinearities of the equation and the
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boundary conditions allows us to obtain uniform control on the existence
time.

Note that the control of the existence time obtained in Theorem 1.1
does not tie well with the geometric nature of the Ricci flow, mainly
because it involves norms that depend on the choice of the background
smooth structure and metric. From this point of view, Theorem 1.2 is
more satisfactory, as the lower bound on the existence time depends
only on the geometry of the initial data g0 and norms of the boundary
conditions.

It is well known that incomplete solutions of the Ricci flow are in
general not unique. On a manifold with boundary though, the boundary
data (1.5) and (1.6) allow us to obtain the following uniqueness result.

Theorem 1.3. A solution to the boundary value problem (1.1),(1.5)-
(1.6) in C3(MT ) is uniquely determined by the initial data g0 and the
boundary data ([γ], η).

Theorems 1.1, 1.2 and 1.3 generalize to Theorem 5.1, where η also
depends on the metric gT induced on the boundary by g(t).

Finally, in Sections 6 and 7 we move towards the study of more global
issues. In Section 6 we demonstrate the necessity of the bound on the
boundary injectivity radius in Theorem 1.2. We construct examples with
flat initial data and uniformly controlled boundary conditions whose
existence time becomes arbitrarily small. This is quite surprising, since
on closed manifolds a curvature bound suffices to prevent such behavior.
Section 7 is devoted to the proof of the following theorem, which is a
continuation principle for the Ricci flow on manifolds with boundary.

Theorem 1.4. Let g(t), t ∈ [0, T ) be a smooth (C∞) Ricci flow on M
with smooth boundary data ([γ(t)], η(t)) defined for t ∈ [0, T ′). Suppose
T <∞ be the maximal time of existence and T < T ′. Then

sup
0≤t<T

(
sup
x∈M

|Rm(g(t))|g(t) + sup
x∈∂M

|A(g(t))|g(t)

)
= +∞.

Acknowledgments. The author would like to thank his adviser, Michael
Anderson, for suggesting this problem and for valuable discussions and
comments.

2. Notation, definitions, background material

Let Mn+1 be a smooth, compact, (n+ 1)-dimensional manifold with
boundary ∂M and interior Mo. We will use the notation MT = Mo ×
(0, T ), ∂MT = ∂M × (0, T ).

2.1. Function Spaces. We need to define the function spaces we will

use. First, fix a smooth Riemannian metric h on M and denote by ∇̂ its
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Levi-Civita connection. We also need to fix an open cover {Us} of M ,
and a collection of charts φs such that

φs : Us → B(0, 1) ⊂ R
n+1 if Us does not intersect the boundary,

φs : Us → B(0, 1)+ ⊂ R
n+1 if Us intersects the boundary.

In the last case assume that φs|∂M∩Us
: ∂M∩Us → V := Bn(0, 1) ⊂ R

n.
We will use the convention that Greek indices correspond to directions
tangent to the boundary, counting from 1 to n. Moreover, ρs will be a
partition of unity subordinate to that open cover.

Consider any tensor bundle E of rank k over M , with projection map

π, equipped with the connection inherited by ∇̂. The completion of the
space of the time-dependent C∞(MT ) sections of E with respect to the
norm

||u||
W 2,1

p (MT )
= ||u||Lp(MT )+ ||∇̂u||Lp(MT )+ ||∇̂

2u||Lp(MT )+ ||∂tu||Lp(MT )

will be denoted by W 2,1
p (MT ). Let also

|u|L2,1
p (MT ) = ||∂tu||Lp(MT ) + ||∇̂

2u||Lp(MT ).

If τ is a section of E, we will denote by sτ ijk...μν... the coordinates of this
tensor with respect to the trivialization based at Us.

We define the following norm for time-dependent Lp sections of
E∂M = {v ∈ E |π ◦ v ∈ ∂M } and for λ = 1− 1/p:

||v||
W

λ,λ/2
p (∂MT )

= ||v||Lp(∂MT ) + |v|
L
λ, λ

2
p (∂MT )

.

Here, setting ρ̂s = ρs ◦ φ
−1
s , we define

|v|
L
λ, λ

2
p (∂MT )

=
∑
s

max
i1,...,ik

|ρ̂s
svi1,...,il il+1,...,ik |

L
λ,λ

2
p (VT )

,

where, for every function f ∈ Lp(VT ),

|f |p
L
α,β
p (VT )

= |f |p
L
α,0
p (VT )

+ |f |p
L
0,β
p (VT )

,

|f |p
L
α,0
p (VT )

=
n∑

μ=1

∫ +∞

0
h−(1+pα)||Δμ,hf ||

p
Lp(Vμ,h,T )dh,

|f |p
L
0,β
p (VT )

=

∫ +∞

0
h−(1+pβ)||Δt,hf ||

p
Lp(VT−h)

dh.

In the above,

Δμ,hf(y, t) = f(y + heμ, t)− f(y, t),

Δt,hf(y, t) = f(y, t+ h)− f(y, t),

Vμ,h,T = {(y, t) ∈ VT |y + heμ ∈ V } .

Analogous spaces exist also in the elliptic setting; see, for instance, [26].
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For l > 0 nonintegral, we will denote by C l,l/2(M × [0, τ ], E) the Ba-
nach space of time-dependent sections u of E having continuous up to

the boundary derivatives ∂r
t ∇̂

qu for all r, q satisfying 2r + q < l, sat-
isfying appropriate Hölder conditions in the time and space directions.
More precisely, the norm is given by

|u|l,l/2 = sup
s

max
I
|suI |[l],B(0,1) + sup

s
max
I
〈suI〉l,l/2,B(0,1) ,

where suI are the coordinate functions of u in the coordinate system Us

and

|f |k,B(0,1) =
∑

0≤2r+q≤k

||∂r
t ∂

q
xf ||∞,

〈f〉l,l/2,B(0,1) =
∑

2r+q=[l]

〈∂r
t ∂

q
xf〉l−[l],x +

∑
0<l−2r−q<2

〈∂r
t ∂

q
xf〉 l−2r−q

2
,t
.

Here, for 0 < ρ < 1,

〈f〉ρ,x = sup
x �=y, t

|f(x, t)− f(y, t)|

|x− y|ρ
,

〈f〉ρ,t = sup
t�=t′, x

|f(x, t)− f(x, t′)|

|t− t′|ρ
.

We will also denote by |u|k and 〈u〉l,l/2 the norms

〈u〉l,l/2 = sup
s

max
I
〈suI〉l,l/2,B(0,1) ,

|u|k = sup
s

max
I
|suI |k,B(0,1).

For any integer k ≥ 0 we will denote by Ck(M × [0, τ ]) the space of sec-

tions with all the derivatives ∂r
t ∇̂

qu for 2r+ q ≤ k continuous, equipped
with the norm | · |k.

By the definition ofW
λ,λ/2
p (∂MT ), it is not hard to see that Cε, ε

2 (∂MT )

embeds in W
λ,λ/2
p (∂MT ), provided that ε > λ. We will also need the fol-

lowing embedding theorems.

Lemma 2.1.

1) For 1 < p <∞, and u ∈W 2,1
p (MT ),

||∇̂u||
W

λ,λ/2
p (∂M)

≤ C1||u||W 2,1
p (MT ).

2) If n+3
2 < p <∞ and 0 < α < min(1, 2 − (n+3

p )), then

〈u〉α,α/2 ≤ C2

(
δ2−(n+3)/p−α|u|L2,1

p (MT ) + δ−(n+3)/p−α||u||Lp(MT )

)
.

3) If n+ 3 < p <∞ and 0 < α ≤ 1− (n+ 3)/p, then

〈∇̂u〉α,α/2 ≤ C3

(
δ1−(n+3)/p−α|u|L2,1

p (MT ) + δ−(1+(n+3)/p+α)||u||Lp(MT )

)
.
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In the above, the constants do not depend on T > 0 and 0 < δ ≤
min(d, T 1/2), where d is a constant depending on the chosen atlas {Us}.

Proof. See Lemma 3.3 in Chapter II of [18] or Lemma A.1 in [28].
q.e.d.

From now on let us fix some p > n+3 and some α ≤ 1− n+3
p . Then, as

the previous Lemma implies, the Sobolev spaceW 2,1
p (MT ) embeds in the

Hölder space C1+α, 1+α
2 (MT ). Moreover, we get the following estimates

(see Corollary A.2 in [28]).

Lemma 2.2. For all u ∈W 2,1
p (MT ), with u(., 0) ≡ 0, n+3 < p <∞,

0 < γ = (1− n+3
p )/2 and all sufficiently small T > 0:

1) |u|1 ≤ C4T
γ |u|L2,1

p (MT ).

2) |u|
L
β,β/2
p (∂MT )

≤ C5T
γ |u|

L2,1
p (MT )

, for all β ∈ (0, 1).

Also, we will be using the following product estimate.

Lemma 2.3. If f, g ∈ Lα,β
p (VT ) ∩ L∞(VT ) and ρ̂ = ρ ◦ φ−1, then

|ρ̂fg|
L
α,β
p (VT )

≤ C6||fg||∞ + ||f ||∞|ρ̂g|Lα,β
p (VT )

+ ||g||∞|ρ̂f |Lα,β
p (VT )

.

2.2. The mean curvature. Let g be a Riemannian metric on M and
N the ourward unit normal to ∂M with respect to g. The second fun-
damental form A of the boundary is defined by

A =
1

2
(LNg)T .

The mean curvature of the boundary with respect to the metric g is
then given by

2H(g) = trgT LNg.

In the following we are going to need the following formulae, which can
be proven by direct computation.

Lemma 2.4. If gt is a smooth one-parameter family of metrics, such
that g0 = g, and ∂tg|t=0 ≡ h, the first variation of the mean curvature
of the boundary is given by the formula,

2H′
g = trgT ∇Nh+ 2δ∂M

(
h(N)T

)
− h(N,N)H(g).

Lemma 2.5. In the local coordinates defined in this section, the mean
curvature of the boundary of M is given by

2H = gT,αβνi∂i(gαβ)−

(
2g0lgαk√

g00
+

g0lg0kg0α

(
√

g00)3
−

gT,αβg0βg
0lg0k√

g00

)
∂α(gkl).
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3. A linear parabolic initial-boundary value problem.

Let g be a C1+ε Riemannian metric on M , for some ε > 1 − 1
p , γ

the induced metric on the boundary, βg = divg −
1
2d trg the Bianchi

operator, and, H′
g be the linearization of the mean curvature at g.

We will also denote byW 2,1
p,0 andW

λ,λ/2
p,0 the subspaces whose elements

satisfy the initial condition u|t=0 = 0.

Theorem 3.1. Consider the following linear parabolic initial-boundary
value problem on symmetric 2-tensors on M ,

∂tu− trg ∇̂
2u = F (x, t),

(3.1)

βg(u) = G(x, t)

H′
g(u) = D(x, t)

uT −
trγ uT

n γ = 0

⎫⎪⎬⎪⎭ on ∂M ,

u|t=0 = u0,

for F ∈ Lp(MT ), G,D in the corresponding W
λ,λ/2
p (∂MT ) space, and

u0 ∈W 2,p(Mo). Assuming that the zeroth-order compatibility conditions

βg(u0) = G(x, 0),

H′
g(u0) = D(x, 0),

uT0 −
trγ u

T
0

n
γ = 0

hold, problem (3.1) has a unique solution u ∈ W 2,1
p (MT ) that satisfies

the estimate

(3.2) ||u||
W 2,1

p (MT )
≤ C8

(
||F ||Lp(MT ) + ||G||Wλ,λ/2

p (∂MT )

+||D||
W

λ,λ/2
p (∂MT )

+ ||u0||W 2,p(Mo)

)
.

Moreover, the constant C8 stays bounded as T → 0 and depends on the
C1+ε norms of g and g−1.

Proof. The method followed in Chapter IV of [18] and Theorem 5.4 of
[25] carries over to the manifold setting, after the necessary adaptation
to the realm of manifolds and vector bundles (see [20]). We only need to
show that the following boundary value problem on R

n+1
+ = {x0 ≥ 0} ⊂

R
n+1 satisfies the complementing condition (see [18, 25] and [14]).

∂tukl −Δeuclukl = F̂kl on R
n+1
+ ,

δij∂i(ujk)−
1
2δ

ij∂kuij = Ĝk

δαβ∂ouαβ − 2δαβ∂αuβ0 = D̂

uαβ −
δεζuεζ

n δαβ = 0

on {x0 = 0},
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and

u|t=0 = 0.

Here, F̂kl ∈ Lp(R
n+1
+ ) and Ĝk, D̂ ∈W

λ,λ/2
p,0 (∂Rn+1

+ ). One obtains (3.3) by

expressing (3.1) in local coordinates around a point x of the boundary,
with gij(x) = δij , freezing the coefficients at (x, 0) and keeping the
higher-order terms. The principal symbols of the boundary operators
are

i
∑
l

ξlhlk −
i

2

∑
l

ξkhll(3.3)

iξ0
∑
α

hαα − 2i
∑
α

ξαh0α(3.4)

and the principal symbol of the parabolic operator ∂t − Δeucl is (p +
|ζ|2 + τ2)hij , where ζ = (ζ1, . . . , ζn) ∈ R

n and |ζ| its Euclidean norm.

We obtain the following positive root τ̂ = i
√

p+ |ζ|2. Setting equations
(3.3), (3.4) to zero and letting ξ0 = τ̂ , ξα = ζα, we get the following
system:

iτ̂h00 + i
∑
α

ξαhα0 −
i

2
τ̂
∑
l

hll = 0(3.5)

iτ̂h0μ + i
∑
α

ξαhαμ −
i

2
ξμ

∑
l

hll = 0(3.6)

iτ̂
∑
α

hαα − 2i
∑
α

ξαh0α = 0(3.7)

hαβ = φδαβ .(3.8)

Since the principal symbol of the equation is in diagonal form, the com-
plementing condition is equivalent to proving that system (3.5)–(3.8)
has only the zero solution when (p, ζ) satisfy

(3.9) Rep ≥ −δ1|ζ|
2

for some 0 < δ1 < 1.
From equation (3.5) we have

(3.10) 2i
∑
α

ζαhα0 = iτ̂
∑
l

hll − 2iτ̂h00 = iτ̂(tr h− 2h00),

while multiplying equation (3.6) by 2ζμ and then adding over μ we find

(3.11)
∑
μ

2iτ̂ ζμh0μ + 2i
∑
α,μ

ζαζμhαμ − i
∑
μ

ζ2μ tr h = 0.

This gives, taking (3.10) and hαμ = φδαμ into account

(3.12) iτ̂2(trh− 2h00) + 2i|ζ|2φ− i|ζ|2 trh = 0,
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which, after substituting for τ̂ , leads to the equation

(3.13) ph00 = pnφ+ 2(n − 1)|ζ|2φ.

Now, by equation (3.7) we have

(3.14) 2i
∑
α

ζαh0α = iτ̂
∑
α

hαα = iτ̂φn,

which combined with (3.5) gives

(3.15) 2iτ̂h00 + iτ̂φn− iτ̂ trh = 0

and therefore iτ̂h00 = 0. Now, (3.9) implies that p �= −|ζ|2, which gives
τ̂ �= 0 and thus h00 = 0.

Now, by (3.13) we have that

(3.16) φ
(
pn+ 2|ζ|2(n − 1)

)
= 0.

However, assumption (3.9) implies that
(
pn+ 2|ζ|2(n− 1)

)
�= 0, since

2(n−1)
n ≥ 1 for n ≥ 2. This gives that φ = 0.
Now we have established that φ = h00 = 0 it is easy to see that

h0μ = 0, by (3.7). This proves the complementing condition for system
(3.3). q.e.d.

Remark 3.1. Theorem 3.1 is still valid if we consider γt and gt
evolving such that γ0 = gT . Note that the complementing condition is
satisfied if γt and gTt are in the same conformal class. If not, the open-
ness of this condition implies that it holds at least for some short-time
τ̂ > 0 depending on Cε,ε/2 bounds of γt and gt. Thus, we either get local
(in time) existence or a global solution, and the constant C8 depends on

the C1+ε, 1+ε
2 norms of gt and γt and the C0 norms of g−1 and γ−1.

4. A boundary value problem for the Ricci–DeTurck flow.

Let g0 be a C2 Riemannian metric on Mn+1. Consider also

γ(x, t) ∈ C1+ε, 1+ε
2 (∂MT ), a family of boundary metrics, and a func-

tion η(x, t) ∈ Cε, ε
2 (∂MT ), where ε is always 1−

1
p < ε < 1 and p > n+3.

Moreover, assume the zeroth-order compatibility conditions (1.2) hold.
We supplement the Ricci flow equation

(4.1) ∂tg = −2Ric(g)

with the boundary conditions[
gT

]
= [γt] ,(4.2)

H(g) = η(x, t),

and the initial condition

(4.3) g(0) = g0,

and aim to study the existence and regularity of solutions.
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As is well known, the Ricci flow equation is not strongly parabolic,
so we will first study the Ricci–DeTurck equation

(4.4) ∂tg = −2Ric(g) + LW(g,g̃)g,

with the boundary conditions

W(g, g̃) = 0,[
gT

]
= [γt] ,(4.5)

H(g) = η(x, t).

Here,W(g, g̃)l = glrg
pq

(
Γr
pq(g)− Γ̃r

t,pq

)
, Γ(g) being the Christoffel sym-

bols of g, and Γ̃t the Christoffel symbols of a C2 family of metrics g̃t
with g̃|t=0 = g0 (i.e., g̃ ∈ C2(M × [0, T ])).

Remark 4.1. The geometric nature of Ricci flow requires the bound-
ary data to be geometric—namely, invariant under diffeomorphisms that
fix the boundary. The data (4.2) have this property. However, pass-
ing to the DeTurck equation, we need to impose the additional, gauge-
dependent boundary condition W(g, g̃) = 0.

Remark 4.2. We allow the background metric g̃t to vary and define
a time-dependent reference gauge. This, as will be discussed in Section
4.2, allows higher regularity of the solution on ∂M × 0.

4.1. Short-time existence of the Ricci–DeTurck flow. We can
now state and prove the main short-time existence Theorem. First, de-
fine

κ = max
{
||g0||W 2,p(Mo), |g

0|1+ε, |(g
0)−1|0, |γ|1+ε, 1+ε

2

, |η − η0|ε, ε
2

}
.

Then the following theorem holds.

Theorem 4.1. Consider the boundary value problem (4.4),(4.5) with
initial condition g(0) = g0. For the data (g0, g̃, η, γ), define

Λ = max

{
κ, sup

t

{
||g̃ − g0||W 2,p(Mo) + ||∂tg̃(t)||Lp(Mo)

}}
.

For any K > 0, there exists a T = T (Λ,K) > 0 and a solution

g(t) ∈ W 2,1
p (MT ) of this initial-boundary value problem that satisfies

||g − g0||W 2,1
p (MT ) ≤ K.

Proof. Using the background connection ∇̂, the Ricci–DeTurck equa-
tion (4.4) can be expressed as

∂tg − trg ∇̂
2
.,.g = R(g(x, t), ∇̂g(x, t)) − LV (g)g,(4.6)
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where V (g) = girg
pq(Γ̃r

t,pq − Γ̂r
pq), while in local coordinates we get (see

[10])

R(g, ∇̂g)ij = gpqhkl
(
gikR̂jplq + gjkR̂iplq

)
−gpqgkl

(
1

2
∇̂igkp∇̂jglq + ∇̂pgjk∇̂lgiq − ∇̂pgjq∇̂qgil

)
+gpqgkl

(
∇̂jgkp∇̂qgil + ∇̂igkp∇̂qgjl

)
.

Here, h and ∇̂ are the background metric and connection we used to
define the function spaces.

Moreover, we will express the boundary condition for the conformal
class in the form

gTt −
trγt g

T
t

n
γt = 0.

Following [28], for K,T > 0 we define the following subset of W 2,1
p (MT ):

MT
K(g0) =

{
u ∈W 2,1

p (MT )
∣∣∣u|t=0 = g0, ||u− g0||W 2,1

p (MT ) ≤ K
}
.

Choose δ > 0 such that (g0)ijξiξj ≥ δ|ξ|2eucl in every coordinate system
of the fixed atlas. Note that δ is controlled from below in terms of κ.
Lemma 2.2 implies that for every K > 0, there exists 0 < To(K, g0) ≤ 1

such that det(uij) ≥ δ/2 and (u−1)ii ≥ δ/2 for every u ∈ MTo
K (g0). In

particular, u(x, t) is a metric for all t ∈ [0, To].
Now, let T ≤ To. For every w ∈MT

K(g0) the linear parabolic boundary
value problem

∂tu− trg0 ∇̂
2u = R(w(x, t), ∇̂w(x, t))(4.7)

−LV (w)w − trg0 ∇̂
2w + trw ∇̂

2w ≡ Fw,

βg0(u) = βg0(w) −W(w) ≡ Dw,

H′
g0(u) = H′

g0(w)−H(w) + η(x, t) ≡ Gw,

uT −
trγt u

T

n
γt = 0,

u|t=0 = g0,

is well defined and has a unique solution u ∈ W 2,1
p (MT ), by Theorem

3.1. This defines a map

S : MT
K(g0)→W 2,1

p (MT ),

where S(w) is this solution.
Notice that a fixed point of S solves the nonlinear boundary value

problem. Therefore, it suffices to prove that S is a map from MT
K(g0) to

itself and also a contraction, as long as T is small enough. The existence
of the fixed point will follow, since MT

K(g0) is a complete metric space.
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It is easy to see that σ = S(w)− g0 satisfies

∂tσ − trg0 ∇̂
2σ = Fw + trg0 ∇̂

2g0 ≡ F̂w,

βg0(σ) = Dw,

H′
g0(σ) = H′

g0(w − g0)− (H(w)−H(g0))(4.8)

+η(x, t)− η(x, 0) ≡ Ĝw,

σT −
trγt σ

T

n
γt = 0,

σ|t=0 = 0.

Here, we used that βg0(g
0) = 0 and the compatibility condition

H(g0) = η|t=0. Lemma 4.1, below, and the parabolic estimate of The-
orem 3.1 show that for any K, S maps MT

K(g0) to itself, if T is small
enough.

Finally, for any w1, w2 ∈ MT
K(g0), S(w1) − S(w2) similarly satisfies

a linear initial-boundary value problem of the form (3.1). Then the
estimate of Lemma 4.2 shows that S is a contraction for small T > 0.

The uniform bound of existence time follows from the fact that a
uniform bound of κ implies uniform bounds of the constants of Lemmata
4.1, 4.2, and the constant C8 of the parabolic estimate of Theorem 3.1.

q.e.d.

4.1.1. Lemmata 4.1 and 4.2.

Lemma 4.1. Let w ∈ MT
K(g0) for some K > 0 and T ≤ To(K, g0).

Then there exists a constant C(K, g̃, η) and a function ζ : [0,+∞) →
[0,+∞) with ζ(T )→ 0 as T → 0, such that the following estimate holds:

||F̂w||Lp(MT ) + ||Dw||Wλ,λ/2
p (∂MT )

+ ||Ĝw||Wλ,λ/2
p (∂MT )

≤ C(K, g̃, η)ζ(T ),

where

C(K, g̃, η) = C

(
K, sup

t

{
||g̃t − g0||W 2,p(Mo) + ||∂tg̃t||Lp(Mo)

}
,

||g0||W 2,p(Mo), |η − η0|ε, ε
2

)
.

Proof. Since w ∈ MT
K(g0), Lemma 4.4, below, implies that w ∈

C1(MT ) and therefore

|R(w, ∇̂w)|h ≤ C
(
K, ||g0||

W 2,1
p (MT )

)
.

This gives

||R(w, ∇̂w)||Lp(MT ) ≤ C
(
K, ||g0||W 2,p(Mo)

)
ζ(T ).
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Next, we estimate

||LV (w)w||Lp(MT ) ≤ T 1/p sup
t
||LV (w)w|t||Lp(Mo)

≤ C

(
K, sup

t
||g̃t||W 2,p(Mo)

)
ζ(T ).

We also have

|| trg0 ∇̂
2g0||Lp(MT ) ≤ C

(
||g0||W 2,p(Mo)

)
T 1/p.

Combining these estimates, we obtain

||R(w, ∇̂w)−LV (w)w + trg0 ∇̂2g0||Lp(MT ) ≤ C

(
K, sup

t

||g̃(t)||W 2,p(Mo)

)
ζ(T ).

To estimate the rest of Fw, we estimate using Lemma 4.4:

|((g0)ij − wij)∇̂2
i,jw|h ≤ Cmax

k,l
|((g0)ij − wij)∇̂2

i,jwk,l|

≤ C
(
K, ||g0||W 2,1

p (MT )

)
max
i,j,k,l

|∇̂2
i,jwk,l|

≤ C
(
K, ||g0||

W 2,1
p (MT )

)
ζ(T )|∇̂2w|h.

This gives the estimate

|| trg0 ∇̂
2w − trw ∇̂

2w||Lp(MT ) ≤ C
(
K, ||g0||W 2,p(Mo)

)
ζ(T )

and proves

||F̂w||Lp(MT ) ≤ C

(
K, sup

t
||g̃(t)||W 2,p(Mo)

)
ζ(T ).

It now remains to control the norms of Ĝw and Dw. Given any w ∈
MT

K(g0) (we assume that T < To(K, g0)), define h = w − g0, and for
every 0 ≤ s ≤ 1,

gs(x, t) = g0(x) + s · h(x, t).

Then by the fundamental theorem of calculus we get that

2H(w)− 2H(g0) =

∫ 1

0
2H′

gs(h)ds,

and therefore

Ĝw := 2H′
g0(h)−

(
2H(w)− 2H(g0)

)
+ 2(η(x, t) − η(x, 0))

=

∫ 1

0
[2H′

g0(h)− 2H′
gs(h)]ds + 2(η(x, t) − η(x, 0)).
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Now, denoting As := 2H′
g0(h)− 2H′

gs(h), we calculate

(4.9) As = trgT
0
(∇0,N0

h)− trgTs (∇s,Nsh)︸ ︷︷ ︸
αs
1

+2δ0,∂M (h(N0)
T )− 2δs,∂M (h(Ns)

T )︸ ︷︷ ︸
αs
2

+h(Ns, Ns)H(gs)− h(N0, N0)H(g0)︸ ︷︷ ︸
αs
3

,

which, in the coordinates of the fixed atlas, are

H(g) =
1

2

(
gαβνi∂i(gαβ) + 2∂α(ν

α) + 2gαβg0β∂α(ν
0)
)
,

αs
1 = (gαβ0 νi0 − gαβs νis)∂ihαβ − 2(gαβ0 νi0Γ

l
o,iα − gαβs νisΓ

l
s,iα)hlβ ,

αs
2 =

(
gαβs νis − gαβo νio

)
∂αhiβ +

(
gαβs ∂α(ν

i
s)− gαβo ∂α(ν

i
o)
)
hiβ

+
(
gαβo νioΓ̄

j
o,αβ − gαβs νisΓ̄

j
s,αβ

)
hij ,

αs
3 =

1

2

{(
νisν

j
sν

k
s g

αβ
s ∂k(gs,αβ)− νi0ν

j
0ν

k
0g

αβ
0 ∂k(g0,αβ)

)
hij

+2
(
νisν

j
s∂α(ν

α
s )− νi0ν

j
0∂α(ν

α
0 )

)
hij

+2
(
νisν

j
sg

αβ
s gs,0β∂α(ν

0
s )− νi0ν

j
0g

αβ
0 g0,0β∂α(ν

0
0 )
)
hij ,

where Ns = νis∂i = − g0is
(g00s )1/2

∂i is the outward unit normal, Γ̄ the

Christoffel symbols of the connection induced on ∂M , and gijs represents
the inverse of the matrix gs,ij(i.e., the induced metric on the cotangent

bundle). To simplify notation, gαβs denotes the inverse of the matrix
{gαβ}α,β=1,...,n.

Now, to indicate how the estimates of this lemma are established, we
show how the term

(gαβ0 νi0 − gαβs νis)∂ihαβ =
[
(gαβ0 − gαβs )νi0 + (νi0 − νis)g

αβ
s

]
∂ihαβ

is estimated. We have

|ρ̂(gαβ0 − gαβs )νi0∂ihαβ |
L
λ,λ

2
p (VT )

≤ C|gαβ0 − gαβs |0|∂ihαβ |0|ν
i
0|0

+ |gαβ0 − gαβs |0|ν
i
0|0|ρ̂∂ihαβ |

L
λ,λ

2
p (VT )

+ |gαβ0 − gαβs |0|∂ihαβ |0|ρ̂ν
i
0|
L
λ,λ

2
p (VT )

+ |νi0|0|∂ihαβ |0|ρ̂(g
αβ
0 − gαβs )|

L
λ, λ

2
p (VT )

≤ C
(
K, ||g0||W 2,1

p (MT )

)
ζ(T )||h||W 2,1

p (MT ),

where the last inequality follows from Lemma 4.4.
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The terms that are of zeroth order in h, for example, 2(gαβ0 νi0Γ
l
o,iα −

gαβs νisΓ
l
s,iα)hlβ , are of first order in g0 and gs, but they are estimated in

a similar way:

2(gαβ0 νi0Γ
l
o,iα − gαβs νisΓ

l
s,iα)hlβ =

2
[
(gαβ0 − gαβs )νi0Γ

l
0,iα + gαβs (νi0 − νis)Γ

l
0,iα + gαβs νis(Γ

l
0,iα − Γl

s,iα)
]
hlβ .

For example, the term gαβs νis(Γ
l
0,iα−Γl

s,iα)hlβ can be estimated again
using Lemma 4.4:

|ρ̂gαβs νis(Γ
l
0,iα − Γl

s,iα)hlβ |
L
λ,λ

2
p (VT )

≤ C|gαβs νis|0|Γ
l
0,iα − Γl

s,iα|0|hlβ |0

+ |gαβs νis|0|hlβ |0|ρ̂(Γ
l
0,iα − Γl

s,iα)|
L
λ, λ

2
p (VT )

+ |gαβs |0|hlβ|0|Γ
l
0,iα − Γl

s,iα|0|ρ̂ν
i
s|
L
λ,λ

2
p (VT )

+ |νis|0|hlβ |0|Γ
l
0,iα − Γl

s,iα|0|ρ̂g
αβ
s |

L
λ,λ

2
p (VT )

+ |νisg
αβ
s |0|Γ

l
0,iα − Γl

s,iα|0|ρ̂hlβ |
L
λ,λ

2
p (VT )

≤ C
(
K, ||g0||W 2,1

p (MT )

)
ζ(T )||h||W 2,1

p (MT ).

The procedure indicated above carries over to estimate all the terms
of As, providing us with the estimate

|As|0,VT
+ |ρ̂As|

L
λ, λ

2
p (VT )

≤ C
(
K, ||g0||W 2,1

p (MT )

)
ζ(T )||h||W 2,1

p (MT )

≤ C
(
K, ||g0||W 2,1

p (MT )

)
ζ(T ),

since ||h||
W 2,1

p (MT )
≤ K. Now, under the assumptions for η, this proves

that

||Ĝw||Wλ,λ/2
p (∂MT )

≤ C
(
K, ||g0||W 2,1

p (MT ), |η − η0|ε, ε
2

)
ζ(T ).

Similarly, the linearization of the map w �→ W(w, g̃) at u(x, t) is given
by

(4.10) W ′
u(τ)l = βu(τ)l + (τlru

pq − ulrτiju
ipujq)(Γ(u)rpq − Γ̃r

t,pq).
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So, given any w ∈MT
K(g0), T < T0, since βg0(g

0) = 0 we have

(Dw)l = βg0(w)l − (W(w, g̃)−W(g0, g̃))l −W(g0, g̃)l

= βg0(h)l −

∫ 1

0
W ′

gs(h)lds−W(g0, g̃)l

=

∫ 1

0
(βg0(h)− βgs(h))lds+∫ 1

0
(hlrg

pq
s − gs,lrhijg

ip
s gjqs )(Γr

s,pq − Γ̃r
t,pq)ds−W(g0, g̃)l.

Again, using a coordinate system intersecting the boundary, we have

β(h) = gij
(
∂ihjl − hrlΓ

r
ij − hjrΓ

r
il

)
−

1

2
∂l(g

ijhij),

βg0(h)l − βgs(h)l = (g0,ij − gijs )∂ihjl − (g0,ijΓr
0,ij − gijs Γ

r
s,ij)hrl

−(g0,ijΓr
0,il − gijs Γs,il)hjr

−
1

2

[
(∂lg

0,ij − ∂lg
ij
s )hij + (g0,ij − gijs )∂lhij

]
.

Finally, a series of estimates of the same form as those used for the mean
curvature part of the boundary conditions gives the required estimate:

||Dw||Wλ,λ/2
p (∂MT )

≤ C
(
K, ||g̃ − g0||W 2,1

p (MT ), ||g
0||W 2,p(Mo)

)
ζ(T )

≤ C(K, g̃, η)ζ(T ).

q.e.d.

A similar line of reasoning also proves the following lemma. See also
[28].

Lemma 4.2. Let K > 0 and T ≤ To(K, g0). Then, there exists a
constant C(K, g̃) such that for every w1, w2 ∈ MT

K(g0) the following
estimate holds:

(4.11)
||Fw1

−Fw2
||Lp(MT )+||Dw1

−Dw2
||
W

λ,λ/2
p (∂MT )

+||Gw1
−Gw2

||
W

λ,λ/2
p (∂MT )

≤ C(K, g̃)ζ(T )||w1 − w2||W 2,1
p (MT )

,

where

C(K, g̃) = C

(
K, sup

t

{
||g̃ − g0||W 2,p(Mo) + ||∂tg̃||Lp(Mo)

}
, ||g0||W 2,p(Mo)

)
.

4.1.2. Technical Lemmata.

Lemma 4.3. Let δ0 > 0. There exists a positive constant C, such

that for matrix-valued functions g, gl ∈ L∞(VT ) ∩ L
α,β
p (VT ), l = 1, 2 for



THE RICCI FLOW ON MANIFOLDS WITH BOUNDARY 309

which det(gij), det(gl,ij) ≥ δ0 and gii, giil ≥ δ0 holds,

|ρ̂gij |
L
α,β
p (VT )

≤ C|g|0

(
|ρ̂g|

L
α,β
p (VT )

+ 1
)
,

|ρ̂
(
gij1 − gij2

)
|
L
α,β
p (VT )

≤ C ·B1 ·B2

(
|ρ̂( g1 − g2 )|Lα,β

p (VT )

+|g1 − g2|0) ,

|ρ̂(g00)−1/2|
L
α,β
p (VT )

≤ C · |g|0

(
|ρ̂g|

L
α,β
p

+ 1
)
,

|ρ̂
(
(g001 )−1/2 − (g002 )−1/2

)
|
L
α,β
p (VT )

≤ C ·B1 ·B2.
(
|ρ̂ (g1 − g2)|Lα,β

p (VT )

+|g1 − g2|0) ,

where |gl|0 ≤ B1 and |ρ̂gl|Lα,β
p (VT )

≤ B2 and the constants depend on δ0

and the cutoff function ρ̂.

Proof. The result follows from [28, Corollary A.3]. q.e.d.

The following estimates are a direct consequence of Lemma 4.3.

Lemma 4.4. Let g0, g1 ∈ MT
K(g0), T ≤ T0(K, g0), gs = g0 + s(g1 −

g0), and (U, φ, ρ) a chart whose domain intersects the boundary, with the

corresponding cutoff function ρ and ρ̂ = ρ◦φ−1. Let also νis = −
g0is

(g00s )−1/2

be the components of the outward unit normal to the boundary with
respent to gs. Then

1) |gs,ij|1,VT
+ |ρ̂gs,ij|

L
λ,λ

2
p (VT )

+ |ρ̂∂kgs,ij|
L
λ, λ

2
p (VT )

≤ C(K, g0).

2) |gij0 − gijs |1 + |g0,ij − gs,ij|1 ≤ C(K, g0, δ)ζ(T )||h||W 2,1
p (MT ).

3) |ρ̂(gij0 − gijs )|
L
λ, λ

2
p (VT )

+ |ρ̂(g0,ij − gs,ij)|
L
λ, λ

2
p (VT )

≤ C(K, g0, δ)ζ(T )||h||W 2,1
p (MT ).

4) |ρ̂∂kg
ij
s |

L
λ, λ

2
p (VT )

≤ C(K, g0, δ).

5) |νis|0 + |ρ̂ν
i
s|
L
λ,λ

2
p (VT )

+ |ρ̂∂αν
i
s|
L
λ, λ

2
p (VT )

≤ C(K, g0, δ).

6) |νi0 − νis|1 + |ρ̂(ν
i
0 − νis)|

L
λ, λ

2
p (VT )

≤ C(K, g0, δ)ζ(T )||h||W 2,1
p (MT ).

7) |ρ̂∂αν
i
s|
L
λ,λ

2
p (VT )

≤ C(K, g0, δ).

where lim
T→0+

ζ(T ) = 0.

4.2. Regularity of the Ricci–DeTurck flow. The solution of the
Ricci–DeTurck boundary value problem obtained in the previous section
is in the Sobolev space W 2,1

p (MT ) for p > n+ 3 and therefore has only

C1+α, 1+α
2 regularity in MT . In this section we show that certain higher-

order compatibility conditions on ∂M are necessary and sufficient for
higher regularity on ∂M × 0. We also obtain an automatic smoothing
effect of the flow for positive time (up to the boundary).
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4.2.1. Higher-order compatibility conditions. Assuming that g(x, t)

is a C l+2, l
2
+1(MT ) solution to the Ricci–DeTurck flow

∂tg = −2Ric(g) + LW(g,g̃)g,

we easily see that all the derivatives hk ≡ ∂k
t g|t=0 ∈ C l+2−2k(M),

0 ≤ k ≤
[
l
2

]
+1 are determined by the initial data g|t=0 = g0 ∈ C l+2(M̄),

by differentiating the equation with respect to t and then commuting
∂k
t with ∂i∂j, which is possible as long as 2k+2 < l+2, i.e., 0 ≤ k ≤

[
l
2

]
.

Moreover, if g(x, t) satisfies the boundary conditions (4.5), differenti-
ating with respect to t, we get

∂k
tW(gt, g̃t)|t=0 = 0,(4.12)

∂k
tH(gt)|t=0 = ∂k

t η|t=0,(4.13)

∂k
t

(
gTt −

trγt(g
T
t )

n
γt

)∣∣∣∣
t=0

= 0.(4.14)

So, from (4.14) for k ≤
[
l
2

]
+ 1, we see that additional conditions need

to be satisfied by hk, and hence by g0, on ∂M . Similarly, for k ≤
[
l+1
2

]
(so as 2k + 1 < l + 2 ), the ∂k

t derivatives commute with the space
derivatives of the first-order operators W,H on (4.12), (4.13) and give
additional restrictions on the initial data on the boundary.

In particular, if l > 0, since (g0)T = γ|t=0 we see that
.
γ |t=0 is

specified, up to a conformal factor by h1:

(4.15)
.
γ |t=0 = hT1 −

trγ0 h
T
1

n
γ0 + fγ0,

where f is an arbitrary function. Moreover, if l > 1, η̇|t=0 is also specified
by the initial data:

(4.16) η̇|t=0 = H′
g0(h1).

In the section below, we show how parabolic regularity implies that
these conditions are also sufficient to obtain higher regularity of a solu-
tion to the Ricci–DeTurck boundary value problem.

Theorem 4.2. Let g ∈W 2,1
p (MT ) be a solution to the Ricci–DeTurck

boundary value problem (1.3),(1.4)–(1.6). Let l = k + α, α ≤ 1 − n+3
p .

Then the following hold:

1) (Interior regularity) Suppose that g̃ ∈ C l+2, l+2

2 (Mo× [0, T ]). Then

g ∈ C l+2, l+2

2 (Mo × [0, T ]).

2) (Boundary regularity) If η ∈ C l+1, l+1

2 (∂MT ), γ ∈ C l+2, l+2

2 (∂MT ),

g̃ ∈ C l+2, l+2

2 (MT ), and the data g0,η,γ,g̃ satisfy the necessary com-

patibility conditions, then g ∈ C l+2, l+2

2 (MT ).
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3) (Boundary regularity for positive time) If η ∈ C l+1, l+1

2 (∂MT ),

γ ∈ C l+2, l+2

2 (∂MT ), and g̃ ∈ C l+2, l+2

2 (MT ) then, for τ ∈ (0, T ),

g ∈ C l+2, l+2

2 (M × [τ, T ]).

Proof. Given a Riemannian metric gij on a domain in R
n+1, we can

define the differential operator

L(∂t, ∂x, gij)(u)kl = ∂t(ukl)− gij∂i∂j(ukl),

acting on symmetric 2-tensors ukl.
In a coordinate system the solution g(x, t) of the Ricci–DeTurck flow

satisfies parabolic equation of the form

(4.17) L(∂t, ∂x, gij)(g)kl = S(g, ∂g, g̃, ∂g̃, ∂
2g̃)kl,

and hence standard interior regularity theory implies part 1 of the the-
orem.

It remains to study the regularity of g at a neighborhood of the bound-
ary, under the assumptions of the theorem.

We need to establish some notation first. Let φ : U → φ(U) ⊂ R
n+1

be any smooth chart on a domain U intersecting the boundary of M ,
such that φ(U ∩ ∂M) = φ(U)∩ {x0 = 0}, and let gab, γεσ be symmetric
positive definite (n+1)×(n+1) and n×n matrices, respectively. Define
the following differential operators:

B(∂x, gab)(u)i = gpq∂p(uqi)−
1

2
gpq∂i(upq),

H(∂x, gab)(u) = gT,αβνi∂i(uαβ) +(
2g0lgαk√

g00
−

g0lg0kg0α

(
√

g00)3
+

gT,αβg0βg
0lg0k√

g00

)
∂α(ukl),

C(γεσ)(u)αβ = uαβ −
γμνγαβ

n
uμν .

Now, take any p ∈ ∂M , and consider a smooth coordinate system as
the above with φ(p) = 0 and gij(0)|t=0 = δij .

By Lemma 2.5, 2H(g) = H(∂x, gab(x, t))(g). Thus, in addition to
(4.17), gij(x, t) satisfy the following conditions on φ(U) ∩ {x0 = 0}:

B(∂x, gab(x, t))(g)i = gpqgriΓ̃
r
pq,

H(∂x, gab(x, t))(g) = 2η(x, t),(4.18)

C(γεσ)(g)αβ = 0,

and the initial condition gij |t=0 = g0ij .

Notice that after “freezing” the coefficients at x = 0, t = 0, the opera-
tors L(δab), B(δab), H(δab), C(δεσ) satisfy the complementing condition,
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as the computation in Theorem 3.1 shows. The openness of this con-
dition implies that the same is true for the operators L(gab), B(gab),
H(gab), C(γεσ), as long as gab and γεσ are close to δab.

We will extend (4.17), (4.18) to a parabolic boundary value problem
on R

n+1
+ using a smooth cutoff function 0 ≤ η ≤ 1 on R

n+1
+ supported

in a ball B+(0, r) such that η|B+(0,r/2) ≡ 1. For this, define the metrics

aab(x, t) = ηgab(x, t)− (1− η)δab

on R
n+1
+ and

αεσ = ηγt,εσ + (1− η)δεσ
on R

n. Then, choosing r, τ > 0 small enough, the operators L(aab(x, t)),
B(aab(x, t)), H(aab(x, t)), C(αεσ(x, t)) will satisfy the complementing
condition, defining a parabolic boundary value problem on R

n+1
+ × [0, τ ].

Now, let 0 ≤ ζ ≤ 1 be a smooth cutoff function supported in B+

(0, r/2), ζ|B+(0,r/3) ≡ 1, and set v = ζg.
Then v satisfies the equation

L(∂t, ∂x, aij)(v)kl = ζSkl − gij∂i∂j(ζ)gkl − 2gij∂i(ζ)∂j(gkl)

and the boundary conditions

B(∂x, aab(x, t))(v)i =
(
1−

n

2

)
∂i(ζ) + ζgpqΓ̃r

t,pqgri,

H(∂x, aab(x, t))(v) = 2ζη + nνi∂i(ζ) + να∂α(ζ) +
gαβT g0βg

0lg0kgkl√
g00

∂α(ζ),

C(αεσ)(v)αβ = 0

on R
n+1
+ . Therefore, by Theorem 5.4 of [25], we can prove that

g ∈ C l+2, l+2

2 (M × [0, τ ]) for some small τ > 0, since ζg0kl satisfies the
necessary higher-order compatibility conditions as long as g0kl does.

At this point we should observe that for g ∈ W 2,1
p (MT ), the metrics

g(t) are uniformly equivalent and satisfy a uniform Hölder condition in
the t direction. Therefore, one can iterate the argument above to show
boundary regularity up to time T .

The regularity up to the boundary for positive time follows in a sim-
ilar manner, using the local estimates provided by Theorem 5.7 in [25]
(which are the analogous estimates to those in Chapter 4 of [18]). q.e.d.

4.2.2. Regularity of the DeTurck vector field. According to the
following proposition, the DeTurck vector field W can gain one deriv-
ative, without requiring all the compatibility conditions needed to in-
crease the regularity of g. Only higher-order compatibility of the initial
data with the reference metrics is needed. Thus, it can be assumed to
be as smooth as the solution to the Ricci–DeTurck flow.

Proposition 4.1. Let g ∈ C l,l/2(MT ) be a solution of the Ricci–

DeTurck equation, l > 3. Assume further that g̃ is in C l+1, l+1

2 (MT ) and
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that the compatibility condition hk = ∂k
t g̃t|t=0 is satisfied for k ≤

[
l+1
2

]
.

Then the DeTurck vector field W is in C l,l/2(MT ).

Proof. Applying the Bianchi operator βg = divg −
1
2d trg in both sides

of the Ricci–DeTurck equation, we get

βg(∂tg) = βg(LWg).

Commuting derivatives, we obtain

βg(LWg) = ΔW +Ric(W),

where Δ = trg∇
2 and Ric(W) = Ric(W, ·).

By the linearization formula of W (4.10), we get that

∂tWb = βg(∂tg)b − gbrUijg
ipgjq

(
Γr
pq − Γ̃r

t,pg

)
− gpq∂t(Γ̃

r
t,pq),

with Uij = −2Ricij +LWgij .
Combining the above, we get the following evolution equation for W

∂tW = ΔW +Ric(W) +Q,

where Q is an expression involving at most two derivatives of the met-
ric. By parabolic regularity, given the Dirichlet boundary condition
W|∂M = 0 and the validity of the compatibility conditions at t = 0,
it follows that W ∈ C l,l/2(M × [0, T ]) as long as g ∈ C l,l/2(M × [0, T ]).

q.e.d.

4.3. Uniqueness. Let g1, g2 ∈W 2,1
p (MT ) be two solutions to the Ricci–

DeTurck boundary value problem (1.3),(1.4)–(1.6) satisfying the same
initial and boundary data. Choosing K > 0 such that gi ∈ MT

K(g0),
there is a τ̂ > 0 such that the map S defined in the proof of the exis-
tence Theorem is a contraction map of M τ̂

K(g0) to itself, and therefore
has a unique fixed point. Since g1, g2 are both fixed points, they have to
agree on [0, τ̂ ]. Assuming the data are smooth enough to guarantee that
gi(t) are C

2 for t > 0, one can apply the same argument regarding t0 as
initial time. Then, an open-closed argument concludes that g1 ≡ g2 on
[0, T ].

The results above finally complete the proof of Theorem 1.1.

5. The boundary value problem for the Ricci flow

Let g0 be a smooth Riemannian metric on a compact Riemannian
manifold with boundary M , γt be a smooth family of metrics of the
boundary, and η a smooth function on ∂M × [0,+∞). We assume that
they satisfy the zero order compatibility condition (1.2). The aim is to
study the existence and regularity of a Ricci flow evolution of g0 on M ,
such that the conformal class of the boundary metric is [γt] and the mean
curvature of the boundary is η. The existence will follow by the standard
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argument of pulling back a solution of the Ricci–DeTurck flow by a
family of diffeomorphisms. However, the issue of how smooth this family
is at the corner ∂M × 0 of the parabolic domain will become relevant,
as it may be only C0 despite being smooth everywhere else. Theorem
1.2 describes how this phenomenon affects the existence and regularity.
Before discussing the proof, we make some remarks on the regularity
of a solution to the Ricci flow g(t) with the boundary conditions under
consideration.

As it was shown in Subsection 4.2, certain higher-order compatibility
conditions among the initial and boundary data are necessary for the
regularity of the Ricci–DeTurck flow on the corner ∂M × 0. Naturally,
such obstruction to regularity appears in any evolution initial-boundary
value problem, and so does for the Ricci flow.

For instance, for the boundary value problem (4.1), (4.2), (4.3), the
compatibility conditions (4.15) and (4.16), with h1 = −2Ric(g0), are
needed for a C2 or C3 solution to exist. Notice that these compatibility
conditions are exclusively formulated in terms of the Ricci tensor of the
initial metric. More generally, differentiating the boundary conditions
with respect to time, and using [γ] = [gT ], we get

RicT −
trgT RicT

n
gT = fγ +

trγ g
T

n
γ̇.

Also, the mean curvature condition gives

H′
g(Ric) = −

1

2
η̇.

Using the evolution equation of the Ricci tensor under Ricci flow (see,
for instance, [10]) and the contracted second Bianchi identity we observe
that Ric satisfies the boundary value problem

(5.1) ∂tRic = ΔLRic, on M ,

where ΔL is the Lichnerowicz Laplacian, and on ∂M

RicT −
trgT RicT

n
gT = fγ +

trγT gT

n
γ̇,

H′
g(Ric) = −

1

2
η̇,(5.2)

βg(Ric) = 0.

Notice that the computation in Theorem 3.1 shows that it satisfies the
complementing condition and is parabolic.

Now, since ∂k
t g = −2∂k−1

t Ric, it follows that the compatibility con-
ditions on g(0) needed for g(t) ∈ Ck(MT ), with k > 3, are the same
as those for Ric ∈ Ck−2 , satisfying (5.1), (5.2). Note also that by the
contracted second Bianchi identity the compatibility conditions of any
order hold for the last boundary condition.
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For example, Ric ∈ C2(MT ) and g ∈ C4(MT ) require an additional

compatibility condition between (ΔLRic)T and γ̈|t=0, which, in the sim-
ple case that the conformal class stays fixed along the flow, will be(

ΔLRic(g0)
)T

= ρg0,T

for some function ρ on ∂M .

In the rest of this section, we will proceed in the proof of Theorem
1.2. However, we will first state and prove the following lemma. This
will enable us to provide a lower bound on the existence time of the
Ricci flow in terms of geometric bounds. We first need a few definitions.

Definition 5.1. Let (M,g) be a Riemannian manifold with boundary.

1) We will say that the injectivity radius ig of (M,g) satisfies the
inequality ig ≥ i0 if at any x ∈ M \ ∂M the exponential map
restricted to any Bρ ⊂ TxM , ρ ≤ min{i0,

1
2distg(x, ∂M)}, is a

diffeomorphism onto its image.
2) The boundary injectivity radius ib,g of (M,g) is the maximal ρ >

0 such that a ρ-tubular neighborhood of ∂M is diffeomorphic to
∂M × [0, ρ) via the normal exponential map of ∂M .

3) We will denote by igT the injectivity radius of the boundary.

Lemma 5.1. Let M be a compact, smooth manifold with boundary,
and fix γ a smooth Riemannian metric on ∂M . Given any Riemannian
metric g on M such that [gT ] = [γ] satisfying

sup
M
|Ric(g)|g + sup

∂M
|Ric(gT )|gT ≤ C,(5.3)

ig, igT , ib,g ≥ C−1,(5.4)

diam(M,g) ≤ C,(5.5)

|γ|1+ε + |γ
−1|0 + sup

∂M
|R(γ)| + |H(g)|ε ≤ C,(5.6)

C−1γ ≤ gT ≤ Cγ(5.7)

for some C > 1, there exists K = K(C) > 0 and a smooth (C∞) diffeo-
morphism φ of M such that |φ∗g|1+ε + ||φ

∗g||W 2,p(M) ≤ K. Moreover,

φ|∂M is uniformly controlled in C2,ε in terms of C.

Proof. The existence of K > 0 and φ such that φ∗g is C1,ε-controlled
is a consequence of the C1,α-compactness result in [4]. To obtain the uni-
form control of φ|∂M in C2,ε, it suffices to show that gT is also controlled
in C1,ε.

By assumption, there exists a smooth function u on ∂M such that

gT = u
4

n−2 γ. Here, we assume that n > 2, although the argument for
n = 2 is similar. It is known that u satisfies an elliptic equation of the
form

aΔu+R(γ)u−R(gT )u
n+2

n−2 = 0,
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where a = a(n) and R(γ), R(gT ) denote the scalar curvatures functions
of γ and gT , respectively. Also, Δ denotes the Laplacian with respect
to the uniformly equivalent and controlled in C1,ε metric γ.

By (5.3) and (5.7) we obtain uniform bounds on u and R(gT ). Thus,
by elliptic regularity, u (hence gT ) is controlled in C1,ε.

Next, we show that h = φ∗g is uniformly bounded in W 2,p(M). Set
γ̄ = φ∗γ. Then, by the uniform C2,ε control of φ|∂M , (5.6) and (5.7) hold
for h and γ̄ (maybe with a worse constant C). Moreover, [hT ] = [γ̄], and
γ̄, H(h) = φ∗η are controlled in C1,ε and Cε, respectively.

The C1,ε-control of h implies that harmonic coordinates (or boundary
harmonic coordinates in the sence of [4]) of (M,h) are C2,ε-controlled.
Moreover, the harmonic radius is bounded below by [4].

The Ricci tensor becomes elliptic in such coordinates, and standard
elliptic regularity provides the interior W 2,p control. Similarly, looking
at boundary harmonic coordinates, the control of the conformal class of
hT and of the mean curvature H(h) of the boundary imply the W 2,p-
control up to the boundary. Note that γ̄ is controlled only in C1,ε and
not in C2, as required for the Lp estimates in [1]. However, the results
in [25] are enough to provide the necessary estimate. q.e.d.

Remark 5.1. The lemma still holds if we replace the mean curvature
bound in (5.6) by a bound on |η|C2 , where η is a C2 function such that

H(g) = η(x, t, gT , (gT )−1).(5.8)

This is because, as is demonstrated in the proof above, the bounds (5.3),
(5.6), and (5.7) imply that gT is controlled in C1,ε. Hence, by (5.8), we
obtain a uniform bound for |H(g)|ε.

Proof of Theorem 1.2. We begin by applying Lemma 5.1 with γ|t=0 in
place of the metric γ and g0 in place of g to obtain a smooth diffeomor-
phism φ satisfying the conclusions of that lemma. It suffices to prove the
theorem replacing the initial data g0 by φ∗g0 and the boundary data γ
and η by φ∗γ and φ∗η, respectively. To simplify the notation, we will
still use g0, γ, η to denote these modified initial-boundary data.

By Theorem 1.1, choosing a family of smooth background metrics
g̃, there exists a solution ĝ(t) to the Ricci–DeTurck boundary value
problem (1.3), (1.4)-(1.6), which is in C∞

(
MT −−(∂M × 0)

)
and in

C1+α, 1+α
2 (MT ) if no other higher-order compatibility conditions hold.

The DeTurck vector field W(ĝ(t), g̃) is also in C∞(MT − (∂M ×
0)).Then, for some ε > 0, the ODE

d

dt
ψ = −W ◦ ψ,

ψε = idM(5.9)
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defines a unique smooth flow ψt for t > 0, which extends at t = 0
continuously up to the boundary, and smoothly in the interior.

Then g(t) = ψ∗
t ĝ(t) solves the Ricci flow equation (see, for instance,

[10]). Moreover, since the diffeomorphisms ψt fix the boundary, and the
mean curvature and conformal class are invariant under such diffeomor-
phisms, it follows that g(t) satisfies the boundary conditions (1.5) and
(1.6).

Since
(
ψ−1
t

)∗
g(t) = ĝ(t) and ĝ(t) → g0 in the C1,α sense as t → 0,

we get that g(t)→ g0 in the geometric C1,α sense.
Now, assume that the (unmodified) data g0, γ, η satisfy the higher-

order compatibility conditions necessary for the Ricci tensor to be in
Ck(MT ) and the metric g in Ck+2(MT ) under the Ricci flow. Observe
that the modified data φ∗g0, φ∗γ, φ∗η satisfy these compatibility condi-
tions too, and to simplify notation we will again denote them by g0, γ, η.

We need similar compatibility conditions to hold for the Ricci–DeTurck
flow, in order to improve the regularity of ĝ. In general, we don’t expect
them to hold for an arbitrary choice of background metrics g̃, so we have
to choose them carefully.

As the discusion in Subsection 4.2 shows, the time derivatives at t = 0
of solutions g, ĝ to the Ricci flow and Ricci–DeTurck flow, respectively,

hk = ∂k
t g|t=0,

ĥk = ∂k
t ĝ|t=0,

are completely specified by the initial data g0 and the background met-

rics g̃ in the case of ĥk. Observe that if g̃t is chosen so that ∂tg̃|t=0 = 0
and ∂k

t g̃|t=0 = hk for k > 1, we get

(5.10) ĥk = hk.

To see this, note that ĥl is determined, through the equation, by ĥ0, . . . ,
ĥl−1 and ∂k

t g̃|t=0 for k < l. Thus, assuming that (5.10) holds for k < l,
we get

∂k
t (LW(ĝ,g̃)ĝ)|t=0 = 0, for k < l

since ∂k
tW|t=0 = 0 for k < l. Note that ∂tW|t=0 = 0, by the contracted

second Bianchi identity. Then, we compute

ĥl = ∂l−1
t (−2Ric(ĝ) + LW(ĝ,g̃)ĝ)|t=0 = ∂l−1

t (−2Ric(ĝ))|t=0 = F (ĥ1, . . . , ĥl−1)

for some expression F . On the other hand,

hl = ∂l−1
t (−2Ric(g))|t=0 = F (h1, . . . , hl−1)

for the same expression F . Hence, (5.10) follows by induction, since

ĥ0 = h0 = g0.
Now, (5.10) implies that higher-order compatibility of the data of the

Ricci flow boundary value problem implies higher-order compatibility
of the same order for the Ricci–DeTurck flow.
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Theorem 1.1 shows that ĝ(t) is actually in Ck+2+α, k+2+α
2 (MT ), which

immediately implies that g(t) converges to g0 in the geometric Ck+2,α

sense.
Moreover, the regularity of ψ in M× [0, T ] is at least Ck+1, i.e., it has

t time and s space derivatives for 2t+s ≤ k+1, sinceW is of first order
on the metric. It follows that Rm(g(t)) = ψ∗

t (Rm(ĝ(t))) is in Ck(MT ),
and Rm(g(0)) = ψ∗

0 Rm(ĝ(0)).
By Proposition 4.1, if k ≥ 1, the DeTurck field and also ψ are in Ck+2,

and therefore g(t) ∈ Ck+1(MT ). Otherwise, if k = 0, g(t) ∈ C0(MT ) (up
to the boundary, at t = 0).

The lower bound of the existence time T > 0 is a consequence of
the estimates provided by Lemma 5.1 and the corresponding estimate
for the Ricci–DeTurck flow, after the observation that the background
metrics g̃ can be chosen so that

sup
t
{||g̃(t)− g0||W 2,p(Mo) + ||∂tg̃(t)||Lp(Mo)} ≤ 1.

q.e.d.

Remark 5.2. By parabolic theory, necessary compatibility conditions
are also sufficient to get higher regularity of a solution. However, the
Ricci flow is not parabolic, and this is manifested by loss of derivatives.
On the other hand, the Ricci tensor satisfies a parabolic boundary value
problem, and, as predicted, the compatibility conditions give the expected
smoothness.

Remark 5.3. Setting the initial condition ψ|t=0 = idM in (5.9), we
obtain a solution to the Ricci flow satisfying g(0) = g0. However, the
diffeomorphisms ψ will have finite degree of regularity up to the bound-
ary, even for t > 0, depending on the compatibility of the data. Thus,
g(t) will also have finite regularity along ∂M× [0, T ]. This is in contrast
to the behavior of solutions to parabolic boundary value problems, which
become immediately smooth for t > 0, as long as the boundary data are
smooth.

The simple example of a rotationaly symmetric Ricci flow on the
(n + 1)-dimensional ball illustrates the situation. Consider metrics of
the form

g = φ2(r)dr2 + ψ2(r)ds2n,

where 0 < r ≤ 1 and ds2n is the standard metric on Sn. Notice that
the symmetries imposed fix most of the gauge freedom, allowing only
reparametrizations of the radial variable r. Under Ricci flow, the evolu-
tion equations of φ and ψ are (see [9])

∂tφ = n
∂2
sψ

ψ
φ,(5.11)

∂tψ = ∂2
sψ − (n− 1)

1 − (∂sψ)
2

ψ
,(5.12)
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where ∂s = φ−1∂r.
The diffeomorphism freedom in the r direction is the reason that φ

does not satisfy a parabolic equation and satisfies a transport-type equa-
tion instead. In the case where the initial and boundary data don’t satisfy
the first compatibility condition for the mean curvature, ψ will be worse
than C3(M × [0, T ]) and the right-hand side of (5.11) will be worse than
C1(M × [0, T ]). Equation (5.11) doesn’t enjoy the smoothing properties
of a parabolic equation, and, as an ODE in t, we can’t expect smooth
dependence on the initial data. Thus, low regularity of g(t) at ∂M × 0
can propagate in ∂M × {t > 0}.

5.1. Uniqueness of the Ricci flow. We can now use the harmonic
map heat flow for manifolds with boundary (see [16]) to establish the
uniqueness of C3(MT ) solutions to the Ricci flow boundary value prob-
lem under consideration, proving Theorem 1.3. Since the overall argu-
ment is standard (see [10]), we will just point out the necessary modi-
fications to treat the case of manifolds with boundary.

Let g1(t), g2(t) be two C3(MT ) solutions to the Ricci flow satisfying
the same initial and boundary conditions. Consider the following heat
equations for maps φi : (M,gi)→ (M,g0):

dφi

dt
= Δgi(t),g0φi in M,(5.13)

φ|∂M = id∂M on ∂M,(5.14)

with initial condition

(5.15) φ|t=0 = idM .

For integral m > 0 and p > n + 3, we can define the Sobolev spaces
W 2m,m

p (Mε,M) of maps f : M → M by requiring the coordinate rep-

resentations of f with respect to an atlas of M to be in W 2m,m
p (Mε).

This space consists of the Lp functions on Mε = M × (0, ε) with the

derivatives ∂r
t ∇̂s in Lp(Mε) for 2r+ s ≤ 2m. The space W 2m,m

p (Mε,M)
does not depend on the atlas used for its definition, as long as p > n+3.

The results in Part IV, Section 11, of [16] show that there exist solu-

tions φi ∈ W 2,1
p (Mε,M), for small ε > 0. The convexity assumption of

this result for the target (M,g0) is not needed here, since φ|t=0 = idM
and thus φi(t) remain diffeomorphisms of M for small t. Also, by the
theory in [18] and [25] these results hold under the current assumption
for the regularity of gi(t).

Moreover, the first-order compatibility condition for the boundary
value problem (5.13)–(5.14) holds since

dφi

dt
= Δgi(0),g0φi(0) = Δg0,g0idM = 0.

Thus, the diffeomorphisms φi(t) are in W 4,2
p (Mε,M).
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Given the regularity of φi and gi, we know that ĝi = (φi(t))∗ gi(t) ∈

W 2,1
p (Mε). Then ĝi satisfies the Ricci–DeTurck equation with back-

ground metric g0 and the geometric boundary data are still satisfied
by ĝi since φi fix the boundary. Also notice that the gauge condition

W(ĝi, g
0)|∂MT

= 0

holds, since

(5.16) Δgi(t),g0φi(t) = −W(ĝi(t), g
0) ◦ φi(t)

and

Δgi(t),g0φi(t)|∂MT
= 0.

By the uniqueness of W 2,1
p solutions of the Ricci–DeTurck boundary

value problem, we have that ĝ1(t) = ĝ2(t) andW(ĝ1(t), g
0) =W(ĝ2(t), g

0)
for 0 ≤ t ≤ ε. Now (5.16) and (5.13) imply that φ1 = φ2, thus g1 =
φ∗
1ĝ1 = φ∗

2ĝ2 = g2.

This has the following corollary:

Corollary 5.1. If φ is an isometry of g0 which preserves the bound-
ary data, namely

φ∗η(x, t) = η(x, t)

[φ∗γ(x, t)] = [γ(x, t)] ,

and g(t) is a solution to the corresponding Ricci flow boundary value
problem then φ is an isometry of g(t) for all t.

Proof. It is a consequence of the diffeomorphism invariance of the
Ricci flow equation and the uniqueness. If φ is an isometry of g0 which
preserves the boundary data and g(t) is a solution of the Ricci flow
boundary value problem then φ∗g(t) is also a solution with the same
initial and boundary data. By uniqueness we obtain that φ∗g(t) = g(t).

q.e.d.

5.2. A generalization. The methods used in the preceding sections
can be applied to prove the following generalization of Theorem 1.2, in
which the mean curvature at any t depends on the induced metric on
∂M via a given smooth function η(x, t, gT , (gT )−1).

Theorem 5.1. Theorem 1.2 holds if we replace the boundary condtion
for the mean curvature with

(5.17) H(g) = η
(
x, t, gT , (gT )−1

)
.

The existence time is controlled from below in terms of (1.7)-(1.11), but
with the bound on |H(g0)| replaced by a bound on |η|C2 .
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Proof. Regarding the short-time existence of the Ricci–DeTurck flow,
estimates on the line of Corollary A.3 of [28] establish that the estimates
of Lemmata 4.1 and 4.2 remain valid when

Ĝw = H′
g0(w − g0)− (H(w) −H(g0))

+ η(x, t, wT , (wT )−1)− η(x, 0, g0,T , (g0,T )−1),

Gw1
−Gw2

= H′
g0(w1 − w2)− (H(w1)−H(w2))

+ η(x, t, wT
1 , (w

T
1 )

−1)− η(x, 0, w0,T
2 , (w0,T

2 )−1),

with the corresponding constants now controlled by the norm of
η(x, t, ·, ·).

The regularity theorems are still valid since the dependence of η on
gT is of zero order. Now, pulling back by the DeTurck diffeomorphisms,
we obtain a solution to the Ricci flow satisfying (5.17). Finally, the
arguments in Sections 4 and 5 also establish the uniqueness for the
Ricci–DeTurck and the Ricci flow boundary value problem in this case.

q.e.d.

6. On the existence time of the Ricci flow.

It is well known that on closed manifolds the norm of the curvature
tensor of the initial metric controls the existence time of the Ricci flow
from below. With this in mind, the geometric data required by Theorem
1.2 seem quite strong and it would be interesting to understand if they
can be relaxed.

In this section we demonstrate that the lower bound on the bound-
ary injectivity radius ib,g0 is in fact necessary, constructing appropriate
examples.

On M = [0, 1] × S1 × S1, consider metrics of the form

g = φ(x)2dx2 + ψ(x)2(dy2 + dz2),(6.1)

where x ∈ [0, 1]. Set H := 2∂s(logψ), which under Ricci flow evolves
according to

∂tH = ∂2
sH +H∂sH −H3.

In the above we denote ∂s = φ−1∂x. Also, the distance L between the
two boundary components evolves according to

dL

dt
= H|L0 +

1

2

∫ L

0
H2ds.

Now, consider the flat metric g0 = ε2dx2 + dy2 + dz2 on M , and
consider a Ricci flow with initial condition g0, preserving (6.1) and sat-
isfying

H(0, t) = −H(L, t) = t2.
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This corresponds to a Ricci flow starting from a g0, with the mean cur-
vature of the boundaries (with respect to the outward direction) equal
to −t2 and the conformal class fixed. Note that a first-order compatibil-
ity condition holds for the mean curvature; hence we can assume that
this flow is C3. By Corollary 5.1 such flow will preserve (6.1).

Assuming t ≤ 1, the maximum principle shows that |H| ≤ 1. There-
fore,

dL

dt
= −2t2 +

1

2

∫ L

0
H2ds ≤ −2t2 +

1

2
L.

Solving this differential inequality, we obtain, for each τ ≤ 1,

e−
1

2
τL(τ) ≤ ε− 2

∫ τ

0
t2e−

1

2
tdt.

Then for any ε > 0 small there exists a time T = T (ε) > 0 such that

ε − 2
∫ T
0 t2e−

1

2
tdt = 0; hence L(T ) = 0. Therefore, T (ε) is an upper

bound on the existence time and clearly limε→0 T (ε) = 0.

7. An extension condition for the Ricci flow.

In this section we prove Theorem 1.4.

Proof of Theorem 1.4. Assume that T <∞ and for some K > 0

(7.1) sup
x∈M

|Rm(g(t))|g(t) + sup
x∈∂M

|A(g(t))|g(t) ≤ K

for all t < T . This bound implies that g(t) are uniformly equivalent and
in addition that gT (t) have bounded curvature for t < T .

Next, we observe that the interior injectivity radius ig(t), the injectiv-
ity radius of the boundary igT (t) and the “boundary injectivity radius”
ib,g(t) are uniformly bounded below for t < T .

Since g(t) are uniformly equivalent, for any p ∈ Mo there exists a
r0 > 0 such that distt(p, ∂M) ≥ r0 for all t < T . This also shows that
the volume ratio

V olt(Bt(p, r))

rn+1
≥ c

for all r ≤ r0 and t < T , which together with the curvature bound gives
that the injectivity radius at p is bounded below. A similar argument
controls the injectivity radius of the boundary.

Moreover, by comparison geometry the bounds on the curvature and
the second fundamental form control the “focal” distance of the bound-
ary. Then, since the metrics are uniformly equivalent, the boundary
cannot form “self-intersections,” and hence the boundary injectivity ra-
dius ib is also bounded below.

Now, take a sequence tj ↗ T . Since g(t) is a smooth flow (up to the
boundary), g(tj) satisfy the compatibility conditions of any order with
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respect to γ and η. Hence, by Theorem 1.2 and the bounds above, there
exist Ricci flows hj(t) satisfying the boundary conditions, hj(tj) = g(tj),
and existing for a uniform amount of time. By uniqueness, this implies
that h(t) = g(t) for t ≥ tj . However, for large j this process constructs
an extension of g(t) past time T , which is a contradiction. q.e.d.
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