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COMPLETION OF THE MODULI SPACE FOR

POLARIZED CALABI-YAU MANIFOLDS

Yuguang Zhang

Abstract

In this paper, we construct a completion of the moduli space
for polarized Calabi-Yau manifolds by using Ricci-flat Kähler-
Einstein metrics and the Gromov-Hausdorff topology, which pa-
rameterizes certain Calabi-Yau varieties. We then study the alge-
bro-geometric properties and the Weil-Petersson geometry of such
completion. We show that the completion can be exhausted by
sequences of quasi-projective varieties, and new points added have
finite Weil-Petersson distance to the interior.

1. Introduction

A Calabi-Yau manifold X is a simply connected complex projec-
tive manifold with trivial canonical bundle �X

∼= OX , and a polar-
ized Calabi-Yau manifold (X,L) is a Calabi-Yau manifold X with an
ample line bundle L. Let MP be the moduli space of polarized Calabi-
Yau manifolds (X,L) of dimension n with a fixed Hilbert polynomial
P = P (μ) = χ(X,Lμ), i.e.

MP =
{
(X,L)|P (μ) = χ(X,Lμ)

}
/ ∼,

where (X1, L1) ∼ (X2, L2) if and only if there is an isomorphism ψ :
X1 → X2 such that L1 = ψ∗L2. We denote the equivalent class [X,L] ∈
MP represented by (X,L).

The compactifications of moduli spaces were studied in various cases,
for example, the Mumford’s compactification of moduli spaces for curves
(cf. [27]), the Satake compactification of moduli spaces for Abelian
varieties (cf. [38]), and more recently the compact moduli spaces for
general type stable varieties of higher dimension (cf. [21]). Because
of the importance of Calabi-Yau manifolds in mathematics and physics
(cf. [49]), it is also desirable to have compactifications of MP . The
purpose of this paper is to construct a completion of MP in a certain
sense, which can be viewed as a partial compactification.
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There are several perspectives towards this moduli space MP . First
of all, the Bogomolov-Tian-Todorov’s unobstructedness theorem of Cala-
bi-Yau manifolds implies that MP is a complex orbifold (cf. [41, 43]).
The variation of Hodge structures gives a natural orbifold Kähler met-
ric on MP , called the Weil-Petersson metric, which is the curvature
of the first Hodge bundle with a natural Hermitian metric (cf. [41]).
Other natural metrics were also studied in [17] and [47] etc. From
the algebro-geometric point of view, Viehweg proved in [45] that MP

is a quasi-projective variety, and coarsely represents the moduli func-
tor MP for polarized Calabi-Yau manifolds with Hilbert polynomial P .
The third perspective is to understand MP by considering Ricci-flat
Kähler-Einstein metrics.

For a polarized Calabi-Yau manifold (X,L), Yau’s theorem on the
Calabi conjecture, so called Calabi-Yau theorem, asserts that there ex-
ists a unique Ricci-flat Kähler-Einstein metric ω with ω ∈ c1(L), i.e.
the Ricci curvature Ric(ω) ≡ 0 (cf. [48]). This theorem is obtained by
showing the existence and the uniqueness of the solution of the Monge-
Ampère equation

(1.1) (ω0 +
√
−1∂∂ϕ)n = (−1)

n2

2 Ω ∧ Ω, sup
X

ϕ = 0,

for any background Kähler metric ω0 ∈ c1(L), and letting ω = ω0 +√
−1∂∂ϕ, where Ω is a holomorphic volume form, i.e. a nowhere van-

ishing section of �X . We can regard MP as a parameter space of
Ricci-flat Calabi-Yau manifolds.

In [10], Gromov introduced the notion of Gromov-Hausdorff distance
between metric spaces, which provides a frame to study families of Rie-
mannian manifolds. For any two compact metric spaces A and B, the
Gromov-Hausdorff distance of A and B is

dGH(A,B) = inf
{
dZH(A,B)|∃ isometric embeddings A,B ↪→ Z

}
,

where Z is a metric space, dZH(A,B) is the standard Hausdorff distance
between A and B regarded as subsets by the isometric embeddings, and
the infimum is taken for all possible Z and isometric embeddings. We
denote Met the space of the isometric equivalence classes of all compact
metric spaces equipped with the topology, called the Gromov-Hausdorff
topology, induced by the Gromov-Hausdorff distance dGH . Then Met is
a complete metric space (cf. [10, 34]). The Gromov-Hausdorff topology
was used to study moduli spaces for Einstein metrics by various authors
(See for instance [1, 6, 7] etc.).

The Calabi-Yau theorem gives a continuous map

(1.2) CY : MP → Met, by [X,L] �→ (X,ω),
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where ω is the unique Ricci-flat Kähler-Einstein metric representing
c1(L). However, CY is not injective in general since MP contains the
information of complex structures.

For constructing compactifications of MP , Yau suggested that one
uses the Weil-Petersson metric to obtain a metric completion of MP

first, and then tries to compactify this completion (cf. [17]). In [47], an
alternative approach is proposed by using the Gromov-Hausdorff dis-
tance, instead of the Weil-Petersson metric, to construct a completion.

Let CY(MP ) be the closure of the image CY(MP ) in Met. There is a

natural metric space structure on CY(MP ) by restricting the Gromov-

Hausdorff distance. A question is to understand CY(MP ) from the
algebraic geometry and the Weil-Petersson geometry viewpoints.

A normal projective variety X is called 1-Gorenstein if the dualizing
sheaf �X is an invertible sheaf, i.e. a line bundle, and is called Goren-
stein if furthermore X is Cohen-Macaulay. A variety X has only canoni-
cal singularities if X is 1-Gorenstein, and for any resolution π̄ : X̄ → X,
π̄∗�X̄ = �X , which is equivalent to that the canonical divisor KX is
Cartier, and

KX̄ = π̄∗KX +
∑
E

aEE, and aE � 0,

where E are exceptional prime divisors. If X has only canonical singu-
larities, then the singularities are rational, and X is Cohen-Macaulay
(cf. (C) of [33, Section 3]), which implies that X is Gorenstein. A
Calabi-Yau variety X is a normal projective Gorenstein variety with
trivial dualizing sheaf �X

∼= OX , and having at most canonical singu-
larities. A polarized Calabi-Yau variety (X,L) is a Calabi-Yau variety
X with an ample line bundle L.

If (Y, dY ) ∈ CY(MP ), then there is a sequence {[Xk, Lk]} ⊂ MP

such that CY([Xk, Lk]) = (Xk, ωk) converge to (Y, dY ) in the Gromov-
Hausdorff sense. Note that the diameters and the volumes satisfy that

diamωk
(Xk) → diamdY (Y ), Volωk

(Xk) =
1

n!
c1(Lk)

n ≡ cont.

independent of k, which imply that Y is a non-collapsed limit. In [8],
Donaldson and Sun studied the algebro-geometric structure of Y , and
proved that Y is homeomorphic to a Calabi-Yau variety X0 of dimension

n. Hence loosely speaking, CY(MP ) can be regarded as a parameter
space of certain Calabi-Yau varieties.

A degeneration of polarized Calabi-Yau manifolds (πΔ : X → Δ,L) is
a flat morphism from a variety X of dimension n+1 to a disc Δ ⊂ C such
that for any t ∈ Δ∗ = Δ\{0}, Xt = π−1

Δ (t) is a Calabi-Yau manifold,

the central fiber X0 = π−1
Δ (0) is singular, and L is a relative ample line

bundle on X . If we further assume that X0 is a Calabi-Yau variety, then
the total space X is normal as any fiber Xt is reduced and normal. Thus
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the relative dualizing sheaf �X/Δ is defined, i.e. �X/Δ
∼= �X ⊗π∗

Δ�−1
Δ ,

and is trivial, i.e. �X/Δ
∼= OX , since every fiber is normal, Cohen-

Macaulay and Gorenstein.
Let (πΔ : X → Δ,L) be a degeneration of polarized Calabi-Yau man-

ifolds with a Calabi-Yau variety X0 as the central fiber, and ωt be the
unique Ricci-flat Kähler-Einstein metric on Xt representing c1(L|Xt),
t ∈ Δ∗. The asymptotic behaviour of ωt when t → 0 is studied in
[36, 35], and it is shown that (Xt, ωt) converges to a compact metric
space of the same dimension in the Gromov-Hausdorff sense. This result,
together with Donaldson-Sun’s theorem, shows the equivalence between
the algebro-geometric degenerating Calabi-Yau manifolds to a Calabi-
Yau variety and the non-collapsing Gromov-Hausdorff convergence of
Ricci-flat Kähler-Einstein metrics.

The first goal of the present paper is to investigate the algebro-

geometric structure of CY(MP ).

Theorem 1.1. There is a Hausdorff topological space M
P
, and a

surjection

CY : M
P
→ CY(MP )

satisfying the follows.

i) MP is an open dense subset of M
P
, and CY|MP = CY.

ii) For any p ∈ M
P
, CY(p) is homeomorphic to a Calabi-Yau variety.

iii) There is an exhaustion

MP ⊂ Mm(1) ⊂ Mm(2) ⊂ · · · ⊂ Mm(l) ⊂ · · · ⊂ M
P
=
⋃
l∈N

Mm(l),

where m(l) ∈ N for any l ∈ N, such that Mm(l) is a quasi-

projective variety, and there is an ample line bundle λm(l) on

Mm(l).

iv) Let (πΔ : X → Δ,L) be a degeneration of polarized Calabi-Yau

manifolds with a Calabi-Yau variety X0 as the central fiber. As-

sume that for any t ∈ Δ∗, there is an ample line bundle Lt on

Xt such that Lk
t
∼= L|Xt for a k ∈ N, and [Xt, Lt] ∈ MP . Then

there is a unique morphism ρ : Δ → Mm(l), for l � 1, such that

CY(ρ(t)) is homeomorphic to Xt for any t ∈ Δ, and

CY(ρ(t)) → CY(ρ(0)),

when t → 0, in the Gromov-Hausdorff sense. Furthermore, ρ∗λm(l)

= πΔ,∗�
ν(l)
X/Δ for a ν(l) ∈ N.

Remark 1.2. In general, we do not expect Mm(l) = M
P

for some
m(l) because of the lack of the boundedness condition for singular
Calabi-Yau varieties (cf. Section 3 in [11]).
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When n = 2, a Calabi-Yau variety is a K3 orbifold, and a degenera-
tion of K3 surfaces to a K3 orbifold is called a degeneration of type I. It
is well-known that one can fill the holes in the moduli space of Kähler
polarized K3 surfaces by some Kähler K3 orbifolds, and obtain a com-
plete moduli space (cf. [19, 20]). The relationship between such moduli
space and the degeneration of Ricci-flat Kähler-Einstein metrics is also
established in [19, 20]. Theorem 1.1 is a generalization of [19, 20] to
higher dimensional polarized Calabi-Yau manifolds.

In [25], Kähler-Einstein metrics are used to construct compactifi-
cations of moduli spaces for Kähler-Einstein orbifolds, and it is proved
that such compactification coincides with the standard Mumford’s com-
pactification in the case of curves. The moduli space of Fano manifolds
admitting Kähler-Einstein metrics is constructed in a recent preprint
[30], which generalizes the earlier work [42] for del Pezzo surfaces. The
Gromov-Hausdorff compactification of such moduli space for del Pezzo
surfaces of each degree is studied in [31], and it is proven to agree with
certain algebro-geometric compactification. We can regard Theorem 1.1
as an analog result of [31] for the Calabi-Yau case.

Now we study the Weil-Petersson geometry of M
P
. Note that for

any flat family (πΔ : X → Δ,L) of polarized Calabi-Yau manifolds with
Hilbert polynomial P , there is a unique morphism f : Δ → MP , since
MP coarsely represents the moduli functor MP . The Weil-Petersson
metric ωWP is an orbifold Kähler metric on MP (cf. [41]) characterized
by

f∗ωWP = −

√
−1

2π
∂∂ log

∫
Xt

(−1)
n2

2 Ωt ∧ Ωt,

where Ωt is a relative holomorphic volume form, i.e. a nowhere vanishing
section of �X/Δ. The metric ωWP is the curvature of the first Hodge
bundle with a natural Hermitian metric.

In [4], Candelas, Green and Hübsch found some nodal degenerations
of Calabi-Yau 3-folds with finite Weil-Petersson distance. In general,
[46] shows that if (πΔ : X → Δ,L) is a degeneration of polarized Calabi-
Yau manifolds, and if the central fiber X0 is a Calabi-Yau variety, then
the Weil-Petersson distance between {0} and the interior Δ∗ is finite,
i.e. ωWP is not complete on Δ∗. Conversely, if we assume that the
Weil-Petersson distance of {0} is finite, then after a finite base change
πΔ : X → Δ is birational to a degeneration π′

Δ : X ′ → Δ such that
X\X0

∼= X ′\X ′
0, and X ′

0 is a Calabi-Yau variety by recent papers [44]
and [40]. As a consequence, the algebro-geometric degenerating Calabi-
Yau manifolds to a Calabi-Yau variety is equivalent to the finiteness of
the Weil-Petersson distance.

Our next result shows that the points in M
P
\MP have finite Weil-

Petersson distance.
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Theorem 1.3. Let M
P

and CY be the same as in Theorem 1.1.

i) For any point x ∈ M
P
\MP , there is a curve γ such that γ(0) =

x, γ((0, 1]) ⊂ MP and the length of γ under the Weil-Petersson

metric ωWP is finite, i.e.

lengthωWP
(γ) < ∞.

ii) Let (πΔ : X → Δ,L) be a degeneration of polarized Calabi-Yau

manifolds such that for any t ∈ Δ∗, Lk
t
∼= L|Xt for a k ∈ N, and

[Xt, Lt] ∈ MP , where Lt is an ample line bundle. If the Weil-

Petersson distance between 0 ∈ Δ and the interior Δ∗ is finite,

then there is a unique morphism � : Δ → Mm(l), for l � 1, such
that CY(�(t)) is homeomorphic to Xt, t ∈ Δ∗.

This paper is organized as follows. Section 2 studies Ricci-flat Kähler-
Einstein metrics. In Section 2.1, we recall the generalized Calabi-Yau
theorem in [9], and then in Section 2.2, we use [8] to improve the ear-
lier work in [35, 36], i.e. we show that along a degeneration of po-
larized Calabi-Yau manifolds with a Calabi-Yau variety as the central
fiber, the Gromov-Hausdorff limit of Ricci-flat Kähler-Einstein metrics
on general fibers is homeomorphic to the central fiber. All of properties
about the Gromov-Hausdorff topology in Theorem 1.1 are from this
section. The technique developed in this section can also be used to
the unique filling-in problem for degenerations of Calabi-Yau manifolds,
i.e. Corollary 2.3, which has independent interests. In Section 3, we
study the algebraic geometry of the moduli space. Firstly, we recall the
Viehweg’s construction of quasi-projective moduli space for polarized
Calabi-Yau manifolds (cf. [45]) in Section 3.1. Secondly, in Section 3.2,
we construct an enlarged moduli space of MP by using the construction
of moduli spaces for varieties with at worst canonical singularities (cf.
Section 8 of [45]). More precisely, for any m > 0, we construct a moduli
functor Mm for polarized Calabi-Yau varieties that can be embedded in
CPN , N = N(m). Then we use the results in Section 8 of [45] to prove
that Mm can be coarsely represented by a quasi-projective variety. Any
Mm(l) in Theorem 1.1 comes from this construction. We prove Theo-
rem 1.1 and Theorem 1.3 in Section 4, and finally, we give a remark for
compactifications in Section 5.

In this paper, the notion scheme stands for separated schemes of fi-
nite type over C, and the notion variety stands for either a reduced
irreducible scheme or the set of its closed points with the natural an-
alytic topology depending on the context. A point in a scheme means
a closed point. For a flat family of schemes πT : X → T over T , we
denote Xt = π−1

T (t) the fiber X ×T {t} over a point t ∈ T . Since a
Calabi-Yau manifold X is defined to be simply connected, the natural
map MP → MPμ by (X,L) �→ (X,Lμ) for any μ ∈ N is injective, where
Pμ(k) = P (μk), and thus is an isomorphism. Thus, we identify MP and



POLARIZED CALABI-YAU MANIFOLDS 527

MPμ in this paper.
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2. Ricci-flat Kähler-Einstein metrics

In this section, we study the Gromov-Hausdorff convergence of Ricci-
flat Kähler-Einstein metrics along degenerations of polarized Calabi-Yau
manifolds.

2.1. Singular Kähler-Einstein metric. There is a notion of Kähler
metric for normal varieties (cf. [9, Section 5.2]). A smooth Kähler
metric ω on a normal variety X is an usual Kähler metric on the
regular locus Xreg such that for any singular point p ∈ X, there is
a neighborhood Up with an embedding Up ↪→ CNp , and a smooth
strictly pluri-subharmonic function υp on CNp satisfying ω|Up

⋂
Xreg

=
√
−1∂∂υp|Up

⋂
Xreg

. If these functions υp are not smooth, we call ω a
singular Kähler metric. A Kähler metric ω, possibly singular, defines
a class [ω] in H1(X,PHX), where PHX denotes the sheaf of pluri-
harmonic functions on X.

If L is an ample line bundle on X, there is an m > 0 such that Lm

is very ample, and H i(X,Lμ) = {0} for any i > 0 and μ � m. A basis
Σ = {s0, · · · , sN} of H0(X,Lm) gives an embedding ΦΣ : X ↪→ CPN

by x �→ [s0(x), · · · , sN (x)], which satisfies Lm = Φ∗
ΣOCPN (1), where

N = dimC H0(X,Lm) − 1. The pullback ωΣ = Φ∗
ΣωFS of the Fubini-

Study metric is a smooth Kähler metric in the above sense such that
[ωΣ] = mc1(L) ∈ NSR(X). The Hermitian metric hFS of OCPN (1),
whose curvature is the Fubini-Study metric, restricts to an Hermitian

metric hΣ = Φ∗
ΣhFS on Lm, which satisfies that ωΣ = −

√−1
2 ∂∂ log |ϑ|2hΣ

on Xreg for any local section ϑ of Lm. We regard ΦΣ(X) as a point
in HilPN , denoted still by ΦΣ(X), where HilPN is the Hilbert scheme

parametrizing subschemes of CPN with the Hilbert polynomial P =
P (k) = χ(X,Lmk).

If Σ′ = {s′0, · · · , s′N} is another basis of H0(X,Lm), we have a ma-

trices u = (uij) ∈ SL(N + 1) such that [s′0, · · · , s′N ] =
[ N∑
i=0

siui0, · · · ,



528 Y. ZHANG

N∑
i=0

siuiN

]
, denoted by [Σ′] = [Σ] · u, and thus, ΦΣ′(x) = σ(u,ΦΣ(x))

for any x ∈ X, where σ : SL(N + 1) × CPN → CPN is the natural
SL(N +1)-action on CPN . Note that σ induces an SL(N +1)-action on
the Hilbert scheme HilPN , denoted still by σ : SL(N+1)×HilPN → HilPN .
We have ΦΣ′(X) = σ(u,ΦΣ(X)), and we denote the orbit

(2.1) O(X,Lm) = {σ(u,ΦΣ(X))|u ∈ SL(N + 1)} ⊂ HilPN .

In [9], a generalized Calabi-Yau theorem is obtained for polarized
Calabi-Yau varieties, i.e. the existence and the uniqueness of singu-
lar Ricci-flat Kähler-Einstein metrics with bounded potentials. More
precisely, for a polarized Calabi-Yau variety (X,L), Theorem 7.5 of [9]
says that there is a unique bounded function ϕ satisfying the following
Monge-Ampère equation

(2.2) (ωΣ +
√
−1∂∂ϕ)n = (−1)

n2

2 Ω ∧ Ω, sup
X

ϕ = 0, and ϕ � −C,

where Ω is a holomorphic volume form, i.e. a nowhere vanishing section
of the dualizing sheaf �X . The restriction of the singular Kähler metric
ω = ωΣ +

√
−1∂∂ϕ on the regular locus Xreg is a smooth Ricci-flat

Kähler-Einstein metric, and ω ∈ [ωΣ] = mc1(L). Furthermore, ω is
unique in mc1(L), and particularly is independent of the choice of ΦΣ.
By the boundedness of ϕ, we have that h = exp(−ϕ)hΣ is an Hermitian
metric on Lm whose curvature is ω.

We define an L2-norm ‖ · ‖L2(h) on H0(X,Lm) by

(2.3) ‖s‖2L2(h) =

∫
X
|s|2hω

n =

∫
X

e−ϕ|s|2hΣ
ωn.

If h′ is another Hermitian metric with the same curvature ω, then
∂∂ log h

h′ ≡ 0, i.e. log h
h′ is a pluriharmonic function on a closed normal

variety X, and thus h = eςh′ for a constant ς. If Σh = {s0, · · · , sN}
is an orthonormal basis of H0(X,Lm) with respect to ‖ · ‖L2(h), then

Σh′ = {e−
ς
2 s0, · · · , e−

ς
2 sN} is orthonormal with respect to ‖ · ‖L2(h′),

and furthermore Σh and Σh′ induce the same embedding ΦΣh
= ΦΣh′

.

If Σh and Σ′
h are two orthonormal bases of H0(X,L) with respect to

‖ · ‖L2(h), there is an u ∈ SU(N + 1) ⊂ SL(N + 1) such that [Σh] =

[Σ′
h] · u, ΦΣ′

h
(x) = σ(u,ΦΣh

(x)) for any x ∈ X, and thus ΦΣ′
h
(X) =

σ(u,ΦΣh
(X)) in HilPN . The action σ and h induce an SU(N + 1)-orbit

(2.4) RO(X,Lm) = {σ(u,ΦΣh
(X))|u ∈ SU(N + 1)} ⊂ O(X,Lm).

Note that RO(X,Lm) is compact, and depends only on the singular
Kähler metric ω, but not on the choice of h, even the norm ‖ · ‖L2(h)

does.
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2.2. Gromov-Hausdorff convergence of Ricci-flat Kähler-Ein-

stein metrics. Let (πΔ : X → Δ,L) be a degeneration of polarized
Calabi-Yau manifolds with a Calabi-Yau variety X0 as the central fiber.
By taking a certain power of L, we assume that L is relative very ample,
and RiπΔ,∗(L) = {0} for i > 0. There is a morphism Φ̃ : X ↪→ CPN ×

Δ → CPN by composing an embedding and the projection such that
L ∼= Φ̃∗OCPN (1). In this section, we always assume that any Φ̃(Xt)

does not belong to a proper linear subspace of CPN by shrinking Δ
if necessary. We denote ωo,t = Φ̃∗ωFS|Xt , and denote ωt the unique
Ricci-flat Kähler-Einstein metric in [ωo,t] for any t ∈ Δ. Note that

ωt = ωo,t +
√
−1∂∂ϕt for a unique bounded potential function ϕt with

sup
Xt

ϕt = 0, which satisfies the Monge-Ampère equation (1.1) and (2.2)

respectively.
The limiting behaviour of ωt, when t → 0, is studied intensively in

[37], [35] and [36]. Theorem 1.4 in [35] asserts that the diameter has a
uniform upper bound D > 0, i.e.

(2.5) diamωt(Xt) � D,

for any t ∈ Δ∗. Furthermore, for any smooth family of embeddings
Ft : X0,reg → Xt with F0 = Id, we have

(2.6) F ∗
t ωt → ω0, ϕt ◦ Ft → ϕ0, and ϕt > −C

for a constant C > 0, when t → 0 in the C∞
loc-sense, where ϕ0 is the so-

lution of (2.2), and ω0 is the unique singular Ricci-flat Kähler-Einstein
metric in c1(L|X0). In [36], it is proved that, when t → 0, (Xt, ωt) con-
verges to a compact metric space X∞ in the Gromov-Hausdorff topol-
ogy, and X∞ is the metric completion of (X0,reg, ω0). Actually, X∞ is a
Calabi-Yau variety by the following theorem due to Donaldson and Sun
(cf. [8, 3]).

Theorem 2.1 (Theorem 1.2 of [8]). Let (Xk, Lk) be a sequence of

polarized Calabi-Yau manifolds of dimension n with the same Hilbert

polynomial P , and ωk ∈ c1(Lk) be the unique Ricci-flat Kähler-Einstein

metric. We assume that

Volωk
(Xk) =

1

n!
c1(Lk)

n ≡ υ, diamωk
(Xk) � D

for constants D > 0 and υ > 0, and furthermore, (Xk, ωk) converges to

a compact metric space X∞ in the Gromov-Hausdorff sense. Then we

have the follows.

i) X∞ is homeomorphic to a Calabi-Yau variety, denoted still by X∞.

ii) There are constants m > 0 and N̄ > 0 satisfying the following.

For any k, there is an orthonormal basis Σk of H0(Xk, L
m
k ) with
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respect to the L2-norm induced by ωk, which induces an embed-

ding ΦΣk
: Xk ↪→ CPN̄ with Lm

k = Φ∗
Σk

O
CPN̄ (1). And ΦΣk

(Xk)

converges to X∞ in the Hilbert scheme HilPm

N̄
.

iii) The metric space structure on X∞ is induced by the unique singu-

lar Ricci-flat Kähler-Einstein metric ω ∈ 1
mc1(OCPN̄ (1)|X

∞

).

By Proposition 4.15 of [8], X∞ is a projective normal variety with
only log-terminal singularities. Note that the holomorphic volume forms
Ωk are parallel with respect to ωk, and converge to a holomorphic volume
form Ω∞ on the regular locus X∞,reg along the Gromov-Hausdorff con-
vergence by normalizing Ωk if necessary. Thus the dualizing sheaf �X

∞

is trivial, i.e. �X
∞

∼= OX
∞

, and X∞ is 1–Gorenstein. Furthermore, the
canonical divisor KX

∞

is Cartier and trivial, which implies that X∞ has
at worst canonical singularities. Then X∞ has only rational singulari-
ties, X∞ is Cohen-Macaulay and is Gorenstein. Consequently, X∞ is a
Calabi-Yau variety.

A natural question is what’s the relationship between these two Cala-
bi-Yau varieties X0 and X∞ in our setting.

Lemma 2.2. Let (πΔ : X → Δ,L) be a degeneration of polar-

ized Calabi-Yau manifolds with a Calabi-Yau variety X0 as the central

fiber. If ωt, t ∈ Δ∗, is the unique Ricci-flat Kähler metric on Xt with

ωt ∈ c1(L|Xt), then (Xt, ωt) converges to a compact metric space X∞
homeomorphic to X0 in the Gromov-Hausdorff sense. As a consequence,

the singular Ricci-flat Kähler metric ω0 ∈ c1(L|X0) induces a compact

metric space structure on X0.

Proof. We denote Lt = L|Xt , and denote ht the Hermitian metric
on Lt, whose curvature is the Ricci-flat Kähler-Einstein metric ωt. We
apply Theorem 2.1 to a sequence tk → 0, and then X∞ is a Calabi-Yau
variety. Furthermore, there are constants m > 0 and N̄ > 0 such that,
for any k, there is an orthonormal basis Σtk of H0(Xtk , L

m
tk
) with respect

to the L2-norm ‖ · ‖L2(hm
tk
) inducing an embedding ΦΣk

: Xk ↪→ CPN̄

with Lm
tk

= Φ∗
Σk

O
CPN̄ (1). And ΦΣtk

(Xtk ) converges to X∞ in the Hilbert

scheme HilPm

N̄
under the natural analytic topology.

Note that Lm is relative very ample, and thus there is a morphism

Ψ : X ↪→ CPN̄ × Δ → CPN̄ by composing an embedding and the
projection such that Lm = Ψ∗O

CPN̄ (1). Note that Xt, t ∈ Δ, has the

same Hilbert polynomial P , and hence P (m) = h0(Xt, L
m
t ) = N̄ + 1

for m � 1. We have that Ψ(Xt), for any t ∈ Δ, is not included in any

proper linear subspace of CPN̄ . If we denote h̄FS the Hermitian metric
on O

CPN̄ (1) whose curvature is the Fubini-Study metric ωFS, then the

restriction h̄o,t of Ψ
∗h̄FS on Xt has the curvature ω̄o,t = Ψ∗ωFS|Xt . We

can choose an Hermitian metric ht on Lm
t by hm

t = e−mϕt h̄o,t, where ϕt
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is the potential function for the unique Ricci-flat Kähler-Einstein metric
in c1(Lt), i.e. ωt =

1
m ω̄o,t +

√
−1∂∂ϕt and sup

Xt

ϕt = 0.

Let Z0, · · · , ZN̄ be sections of O
CPN̄ (1) such that the restrictions of

z0 = Ψ∗Z0, · · · , zN̄ = Ψ∗ZN̄ on Xt form a basis of H0(Xt, L
m
t ), and

z0|X0 , · · · , zN̄ |X0 are orthonormal with respect to ‖ · ‖L2(hm
0 ). Now for

any compact subset U ⊂ X0,reg, by (2.6), we have∫
Ft(U)

〈zi, zj〉hm
t
ωn
t →

∫
U
〈zi, zj〉hm

0
ωn
0 , when t → 0, and∫

Xt\Ft(U)
|〈zi, zj〉hm

t
|ωn

t � emC sup
Xt

|zi|h̄o,t
|zj |h̄o,t

Volωt(Xt\Ft(U))

� C1Volωt(Xt\Ft(U)),

for a constant C1 > 0 independent of t. Since Volωt(Xt) = Volω0(X0) =
Volω0(X0,reg), we obtain∫

Xt

〈zi, zj〉hm
t
ωn
t →

∫
X0

〈zi, zj〉hm
0
ωn
0 = δij

when t → 0, by taking U larger and larger, and a diagonal sequence.
Thus there is a family of matrices vt = (vt,ij) ∈ GL(N̄ + 1) such that

Σ′
t =
{ N̄∑

i=0
zivt,i0, · · · ,

N̄∑
i=0

zivt,iN̄

}
is an orthonormal basis of H0(Xt, L

m
t )

with respect to ‖ · ‖L2(hm
t ), and vt →Id in GL(N̄ + 1) when t → 0.

There are uk = (uk,ij) ∈ U(N̄ + 1) such that Σtk = Σ′
tk
· uk, and, by

passing to a subsequence, uk → u0 in U(N̄ + 1). Thus wk = (det(vtk ·

uk))
− 1

N̄+1 vtk · uk → w0 = (det(u0))
− 1

N̄+1u0 in SL(N̄ + 1) when tk → 0.
Under the SL(N̄+1)-action σ, we have ΦΣtk

(Xtk) = σ(wk,Ψ(Xtk )), and

X∞ = σ(w0,Ψ(X0)). We proved the conclusion that X∞ is isomorphic
to X0. By [36], (Xt, ωt) converges to the compact metric space X∞
homeomorphic to X0 in the Gromov-Hausdorff topology. q.e.d.

One corollary of this lemma is the uniqueness of the filling-in for
degenerations of Calabi-Yau manifolds.

Corollary 2.3. Let (πΔ : X → Δ,L) and (π′
Δ : X ′ → Δ,L′) be

two degenerations of polarized Calabi-Yau manifolds with Calabi-Yau

varieties X0 and X ′
0 as the central fibers respectively. If there is a se-

quence of points tk → 0 in Δ, and there is a sequence of isomorphism

ψk : Xtk → X ′
tk

such that ψ∗
kL|Xtk

∼= L′|X′tk , then X0 is isomorphic to

X ′
0.

Proof. If ωtk and ω′
tk

are Ricci-flat Kähler-Einstein metrics represent-
ing c1(L|Xtk

) and c1(L
′|X′tk

) respectively, then (Xtk , ωtk) is isometric to

(X ′
tk

, ω′
tk
) as compact metric spaces. By Lemma 2.2, (Xtk , ωtk) (also
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(X ′
tk

, ω′
tk
)) converges to a compact metric space X∞ homeomorphic to

both X0 and X ′
0. We further claim that X0 is isomorphic to X ′

0.
By the proof of Lemma 2.2 and taking some powers of L and L′, we

can assume that there are morphisms Ψ : X → CPN and Ψ′ : X ′ →
CPN with L = Ψ∗OCPN (1) and L′ = Ψ′∗OCPN (1) respectively such that
Ψ|Xt and Ψ′|X′t are embeddings for any t ∈ Δ. Furthermore, there are

embeddings ΦΣk
: Xtk → CPN induced by an orthonormal basis Σk of

H0(Xtk ,L|Xtk
) for each k such that ΦΣk

(Xtk) converges to a Calabi-Yau

variety homeomorphic to X∞ in the Hilbert scheme HilPN , denoted still
by X∞. The same arguments as in the proof of Lemma 2.2 show that
there are w and w′ ∈ SL(N + 1) such that X∞ = σ(w,Ψ(X0)) and
X∞ = σ(w′,Ψ′(X ′

0)) where σ : SL(N + 1)×HilPN → HilPN is a natural
SL(N + 1)-action on HilPN . Hence X0 is isomorphic to X ′

0. q.e.d.

Remark 2.4. Note that X may not be birational to X ′ in this corol-
lary. If we have a stronger assumption that X\X0 is isomorphic to
X ′\X ′

0, then the conclusion is a direct consequence of [2, Theorem 2.1]
and [30, Corollary 4.3].

3. Quasi-projective moduli space

In this section, we construct an enlarged moduli space parameterizing
certain polarized Calabi-Yau varieties.

3.1. Moduli space for Calabi-Yau manifolds. In [45], Viehweg
constructed the coarse moduli space of polarized Calabi-Yau manifolds
with a fixed Hilbert polynomial P by using Geometric Invariant Theory
(GIT), and it was shown to be a quasi-projective variety. Let’s recall
the relevant notions and the basic steps of the construction.

The moduli functor MP for polarized Calabi-Yau manifolds with
Hilbert polynomial P is a functor from the category of schemes to the
category of sets such that MP (Spec(C)) = MP as a set, and for any
scheme T , MP (T ) = {(πT : X → T,L)}/ ∼. Here πT : X → T is a flat
family of schemes, and L is a relative ample line bundle on X such that
for any point t ∈ T , (Xt = π−1

T (t),L|Xt) ∈ MP . And we say (πT : X →
T,L) ∼ (π′

T : X ′ → T,L′) if there is a T -isomorphism τ : X → X ′ and
an invertible sheaf B on T such that τ∗L′ ∼= L ⊗ π∗

TB. Theorem 1.13
and Corollary 7.22 of [45] assert that there is a quasi-projective scheme

M̃P coarsely representing the functor MP , i.e. the following hold.
There is a natural transformation Θ : MP → hom(·,M̃P ) such that

Θ(Spec(C)) : MP (Spec(C)) → hom(Spec(C),M̃P ) is bijective, and, for
any scheme W and a natural transformation Ξ : MP → hom(·,W ),

there is a unique natural transformation Π : hom(·,M̃P ) → hom(·,W )
such that Ξ = Π ◦Θ. This property implies that for any (X → T,L) ∈
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MP (T ), there is a unique morphism T → M̃P . We identify MP with

the set of closed points of M̃P by Θ(Spec(C)).

Now we recall the construction of M̃P in [45]. Firstly, the functor
MP is bounded. More precisely, by Matsusaka’s Big Theorem (cf. [26]),
for any polarized Calabi-Yau manifold (X,L), there is an m0 > 0 de-
pending only on P such that for any m � m0, Lm is very ample, and
H i(X,Lm) = {0}, i > 0. By choosing a basis Σ of H0(X,Lm0), we have
an embedding ΦΣ : X ↪→ CPN such that Lm0 = Φ∗

ΣOCPN (1). We regard

ΦΣ(X) as a point in the Hilbert scheme Hil
Pm0
N parametrizing the sub-

shemes of CPN with Hilbert polynomial Pm0 , where N = h0(X,Lm0)−1.
For any other choice Σ′, ΦΣ′(X) = σ(u,ΦΣ(X)) for a u ∈ SL(N + 1)

where σ : SL(N + 1) × Hil
Pm0
N → Hil

Pm0
N is the SL(N + 1)-action on

Hil
Pm0
N induced by the natural SL(N + 1)-action on CPN .

Secondly, MP is open (see [45, Lemma 1.18]), i.e. for any flat family
of polarized varieties (πY : X → Y,L), there is an open subscheme
Y ′ ⊂ Y such that a morphism T → Y factors through T → Y ′ → Y if
and only if (X×Y T → T, p∗L) ∈ MP (T ) where p : X×Y T → X denotes
the projection. This is equivalent to that there is an open subscheme

Ho
N of Hil

Pm0
N (cf. [45, Notions 7.2]) such that a point p ∈ Ho

N if

and only if (Xp = π−1
H (p), Lp) ∈ MP and Lm0

p
∼= OCPN (1)|Xp where

πH : UN → Hil
Pm0
N is the universal family over the Hilbert scheme

Hil
Pm0
N . The SL(N + 1)-action σ on Hil

Pm0
N induces an SL(N + 1)-

action on Ho
N , denoted still by σ : SL(N +1)×Ho

N → Ho
N . The moduli

scheme M̃P is constructed by showing that a certain quotient of the
SL(N + 1)-action on Ho

N exists.
Thirdly, MP is separated (cf. [45, Lemma 1.18]), i.e. for any two

(Xi → S,Li) ∈ MP (S), i = 1, 2, any isomorphism of (X1,L1) onto
(X2,L2) over S\{0} extends to a S-isomorphism from (X1,L1) to (X2,
L2), where (S, 0) is a germ of smooth curve. Thus the SL(N +1)-action
on Ho

N is proper and the stabilizers are finite by [45, Lemma 7.3]. The
separatedness condition implies that if the moduli space exists, i.e. the
quotient of the SL(N + 1)-action σ exists, then it is Hausdorff under
the analytic topology.

Finally, MP satisfies further properties, so called the weak positivity
and the weak stability, i.e. Assumption 7.19 of [45] holds by the proof of

Theorem 1.13 in [45]. Then the geometric quotient Qo : Ho
N → M̃P of

the SL(N+1)-action σ exists (cf. Corollary 3.33 and the proof of Theo-
rem 7.20 in [45]). Here the geometric quotient means that Qo is a mor-

phism fromHo
N to a scheme M̃P satisfying the following (cf. [45, Defini-

tion 3.6]). For any p ∈ Ho
N and any u ∈ SL(N+1), Qo(σ(u, p)) = Qo(p),

OM̃P = (Qo∗OHo
N
)SL(N+1), and, for any two disjoint SL(N+1)-invariant

closed subscheme W1 and W2, we have that Q
o(W1)

⋂
Qo(W2) = ∅, and
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both of Qo(W1) and Qo(W2) are closed. Furthermore, for any point

p ∈ M̃P , the fiber Qo,−1(p) consists of exactly one SL(N + 1)-orbit.
The existence of Qo implies that the SL(N + 1)-action σ is closed, and
the dimension of the stabilizers is constant on connected components.
Moreover, M̃P is a quasi-projective variety, and there is an ample sheaf
λ on M̃P such that Qo,∗λ = πH,∗�ν

UN/Ho
N

for a ν � 1 by [45, Corollary

7.22].
Viehweg also showed in Section 8 of [45] that the above construction

works for more general moduli functor of certain polarized varieties with
semi-ample dualizing sheaf and at worst canonical singularities as long
as the boundedness condition, the openness (or the local closedness)
condition and the separatedness condition hold. In Section 3.2, we will
use the construction in [45, Section 8] to obtain an enlarged moduli
space of MP , which also parameterizes certain Calabi-Yau varieties.

We remark that there is an analogue construction of the symplectic
reduction (cf. [28, Section 8]) to obtain MP by using Ricci-flat Kähler-
Einstein metrics. If we define a real slice

(3.1) Ro
N =

⋃
p∈Ho

N

RO(Xp,OCPN (1)|Xp) ⊂ Ho
N,red,

where RO(Xp,OCPN (1)|Xp) is defined by (2.4), then there is a natural

SU(N +1)-action on Ro
N , and the set theory quotient is MP . The real

slice Ro
N is an analog of the zero level set of a momentum map in the

symplectic reduction.

3.2. Enlarged moduli space. Now we construct the enlarged moduli
space. For any polarized Calabi-Yau manifold (X,L) of dimension n
with Hilbert polynomial P = P (μ) = χ(X,Lμ), we assume that L is
very ample, and H i(X,Lμ) = {0} for any i > 0 and μ � 1 without loss
of generality.

For any m � 1, there is an N = N(m) > 0 such that a basis Σ of
H0(X,Lm) induces an embedding ΦΣ : X ↪→ CPN . Let πH : UN →
HilbPm

N be the universal family over the Hilbert scheme HilbPm

N of the

Hilbert polynomial Pm(μ) = P (mμ), and Ho
N ⊂ HilbPm

N be the open
subscheme whose set of closed points parameterizes smooth varieties.
The moduli space MP is constructed in [45] as the geometric quotient
Qo : Ho

N → MP under the natural SL(N + 1)-action σ on Ho
N as

explained above.

Lemma 3.1. There is an open subscheme HN of HilbPm

N such that

Ho
N ⊂ HN ⊂ Ho

N where Ho
N denotes the Zariski closure of Ho

N in

HilbPm

N , and a point p ∈ HN if and only if Xp = π−1
H (p) is a Calabi-Yau

variety.

Proof. This result is undoubtedly well-known to experts, and the
proof was explained to the author by Chenyang Xu. We use the closed
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subscheme Ho
N to replace HilbPm

N , and try to prove that HN is an open

subscheme of Ho
N .

Note that Calabi-Yau varieties are normal projective varieties, and
the normality is an open condition for flat families. Any subset E of
Ho

N containing the open subsetHo
N is constructible (cf. [16, Proposition

10.14]), since for any irreducible closed subset Y , if Y is proper, E
⋂

Y
is nowhere dense, and otherwise Y = Ho

N , which contains Ho
N . The

main theorem in [18] shows that if πS : X → S is a flat morphism from
a germ of a variety to a germ of smooth curve (S, 0) whose special fiber
X0 = π−1

S (0) has only canonical singularities, then both X and fibers

Xt have only canonical singularities. Thus for any point p ∈ Ho
N , if

Xp = π−1
H (p) has at worst canonical singularities, then by taking curves

passing p and normalizations of curves, there is a neighborhood of p
over which fibers of πH have at worst canonical singularities, i.e. having
only canonical singularities is an open condition. We denote W the
open subscheme of Ho

N whose set of closed points parameterizes normal
varieties with at worst canonical singularities. By [45, Lemma 1.19],
there is a locally closed subscheme HN of W such that a morphism T →
W factors through T → HN , if and only if (UN ×W T → T, p∗�UN/W) ∼
(UN ×W T → T, p∗OUN

), where p : UN ×W T → UN is the projection.
Hence a point p ∈ HN if and only if �Xp

∼= OXp , which implies that Xp

is a Calabi-Yau variety. Furthermore, Ho
N ⊂ HN , and HN is open.

q.e.d.

We define a moduli subfunctorMm of the moduli functor of polarized
Gorenstein varieties, i.e. 3) of Examples 1.4 in [45], such that

Mm(Spec(C)) = {(Xp = π−1
H (p),OCPN (1)|Xp)| p is a point of HN}/ ∼,

where (Xp1 ,OCPN (1)|Xp1
) ∼ (Xp2 ,OCPN (1)|Xp2

) if and only if there is an

isomorphism ψ : Xp1 → Xp2 such that OCPN (1)|Xp1
∼= ψ∗OCPN (1)|Xp2

,

which is equivalent to p1 = σ(u, p2) for an u ∈ SL(N + 1). The functor
Mm is bounded by the definition, and is open by Lemma 3.1. By [30,
Corollary 4.3] or the unpublished work [2, Theorem 2.1], if (X1 → S,L1)
and (X2 → S,L2) are two flat families of polarized Calabi-Yau varieties
over a germ of smooth curve (S, 0), then any isomorphism of these two
families over S\{0} extends to an isomorphism over S, i.e. the moduli
functor Mm is also separated.

Now we use the construction in [45, Section 8] to prove that Mm can
be coarsely represented by a quasi-projective variety.

Lemma 3.2. The coarse moduli space of Mm is a quasi-projective

variety M̃m, which is constructed as a geometric quotient Q : HN →
M̃m. There is a positive integer ν = ν(m), and an ample line bundle

λm on M̃m such that Q∗λm = πH,∗�ν
UN/HN

. Furthermore, M̃P is an

open subscheme of M̃m.
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Proof. Note that Mm satisfies [45, Assumptions 8.22], i.e. Mm is
bounded, open, separated, and moreover is a moduli functor of varieties
with semi-ample dualizing sheaf. Then [45, Theorem 8.23] shows that

Mm can be coarsely represented by a quasi-projective scheme M̃m.
More precisely, the base changing, local freeness condition, the weak
positivity and the weak stability are verified in [45, Section 8.6], and
then [45, Theorem 7.20] shows the existence of the geometric quotient

Q : HN → M̃m. Furthermore, there is a positive integer ν = ν(m),

and an ample line bundle λm on M̃m such that Q∗λm = πH,∗�ν
UN/HN

by [45, Theorem 8.23, Theorem 7.20 and Corollary 7.22]. Finally, since
Ho

N ⊂ HN is SL(N + 1)-invariant Zariski open, and Q|Ho
N

= Qo, we

obtain that M̃P is open in M̃m. q.e.d.

Remark 3.3. For a p ∈ HN , if Xp is smooth, then OCPN (1)|Xp = Lm

where L is an ample line bundle on Xp, and however, if Xp is singular,
there may not exist such ample line bundle. Thus some Calabi-Yau
variety here could not be embedded to the lower dimensional projective
space.

We also have an enlarged real slice of Ro
N . We define

(3.2) RN =
⋃

p∈HN

RO(Xp,OCPN (1)|Xp) ⊂ HN,red,

where HN,red is the reduced variety of HN with the natural analytic
topology, and RO(Xp,OCPN (1)|Xp) is the SU(N + 1)-orbit induced by
the Ricci-flat Kähler-Einstein metric ω ∈ c1(OCPN (1)|Xp). By (2.4),
RO(Xp,OCPN (1)|Xp) ⊂ O(Xp,OCPN (1)|Xp)

⋂
RN , and by the unique-

ness of the Kähler-Einstien metric ω, we obtain

RO(Xp,OCPN (1)|Xp) = O(Xp,OCPN (1)|Xp)
⋂

RN ,

for any p ∈ HN . The set theory quotient space

(3.3) Mm = RN/SU(N + 1) = HN,red/SL(N + 1)

with the quotient topology induced by the analytic topology ofHN,red, is

homeomorphic to the underlying variety of M̃m. Note that the reduced
Hilbert scheme HilbPm

N,red is Hausdorff, and so is the subset RN . Thus

the quotient by a compact Lie group Mm = RN/SU(N + 1) is also
Hausdorff, which has already been implied by the separatedness of Mm.
For a point p ∈ HN , we denote [Xp] ∈ Mm the image of p under the
quotient map, i.e. [Xp] = Q(p).

4. Proof of Theorem 1.1 and Theorem 1.3

In this section, we prove Theorem 1.1 and Theorem 1.3. By Mat-
susaka’s Big Theorem, for any polarized Calabi-Yau manifold (X,L) ∈
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MP , we assume that for any μ � 1, Lμ is very ample, and H i(X,Lμ) =
{0}, i > 0 without loss generality.

For any D > 0, we define a subset MP (D) of MP by

MP (D) =

{[X,L] ∈ MP | Ricci − flat metric ω ∈ c1(L) with diamω(X) � D}.

We have that if D1 � D2, then MP (D1) ⊂ MP (D2), and MP =⋃
D>0

MP (D). Let’s consider an exhaustion

MP (1) ⊂ · · · ⊂ MP (j) ⊂ · · · · · · ⊂ MP =
⋃
j∈N

MP (j).

Note that for a sequence [Xk, Lk] ∈ MP (j), if (Xk, ωk) converges to
a compact metric space X∞ in the Gromov-Hausdorff sense, then by
Theorem 2.1, there are embeddings Φk : Xk ↪→ CPNj for an Nj > 0 in-

dependent of k such that L
mj

k
∼= Φ∗

kOCP
Nj (1) for an mj > 0, and Φk(Xk)

converges to a Calabi-Yau variety in the Hilbert scheme Hilb
Pmj

Nj
, which

is homeomorphic to X∞, denoted still by X∞.

Lemma 4.1. If we denote m(l) =
l∏

j=1
mj, and the sequence [Xk, Lk] ∈

MP (l0), for an l0 � l, i.e. diamωk
(Xk) � l0, then [X∞] ∈ Mm(l), where

Mm(l) is the underlying quasi-projective variety of M̃m(l) constructed in

Lemma 3.2.

Proof. Note that X∞ is a Calabi-Yau variety, O
CP

Nl0
(1)|X

∞

is very

ample, and (X∞,O
CP

Nl0
(1)|X

∞

) represents a point in the Hilbert scheme

Hilb
Pml0
Nl0

. If we denote ml,l0 = m(l)/ml0 , then O
CP

Nl0
(ml,l0)|X∞ is

very ample and without any higher cohomology (cf. [45, Corollary
2.36]). The Hilbert polynomial of (X∞,O

CP
Nl0

(ml,l0)|X∞) is Pm(l)(k) =

Pml0
(ml,l0 · k). Thus there is an embedding Ψ∞ : X∞ → CPNm(l) such

that O
CP

Nl0
(ml,l0)|X∞ = Ψ∗∞O

CP
Nm(l) (1), where Nm(l) = Pm(l)(1) − 1.

We have Ψ∞(X∞) ∈ HNm(l)
⊂ Hilb

Pm(l)

Nm(l)
. Note that [Ψ∞(X∞)] =

Ql(Ψ∞(X∞)), where Ql : HNm(l)
→ M̃m(l) is the quotient map in

Lemma 3.2. We obtain the conclusion by identifying Ψ∞(X∞) with
X∞. q.e.d.
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Lemma 4.2. There is a continuous inclusion il : Mm(l) ↪→ Mm(l+1).

Proof. For any l, let πH : UNm(l)
→ Hilb

Pm(l)

Nm(l)
be the universal family.

The line bundle Lm(l) = Υ∗O
CP

Nm(l) (1) is a relative very ample where

Υ is the composition of the embedding and the projection UNm(l)
↪→

CPNm(l) × Hilb
Pm(l)

Nm(l)
→ CPNm(l) . For a point p ∈ HNm(l)

, if Xp =

π−1
H (p), then L

ml+1

m(l) |Xp has no higher cohomology, and (Xp,L
ml+1

m(l) |Xp)

has the Hilbert polynomial Pm(l+1)(k) = Pm(l)(ml+1 · k). Note that

Nm(l+1) = Pm(l+1)(1)−1. Thus we have embeddings Θ : π−1
H (HNm(l)

) ↪→

P(πH∗(L
ml+1

m(l) ))
∼= CPNm(l+1) × HNm(l)

with L
ml+1

m(l) = Θ∗Lm(l+1). For

two choices of embeddings Θ and Θ′, there is a section u ∈
OHNm(l)

(SL(Nm(l+1) +1)×HNm(l)
) such that Θ′(Xp) = σ(u(p),Θ(Xp))

under the SL(Nm(l+1) + 1)-action σ on Hilb
Pm(l+1)

Nm(l+1)
. By the univer-

sal property of Hilbert scheme, we obtain a morphism Il : HNm(l)
→

Hilb
Pm(l+1)

Nm(l+1)
such that π−1

H (HNm(l)
) = UNm(l+1)

×
Hilb

Pm(l+1)
Nm(l+1)

HNm(l)
, and

furthermore, Il(HNm(l)
) ⊂ HNm(l+1)

. We also denote Il the corre-

sponding morphism π−1
H (HNm(l)

) → UNm(l+1)
without any confusion.

If p and p′ ∈ HNm(l)
satisfy p = σ(w, p′) for a w ∈ SL(Nm(l) + 1),

then (Xp,L
ml+1

m(l) |Xp) ∼ (Xp′ ,L
ml+1

m(l) |Xp′
). Hence Il is equivariant under

the SL(Nm(l) + 1) and SL(Nm(l+1) + 1) actions. We obtain a map
il : Mm(l) → Mm(l+1) by taking the quotients, which is continuous
under the analytic topology.

If il([X1]) = il([X2]), for two [X1] and [X2] ∈ Mm(l), then there is an

isomorphism ψ̃ :Il(X1) → Il(X2) with ψ̃∗Lm(l+1)|Il(X2)
∼= Lm(l+1)|Il(X1).

Thus we obtain an isomorphism ψ : X1 → X2 with ψ∗Lm(l+1)
m(l) |X2

∼=

L
m(l+1)
m(l) |X1 . Hence ψ∗Lm(l)|X2

∼= Lm(l)|X1 , and [X1] = [X2], i.e. il is

injective. q.e.d.

Proof of Theorem 1.1 . We define

(4.1) M
P
=
⋃
l∈N

Mm(l)

by using the inclusions il. Note that MP is an open dense subset of

each Mm(l) by Lemma 3.2 and thus of M
P
.

We extend the map CY : MP → Met to a map CY : M
P
→ CY(MP )

by the following. For any x ∈ Mm(l) ⊂ M
P
, let ωl be the Ricci-

flat Kähler-Einstein metric on Xp representing c1(OCP
Nm(l) |Xp), where

p ∈ HNm(l)
⊂ Hilb

Pm(l)

Nm(l)
, Qm(l)(p) = x, and Xp = π−1

H (p) from the
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construction in Section 3.2. For a normalized curve f : Δ → HNm(l)

with f(Δ∗) ⊂ Ho
Nm(l)

, we have a degeneration of polarized Calabi-Yau

manifolds (UNm(l)
×HNm(l)

Δ → Δ, p∗O
CP

Nm(l) (1)|UNm(l)
) with central

fiber Xp, where p is the projection to the first factor. By Lemma 2.2,
ωl induces a compact metric space structure on Xp.

We define

CY(x) =
(
Xp,

1

m(l)
ωl

)
.

If we consider il(x) ∈ Mm(l+1), then Xp is isomorphic to Il(Xp), (Xp,
1

m(l)ωl) is isometric to (Il(Xp),
1

m(l+1)ωl+1) as metric spaces by il(x) =

Qm(l+1)(Il(Xp)), and I∗lOCP
Nm(l+1) (1)|Il(Xp)

∼= O
CP

Nm(l) (ml+1)|Xp . Thus

CY is well-defined. If Xp is smooth, there is an ample line bundle Lp such

that L
m(l)
p

∼= O
CP

Nm(l) (1)|Xp and [Xp, Lp] ∈ MP . Hence 1
m(l)ωl ∈ c1(Lp)

and CY|MP = CY.

For any compact metric space (Y, dY ) ∈ CY(MP ), we have a sequence
[Xk, Lk] ∈ MP (l1), for an l1 > diamdY (Y ), such that (Xk, ωk) con-
verges to (Y, dY ) in the Gromov-Hausdorff sense, where ωk ∈ c1(Lk) is
the Ricci-flat Kähler-Einstein metric. By Lemma 4.1, there is a Calabi-
Yau variety X∞ homeomorphic to Y and satisfying that X∞ can be
embedded in CPNm(l1) and [X∞] ∈ Mm(l1). Furthermore, the metric
structure dY is induced by the singular Ricci-flat Kähler-Einstein met-
ric ω ∈ 1

m(l1)
c1(O

CP
Nm(l1)

(1)|X
∞

) by Theorem 2.1, which implies that

CY([X∞]) = (X∞, ω), i.e. CY is surjective. We obtain i), ii) and iii).
Let (πΔ : X → Δ,L) be a degeneration of polarized Calabi-Yau

manifolds satisfying the condition in iv). We assume that L is rela-
tive very ample, and [Xt,L|Xt ] ∈ MP , t ∈ Δ∗. By (2.5), there is
an l2 > 0 such that diamωt(Xt) � l2 for t ∈ Δ∗, where ωt is the
unique Ricci-flat Kähler-Einstein metric representing c1(L|Xt). By the
above construction, we have a m(l2) > 0 such that we have a morphism

Ψ̃ : X ↪→ Δ×CPNm(l2) → CPNm(l2) with Lm(l2)|Xt
∼= Ψ̃∗O

CP
Nm(l2)

(1)|Xt .

There is a unique morphism ρ : Δ → Mm(l2) such that ρ(t) = [Ψ̃(Xt)]
by the conclusion of Mm(l2) coarsely representing the functor Mm(l2) in
Lemma 3.2. The Gromov-Hausdorff convergence in iv) is a consequence
of Lemma 2.2. q.e.d.

Proof of Theorem 1.3. For any point x ∈ M
P
\MP , we assume that x ∈

Mm(l) ⊂ M
P
for an m(l) > 0. Let p ∈ HNm(l)

⊂ Hilb
Pm(l)

Nm(l)
, Qm(l)(p) =

x, and Xp = π−1
H (p), where πH : UNm(l)

→ HNm(l)
is the universal

family. Let τ : Δ → HNm(l)
be a morphism such that τ(0) = p and

τ(Δ∗) ⊂ Ho
Nm(l)

, and X = UNm(l)
×HNm(l)

Δ → Δ be the degeneration of

Calabi-Yau manifolds. Since the central fiber Xp is a Calabi-Yau variety,
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[46, Proposition 2.3] shows that the Weil-Petersson distance between
the interior Δ∗ and p is finite. Hence we obtain i) by composing the
quotient map Qm(l).

Let (πΔ : X → Δ,L) be a degeneration of polarized Calabi-Yau
manifolds. If we assume that the Weil-Petersson distance between Δ∗
and 0 is finite, then after a finite base change (πΔ : X → Δ,L) is
birational to a new family (π′

Δ : X ′ → Δ,L′) such that (X\X0,L) ∼=
(X ′\X ′

0,L
′), and X ′

0 is a Calabi-Yau variety by [44, Theorem 1.2]. We
obtain ii) by the same argument as in the proof of iv) in Theorem 1.1.
q.e.d.

Remark 4.3. Note that M
P

parameterizes certain Calabi-Yau va-
rieties, which are proven to be K-stable by [29]. Hence Theorem 1.1
gives an evidence to the conjecture of the existence of K-moduli spaces
(cf. [30, Conjecture 3.1]).

5. A remark for compactifications

Finally, we remark that there actually is a natural Gromov-Hausdorff

compactification of M
P
. If we define the normalized Calabi-Yau map

NCY : MP → Met, by [X,L] �→ (X,diam−2
ω (X)ω),

where ω ∈ c1(L) is the unique Ricci-flat Kähler-Einstein metric, then
the Gromov’s precompactness theorem (cf. [10, 34]) asserts that the

closure NCY(MP ) of NCY(MP ) in Met is compact. Moreover, the
map

CY(MP ) → NCY(MP ), (Y, dY ) �→ (Y,diam−1
dY

(Y )dY )

is injective and continuous. However, because of the collapsing phenom-

enon, the algebro-geometric structure of NCY(MP ) is unclear, and it
is not a compactification in the usual algebraic geometry sense. The
Gromov-Hausdorff compactification is studied for the moduli spaces of
compact Riemann surfaces and Abelian varieties in a recent preprint
[32].

Let (X → Δ,L) be a degeneration of polarized Calabi-Yau manifolds
of dimension n such that the diameter of the Ricci-flat Kähler metric
ωt ∈ c1(L|Xt) tends to infinite when t → 0, i.e. diamωt(Xt) → ∞. Since
Volωt(Xt) =

1
n!c

n
1 (L|Xt) ≡ const., (Xt, ωt) must collapse (cf. [1]), i.e. for

metric 1-balls Bωt(1), Volωt(Bωt(1)) → 0 when t → 0. If 0 ∈ Δ is a large
complex limit point (cf. [12]), a refined version of the Strominger-Yau-
Zaslow (SYZ) conjecture (cf. [39]) due to Gross, Wilson, Kontsevich

and Soibelman (cf. [15, 23, 24]) says that diamωt(Xt) ∼
√

− log |t|,
and (Xt,diam

−2
ωt

(Xt)ωt) converges to a compact metric space (B, dB)

in the Gromov-Hausdorff sense. If hi,0(Xt) = 0, 1 � i < n, then B
is homeomorphic to Sn. Furthermore, there is an open subset B0 ⊂ B
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with codimRB\B0 � 2, B0 admits a real affine structure, and the metric
dB is induced by a Monge-Ampère metric gB on B0, i.e. under affine
coordinates x1, · · · , xn, there is a potential function φ such that

gB =
∑
ij

∂2φ

∂xi∂xj
dxidxj , and det

( ∂2φ

∂xi∂xj

)
= 1.

This conjecture was verified by Gross and Wilson for fibred K3 sur-
faces with only type I1 singular fibers in [15], and was studied for higher
dimensional HyperKähler manifolds in [13, 14]. In [24], it was further
conjectured that the Gromov-Hausdorff limit B is homeomorphic to
the Calabi-Yau skeleton of the Berkovich analytic space associated to
X×ΔΔ

∗ by taking some base change if necessary, which gives an algebro-
geometric description of B. If we grant this version of SYZ conjecture,
we will have a nice algebro-geometric structure for the compactification
at least for some one dimensional moduli space MP .

Example 5.1. A simple concrete example for Theorem 1.1 and The-
orem 1.3 is the mirror Calabi-Yau 3-fold of the quintic 3-fold constructed
in [5] (cf. Section 18 in [12]), i.e. Xt is the crepant resolution of the
quotient

Ys =
{
[z0, · · · , z4] ∈ CP4|z50 + · · ·+ z54 + sz0 · · · z4 = 0

}
/(Z5

5/Z5)

of the quintic by Z5
5/Z5, where s5 = t ∈ C. By choosing a polarization,

MP = C\{1}, and 0 is an orbifold point of MP . When t = 1, X1 is
a Calabi-Yau variety with finite ordinary double points, and however,
t = ∞ is a large complex limit point, which implies that t = ∞ is
the cusp end of MP and has infinite Weil-Petersson distance. Thus

M
P
= C. Again, if we grant the refined version of SYZ conjecture, the

point t = ∞ corresponds to the S3 with a Monge-Ampère metric on

an open dense subset, and consequently, M
P

has a natural Gromov-
Hausdorff compactification CP1 with a continuous surjection NCY :

CP1 → NCY(MP ) extending NCY.
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