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BIFURCATION OF PERIODIC SOLUTIONS TO THE

SINGULAR YAMABE PROBLEM ON SPHERES

Renato G. Bettiol, Paolo Piccione & Bianca Santoro

Abstract

We obtain uncountably many periodic solutions to the singular
Yamabe problem on a round sphere that blow up along a great
circle. These are (complete) constant scalar curvature metrics on
the complement of S1 inside S

m, m ≥ 5, that are conformal to
the round (incomplete) metric and periodic in the sense of be-
ing invariant under a discrete group of conformal transformations.
These solutions come from bifurcating branches of constant scalar
curvature metrics on compact quotients of Sm \ S1 ∼= Sm−2 × H2.

1. Introduction

A major achievement in Geometric Analysis was the complete solu-
tion of the Yamabe problem, which asserts that any compact Riemann-
ian manifold (M,g) of dimension dimM = m ≥ 3 admits a metric
g′ that has constant scalar curvature and is conformal to g. Attempts
to generalize this statement in many directions have provided a fertile
research area in the last decades. One such direction is to drop the com-
pactness assumption on M . In this case, it is natural to consider only
complete metrics, even though every conformal class obviously contains
both complete and incomplete metrics. A well-studied version of this
question, where the geometry at infinity is relatively tame, is the fol-
lowing:

Singular Yamabe Problem. Let (M,g) be a compact Riemannian
manifold and Λ ⊂ M be a closed subset. Find a complete metric g′ on
M \ Λ that has constant scalar curvature and is conformal to g.

Although considerable progress was made in the general case, for
many reasons the above problem is especially interesting in the par-
ticular case in which (M,g) is the unit round sphere (Sm, ground); see
Schoen [22, §5]. This situation was initially considered in the 1970s
by Loewner and Nirenberg [14], who obtained existence of solutions
with scal < 0 in some cases where the Hausdorff dimension of Λ is
≥ (m− 2)/2. Most of the subsequent contributions to the problem, up
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to present, assume that Λ is smooth, with remarkable exceptions due
to Finn [10, 9]. Under this assumption, Aviles and McOwen [3] proved
that for a general (M,g), a solution with scal < 0 exists if and only if
dimΛ > (m − 2)/2, in which case one also has uniqueness of solutions
and regularity results; see Mazzeo [16].

Analogously to the classical Yamabe problem, the case scal ≥ 0 is con-
siderably more involved. The first major breakthroughs were obtained
by Schoen [21] and Schoen and Yau [23]. The latter established that if
S
m\Λ admits a complete metric with scalar curvature bounded below by

a positive constant, then the Hausdorff dimension of Λ is ≤ (m− 2)/2,
and the former constructed several examples of domains S

m \ Λ that
admit complete conformally flat metrics with constant positive scalar
curvature, including the case where Λ is any finite set with at least
two points. This existence result was greatly generalized by Mazzeo and
Pacard [17, 18], allowing Λ to be a disjoint union of submanifolds with
dimensions between 1 and (m− 2)/2 when (M,g) is a general compact
manifold with constant nonnegative scalar curvature, and between 0 and
(m− 2)/2 in the case (M,g) = (Sm, ground).

Some of the first solutions to the Singular Yamabe Problem on S
m\Λ

were constructed by lifting solutions to the classical Yamabe problem
from compact quotients. In these constructions, Λ is the limit set of a
Kleinian group, and hence either a round subsphere Sk ⊂ S

m or totally
unrectifiable. Since the corresponding metrics on S

m \ Λ are invariant
under a discrete (cocompact) group of conformal transformations, we
slightly abuse terminology and call these periodic solutions.

The purpose of the present paper is to apply bifurcation techniques
to obtain many families of new periodic solutions when Λ = S

1. Our
central result is the following:

Main Theorem. There exist uncountably many branches of periodic
solutions to the singular Yamabe problem on S

m \ S1, for all m ≥ 5,
having (constant) scalar curvature arbitrarily close to (m− 4)(m− 1).

The starting point for constructing such solutions is the existence
of trivial periodic solutions in the case Λ is a round subsphere S

k ⊂
S
m (cf. [19]). Through stereographic projection using a point in S

k,
there is a conformal equivalence S

m \ Sk ∼= R
m \ Rk. Consider the flat

metric in the latter, given in cylindrical coordinates by dr2 + r2dθ2 +
dy2, where y is the coordinate in R

k and (r, θ) are polar coordinates in
its orthogonal complement R

m−k. Dividing by r2, we obtain that this
metric is conformal to

gprod = dθ2 +
dr2 + dy2

r2
=

dr2 + r2dθ2 + dy2

r2
,
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which is clearly the ordinary product metric on S
m−k−1 × H

k+1, with
the hyperbolic metric written in the upper half-plane model. Alterna-
tively, recall that the subset of Sm at maximal distance from any round
subsphere S

k is another round subsphere S
m−k−1, and both submani-

folds have trivial normal bundle. In particular, the exponential map is
a diffeomorphism between S

m \ Sk and the (trivial) normal disk bun-
dle D(Sm−k−1) = S

m−k−1 ×Dk+1. The pull-back of ground is a doubly
warped product metric on [0, π2 )×S

m−k−1×S
k. Dividing by the warping

function of Sm−k−1 and reparametrizing the [0, π2 ) coordinate, one reob-

tains the product metric on S
m−k−1×H

k+1, with the hyperbolic metric
now written in the rotationally symmetric (Poincaré disk) model.

Thus, gprod is a (smooth) solution to the Singular Yamabe Problem,

since it is conformal to the (incomplete) round metric on S
m \ Sk and

has constant scalar curvature equal to

scalm,k := (m− k − 1)(m− k − 2)− (k + 1)k = (m− 2k − 2)(m − 1).

In particular, notice that scalm,k > 0 precisely when k < (m − 2)/2.
Mazzeo and Smale [19] used these trivial solutions to prove existence of
infinitely many other solutions with scalar curvature scalm,k, perturbing

the subsphere Sk ⊂ S
m with a diffeomorphism of Sm close to the identity.

These were the first nonperiodic solutions to be found on S
m \ Sk.

In order to find new periodic solutions, we concentrate on the ex-
ceptional case k = 1, which allows for paths of nonisometric compact
quotients of Sm \S1 ∼= S

m−2×H
2 (if k ≥ 2, then any compact quotients

S
m−k−1 × Σk+1 of Sm \ Sk that have isomorphic fundamental groups

must be isometric, by Mostow’s Rigidity Theorem). These quotients
arise from paths of (cocompact) lattices Γt on H

2, which induce paths
of hyperbolic surfaces Σt = H

2/Γt, whose product with S
m−2 gives

paths of closed manifolds S
m−2 × Σt. We prove that if the path Σt of

hyperbolic surfaces degenerates in an appropriate way, then there exist
nonproduct constant scalar curvature metrics on S

m−2 × Σ that bifur-
cate from S

m−2×Σt. These lift to metrics on S
m \S1 that are conformal

to gprod (and hence to ground), providing new periodic solutions with
varying period Γt. We obtain a very large quantity of solutions, with
very general periods, since for any lattice Γ0 on H

2 we find a path Γ′
t

of lattices (starting arbitrarily close to Γ0) such that bifurcation occurs
along S

m−2×(H2/Γ′
t); see Theorem 3.4. Moreover, this can be done with

lattices corresponding to hyperbolic surfaces of any desired genus ≥ 2.
Our bifurcating solutions have positive scalar curvature, and since

scalm,1 > 0 if and only if m ≥ 5, the range for m considered in the
above theorem is the largest possible. Regarding the case m = 4, notice
that scal4,1 = 0 and hence any two constant scalar curvature metrics on
a compact quotient of (S2 × H

2, gprod) must be homothetic [2, p. 175].
Thus, gprod is the unique periodic solution on S

4 \ S1.
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Bifurcation of constant scalar curvature metrics from paths of product
metrics on S

m−2 × Σt is obtained via a classical variational bifurcation
criterion in terms of the Morse index of such metrics (as critical points
of the Hilbert–Einstein functional). This Morse index can be computed
explicitly in terms of eigenvalues of the Laplacian of Σt. Informed by
well-known spectral results for hyperbolic surfaces, we choose an ap-
propriate path Σt (which corresponds geometrically to pinching a non-
contractible closed geodesic) to produce the desired effect on the Morse
index that yields bifurcation. The only relevant information about the
factor Sm−2 is that the first eigenvalue of its Laplacian satisfies a certain
bound in terms of scalar curvature; see (3.6). The same bifurcation re-
sult holds replacing S

m−2 by any other closed manifold N that satisfies
(3.6); see Theorem 3.4. In principle, this provides a method to construct
periodic solutions to the Singular Yamabe problem on M \ Λ, for any
M that admits a codimension 2 submanifold N satisfying (3.6), whose
normal bundle is trivial and conformally equivalent to M \ Λ. For this
reason, we prove all relevant bifurcation results on a general manifold
N×Σ, and only specialize to N = S

m−2 in the last section of the paper.
Determining other geometrically interesting occurrences of the above
situation is an object of ongoing research by the authors.

The paper is organized as follows. In Section 2, we recall some spectral
properties of hyperbolic surfaces. The appropriate variational framework
for finding metrics of constant scalar curvature is discussed in Section 3
and the core bifurcation result (Theorem 3.4) is proved. Finally, Sec-
tion 4 contains the final arguments necessary to prove the above Main
Theorem.

Acknowledgments. It is a pleasure to thank Rafe Mazzeo for introduc-
ing us to the Singular Yamabe Problem and suggesting it as a possible
application of our bifurcation techniques. We would also like to thank
Sugata Mondal for bringing reference [28] to our attention.

The first named author is supported by the NSF grant DMS-1209387,
USA. The second named author is partially supported by Fapesp and
CNPq, Brazil. The third named author is partially supported by the
NSF grant DMS-1007155 and PSC-CUNY grants, USA.

2. Spectrum of hyperbolic surfaces

Let Σ be a closed oriented smooth surface of genus gen(Σ) ≥ 2. Recall
that, by the Uniformization Theorem, every conformal class of metrics
on Σ contains a unique representative of constant sectional curvature
−1, called a hyperbolic metric. We denote by H(Σ) the space of smooth
hyperbolic metrics on Σ, endowed with the Whitney C∞ topology. The
Riemannian manifold (Σ, h), with h ∈ H(Σ), will be called a hyperbolic
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surface, and we denote the spectrum of the Laplacian operator on real-
valued functions on (Σ, h) by

spec(Σ, h) =
{
0 < λ1(Σ, h) ≤ λ2(Σ, h) ≤ · · · ≤ λk(Σ, h)↗ +∞

}
,

where each eigenvalue is repeated according to its multiplicity. The goal
of this section is to discuss some spectral properties of hyperbolic sur-
faces required for our applications; for general references, see [6, 7].

Remark 2.1. Observe that, in this particular situation, the choice of
Whitney C∞ topology still allows for the use of results usually available
only for Banach manifolds. More precisely, denote by Hr(Σ) the Banach
manifold of Cr hyperbolic metrics on Σ, with the Whitney Cr topology,
and by Diff+

r (Σ) the group of orientation-preserving Cr diffeomorphisms
of Σ. The orbit space T (Σ) = Hr(Σ)/Diff+

r (Σ), called the Teichmüller

space of Σ, is independent of r and homeomorphic to R
6 gen(Σ)−6 (see

[26]). Given any smooth hyperbolic metric g0 ∈ Hr(Σ), there exists a
(6 gen(Σ)−6)-dimensional submanifold S ofHr(Σ), consisting of smooth
hyperbolic metrics, such that the restriction to S of the quotient map
π : Hr(Σ) → T (Σ) is a smooth diffeomorphism onto a neighborhood of
π(g0) ∈ T (Σ). Thus, results on Banach manifolds can also be applied
to H(Σ), provided they are local and invariant under diffeomorphisms.

2.1. Small eigenvalues. One of the cornerstones of the proof of our
Main Theorem is the behavior of eigenvalues of the Laplacian of hyper-
bolic surfaces near 1

4 . To illustrate the peculiar nature of these eigenval-
ues, we recall that classical estimates imply that, for any gen(Σ) ≥ 2,
there exist hyperbolic metrics on Σ whose first 2 gen(Σ) − 3 eigenval-
ues are arbitrarily close to zero. On the other hand, the long-standing
conjecture that at most 2 gen(Σ) − 2 eigenvalues can be ≤ 1

4 for any
hyperbolic metric on Σ was recently proved by Otal and Rosas [20]. A
well-known fact related to the above is that arbitrarily many eigenvalues
can lie in the interval [14 ,

1
4 + ε]; see [6, Theorem 8.1.2] or [7, Theorem

2]. More precisely, the following holds:

Proposition 2.2. Let Σ be a closed oriented surface of genus
gen(Σ) ≥ 2. For all ε > 0 and k ∈ N, there exists h ∈ H(Σ) such
that λk(Σ, h) <

1
4 + ε.

The above implies that, up to deforming the hyperbolic metric h ∈
H(Σ),

na(Σ, h) := max
{
k ∈ N : λk(Σ, h) < a

}
can be made arbitrarily large for any given a > 1

4 . More precisely, we
have the following:

Corollary 2.3. Let (Σ, h0) be a hyperbolic surface. For any a > 1
4 and

any nonnegative integer d, there exists a real-analytic path of hyperbolic
metrics ht ∈ H(Σ), t ∈ [0, 1], such that na(Σ, h1) > na(Σ, h0) + d.
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Proof. Let K = min{k : λk(Σ, h0) ≥ a}. Since a > 1
4 , by Propo-

sition 2.2, there exists h1 ∈ H(Σ) such that λK+d(Σ, h1) < a. Thus
na(Σ, h0) = K − 1 and na(Σ, h1) ≥ K + d. Since H(Σ) is a real-analytic
path-connected manifold, the conclusion follows. q.e.d.

2.2. Avoiding eigenvalues. In our applications, a crucial step is to
avoid a given real number λ > 1

4 in spec(Σ, h), up to perturbing the
hyperbolic metric h ∈ H(Σ). In this context, it is natural to consider
the effect of real-analytic deformations of hyperbolic metrics on the
corresponding eigenvalues of the Laplacian.

Given a real-analytic path h� ∈ H(Σ), the corresponding Laplacians
Δh�

form a real-analytic path of symmetric unbounded discrete opera-
tors. By the Kato Selection Theorem [12], their eigenvalues are real-
analytic functions of �, up to relabeling. More precisely, given λ ∈
spec(Σ, h�0), there are real-analytic functions λ(�), called eigenvalue
branches through λ, such that λ(�0) = λ and λ(�) ∈ spec(Σ, h�). For
� near �0, these are the only elements of spec(Σ, h�) near λ. Notice that,
since λ(�) are real-analytic, they can only attain the value λ countably
many times.

In this framework, we now prove the desired avoidance principle.

Proposition 2.4. Let Σ be a closed oriented surface of genus
gen(Σ) ≥ 2, and fix λ > 1

4 . Then the subset Hλ(Σ) :=
{
h ∈ H(Σ) :

λ 
∈ spec(Σ, h)
}
is open and dense.

Proof. The condition λ 
∈ spec(Σ, g) is open in the space Met(Σ)
of all smooth Riemannian metrics g on Σ, and hence also in H(Σ).
In order to prove density of this condition, suppose λ ∈ spec(Σ, h),
and let h� ∈ H(Σ) be a real-analytic path of pinching hyperbolic met-
rics through h. In other words, h = h�0 for some �0 > 0, and (Σ, h�)
have shortest closed geodesics of length � that are pinched in the limit
� ↘ 0. The existence of such paths is proved by Wolpert [29, §2.5].
Denote by λ(�) the corresponding eigenvalue branches through λ, which
are real-analytic functions of �, as described above. If none of the λ(�)
are constant functions, then we are done, as λ 
∈ spec(Σ, h�) for any
� 
= �0 near �0. Otherwise, there exists a constant eigenvalue branch
λ(�) ≡ λ; in particular, lim�↘0 λ(�) = λ > 1

4 . According to a deep result
of Wolpert [28, Theorem 5.14], the only eigenvalue branches for degen-
erating hyperbolic surfaces as above whose limit is > 1

4 are nonconstant.
This contradiction implies that this latter case cannot happen. q.e.d.

Remark 2.5. Given λ > 1
4 , it is a hard problem to find an explicit

hyperbolic surface (Σ, h) with λ 
∈ spec(Σ, h). For small λ, this is related
to finding hyperbolic surfaces with large first eigenvalue. Recall that
λ1(Σ, h) ≤ 2(gen(Σ) + 1)/(gen(Σ) − 1), by an estimate of Yang and
Yau [30]. In particular, the larger gen(Σ) is, the smaller the upper bound
on λ1(Σ, h). A well-studied hyperbolic surface of genus 2 is the Bolza
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surface (ΣB, hB), which has the largest systole (shortest noncontractible
closed geodesic) and the largest conformal group among such surfaces.
Numeric estimates yield λ1(ΣB , hB) ∼= 3.838 (see [25, §5.3]) and hence
provide an explicit example with λ 
∈ spec(ΣB , hB) for any λ < 3.8.

3. Bifurcations from constant scalar curvature

product metrics

Let (N, gN ) be a compact Riemannian manifold with dimN = n
and constant scalar curvature scalN ∈ R, and let (Σ, h) be a hyperbolic
surface. Denote by g = gN⊕h the product metric on N×Σ. The product
manifold (N × Σ, g) has

(3.1)
scalg = scalN − 2,

Vol(N × Σ, g) = 4π(gen(Σ)− 1)Vol(N, gN ).

In this section, we discuss the variational approach to the problem of
finding constant scalar curvature metrics on N × Σ and establish our
core results on bifurcation of solutions issuing from families of product
metrics.

3.1. Variational setup. Consider the Sobolev space H1(N × Σ) and
the Lebesgue space Lp(N ×Σ, volg), where volg is the volume density of
the product metric g. By the Gagliardo–Nirenberg–Sobolev inequality,

there is a continuous inclusion H1(N ×Σ) ↪→ L
2(n+2)

n (N ×Σ, volg), and
the subset

[g]v :=

{
φ ∈ H1(N × Σ) :

∫
N×Σ φ

2(n+2)
n volg = Vol(N × Σ, g)

and φ > 0 a.e.

}

is a smooth Hilbert submanifold of H1(N × Σ). The map [g]v � φ �→

gφ = φ
4
n g gives an identification between [g]v and the set of Sobolev

H1 metrics in the conformal class of g that have the same volume as g.
The constant map 1 ∈ [g]v clearly corresponds to the original metric g,
and the tangent space to [g]v at this point is

(3.2) T1[g]v =

{
ψ ∈ H1(N × Σ, g) :

∫
N×Σ

ψ volg = 0

}
.

It is well known that φ ∈ [g]v is a critical point of the Hilbert–Einstein
functional A : [g]v → R, defined by

(3.3) A(φ) :=

∫
N×Σ

(
4n+1

n
|∇φ|2g + (scalN − 2)φ2

)
volg,

if and only if φ ∈ C∞(N × Σ) and gφ = φ
4
n g has constant scalar

curvature; see, e.g., [13, 22, 27]. In particular, since the product metric
g has constant scalar curvature, the constant function 1 ∈ [g]v is a
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critical point of A. The second variation of A at this critical point is
the bilinear symmetric form on T1[g]v given by

d2A(1)(ψ1, ψ2) =
n(n+ 1)

2

∫
N×Σ

(
g(∇ψ1,∇ψ2)−

scalN − 2

n+ 1
ψ1ψ2

)
volg .

Using the compactness of H1(N × Σ) ↪→ L2(N × Σ), we have the exis-
tence of a self-adjoint operator Fg : T1[g]v → T1[g]v, given by a compact
perturbation of the identity, such that

(3.4) d2A(1)(ψ1, ψ2) =
n(n+1)

2

〈
Fgψ1, ψ2

〉
H1 , for all ψ1, ψ2 ∈ T1[g]v.

In particular, Fg is an essentially positive Fredholm operator of index 0.
The dimension of kerFg and the number (counted with multiplicity) of
negative eigenvalues of Fg are, respectively, the nullity and the Morse
index of 1 as a critical point of A in [g]v. As customary, the second
variation of A is better understood using an L2-pairing, rather than
an H1-pairing, in the space of functions on N × Σ with zero average.
Replacing (3.2) with

L2
0(N × Σ, g) :=

{
ψ ∈ L2(N × Σ, volg) :

∫
N×Σ

ψ volg = 0

}
,

we can describe d2A(1) in terms of an unbounded symmetric Fredholm
operator Jg : L

2
0(N × Σ, g)→ L2

0(N × Σ, g), by means of

d2A(1)(ψ1, ψ2) =
n(n+1)

2

〈
Jgψ1, ψ2

〉
L2 , for all ψ1, ψ2 ∈ L2

0(N × Σ, g).

The operator Jg, called the Jacobi operator, is a self-adjoint elliptic
operator that can be explicitly computed as

Jg = Δg −
scalN − 2

n+ 1
.

The kernel and the number of negative eigenvalues of Fg and Jg coincide,
so the nullity and Morse index of critical points of the Hilbert–Einstein
function can be computed using the spectrum of Jg. The latter is given
by the (positive) spectrum of the Laplacian Δg, shifted to the left by
scalN−2
n+1 ; i.e., the eigenvalues of Jg are

λ1(N × Σ, g) − scalN−2
n+1 ≤ · · · ≤ λk(N × Σ, g)− scalN−2

n+1 ≤ · · · ↗ +∞,

where the above are repeated according to multiplicity. This proves the
following:

Lemma 3.1. The Morse index and nullity of 1 ∈ [g]v as a critical
point of A : [g]v → R are, respectively,

i(g) = max
{
k : λk(N × Σ, g) < scalN−2

n+1

}
and ν(g) = dimker Jg.
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Remark 3.2. Note that − scalN−2
n+1 is not in the spectrum of Jg, since

the only constant function on L2
0(N × Σ, g) is identically zero. We also

recall the well-known fact that eigenfunctions of Jg are smooth and form
an orthonormal basis of L2

0(N ×Σ, g).

3.2. Bifurcation. Instead of having a fixed hyperbolic metric on Σ, let
ht ∈ H(Σ), t ∈ [a, b], be a path of hyperbolic metrics. Then we have a
corresponding path

(3.5) gt = gN ⊕ ht ∈ Met(N × Σ), t ∈ [a, b],

of product metrics on N × Σ satisfying (3.1). We say that t∗ ∈ [a, b]
is a bifurcation instant for gt if there exist sequences {tq}q∈N in [a, b]
converging to t∗ and {gq}q∈N in Met(N ×Σ) converging to gt∗ , called a
bifurcating branch, such that

(i) each gq has constant scalar curvature;
(ii) gq is conformal to gtq , but gq 
= gtq ;
(iii) Vol(N × Σ, gq) = 4π(gen(Σ)− 1)Vol(N, gN ).

In other words, t∗ is a bifurcation instant if local uniqueness of gt as a
solution to (3.1) fails around gt∗ . That is, for any open neighborhood of
gt∗ ∈ Met(N × Σ), there are other constant scalar curvature metrics
(with normalized volume) in the conformal class of some gt, with t
near t∗.

We now establish the key result used in our applications, namely, the
existence of paths of product metrics on N × Σ along which the Morse
index has arbitrarily large variation.

Proposition 3.3. Assume that the following inequalities hold:

(3.6)
1

4
<

scalN − 2

n+ 1
< λ1(N).

Then, for any fixed (Σ, h0) and any nonnegative integer d, there exists
a real-analytic path ht ∈ H(Σ) such that, setting gt = gN ⊕ ht, we have
i(g1) > i(g0) + d.

Proof. Let a ∈
[
scalN−2
n+1 , λ1(N)

]
. From Corollary 2.3, there exists a

real-analytic path gt = gN ⊕ ht, such that na(Σ, h1) > na(Σ, h0) + d.
Note that i(g1) ≥ na(Σ, h1). Since λ1(N) ≥ a, the only eigenvalues
of the Laplacian of (N × Σ, g0) that are strictly smaller than a are
of the form λ0(N) + λk(Σ, h0) ∈ spec(Σ, h0), with λk(Σ, h0) < a. In
particular, i(g0) = na(Σ, h0). Altogether, we have i(g1) ≥ na(Σ, h1) >
na(Σ, h0) + d = i(g0) + d. q.e.d.

Theorem 3.4. Let Σ be a hyperbolic surface and N be a closed Rie-
mannian manifold such that (3.6) holds. For any h0 ∈ H(Σ), there exist
h′0, h

′
1 ∈ H(Σ) with h′0 arbitrarily close to h0, such that the following

holds: for any continuous path h′t ∈ H(Σ) joining h′0 to h′1, there exists
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at least one bifurcation instant t∗ ∈ [0, 1] for the path of constant scalar
curvature metrics gt = gN ⊕ h′t on N × Σ.

Proof. In order to prove the above result, we apply a standard vari-
ational bifurcation criterion, adapted to a variable domain framework
as in [8, Appendix A]. This criterion states that, under a local Palais–
Smale condition, if g0 and g1 are nondegenerate critical points of differ-
ent Morse index, then any path of critical points joining g0 to g1 has at
least one bifurcation instant; see [4, 8, 24] for details. In what follows,
we describe how to verify each of these conditions in the above context
of constant scalar curvature product metrics on N × Σ.

First, the local Palais–Smale condition is an easy consequence of Fred-
holmness. Any path of hyperbolic metrics on Σ induces a path (3.5) of
product metrics on N×Σ and a path At : [gt]v → R of smooth function-
als given by (3.3). We can assume that the constant function 1t ∈ [gt]v
is an isolated critical point for At for all t, otherwise bifurcation triv-
ially holds. Since d2At(1t) is represented by a Fredholm operator, the
first derivative dA is a nonlinear Fredholm map near 1t. This implies
that each At satisfies a local Palais–Smale condition around 1t. More
precisely, for any fixed t∗, there are δ > 0 and a neighborhood U of
1t∗ in H1(N × Σ) such that At satisfies the Palais–Smale condition on
U ∩ [gt]v for all t ∈ [t∗ − δ, t∗ + δ]. This follows from a classical argu-
ment (see [15]) that uses the local representation for C1 maps having
Fredholm derivative as given in [1, Theorem 1.7].

Second, let us describe how to verify nondegeneracy of endpoints,
up to small perturbations. For any chosen h0 ∈ H(Σ) and nonnegative
integer d, let ht be the path given by Proposition 3.3. In particular, this
defines h1 ∈ H(Σ). Then Proposition 2.4, combined with (3.6), ensures
that there exist h′0 and h′1, arbitrarily close to h0 and h1, such that
scalN−2
n+1 
∈ spec(Σ, h′i), i = 0, 1. Consider the metrics

(3.7) gi := gN ⊕ h′i, i = 0, 1.

From (3.6), the only eigenvalues of the Laplacian of gi that are ≤
scalN−2
n+1 are of the form λ0(N)+λk(Σ, h

′
i) ∈ spec(Σ, h′i); hence

scalN−2
n+1 
∈

spec(N × Σ, gi), i = 0, 1. By Lemma 3.1, we have that ν(gi) = 0, i.e.,
ker d2At(gi) is trivial, so (3.7) are nondegenerate.

Finally, we verify that the Morse index of any path gt = gN ⊕ h′t
joining g0 to g1 is nonconstant. Again, by (3.6) and Lemma 3.1, the
Morse index i(gt) of 1t as a critical point of At is given by the num-
ber (with multiplicity) of eigenvalues of the Laplacian of h′t that are

strictly smaller than scalN−2
n+1 . By Proposition 3.3, and continuity of the

spectrum, we have that i(g1) > i(g0) + d, provided that h′0 and h′1 are
chosen sufficiently close to h0 and h1. q.e.d.
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Remark 3.5. It is not difficult to show that the sequence of met-
rics that bifurcate from gt∗ in Theorem 3.4 converges to gt∗ in the
Cr-topology, for any r ≥ 2. More generally, suppose gq is a sequence
of smooth metrics on a compact manifold M and uq : M → R+ is a
sequence of smooth positive functions, such that

• gq has unit volume and constant scalar curvature for all q;
• gq → g∞ in the Cs-topology, with s ≥ 2;
• uq gq is a unit volume constant scalar curvature metric for all q;
• uq → 1 in the Sobolev space H1(M).

Then, using Lp-estimates for solutions of second-order elliptic equations
(see [11, Theorem 9.14]), it follows that scal(uq gq)→ scal(g∞) and uq →
1 in the Sobolev space W s+1,p(M), where p = 2m

m+2 and m = dimM .

In particular, if s > r + m
2 , then uq → 1 in Cr(M). This applies to the

sequence of bifurcating metrics in Theorem 3.4, since we are assuming
that the path h′t ∈ H(Σ) is continuous with respect to the Cr-topology
for all r.

4. Proof of Main Theorem

The proof of the Main Theorem in the Introduction is a direct appli-
cation of Theorem 3.4 to the case (N, gN ) = (Sm−2, ground), m ≥ 5. In
order to verify that (3.6) holds, notice that n = dimN = m − 2, and

scal(Sm−2) = (m− 2)(m− 3), and hence scalN−2
n+1 = m− 4. Furthermore,

λ1(N) = λ1(S
m−2) = m− 2. Thus, (3.6) is satisfied for all m ≥ 5.

Applying Theorem 3.4 with arbitrary choices of h0 ∈ H(Σ) and con-
tinuous paths h′t ∈ H(Σ) joining h′0 to h′1, one obtains the existence
of uncountably many bifurcating branches {gq}q∈N of constant scalar
curvature metrics on S

m−2 × Σ that have fixed volume and are confor-
mal to a product metric ground ⊕ h′tq . These branches consist of metrics
with positive constant scalar curvature, since the solution to the Yamabe
problem (with volume normalization) is unique in conformal classes with
nonpositive conformal Yamabe energy [2, p. 175]. From Remark 3.5, the
values of these scalar curvatures converge to scalm,1 = (m− 4)(m− 1).

Furthermore, each metric gq in a bifurcating branch {gq}q∈N is con-
formal, but not equal, to ground ⊕ h′tq . This follows from the fact that
any two product metrics on a product manifold are conformal if and
only if they are homothetic. In particular, two distinct product metrics
with the same volume cannot be conformal. Therefore, gq cannot be
product metrics on S

m−2 × Σ. Thus, the pull-backs of gq to S
m−2 ×H

2

are complete constant scalar curvature metrics that are conformal, but
not equal, to the product metric gprod. This proves the Main Theorem
in the Introduction. q.e.d.
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Remark 4.1. The usual notion of multiple solutions to the (singu-
lar) Yamabe problem in a conformal class [g] = {φ g : φ : M → R+} is
that there exist distinct functions φ : M → R+ such that φ g has con-
stant scalar curvature. Under this notion of multiplicity, the proof of our
Main Theorem guarantees that each bifurcating branch above contains
(countably many) pairwise distinct solutions to the Yamabe problem
on S

m−2×Σ. Since there are continuous families of paths of metrics on
S
m−2×Σ that have bifurcating branches, we obtain uncountably many

distinct solutions to the Singular Yamabe problem on S
m \ S1.

In principle, some of these solutions are conformal factors that may
give rise to isometric metrics. Recall that two distinct metrics in the
same conformal class may be isometric, via pull-back by a conformal
diffeomorphism. For instance, unlike any other Einstein manifold, the
round sphere (Sm, ground) has uncountably many metrics of constant
scalar curvature equal to scal(ground) = m(m − 1) that form a non-
compact (m + 1)-dimensional manifold. However, all such metrics are
isometric. Recall that a metric in [ground] has constant scalar curvature if
and only if it is the pull-back of ground by a conformal diffeomorphism of
(Sm, ground) [22, §2]. In particular, the moduli space of solutions is dif-
feomorphic to Conf(Sm, ground)/Iso(S

m, ground) ∼= SO(m+1, 1)0/SO(m+
1). Thus, it is natural to ask whether our result implies the existence of
infinitely many pairwise nonisometric solutions to the Singular Yamabe
problem on S

m \S1. It is not hard to show that the answer is affirmative
(within each bifurcating branch), since the conformal group of the prod-
uct (Sm−2×H2, gprod) coincides with its isometry group. Therefore, there
are uncountably many pairwise nonisometric (even nonhomothetic) pe-
riodic solutions to the Singular Yamabe problem on S

m \ S1. Finally,
notice that these solutions can be further chosen to be periodic with
respect to infinitely many different cocompact lattices Γ—for instance,
using the infinitely many possible choices of gen(Σ) = gen(H2/Γ) ≥ 2.

Remark 4.2. A somewhat weaker nonuniqueness result (independent
of bifurcation theoretic methods) follows as a by-product of the above
proof and the solution to the classical Yamabe problem. Namely, for any
m ≥ 5, we obtain uncountably many hyperbolic metrics h ∈ H(Σ) such
that the Morse index i(ground⊕h) is arbitrarily large; see Proposition 3.3.
Hence, the corresponding Yamabe metric gY(h) on S

m−2 × Σ must be
a different constant scalar curvature metric conformal to ground ⊕ h.
Arguing as above, the pull-back of gY(h) to S

m−2 × H
2 is a periodic

solution with scal > 0 that is not locally isometric to gprod. Note that
gY(h) 
= gY(h

′) if h 
= h′. Thus, there are uncountably many distinct
periodic solutions to the singular Yamabe problem on S

m \ S1.
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