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Abstract

We show that there are vast families of contact 3-manifolds each
member of which admits infinitely many Stein fillings with arbi-
trarily large Euler characteristics and arbitrarily small signature—
disproving a conjecture of Stipsicz and Ozbagci. To produce our
examples, we use a framework which generalizes the construction
of Stein structures on allowable Lefschetz fibrations over the 2-disk
to those over any orientable base surface, along with the construc-
tion of contact structures via open books on 3-manifolds to spinal
open books introduced in [24].

1. Introduction

Understanding the topology of possible Stein fillings of a fixed contact
3-manifold has been an active line of research in the past couple of
decades. By now it is known that there are contact 3-manifolds which
admit no Stein filling, as well as a unique Stein filling, or many, and
even infinitely many ones, up to diffeomorphisms. However, all examples
of Stein fillings of a fixed contact 3-manifold known up to date bore
the same curious aspect: their characteristic numbers constitute a finite
set. Andras Stipsicz conjectured that the set of signatures and Euler
characteristics of all possible Stein fillings of a closed contact 3-manifold
is finite [30, Conjecture 1.2]. The same conjecture was also formulated
by Burak Ozbagci and Andras Stipsicz for the Euler characteristics alone
[29, Conjecture 1.2]; [28, Conjecture 12.3.16], and more specifically as
the Euler characteristics being bounded above [28, Conjecture 1.3.9].
There are many examples of Stein fillable contact structures for which
the finiteness of both characteristic numbers is seen to hold true: those
on 3-manifolds which are non-flat circle bundles over orientable surfaces
[30], or those which admit compatible planar open books [22] are a
few. Our main theorem, however, disproves this conjecture, for all of its
flavors:
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Theorem 1.1. There are infinite families of contact 3-manifolds,
where each contact 3-manifold admits a Stein filling whose Euler char-
acteristic is larger and signature is smaller than any two given numbers.

Let us call a Lefschetz fibration on a 4-manifold “allowable” if its
base and regular fibers are connected, compact surfaces with non-empty
boundaries, and if each vanishing cycle is homologically non-trivial in
the fiber. Following the works of Eliashberg and Gompf on handle de-
compositions of compact Stein manifolds, Loi and Piergallini proved
that any Stein domain admits a Lefschetz fibration structure [25] (and
an alternative proof was later given by Akbulut and Ozbagci [1]). More-
over, the Stein structure on an allowable Lefschetz fibration can be cho-
sen so that the contact structure it induces on the boundary agrees with
the one that the Thurston-Winkelnkemper construction would produce
when applied to the natural open book induced by the Lefschetz fi-
bration on the boundary. We will use an extension of this result to
Lefschetz fibrations over arbitrary compact surfaces (that is, orientable
surfaces with any number of boundary components and of any genera)
filling the same contact structure on the 3-manifold boundary induced
by a generalized open book structure: roughly speaking, we will use a de-
composition of a 3-manifold as a certain “plumbing” of a surface bundle
over a disjoint union of circles and circle bundles over arbitrary surfaces,
where the surfaces in the former and latter collections have the same
topology, respectively. These generalized open books are introduced and
studied in [24] under the name spinal open books, which we will adopt
here. Note that when we have a surface bundle over a circle and a circle
bundle over a 2-disk, this is the usual notion of an open book decom-
position of a 3-manifold, and thus exists on all 3-manifolds. We prove
the following theorem using handle decompositions and convex surface
theory:

Theorem 1.2. If f : X → Σ is an allowable Lefschetz fibration with
bounded fiber (where Σ is any compact surface with non-empty bound-
ary), then X admits a Stein structure. Moreover, the Stein structures
on any two allowable Lefschetz fibrations filling the same spinal open
book can be chosen so that they induce the same contact structure on
the boundary.

This result was known to Sam Lisi and Chris Wendl, who provide their
proof, a variation of a technique of Gompf and Thurston, in the appen-
dix to this article. Combined with Loi and Piergallini’s stronger result
on the existence of allowable Lefschetz fibrations (over the 2-disk) on
compact Stein manifolds, this theorem generalizes, in the obvious way,
the characterization of Stein manifolds in terms of the Lefschetz fibra-
tions they can be equipped with. (See Corollary 3.9.)

The organization of our article is as follows:
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We discuss spinal open books and the natural contact structures we
associate to them in Section 3. These parallel the descriptions in [24]
and in the appendix. For completeness, we show, using convex surface
theory, that there is a unique choice of a compatible contact structure
on a given spinal open book (Propositions 3.2 and 3.5). Discussing the
handle decompositions and induced Stein cobordisms for building an
allowable Lefschetz fibration over an arbitrary compact surface with
non-empty boundary, we prove Theorem 1.2 in the same section using
a cut-and-paste operation we call folding (or a spinal tap in the case of
a spinal open book). Our techniques have the same flavor as those used
in [5] and mimic the construction in [4].

Section 4 is where we present our families of examples for Theo-
rem 1.1. Our main examples will be the graph manifolds Y (g, h, n),
which are plumbings of circle bundles with Euler numbers 0 and n over
surfaces of genera g and h. A surgery diagram of Y (g, h, n) is given in
Figure 8 in Section 4. We will define a distinguished contact structure
ξY (g,h,n) on each Y (g, h, n) via the framed spinal open book on it. Here,
for each triple of integers g ≥ 2, h ≥ 1, n ≤ 2h − 2, we produce infinite
families of Stein fillings of contact 3-manifolds (Y (g, h, n), ξg,h,n), by
constructing infinite families of Lefschetz fibrations, whose Euler char-
acteristics can be chosen to be arbitrarily large. We will also show that
the Stein fillings of (Y (2, h, n), ξ2,h,n) can be chosen so that they have
arbitrarily small (negative) signatures. All these examples are derived
from special families of Lefschetz fibrations on closed 4-manifolds (The-
orem 4.1), which are built using relations in the mapping class groups
of surfaces with boundaries after [6]. Lastly, we outline how to get
similar families of Stein fillings of a fixed contact structure on more
general 3-manifolds, so as to illustrate that the contact 3-manifolds
(Y (g, h, n), ξg,h,n) above demonstrate a general phenomenon and are
nowhere close to being special in this sense.

Acknowledgments. The first author was partially supported by the
NSF grant DMS-0906912. The authors would like to thank the organiz-
ers of the 2012 Georgia Topology Conference for the wonderfully stimu-
lating atmosphere they created, where this work was shaped. We thank
John Etnyre, Burak Ozbagci, and Chris Wendl for their comments on
the first version of this paper. We would also like to thank Sam Lisi and
Chris Wendl for the appendix.

2. Preliminaries

Here we review the background material we will use and generalize
in the later sections. All manifolds in this article are assumed to be
compact, smooth, and oriented, whereas the maps between them are
always smooth.
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Guide to notation. We will generally follow the following conven-
tions for notation:

• X, X4: a connected, compact 4-manifold, possibly with boundary
• Y , Y 3: closed, connected 3-manifold
• F , Σ: compact, connected surfaces, possibly with boundary
• S: a convex surface with positive and negative regions S+ and S−
and dividing set Γ

• F̂ , Σ̂: compact, (possibly) disconnected surfaces with (each com-
ponent having) boundary

• Γs
g: the mapping class group of a genus g surface with s boundary

components (fixing the boundary pointwise)
• φ: is a mapping class element of a connected surface

• φ̂: is a mapping class element of a disconnected surface

2.1. Lefschetz fibrations and mapping class groups. A Lefschetz
fibration is a surjective map f : X → Σ, where X and Σ are 4- and
2-dimensional compact manifolds, respectively, such that f fails to be
a submersion along a finite set C, and around each critical point in
C it conforms to the local model f(z1, z2) = z1z2, compatible with
orientations. If the regular fiber F has genus g and Σ has genus h, we
say that (X, f) is a genus g Lefschetz fibration over a genus h surface.
The critical points arise from attaching 2-handles to regular fibers with
framing −1 with respect to the framing induced by the fiber. We will
refer to these 2-handles as Lefschetz handles. We will assume that each
singular fiber contains only one critical point, which can be achieved
after a small perturbation of any given Lefschetz fibration. When there
are no critical points, f : X → Σ is nothing but a surface bundle
over a surface, so f always restricts to a surface bundle over Σ \ f(C)
on X \ f−1(f(C)) and, in particular, over ∂Σ on ∂X. The reader is
advised to turn to [18] for a detailed treatment of Lefschetz fibrations
via handlebody decompositions.

We will call a Lefschetz fibration allowable, if both the base and the
regular fiber have non-empty boundaries, and if no fiber contains a
closed embedded surface. In the literature, allowable Lefschetz fibra-
tions over the 2-disk are called PALFs, “positive allowable Lefschetz
fibrations,” where positivity emphasizes the orientation-preserving lo-
cal model we prescribed for the Lefschetz singularities.

Let Σs
g,r denote a compact oriented surface of genus g with s bound-

ary components and r marked points in the interior. The mapping
class group , Γs

g,r, of Σ
s
g,r is the group of isotopy classes of orientation-

preserving self-diffeomorphisms of Σs
g,r, which are compactly supported

in the interior of Σs
g,r, fixing r marked points and the points on the

boundary. For simplicity, we write Σg,r = Σ0
g,r, Σ

s
g = Σs

g,0, and Σg =

Σ0
g,0. We also use the similar simplified notation for the corresponding
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mapping class groups. It is well-known that Γr
g,m is generated by positive

(right-handed) Dehn twists along non-separating curves.
For a smooth surface bundle f : E → Σ with fibers Σs

g, the mon-
odromy representation of f is defined to be the map Ψ: π1(Σ) → Γs

g

relative to a fixed identification ϕ of F with the fiber over the base point
of Σ: For each loop γ : I → Σ the bundle fγ : γ

∗(E) → I is canonically
trivial, inducing a diffeomorphism f−1γ (0) → f−1γ (1) up to isotopy. Using

ϕ to identify f−1γ (0) and f−1γ (1) with F , we get the element Ψ(γ) ∈ Γg.
Changing the identification ϕ changes Ψ by a conjugation with an ele-
ment of Γg. We will use the functional notation for the mapping class
group: i.e., for f1, f2 ∈ Γg, the product f1f2 means that we first apply f2
and then f1—thus the map Ψ: π1(Σ) → Γg is an anti-homomorphism.

A genus g Lefschetz fibration f : X → Σ with a regular fiber F ∼=
Σg can be defined combinatorially using the monodromy representation
Ψ: π1(B \ f(C)) → Γr

g, which determines f up to isomorphism (and X

up to diffeomorphism), provided g ≥ 2. (This is due to the fact that for
g ≥ 2 the space of self-diffeomorphisms of F isotopic to the identity is
contractible.) Importantly, isotopy type of a surface bundle over S1 with
fiber F is determined by the return map of a flow transverse to the fibers,
which can be identified with an element μ ∈ Γg, called monodromy of
this fibration over S1.

It turns out that the monodromy of a Lefschetz fibration f : X → D2

over the disk with a single critical point is a right Dehn twist along the
vanishing cycle creating the singular fiber. Therefore, the monodromy
of a Lefschetz fibration f : X → Σh with n critical points is given by a
factorization of the identity element 1 ∈ Γg as

(1) 1 =

n∏
i=1

tvi

h∏
j=1

[αj , βj ] ,

where vi are the vanishing cycles of the singular fibers and tvi is the
positive Dehn twist about vi. This factorization of the identity is called
the monodromy factorization. Here the mapping classes ai and bi specify
the monodromies along a free generating system 〈α1, β1, . . . , αh, βh〉 of

π1(Σ
1
h) such that

∏h
i=1[αi, βi] is parallel to the boundary component

of Σ1
h. In particular, when there are no tvi in the factorization, this

prescribes a surface bundle. Conversely, a word

w =

n∏
i=1

tvi

h∏
j=1

[αj , βj ]

prescribes a Lefschetz fibration over Σ1
h, and if w = 1 in Γg we get a

Lefschetz fibration X → Σh.
For a Lefschetz fibration f : X → Σ, a map σ : Σ → X is called

a section if f ◦ σ = idΣ. Suppose that a fibration f : X → Σ admits
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a section σ. Set S = σ(Σ) ⊂ X. This section S provides a lift of the
representation Ψ : π1(Σ \ f(C)) → Γg to the mapping class group Γg,1.
One can then fix a disk neighborhood of this section preserved under
the monodromy, and get a lift to Γ1

g. Conversely, every such represen-
tation with a lift determines a fibration with a section: Gluing a disk
with a marked point to a surface with one boundary component along
the boundary, and extending self-diffeomorphisms of the surface by the
identity on the disk, we obtain a surjective homomorphism Γ1

g → Γg,1,
whose kernel is freely generated by the right Dehn twist tδ along a simple
closed curve δ parallel to the boundary. If the factorization

1 =
∏
i

tvi

∏
j

[αj , βj ]

lifts from Γg to a similar factorization in Γg,1, then the corresponding
fibration has a section. Moreover, if we lift this product to Γ1

g we get

tmδ =
∏
i

tv′i

∏
j

[α′j , β
′
j ]

for some m. Here, tv′i is a Dehn twist mapped to tvi under Γ1
g → Γg.

Similarly, α′j and β′j are mapped to αj and βj , respectively. An elemen-
tary observation is that the power m of tδ in the above factorization in
Γ1
g is the negative of the self-intersection number of the section S that

we obtain.
These observations generalize in a straightforward fashion to the case

when we have r disjoint sections S1, . . . , Sr, corresponding to r marked
points captured in the mapping class group Γs

g,r.

2.2. Open book decompositions. An open book decomposition B of
a 3-manifold Y 3 is a pair (K, f) where K is an oriented link in Y , called
the binding, and f : Y \K → S1 is a fibration such that f−1(t) is the
interior of a compact oriented surface Ft ⊂ Y and ∂Ft = K for all
t ∈ S1. The surface F = Ft, for any t, is called the page of the open
book. The monodromy of an open book is given by the return map of a
flow which is transverse to the pages and meridional near the binding.
We consider this as an element φ ∈ Γs

g, where g is the genus of the
page F , and s is the number of components of K = ∂F . Equivalently,
and more fitting with our later definitions, we can think of an open
book decomposition as a decomposition of Y = YP ∪ YΣ, where YP is
the fiber bundle f : YP → S1 (as before) with compact fibers, YΣ is a
union of solid tori S1×{D2

1, . . . ,D
2
s} (the neighborhoods of the binding

components K) and each meridional disk p×D2 intersects the boundary
of the fibers of f in a single point. (And hence that, up to isotopy, D2

is determined by the topology of YΣ.)
Suppose we have a Lefschetz fibration f : X → D2 with bounded

regular fiber F , and let p be a regular value in the interior of the baseD2.
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Composing f with the radial projection D2 \ {p} → ∂D2 we obtain an
open book decomposition on Y = ∂X with binding ∂f−1(p). Identifying
f−1(p) ∼= F , we can write

Y = (∂F ×D2) ∪ f−1(∂D2) .

Thus we view ∂F ×D2 as the tubular neighborhood of the binding K =
∂f−1(p), and the fibers over ∂D2 as its truncated pages. The monodromy
of this open book is prescribed by that of the fibration. In this case, we
say that the open book (K, f |∂X\K) is filled by, or is the boundary of,
the Lefschetz fibration (X, f). Any open book whose monodromy can be
written as a product of positive Dehn twists can be filled by a Lefschetz
fibration over the 2-disk.

We can think of the second definition of an open book in this language
as well. As a Lefschetz fibration, the boundary of X inherits a Künneth-
like decomposition consisting of vertical and horizontal boundaries (as
viewed by f). In that case the fibered region YP is the vertical boundary
of f , f−1(∂D2), and YΣ is the horizontal boundary, which is the (trivial)
bundle of boundary circles ∂Ft over D2. As a bundle, we think of this
as f |∂F . Each component of YΣ is topologically S1 ×D2 and there is a
unique isotopy class of section which trivializes the bundle.

2.3. Contact structures and compatibility. A 1-form α ∈ Ω1(Y )
on a (2n−1)-dimensional oriented manifold Y is called a contact form
if it satisfies α ∧ (dα)n−1 
= 0. A co-oriented contact structure on Y is
then a hyperplane field ξ which is globally written as the kernel of a
contact 1-form α. In dimension three, this is equivalent to asking dα to
be nondegenerate on the plane field ξ.

A contact structure ξ on a 3-manifold Y is said to be supported by an
open book B = (K, f) if ξ is isotopic to a contact structure given by a
1-form α satisfying α > 0 on positively oriented tangents to K and dα

is a positive volume form on every page. When this holds, we say that
the open book B is compatible with the contact structure ξ on Y . It is a
classical result of Thurston and Winkelnkemper [31] that any open book
admits such a contact structure (where the notion of “compatibility” is
due to Giroux).

Considering contact 3-manifolds as boundaries of certain 4-manifolds
together with various compatibility conditions has been an active re-
search topic in low dimensional topology. From the contact topology
point of view, it is the study of different types of fillings of a fixed
contact manifold. In dimension four, there are essentially two consider-
ations. Let (X,ω) be a symplectic 4-manifold with cooriented nonempty
boundary Y = ∂X. If there exists a Liouville vector field ν defined on a
neighborhood of ∂X pointing out along ∂X, then we obtain a positive
contact structure ξ on ∂X, which can be written as the kernel of con-
tact 1-form α = ινω|∂X . When this holds, we say (Y, ξ) is the ω-convex
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boundary or strongly convex boundary of (X,ω). (When ν points inside,
we say (Y, ξ) is the ω-concave boundary of (X,ω).)

Now if (X,J) is almost-complex, then the complex tangencies on
Y = ∂X give a uniquely defined oriented hyperplane field. It follows
that there is a 1-form α on Y such that ξ = Kerα. We define the Levi
form on Y as dα|ξ(·, J ·). If this form is positive definite then (Y, ξ) is
said to be a strictly J-convex boundary of (X,J), and if it is J-convex
for an unspecified J (for instance when J is tamed by a given symplectic
form), we say (Y, ξ) is a strictly pseudoconvex boundary. If (X,ω, J) is
an almost-Kähler manifold, i.e., a manifold equipped with a symplectic
form ω and a compatible almost-complex structure J , then it can be
shown that strict pseudoconvexity of the boundary is equivalent to the
condition that ω|ξ > 0.

For detailed and comparative discussions of these concepts, as well as
proofs of some facts mentioned in the next subsection, the reader can
turn to [10] and [12]. For further basic notions from contact topology
of 3-manifolds such as Legendrian knots, Thurston-Bennequin framing
(which appears below), the text of Ozbagci–Stipsicz [29], or that of
Geiges [14] would be valuable sources.

2.4. Stein manifolds. A smooth function ψ : X → R on a complex
manifold X of real dimension 2n is called strictly plurisubharmonic if
ψ is strictly subharmonic on every holomorphic curve in X. We call a
complex manifold X Stein, if it admits a proper strictly plurisubhar-
monic function ψ : X → [0,∞) (after Grauert [19]). Thus a compact
manifold X with boundary which is equipped with a complex struc-
ture in its interior is called compact Stein if it admits a proper strictly
plurisubharmonic function which is constant on the boundary.

Given a function ψ : X → R on a Stein manifold, we can define a
2-form ωψ = −dJ∗dψ. It turns out that ψ is a strictly plurisubharmonic
function if and only if the symmetric form gψ(·, ·) = ωψ(·, J ·) is positive
definite. So every Stein manifold X admits a Kähler structure ωψ, for
any strictly plurisubharmonic function ψ : X → [0,∞). It is easy to see
that the restriction of ωψ to each level set ψ−1(t) gives a Levi form on
ψ−1(t), implying that all nonsingular level sets of ψ are strictly pseudo-
convex hypersurfaces. Thus one can equivalently call a Stein manifold a
strictly pseudoconvex manifold. Moreover, it was observed in [10] that
the gradient vector field of ψ defines a (global) Liouville vector field
ν = ∇ψ, making all nonsingular level sets ωψ-convex. Hence, Stein man-
ifolds exhibit strongest filling properties for a contact manifold which
can be realized as their boundary. Given contact 3-manifold (Y, ξ), we
will call Stein surface (X,J) a Stein filling of (Y, ξ) if ∂X = Y and J |Y
induces the contact structure ξ.
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In this article, we are mainly interested in compact Stein surfaces
with convex boundaries, up to diffeomorphisms. A topologist’s charac-
terization of these manifolds in terms of Weinstein structures ([34], [7])
follows from the work of Eliashberg and Gompf:

Theorem 2.1 (Eliashberg [8], Gompf [17]). A smooth oriented com-
pact 4-manifold with boundary is a Stein surface, up to orientation pre-
serving diffeomorphisms, if and only if it has a handle decomposition
X0 ∪ h1 ∪ . . . ∪ hm, where X0 consists of 0- and 1-handles and each hi,
1 ≤ i ≤ m, is a 2-handle attached to

Xi = X0 ∪ h1 ∪ . . . ∪ hi

along a Legendrian circle Li with framing tb(Li)− 1.

Theorem 2.2 (Loi–Piergallini [25]; also see Akbulut–Ozbagci [1]).
An oriented compact 4-manifold with boundary is a Stein surface, up
to orientation preserving diffeomorphisms, if and only if it admits an
allowable Lefschetz fibration over the 2-disk, a.k.a “PALF.” Moreover,
any two allowable Lefschetz fibrations over the 2-disk filling the same
open book carry Stein structures which fill the same contact structure
(induced by the open book).

2.5. Convex surfaces. In this article, we will make extensive use of
convex surface theory, which we review briefly here. For details and
proofs, see [21]. A surface S in a contact 3-manifold Y is convex with
Legendrian boundary if any boundary component of S is tangent to the
contact planes and there is a vector field X defined in a neighborhood
of S that is positively transverse to S and which preserves the contact
planes. In that case, we assume that X is transverse to ξ and let S+

denote the set of points for which X is positively transverse to ξ, S−
the set of points where X is negatively transverse to ξ, and Γ the set
where X is tangent to ξ. Γ is then a collection of properly embedded,
simple closed curves which separate S+ and S− called the dividing set.

Theorem 2.3 (Giroux [15], Honda [21]). For a convex surface S with
Legendrian boundary, the subsets S+ and S− are embedded submanifolds
whose boundary constitutes a collection of properly embedded circles Γ.
Further, the isotopy class of ξ in a neighborhood of S is determined by Γ.

The standard convex S2 has a single circle as its dividing set. The stan-
dard 3-ball is the contact manifold which is tight on B3 and with bound-
ary the standard convex S2. A bypass is a convex bigon with Legendrian
boundary and whose dividing set consists of a single arc with both
boundary points on the same boundary arc.

A contact 3-manifold Y admits a decomposing disk if there is a proper,
non-boundary parallel convex disk D with Legendrian boundary whose
dividing set consists of a single arc. We say Y is disk decomposable
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if there is a collection of disjoint decomposing disks so that cutting
and rounding gives a collection of standard contact 3-balls. A product
contact manifold is a contact manifold, diffeomorphic to S× I for some
compact, convex surface S with Legendrian boundary. The notions of a
disk decomposable and product contact manifold are equivalent up to
smoothing the boundary.

An S1-invariant contact structure is a contact structure on a surface
bundle over S1 with convex torus (or empty) boundary, whose fibers
are all convex surfaces. Equivalently, an S1-invariant contact structure
is made by taking a product contact manifold and gluing the top to the
bottom by a diffeomorphism preserving the dividing set.

3. Contact structures on spinal open books and Stein

structures on allowable Lefschetz fibrations over

arbitrary surfaces

3.1. Spinal open books. The notion of a spinal open book was intro-
duced by Lisi, Wendl, and the second author in [24] and used to classify
fillings of certain contact manifolds. It is (roughly speaking) the right
kind of structure to study contact structures arising as the boundaries of
Lefschetz fibrations over non-disk bases. For completeness, we give a set
of proofs and constructions here based on convex surface theory. In the
appendix, Lisi and Wendl give what should be considered the standard
characterization of compatibility, existence, and uniqueness of contact
structures in terms of Reeb fields and Giroux forms. The following defi-
nitions are equivalent but have been altered to accommodate the spinal
tap construction of Section 3.3. A spinal open book decomposition B of
a 3-manifold Y is a decomposition of Y into regions YP ∪T YΣ, where

• YP is a compact, embedded, codimension-0 submanifold with torus
boundary components, equipped with the structure of a fiber bun-

dle F̂ ↪→ YP
πP−−→ S1 for some possibly disconnected surface F̂ with

boundary.
• YΣ is a compact, embedded, codimension-0 submanifold with torus
boundary (the same boundary as ∂YP ), equipped with the struc-

ture of a circle bundle S1 ↪→ YΣ
πΣ−−→ Σ̂, over a (possibly discon-

nected) surface with non-empty boundary.

• The (oriented) boundary components of a fiber F̂t in YP are S1

fibers of πΣ (equipped with the same orientation).

We call the fibered region YP the paper, and the fibers F̂t the pages

(though we may also use page to refer to a component of F̂t). The
product region YΣ we call the spine. For any section of πΣ, we call a
connected component, Σ, a vertebra (plural vertebrae), though we will
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also use this terminology for the connected component of Σ̂ that it lies
over. The tori boundaries T between the two we call interface tori.

Note: the specific vertebrae can change depending on which section is
chosen. However, we will always have a fixed section in mind (or possibly
be altering one section to get another).

For the purposes of this paper, all spinal open books will be symmet-
ric, uniform, and simple (in the terminology of [24]). By this we mean

every component of F̂ is homeomorphic, every component of Σ̂ is home-
omorphic, and every component of YΣ is adjacent to every component
of YP along a single interface torus.

An abstract spinal open book is a 4-tuple (F̂ , φ̂, Σ̂, G) where:

• F̂ is a possibly disconnected surface with non-empty boundary,

where we write the connected components as F̂ = F1 ∪ · · · ∪ Fn

• φ̂ is an orientation preserving self-diffeomorphism of F̂ fixing the
boundary pointwise

• Σ̂ is a disjoint union of connected surfaces with non-empty bound-

aries: Σ̂ = Σ1 ∪ · · · ∪ Σm

• G is a bijection G : |∂F̂ | → |∂Σ̂| between the boundary compo-

nents of F̂ and Σ̂

To construct an isomorphism class of 3-manifolds with embedded spinal
open books from this, we form the surface bundle YP over S1 with fiber

F̂ and monodromy φ̂. The spine YΣ is the trivial bundle S1 × Σ̂. We
glue the resulting boundaries together using G to identify components
and following the Thurston-Winkelnkemper/Giroux conventions:

• each component of the oriented boundary of a fiber F̂ is an S1

fiber in the component of S1 × ∂Σ̂ determined by G and

• each component of the boundary of {pt.}× Σ̂ is an orbit of a point

in ∂F̂ in YP .

3.2. Framed spinal open books. For our purposes an equivalent def-
inition of compatibility between spinal open books and contact struc-
tures will be useful, for which we first introduce the following: A framed
spinal open book decomposition is a spinal open book decomposition
along with a section of the spine, up to isotopy. Equivalently (at least
up to isotopy), it is a spinal open book decomposition along with an

identification of YΣ with Σ̂× S1. (Note that the monodromy condition
on an abstract open book means we are automatically constructing a
framed spinal open book decomposition when we form the closed man-
ifold.)

A framed spinal open book decomposition supports (or is compatible
with) a contact structure ξ if the following conditions are satisfied:

• The interface tori are convex with dividing set two parallel curves
of negative slope (i.e., in the (∂Σ, ∂F )-basis, the dividing set is of
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F

Σ

Figure 1. Orientations of the fiber and vertebra at an
interface torus T .

the form ±(−p, q) for p, q > 0). We can thicken the interface tori
to a convex, i-invariant T 2× I region so that each boundary torus
has a Legendrian ruling whose slope is given by the slope of the
pages or of the vertebrae.

• On each component of the paper YP , we can isotope a page F to
be convex with Legendrian boundary on T and with a dividing set
consisting of boundary parallel arcs so that the negative regions
F− are boundary parallel bigons, and so that after cutting along
F , YP \ F is a product contact manifold. (Equivalently, we could
ask that the complement of F in YP be disk decomposable after
rounding.)

• On each component of the spine YΣ, we can make a vertebra Σ
convex with Legendrian boundary on T and with dividing set
consisting of boundary parallel bigons, so that after cutting along
Σ, YΣ \ Σ is a product contact manifold. (Equivalently, we could
ask that the complement of Σ in YΣ be disk decomposable after
rounding.)

Intuitively, one should think of the contact structure associated to a
framed spinal open book as being a deformation of the tangent planes
to the fibers and vertebrae, and rotating a quarter-turn between them in
a small neighborhood of the interface torus, just as the contact structure
we associate to a standard open book is a deformation of the tangent
planes to the fibers and to a small disk neighborhood of the binding,
with a quarter-turn rotation in between.

Remark 3.1. The requirement that the slope of the interface torus be
negative is necessary for a good definition of compatibility. While there
are indeed tight contact structures with a positively sloped dividing set
along the interface torus, this does not fit into our definition. Because of
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our choice of orientation and prescribed positive and negative regions,
any compatible contact structure constructed as above with a positively
sloped dividing set on T is overtwisted with an overtwisted disk located
in a small neighborhood of the interface torus (see Figure 2). This would
also be true for a standard open book (whose spinal components are all
S1 ×D2) if the slope is not of the form (1, q).

Proposition 3.2. Every framed spinal open book decomposition ad-
mits a unique isotopy class of compatible contact structures.

Proof. From the description of compatibility via convex surfaces, given
the dividing set on the interface tori T , such a contact structure both
exists and is unique up to isotopy. To see this, we can make the given
interface tori convex. After thickening, we can make the fiber and the
vertebra simultaneously convex with Legendrian boundary and with the
specified dividing set. A neighborhood of this union has a unique contact
structure and its complement is disk decomposable.

To show that the definition is well-defined, though, we need to see
that it is independent of the slope of the dividing set on the interface
torus. This is guaranteed by the orientations chosen and described in
Figure 1. In particular, we could have chosen the slope to be −1. Here
are the details:

By switching to a framed spinal open book, we can make both YΣ

and YP contact bundles with convex fibers. Let Σ̂ be the fiber of YΣ and
let Σ be a connected component of Σ̂. Similarly, F̂ is the fiber of YP and

F is a connected component of F̂ . Since the interface torus has dividing
sets of slope (−p, q), the fiber Σ has q components in the dividing set
parallel to T , and F has p components. We want to show that we can
decrease each of q and p to 1 while still keeping YΣ and YP contact
bundles whose convex fibers have boundary parallel dividing sets. To
do this, observe that each dividing curve on F determines a bypass for
YΣ and each dividing curve for Σ determines a bypass for YP . Forgetting
the contact structure on the complement of T , if we attach p−1 bypasses
from F and q − 1 bypasses from Σ, the resulting torus has slope −1. It
suffices to show, then, that after sliding along one of these bypasses, the
resulting spinal open book remains compatible. Thus the next lemma
completes the proof. q.e.d.

Lemma 3.3. If we slide T over a bypass from F , the resulting spinal
open book remains compatible with the contact structure, and similarly
for a bypass from Σ.

Proof. We know the contact structure on YP is tight and the comple-
ment of F is disk decomposable. Let Y ′P be the result of cutting out the
bypass layer from YP and let F ′ be the subsurface of Y ′P consisting of
F with the bypass removed. Then the contact structure on YP ′ is tight
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Σ

Figure 2. Attaching a bypass from the pages to the
spine (or vice versa).

and the complement of F ′ is disk decomposable. Thus ξ is compatible
along YP ′ .

Now suppose we attach this bypass to YΣ. Coming from F , this by-
pass is being attached along a vertical Legendrian arc straddling three
adjacent arcs of the dividing set. The bypass arc can be slid down the
T so it is parallel with the given section Σ of the spine. Because the
dividing set on T was chosen with the appropriate slope, attaching this
bypass merges two adjacent disks in Σ− (as opposed to capping a neg-
ative bypass to form an overtwisted disk). The dividing sets of Σ and
this added bypass are shown in Figure 2. As before, after cutting along
Σ, now extended by the bypass, the result is disk decomposable. q.e.d.

The next lemma shows how the framings on a given spinal open book
relate to each other, indicating how we get an equivalent definition of
a compatible contact structure on an unframed spinal open book, up to
isotopy.

Lemma 3.4. Let B and B′ be two different framed spinal open book
decompositions which represent the same spinal open book. (In partic-
ular, B and B′ correspond to two different choices of sections of YΣ.)
Then the two contact structures ξ and ξ′ supported by B and B′ are
isotopic.

Proof. The general idea is this: on an S1-invariant contact structure,
any section is convex with dividing curves coming from the projection
to the base. It is slightly trickier (though not much) to deal with con-
tact structures with convex boundary which are S1-invariant except for
possible holonomy along the boundary. We analyze this directly and
produce an appropriate convex surface.

Start with the product YΣ = S1×Σ with the vertebra {pt}×Σ convex.

Changing a section of YΣ is equivalent to choosing a function from Σ̂

to S1 and looking at its graph in S1 × Σ̂. Such a map is determined

by its degree on an embedded basis of π1(Σ̂). Changing the degree by
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pr(Σ)

a

Figure 3. Spinning a vertebra Σ along an arc: the fig-
ure shows a neighborhood of an arc in a vertebra of the
spine, along with its image after spinning. We want to
form a smooth, convex surface from Σ and S1×a. To do
this, start by cutting the surface Σ along a and dragging
one side of it around the S1 direction. (In the figure, we
drag the lower edge of Σ \ a.) This slides each bound-
ary point of a to the right across some number bigons
determined by the slope of the dividing set. The figure
shows the projection onto Σ of its image after being slid
along a, where the light gray regions have multiplicity 1,
the dark gray has multiplicity 2, and the white region is
missed entirely. To form a closed surface, then, we need
to remove one sheet above the dark gray region and add
in a copy of the white region. This has the effect of mov-
ing some number of boundary parallel bypasses from one
boundary component of Σ to another.

1 on a single generator is equivalent to taking a properly embedded

dual arc a in a component Σ̂ and “spinning” the section Σ around the
S1 direction above a. (Equivalently, if we look at the product annulus
S1 × a sitting over this arc, we can form the resolution with the section
to get the spun surface.) To prove the lemma, we need to show that,
by adding an annulus to Σ in B, we get a new framed spinal open book
compatible with the same (isotopy class of) contact structure. Since
we know that the contact structure on YΣ is tight, it’s enough to find a
convex representative of the new section with boundary parallel dividing
curves.

As in the proof of Proposition 3.2 (Lemma 3.3), we can choose any
slope for the dividing set on the interface tori which is negative (in the
(∂Σ, ∂F ) basis). For ease, we assume that we have arranged the contact



438 R. İ. BAYKUR, J. VAN HORN-MORRIS, S. LISI & C. WENDL

structure so that the interface tori at the boundaries of YΣ touching
∂a have dividing sets of slope ±(−1, 2). Choose a representative of a
on Σ which is disjoint from the dividing set. If we slide a in the S1

direction so that its feet follow the dividing curves, it will return to Σ
having moved to the right by jumping over one disk component of Σ−
on each boundary. We can spin Σ in the vertical S1 direction in a small
neighborhood of a, keeping it convex. We start with the partial annulus
given by flowing a along the contact vector field. Once we return to the
vertebra Σ, in order to glue to get a closed surface, we need to remove a
small triangle of Σ on one boundary, and wrap by an additional triangle
on the other as shown in Figure 3. (This has the effect of removing one
bigon component of Σ− on one boundary and adding a bigon component
on the other boundary.) This gives a new section with boundary parallel
dividing curves, as required. q.e.d.

Combining Lemma 3.4 and Proposition 3.2 gives a new proof of the
following result from [24]:

Proposition 3.5. Every spinal open book decomposition is compati-
ble with a unique isotopy class of contact structure.

3.3. Spinal tap on a spinal open book. We will now define an
operation on embedded spinal open books, which comes with a natural
Stein cobordism, as we will discuss shortly. This operation (in both
directions) has been studied already by Baldwin [5]. Avdek [4] gives the
inverse operation. For ease, we restrict to symmetric, uniform, simple
open books, though the operation works in much more generality.

As a motivation, we outline the plan to prove Theorem 1.2. Suppose
we start with a Lefschetz fibration F ↪→ X → Σ, where the base surface
Σ has nonempty boundary. To construct a Stein structure on (X, f),
we start with a Lefschetz fibration over the disk and extend it as a
bundle over the 1-handles of Σ. To produce a Stein structure, we invoke
[16, 25, 1] to get a Stein structure on the Lefschetz fibration over the
disk. The only thing to prove, then, is that we can extend the Stein
structure over the 1-handles of Σ. We do this a handle at a time, showing
that at every stage we get a spinal open book at the boundary of the
Lefschetz fibration which is compatible with the contact structure at
the boundary of the Stein structure.

The act of cutting the Lefschetz fibration open along a single arc in
Σ (that is, removing a 1-handle and the bundle above it) has a corre-
sponding operation on the spinal open book at the boundary of (X, f)
which we call a spinal tap. The spinal tap has an analogue in the set-
ting of contact manifolds and convex surfaces. We’ll call a closed convex
(or sutured) surface foldable if it admits an orientation reversing self-
diffeomorphism, fixing the dividing set (or sutures) and sending R+
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to R− (and vice versa). Equivalently, a foldable convex surface is one
that arises as the boundary of an I-invariant neighborhood of a convex
surface with boundary parallel dividing set (or as the boundary of a
product contact or sutured manifold).

Given a contact 3-manifold Y with convex boundary and a foldable
boundary component S = R+ ∪ R−, we call the operation of gluing in
R+ × I by its boundary to S, respecting their dividing sets (and using
any identification of R+ andR−), folding Y along S. For a non-boundary
surface S, we first cut open Y along S and then fold Y \S along each of
the new boundary components, adding two copies of R+ × I.

A spinal tap is a folding along a convex surface which sits nicely with
respect to a spinal open book, and which uses the same (or, rather,
inverse) identifications to glue in the two copies of R+ × I.

The following describes this motivating cut-and-paste operation in
the topological category.

For an embedded spinal open book B = YP ∪ YΣ, let S be a surface
consisting of two connected components F1 and F2 of a single fiber in
YP along with some annuli made up of some S1 fibers in YΣ connecting
them. There is one such annulus in each component of YΣ. Since the
orientations of F1 and F2 don’t agree along the annuli, we orient S as
F1 ∪−F2. Call such a surface a spinal tap surface. A spinal tap along S

is the following operation:

• Cut B along S. The resulting manifold has two boundary compo-
nents S+ = F1+ ∪ −F2+ and S− = F1+ ∪−F2+.

• Fold S+ by gluing F1+ to F2+ by a diffeomorphism h : F1 → F2.
• Fold S− by gluing F2− to F1− by the inverse diffeomorphism h−1 :
F2 → F1.

The resulting open book B′ = Y ′P ∪ Y ′Σ has the following:

• The new spine Y ′Σ: Y
′
Σ is obtained from YΣ by cutting along the

connecting annuli of S.
• Y ′P is the bundle made by removing the two products F1 × [0, 1]
and F2 × [0, 1] from YP and identifying F1 × {0} and F2 × {1} by
h and F2 × {0} and F1 × {1} by h−1.

It might be helpful to see the effect of a spinal tap on an abstract
open book.

Let B = (F̂ , φ̂, Σ̂, G) be an abstract spinal open book. One can choose
a foldable surface (up to isotopy) by choosing a collection of arcs {ai},
one in each Σi, which are all required to connect to the same two bound-
ary components adjacent to the paper over Fj and Fk. If the arc has
both endpoints on the same boundary component, then Fj must be
equal to Fk. Given a diffeomorphism h : Fj → Fk, we can form a new

spinal open book B′ = (F̂ ′, φ̂′, Σ̂′, G′) as follows: There are two cases. If
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j 
= k, then the spinal tap merges Fj and Fk and, using h, composes
their monodromies:

• Σ̂′ = Σ̂ \ {ai}, i = 1, . . . , n

• F̂ ′ = F̂ − Fk

• φ̂′ =

{
if i 
= j or k, φ̂′|Fi

= φ̂|Fi

if i = j, φ̂′|Fj
= h−1φ̂|Fk

h φ̂|Fj

If j = k, then the spinal tap splits the component of YP with fiber Fj

into two bundles by adding a new component Fn+1 to F̂ , and decom-
posing the monodromy:

• Σ̂′ = Σ̂ \ {ai}, i = 1, . . . , n

• F̂ ′ = F̂ ∪ Fn+1

• φ̂′ =

⎧⎪⎨⎪⎩
if i 
= j or n+ 1, φ̂′|Fi

= φ̂′|Fi

if i = j, φ̂′|Fj
= h−1φ̂|Fj

if i = n+ 1, φ̂′|Fn+1
= h

Proposition 3.6. Suppose (Y,B, ξ) is a contact spinal open book
and suppose that (Y ′,B′, ξ′) is obtained from B by a spinal tap. Then
there is a Stein cobordism from (Y ′, ξ′) to (Y, ξ). Moreover, if B′ is the
boundary of a Lefschetz fibration (X ′, f ′), then this Lefschetz fibration
can be extended, along this Stein cobordism, to a Lefschetz fibration
(X, f) with boundary B.

The proof of this proposition is broken down into two parts. First
we construct the desired Stein cobordism, verifying that the two con-
tact structures at either end of the cobordism are compatible with the
specified spinal open book. Then we show that this cobordism behaves
nicely with respect to a Lefschetz fibration with boundary B′.

The following proposition shows that there are nice surfaces in spinal
open books (which generalize the idea of a union of a pair of fibers in an
open book as in [33], for example), for which the spinal tap operation
on spinal open books described above is equivalent to the convex cut-
and-paste operation of cutting and folding along a convex surface.

Proposition 3.7. Let S = F1∪F2 be a spinal tap surface in a spinal
open book B and let B′ be the result of a spinal tap along S. Denote by
ξ the contact structure supported by B, and denote by ξ′ the structure
supported by B′. Then we can make S into a foldable convex surface in
ξ so that ξ′ is the result of cutting and folding ξ along S.

Proof. Our goal is to construct a suitable, foldable, convex surface
isotopic to the spinal tap surface S = F1 ∪ F2, where the positive and
negative regions will be F+ and F−, respectively. Let Σ be a vertebra
in a component of the spine and let a be the isotopy class of the arc in
Σ used to construct S. Denote by F1 and F2 the two fibers of YP with
boundary isotopic to the circle in YΣ above ∂a. We want to construct a
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nice convex representative of the annulus A over a so that the boundary
circles are Legendrian isotopic in a product neighborhood of T to the
boundaries of F1 and F2. We can Legendrian realize a on Σ so that
it misses the dividing set. After sliding around the S1 direction, the
holonomy of the dividing set on the boundary will force the endpoints
of a to jump some number of boundary parallel bigons of Σ− to the
right on each boundary (see Figure 3). To form a closed annulus, A,
we first move to the right along one boundary component, then move
to the right on the other. We can think of this strip as curved back
over itself (as seen from above in the S1-direction), with a fold that
runs from one boundary arc to the other. Everywhere except that fold
remains transverse to the contact vector field, giving a convex annulus
with dividing set shown in Figure 4.

Figure 4. The dividing set on the convex annulus A.

The new spine Y ′Σ will be formed by cutting YΣ along A. In particular,
we want to add a neighborhood of A to YP and round the resulting
boundary to get our new interface tori T ′, with Y ′Σ being the portion of
YΣ on the inside of T ′ and taking Σ\a, rounded, to be our new section
Σ′. A schematic is shown in Figure 5. Since Y ′Σ is tight (as a subset
of YΣ), cutting Y ′Σ along Σ′ and rounding gives a disk decomposable
handlebody, and so ξ0 and Y ′Σ remain compatible.

Now let’s look at the complement of Y ′Σ, which is YP ∪ ν(A) with the
boundary rounded. To construct ξ′, we will cut along S and fold the two
boundaries back upon themselves. However, it will be easier to actually
“crease” the boundary of Y \S (that is, to undo the edge-rounding) so
that it has a convex boundary with corners, and to glue in the product
contact manifold F1 × [0, 1], where F1 is convex with boundary parallel
dividing curves, keeping A and its standard neighborhood isolated. A
schematic of the cut, crease, and gluing is shown in Figure 6.
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YP YP
YΣ

T T

T ′

T ′

F1 F2

a

Σ

Figure 5. A look at the spine and paper projected to
an I × I subsurface of Σ in a neighborhood of the spinal
tap surface. The spinal tap surface is F1 ∪S1 × a∪−F2.
A vertebra Σ lies in the plane of the diagram. Both the
old (T ) and new (T ′) interface tori are shown.

YP YP
YΣ

T ′

T ′
F1 F2

S

YP YPYΣ

T ′

T ′

F1 F2
S+

S−

YP

YP

YΣ

T ′
F1

F2

S+

F × [0, 1]

Figure 6. Preparing to fold YP − S: first we cut along
S, then wrap the complement around itself. This mani-
fold has a smooth convex boundary, so we “crease” the
boundary near the edges of R+, undoing edge-rounding,
so that we may glue in the product contact manifold with
corners, F × [0, 1], where F is convex with dividing set
consisting of boundary parallel bigons.

We can then glue in F1 × [0, 1] as prescribed by the spinal tap. More-
over, since we folded S so as to preserve the dividing set on A, after
gluing in F1 × [0, 1] the contact structure is isotopic to an S1-invariant
contact structure—i.e., the “bump” we added rounding near A simply
extends the contact structure by a standard product neighborhood. This
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constructs the contact structure on Y ′P , and since it is S1-invariant, it
remains compatible with Y ′P . q.e.d.

We can now give the proof of Proposition 3.6.

Proof of Proposition 3.6. To prove Proposition 3.6, we equate convex
folding with a sequence of contact (+1)-surgeries and 1-handle removal.
We will prove the following: Let S be a spinal tap surface in a contact
3-manifold (Y,B, ξ) and let (Y ′,B′, ξ′) be the result of folding along
S. There is a Stein cobordism from (Y ′, ξ′) to (Y, ξ). Moreover, if B′

is the boundary of a Lefschetz fibration (X ′, f ′), this fibration can be
extended along the Stein cobordism to a Lefschetz fibration (X, f) with
boundary B.

Let S be a convex surface in (Y, ξ) and suppose S+ and S− are homeo-
morphic surfaces. Folding Y along S gives a new contact manifold—first
we cut Y along S and then we glue in two copies of S+×[0, 1], one to each
boundary component S1 and S2 of Y \S. As in the definition of the spinal
tap, we choose an orientation-reversing diffeomorphism h : S+ → S−,
which preserves the identification of ∂S+ with ∂S− given by S, and glue
by the following identifications:

S+ × {0}
id
−→ S+

S+ × {1}
h
−→ S−

on S × {1} and

−S+ × {0}
h̄
−→ −S−

−S+ × {1}
id
−→ −S+

on S × {0}.
Since S+ × [0, 1] is disk decomposable, we can take a collection of

decomposing arcs for S+ and extend them to a collection of decomposing
disks for S+ × [0, 1]. Gluing in S+× [0, 1], then, is the same as gluing in
these decomposing disks and then filling in the remaining S2 boundaries
(or boundary, if the collection is minimal) with standard contact 3-balls.

We want to compare this with the following surgery construction. Let
{ai} be an arc decomposition of S+ and extend each arc into S− on S by
h(ai). This will give a Legendrian link L on S, each component of which
has Thurston-Bennequin number one less than the framing induced by
S, i.e., tb = pf − 1. Contact (+1)-surgery is then topological 0-surgery.

Let li be a component of L. A standard neighborhood of li, ν(li),
framed by S is li × [0, 1] × [0, 1], where the first I factor is the neigh-
borhood in S and the second gives the vertical direction. The boundary
of this neighborhood consists of four annuli: two horizontal and two
vertical. Cutting along S is the same as cutting out all of these neigh-
borhoods, plus removing a neighborhood of the resulting complemen-
tary punctured disk S\L. Topological 0-surgery along L glues in a solid
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torus so that meridional disks get attached to the longitudinal fibers of
∂ν(li). These are the same longitudes as the fibers in the four annuli
which make up ∂ν(li). Attaching disks along the horizontal annuli folds
the skeleta of S1 and S2 together. Attaching disks along the horizontal
annuli caps off the punctures of the complementary disk S−L, yielding
an S2× I region. If we further cut along this S2 and glue in two 3-balls,
this gives the result of folding along S.

On the contact side, then, we can think of (+1)-surgery on L as fol-
lows. First we cut along S. Then we attach a pair of thickened standard
decomposing disks D2 × [0, 1] along each component li of L, one sit-
ting on each boundary S1 and S2. The new boundary is then a pair of
standard convex 2-spheres, which get glued together (cf. Baldwin [5]).

To finish the construction and end with the folded manifold Y ′, we
need to cut along this convex S2 and fill in with two standard contact
3-balls—i.e., we need to surger out a standard contact S2 × I.

Thus Y ′ is built from Y by a sequence of contact (+1)-surgeries and
a 4-dimensional 1-handle removal. The reverse cobordism from Y ′ to Y

consists of a single Weinstein 1-handle, and b1(S+) Weinstein 2-handles,
which gives a Stein cobordism from Y ′ to Y .

We can understand the upside-down cobordism as well. After folding,
Y ′ has two surfaces S̃1 and S̃2 which are naturally convex and have
transverse boundary and trivial dividing set. In particular, they are
(subsets of) pages of the spinal open book B′. Unfolding consists of
removing neighborhoods of these two surfaces and gluing together the
resulting convex boundaries by attaching a DS × I, where DS is the
(convex) double of S̃i. This product has a nice handle decomposition,
and adding the 1-handle is easy. The 2-handles are attached along the
dual link to L in Y ′#S1×S2. Each component of the dual link consists
of four arcs, a1, a2, a3, a4, each dual to the D2 × I subset of the surgery
solid torus as described above. The arc a1 lies on S̃1, a3 lies on S̃2, and
the arcs a2 and a4 run between them across the 1-handle (cf. Avdek
[4]).

If B′ is already the boundary of a Lefschetz fibration L′, then the

surfaces S̃1 and S̃2 are each fibers of L′ = F ↪→ X ′ π
−→ Σ′ and this handle

decomposition is precisely the handle decomposition used to extend L′

as an F -bundle over an additional 1-handle attached to Σ′. Moreover,
the gluing map used to extend L′ identifies the arcs a1 on S̃1 with a3
on S̃2. q.e.d.

3.4. Stein structures on Lefschetz fibrations over arbitrary sur-

faces. With the machinery we have developed in the previous subsec-
tions in hand, we can now prove:

Theorem 3.8. Suppose (Y,B) is the boundary of an allowable Lef-
schetz fibration (X, f), and let ξ be the contact structure supported by
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B. Then X admits a Stein structure J whose convex, contact boundary
is ξ, i.e., (X,J) is a Stein filling of (Y, ξ).

Proof. Let F ↪→ X
f
−→ Σ be a Lefschetz fibration with boundary B.

Take a properly embedded arc in Σ which is disjoint from the critical
values of f . Then S = f−1(a)

∣∣
∂X

is a spinal tap surface in B. If we cut

X along f−1(a) we get a new Lefschetz fibration F ↪→ X ′ f ′

−→ Σ′ with
boundary B′, the spinal open book formed by the spinal tap along S. By
Proposition 3.6, there is a Stein cobordism which extends f ′ on X ′ to f

on X. If we then take a set of decomposing arcs for Σ and cut along their
F ×I preimages in L, we are left with a Lefschetz fibration over the disk
whose boundary is the result of the successive spinal taps on B. Since the
resulting Lefschetz fibration over a disk admits a Stein structure filling
the boundary open book, repeatedly applying Proposition 3.6 proves
that X also admits a Stein structure filling its boundary spinal open
book B. q.e.d.

Combining the above theorem with the stronger result of Loi and
Piergallini (see Theorem 2.2), we get:

Corollary 3.9. An oriented compact 4-manifold with boundary is a
Stein surface, up to orientation-preserving diffeomorphisms, if and only
if it admits an allowable Lefschetz fibration over a compact surface with
non-empty boundary. Moreover, any two allowable Lefschetz fibrations
filling the same spinal open book carry Stein structures which fill the
same contact structure induced by the spinal open book.

In our constructions to follow we make repeated use of the following
corollary, which generalizes a result of Akbulut and Ozbagci [2]:

Corollary 3.10. Let X be a 4-manifold, closed or with boundary, and
f : X → Σ be an allowable Lefschetz fibration over any compact surface
Σ, closed or bounded, F a regular fiber and S1, . . . , Sm ⊂ Int(X)\Crit(f)
a non-empty collection of disjoint sections of this fibration. Let X0 be
the 4-manifold we obtain from X by excising fibered tubular neighbor-
hoods of F, S1, . . . , Sm. Then X0 admits a Stein structure. In particular,
this holds when f : X → Σ is a Lefschetz fibration on a closed 4-manifold
X and none of the Lefschetz vanishing cycles are separating. Moreover,
if f : X → Σ and f ′ : X ′ → Σ are any two allowable Lefschetz fibrations
over a closed surface Σ with regular fibers F ∼= F ′, and with disjoint sec-
tions S1, . . . , Sm and S′1, . . . , S

′
m of matching self-intersection numbers,

then X0 = X \ (F ∪ S1 ∪ . . . Sn) and X ′
0 = X ′ \ (F ∪ S′1 ∪ . . . S′n) admit

Stein structures inducing the same contact structure on their identified
boundaries.

Proof. When we remove a fiber and a collection of disjoint sections
from an allowable Lefschetz fibration (and in particular from a Lefschetz
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fibration with no separating vanishing cycles), we are left with another
allowable Lefschetz fibration. The boundaries of the induced Lefschetz
fibrations on X0 and X ′

0 are isomorphic spinal open books with spine

Σ̂ = (Σ−D2)1 ∪ · · · ∪ (Σ−D2)m and page F − (D2
1 ∪ · · · ∪D2

m). So the
statements follow from the previous theorems. q.e.d.

4. Contact 3-manifolds admitting arbitrarily large

Stein fillings

4.1. Main construction. We are going to produce the families of Stein
fillings promised in Theorem 1.1, by first engineering certain families of
Lefschetz fibrations with distinguished sections.

Theorem 4.1. Let g ≥ 2, h ≥ 1, and n ≤ 2h−2 be fixed integers. For
any positive m, there is a genus g Lefschetz fibration (X(m), f(m)) =
(Xg,h,n(m), fg,h,n(m)) over a genus h surface, such that

1) (X(m), f(m)) has only non-separating Lefschetz vanishing cycles,
and the number of critical points of κ(m) = κg,h,n(m) is strictly
increasing in m.

2) (X(m), f(m)) admits a section Sn = Sg,h,n(m) of self-intersection
n.

Moreover, when g = 2, for any fixed h ≥ 1, the signature of X(m) =
X2,h,n(m) is strictly decreasing in m.

For any section of a genus g Lefschetz fibration over a genus h ≥ 1
surface, its self-intersection number is determined by the number of
critical points when g = 1, and is bounded above by 2h− 2, when g ≥ 2
and h ≥ 1, as shown in [6]. So the triples (g, h, n) realized in the theorem
above are all one can possibly get.

Proof. We will construct the families of Lefschetz fibrations and sec-
tions prescribed in the statement using factorizations in the mapping
class groups of surfaces. As outlined in Section 2, we need to obtain
relations in Γ1

g of the form

t−nδ = Product of κ(m) positive Dehn twists along non-separating

curves and of h commutators

where n is the self-intersection of a section Sn and κ(m) is a multi-
variable function depending on g, h, n,m, which is strictly increasing in
m > 0.

Let g ≥ 2 and h ≥ 1 be fixed integers. All the relations below should
be understood to take place in Γ1

g. Our key input is the following family
of relations obtained in [6] (see proof of Theorem 21; relations 12–20).
See Figure 7 for the curves that appear below.

When h = 1, the following relation holds for any positive integer m:

t0δ = 1 = C(m)Tm ,(2)
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where C(m) is a single commutator that depends on m, namely

C(m) = tmc1t
−m
d1

tmc3t
−m
d2

= [ψ−1, t−mc1
tmd1 ] ,

with d1, d2 the bounding curves for the chain c1, c2, c3 in the figure, and
the right hand side a commutator since there is a self-diffeomorphism ψ

of the surface mapping (c1, d1) to (d2, c2), and

T = tc2tc1(tc1tc2tc3)
2tc1tc2

is a product of positive Dehn twists. (See relation 20 of [6]; here we
chose l = 2.) Note that c2 = b for g = 2.

In contrast, for h > 1, for any positive integer m we have

t2−2hδ = Ch−1 · · ·C1 C(m)Tm
1 Tm

2 ,(3)

where C1, . . . , Ch−1 are fixed commutators, and C(m) is a single com-
mutator that depends on m, defined as follows:

Ch−1 = th−1a3
t1−hx4

th−1a4
t1−hx3

and Ci = tix3
Ct−ix3

, 1 ≤ i ≤ h− 2 for

C = ta1t
−1
x2

ta2t
−1
x1

.

Here T1 and T2 are products of positive Dehn twists, where

T1 = trta1tbtr(ta1trtb)
2 ,

and

T2 = (tc1tc2 · · · tc2g−3
tc2g−2

tb)
2g(tc1tc2 · · · tc2g−3

)−2g−2 ,

and thus

T2 = (tc1tc2 · · · tc2g−3
)2g−2P (tc1tc2 · · · tc2g−3

)−2g−2 ,

where P is a product of 8g − 6 positive Dehn twists along nonsepa-
rating curves one obtains from the previous product after applying the
braid relation repeatedly. (These relations are found in the paragraph
following Equation 17 in [6].)

On the other hand, we have the (one boundary) chain relation

tδ = (tc1tc2 · · · tc2g−3
tc2g−2

tbtr)
4g+2 .

Let R denote the product of positive Dehn twists appearing on the right
hand side of this relation, so it contains 8g2 + 4g Dehn twists. We can
multiply the two sides of equations (2) and (3) by tkδ and Rk to get

tkδ = C(m)TmRk ,when h = 1, and(4)

t2−2h+k
δ = C1 · · ·Ch−1C(m)Tm

1 Tm
2 Rk ,when h > 1.(5)

So both relations prescribe genus g Lefschetz fibrations over genus h

surfaces with sections of self-intersection n = 2h− 2− k and with only
non-separating vanishing cycles.
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Figure 7. The curves of the mapping class group rela-
tions. When g = 2, we have b = c2g−1 and r = c2g.

The number of Lefschetz critical points κ(m) = κg,h,n(m) can be
calculated as

κ(m) =

{
10m+ (8g2 + 4g)k = 10m − (8g2 + 4g)n for h = 1
(8g + 4)m+ (8g2 + 4g)k = (8g + 4)m+ (8g2 + 4g)(2h− 2− n) for h > 1

which is strictly increasing in m for any g, h, n. Thus, the same holds
for

e(X(m)) = 4(g − 1)(h − 1) + κ(m) .

The signatures of the 4-manifolds X(m) = Xg,h,n(m) can be calcu-
lated from the explicit monodromy factorizations (4) and (5) above,
by looking at their images under the boundary capping homomorphism
Γ1
g → Γg. We will carry out this calculation in a simpler case, when the

fibration is hyperelliptic, in which case the following signature formula
of Endo’s [11] comes in handy:

σ(X) = −
g + 1

2g + 1
N +

[ g
2
]∑

j=1

(
4j(g − j)

2g + 1
− 1)sj .
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Here X is the total space of the hyperelliptic fibration, and N and

s =
∑[ g

2
]

j=1 sj are the numbers of nonseparating and separating vanish-
ing cycles, respectively, whereas sj denotes the number of separating
vanishing cycles which separate the surface into two subsurfaces of gen-
era j and g − j.

When g = 2, the mapping class group Γ2 is hyperelliptic, and thus
the genus two fibrations are guaranteed to be hyperelliptic. (Indeed,
the reader can check that, in this case, all the curves on the closed
surface isotope to curves which are symmetric under the hyperelliptic
involution, whereas for g > 2 they do not.) So we calculate the signature
of X(m) = X2,h,n(m) as{

−

3

5
(10m − 40n) + 0 = −6m+ 24n for h = 1

−

3

5
(20m + 40(2h− 2− n)) + 0 = −12m− 24(2h− 2− n) for h > 1

which for any h ≥ 1 is seen to be strictly decreasing in m. q.e.d.

Now let Yg,h,n be the graph 3-manifold described in Figure 8. The
next theorem provides the promised families of contact 3-manifolds and
their Stein fillings.

Theorem 4.2. Let g ≥ 2, h ≥ 1, and n ≤ 2h − 2 be fixed integers.
Then Yg,h,n admits a contact structure ξg,h,n, which admits an infinite
sequence of Stein fillings (X(m), J(m)) = (Xg,h,n(m), Jg,h,n(m)), for
m = 0, 1, . . ., such that the Euler characteristic of X(m) is increasing
in m. Moreover, when g = 2, for any fixed h ≥ 1 and n, the signature
of X(m) is decreasing in m.

Proof. From the above theorem, we have a family of Lefschetz fibra-
tions

(X(m), f(m)) = (Xg,h,n(m), fg,h,n(m))

with distinguished sections S = Sg,h,n(m) of self-intersection n. Re-
moving fibered neighborhoods of a regular fiber and the section S of
(X(m), f(m)) hands us an allowable Lefschetz fibration (X̌(m), f̌(m))
which induces a framed spinal book Bg,h,n on its boundary Yg,h,n, which
is fixed for any m = 0, 1, . . . . By Proposition 3.5, Yg,h,n admits a unique
contact structure ξg,h,n compatible with the spinal open book Bg,h,n. On

the other hand, by Corollary 3.10, X̌(m) admits a Stein structure J(m)
filling the contact structure ξg,h,n on Y = Yg,h,n.

The Euler characteristics and signatures of X(m) and X̌(m) are re-
lated by the formulae

e(X(m)) = e(X̌(m)) + 3− 2(g + h), and

σ(X(m)) = σ(X̌(m)) + 0 ,

where the latter follows from Novikov additivity. Therefore we see that
e(X̌(m)) is strictly increasing in m, and for g = 2, the σ(X̌(m)) is
strictly decreasing. This completes the proof. q.e.d.
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0 0 0

000

0

g copies

0 0 0

000

n

h copies

Figure 8. A surgery description of the graph manifold
Yg,h,n as a plumbing of a circle bundle over Σg with Euler
number 0 and a circle bundle over Σh with Euler number
n. The linking patterns are repeated g times on the top
and h times on the bottom.

The proof of Theorem 1.1 immediately follows:

Proof of Theorem 1.1. For g = 2, h ≥ 1, and n ≤ 2h− 2, (Y2,h,n, ξ2,h,n)

admits Stein fillings (X̌(m), J(m)) = (X̌2,h,n(m), J2,h,n(m)) such that

{e(X̌(m))} is a strictly increasing sequence, and {σ(X̌(m))} is a strictly
decreasing sequence, for m = 0, 1, . . . . So for any given pair of integers
E,S, there exists a positive integer P such that the infinite subsequence
{(X̌(m), J(m))}m≥P consists of members whose Euler characteristics
are greater than E and signatures are smaller than S. q.e.d.

Remark 4.3. We shall note that when discussing the signatures, we
restricted ourselves to families with g = 2 above for brevity. Otherwise,
it is possible to see that the signature of Xg,h,n(m) is decreasing in m

for any fixed g > 2, h ≥ 1, and n ≤ 2h − 2 as well—which, however,
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requires a significantly more tedious calculation, since the fibrations we
obtain in this case are not hyperelliptic.

We also note that

Corollary 4.4. There are infinite families of contact 3-manifolds,
where each contact 3-manifold admits Stein filling with infinitely many
different chern numbers c21 and c2.

Proof. We calculate c21(X) = 2e(X) + 3σ(X) of the Stein fillings of
Y2,h,n given in the proof of Theorem 4.2 as 2m − 8n for h = 1 and
4m + 8(2h − 2 − n) for h ≥ 2, which constitute an infinite family for
varying m ≥ 0. Since c2(X) = e(X), the latter claim is already proved
above. q.e.d.

Remark 4.5. Filling the fiber component in our allowable Lefschetz
fibrations above with n < 2−2h, we get new 4-manifolds whose bound-
aries are non-flat circle bundles over a closed surface Σh of genus h ≥ 1.
However, in [30], Stipsicz showed that any contact structure on a non-
flat circle bundle over a surface Σh admits at most finitely many Stein
fillings, which implies that the cobordisms we get this way can never be
Stein.

4.2. Further constructions. We will now outline how to obtain simi-
lar families of contact structures on more general 3-manifolds, admitting
Stein fillings which have arbitrarily large Euler characteristics and ar-
bitrarily small signatures,
More general graph manifolds. We can generalize the above con-
struction to many more graph manifolds, by removing more than one
fiber and/or using Lefschetz fibrations with many disjoint sections, and
following the same steps as above. The former is straightforward: We
can simply remove fibered tubular neighborhoods of l disjoint fibers for
l ≥ 2 to obtain more general graph manifolds, which can be described
by a surgery diagram similar to the one given in Figure 8, where we will
instead have l copies of the top part of the diagram, each one of which
links the bottom part once. Therefore, the same families of Lefschetz
fibrations Xg,h,n(m) in Theorem 4.1 can be employed to obtain arbi-
trarily large Stein fillings of the contact structures given by the spinal
open books on these more general graph manifolds.

We can also consider graph manifolds which can be described by a
surgery diagram similar to the one given in Figure 8, where this time we
would have l copies of the bottom part of the diagram, each one of which
links the top part once. However, we are now in need a sequence of Lef-
schetz fibrations with increasing Euler characteristics (and decreasing
signatures) which have l disjoint sections. Such families can be deduced
from the ones we presented in Theorem 4.1 as follows: Consider the fam-
ily (Xg,1,0(m), fg,1,0(m)), for any fixed g ≥ 2. Each one of these Lefschetz
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fibrations has a section S of self-intersection 0. By taking l disjoint push-
offs of S, we get l disjoint sections of this Lefschetz fibration. We can
then take the fiber sum of (X(m), f(m)) = (Xg,1,0(m), fg,1,0(m)) with
any genus g Lefschetz fibration over the 2-sphere with l disjoint sec-
tions S1, . . . , Sl of self-intersections r1, . . . , rl, with only non-separating
vanishing cycles. Possibly after an isotopy, we can patch the disjoint
sections coming from both summands so as to get a new family of Lef-
schetz fibrations (X ′(m), f ′(m)) with l disjoint sections S′1, . . . , S

′
l of

self-intersections r1, . . . , rl. As before, we see that the Euler character-
istic of X ′(m) is strictly increasing in m (and its signature for g = 2
is strictly decreasing). Hence, excising fibered neighborhoods of a regu-
lar fiber and these l sections, we obtain the desired Stein fillings of the
3-manifold on the boundary, equipped with the natural contact struc-
ture induced by the spinal book. It is worth noting that there are many
examples of Lefschetz fibrations with disjoint sections of different self-
intersections. Thus we can obtain graph manifolds where the framings
r1, . . . , rl on the l copies mentioned above are not necessarily the same.
Lastly, we can push for even more general families of graph manifolds by
taking out more than one fiber in these Lefschetz fibrations as before.
Non-graph manifolds. It is also possible to generalize our construc-
tions to the case of Stein fillable contact 3-manifolds supported by spinal
open books whose page monodromies are non-trivial—which typically
will hand us non-graph manifolds.

Let f : X → Σ be a (not necessarily allowable) Lefschetz fibra-
tion with regular fiber F and base Σ compact surfaces with non-empty
boundary and Y = ∂X. Similar to the description of a standard open
book, f |Y gives a spinal open book B. The paper of this spinal open
book is the vertical boundary of X, YP = f−1(∂D). The spine is the
complementary region Y \YP , and is the horizontal boundary of X. The
Lefschetz fibration then equips YΣ with the structure of a circle bundle
with fibers consisting of the boundaries of all fibers of f , ∂F , as a bun-

dle over the base Σ. If ∂F is disconnected, then the vertebra Σ̂ consists
of #|∂F | copies of Σ. As the boundary of a Lefschetz fibration, B is
a symmetric, uniform, simple spinal open book: every fiber is isotopic

within X and so every component of the fiber F̂ of B is isomorphic. The
spine consists of the bundle of the disconnected union of circle bound-
aries of the fibers, and as such circles are isotopic within each horizontal
boundary to the boundary of a single fiber, there is a single boundary

component of each component of the total fiber F̂ which gets glued to

a component of Σ̂.
For a standard open book B, there exists a Lefschetz fibration with

boundary B if we can find a factorization of the monodromy of B into
positive Dehn twists. Any such factorization gives a Lefschetz fibration
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filling of B. For spinal open books, the picture is slightly more compli-
cated:

Given a spinal open book B = (F̂ , φ̂, Σ̂, G), there exists a Lefschetz
fibration with boundary B if and only if we can find identifications

î : F̂ → F and a factorization of the total monodromy Φî = φi1
1 ◦· · ·◦φin

n

(where φi = i ◦ φ ◦ i−1) as

Φî =

m∏
i=1

ti

h∏
j=1

[αj , βj ]

in the mapping class group of F , where h is the genus of Σ, αj , βj are iso-
topy classes of diffeomorphisms of F for j = 1, . . . , h, and ti, i = 1, . . . ,m
are Dehn twists on F . In particular, such a factorization corresponds to
the monodromy presentation of the bundle of non-singular fibers in a
Lefschetz fibration with this boundary. The commutators correspond to
the genus of Σ and the identification maps i used to conjugate φ to φi

correspond to 1-handles producing the additional boundary components
of Σ.

Given any mapping class element Φ, we define the positive coset com-
mutator length of Φ to be the smallest h so that we can write Φ as the
product of a length h commutator and positive Dehn twists as above.

Theorem 4.6. Let B be a symmetric, uniform, simple spinal open
book with page F of genus greater than two, spine Σ of genus h. If there
is a set of identifications î so that the positive coset commutator length
of the total monodromy Φî is strictly less than h, then ξB admits Stein
fillings of arbitrarily large Euler characteristic.

Proof. If there is such a total monodromy Φî with commutator length
strictly less than h, then in the monodromy presentation of the associ-
ated Lefschetz fibration, we can choose a single commutator to be that of
the identity maps. We can extend this factorization to new Lefschetz fi-
brations by making a monodromy substitution using the relations given
in (2) above so as to produce arbitrarily large allowable Lefschetz fibra-
tions filling B as before. Thus, any contact 3-manifold satisfying these
properties will admit arbitrarily large Stein fillings. q.e.d.

Remark 4.7. Note that we can produce further families of contact
3-manifolds with arbitrarily large Stein fillings simply by building Stein
cobordisms from our examples above. In this way, one can get contact
3-manifolds with various other topological properties, including hyper-
bolic manifolds. (For example, every closed 3-manifold contains a hy-
perbolic knot ([27]) and this plus Thurston’s hyperbolic Dehn surgery
theorem implies that we can always find a Legendrian surgery from our
examples to some (and indeed many) hyperbolic 3−manifold(s).)
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Remark 4.8. A curious point that arises in our work is as follows:
There are Stein fillable contact 3-manifolds which admit (1) a unique
Stein filling, (2) more than one but finitely many Stein fillings, and (3)
infinitely many Stein fillings, up to diffeomorphisms. That is, there is an
intrinsic property one can associate to Stein fillable contact 3-manifolds
in terms of the number of Stein fillings they admit. There are examples
of contact 3-manifolds which carry only one of these properties. For
example, Gromov [20] proved that there is a unique minimal symplectic
filling of S3, whereas McDuff [26] proved that there are exactly two
minimal fillings of the standard contact structure on L(4, 1). Ozbagci
and Stipsicz in [28] showed that the Seifert manifolds with a single
Seifert fiber of order 2 and with base a surface of genus g ≥ 2 admit
a contact structure with infinitely many Stein fillings; also see [3]. In
this article, we have shown that there is a fourth class of Stein fillable
contact 3-manifolds, namely those which admit (4) infinitely many Stein
fillings with arbitrarily large Euler characteristics. It is therefore worth
asking whether or not there are Stein fillable contact 3-manifolds which
belong to the class (3) but not (4).

Appendix: Stein structures on Lefschetz fibrations

and their contact boundaries

(by Samuel Lisi and Chris Wendl)

In this appendix we explain a special case of a theorem from [24]
which implies that an allowable Lefschetz fibration over an arbitrary
oriented surface with boundary can always be viewed in a canonical way
as a Stein filling of a contact structure determined by the spinal open
book at the boundary (see Theorem 1.2). Our proof is a variation on the
technique of Thurston [32] and Gompf [18] for constructing symplectic
structures on Lefschetz fibrations.

Guide to notation. Throughout the appendix, we will generally use
the following notation:

• E will be a 4-manifold with boundary and the total space of a
Lefschetz fibration

• M will be a contact 3-manifold
• g, f , F will be functions to R

• Σ will be a surface with boundary which will be either connected
or disconnected, depending on the setting

• φ, θ will be the coordinate on S1

Let E be a smooth, compact, oriented and connected 4-manifold with
boundary and corners such that ∂E is the union of two smooth faces

∂E = ∂hE ∪ ∂vE
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intersecting at a 2-dimensional corner. Let Σ denote a compact, ori-
ented and connected surface with nonempty boundary. We consider a
Lefschetz fibration Π: E → Σ with the following properties:

1) The sets of critical points Ecrit and critical values Σcrit lie in the
interiors of E and Σ respectively.

2) Π−1(∂Σ) = ∂vE and Π|∂vE : ∂vE → ∂Σ is a smooth fiber bundle.
3) Π|∂hE : ∂hE → Σ is also a smooth fiber bundle.
4) All fibersEz := Π−1(z) for z ∈ Σ are connected and have nonempty

boundary in ∂hE.

As we will review in §A.2 below, any Lefschetz fibration of this type
induces a spinal open book at its boundary. We say that Π is allowable

if all the irreducible components of its fibers have nonempty boundary,
i.e., none of its vanishing cycles are homologically trivial.

Theorem A.1. If the Lefschetz fibration Π: E → Σ is allowable,
then after smoothing corners on ∂E, E admits (canonically up to Stein
homotopy) the structure of a Stein domain, and the filled contact struc-
ture at the boundary is uniquely determined up to isotopy by the induced
spinal open book.

In the background of this theorem is the corresponding existence and
uniqueness result (also a special case of a theorem in [24]) for contact
structures supported by spinal open books. We shall state and prove
this in §A.1, and then prove Theorem A.1 in §A.2.

Remark A.2. A version of Theorem A.1 also holds without the al-
lowability assumption, but in that case E generally becomes a strong
symplectic filling instead of a Stein filling. See [24] for details.
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A.1. Spinal open books and contact structures. To establish no-
tation, we begin by reviewing some essential definitions (see Section 3).

Definition A.3. A spinal open book decomposition on a closed
oriented 3-manifold M is a decomposition M = MΣ ∪ MP , where the
piecesMΣ andMP (called the spine and paper respectively) are smooth
compact 3-dimensional submanifolds with disjoint interiors such that
∂MΣ = ∂MP , carrying the following additional structure:

1) A smooth fiber bundle πΣ : MΣ → Σ with fiber S1, such that each
fiber is either disjoint from ∂MΣ or contained in it. Here, Σ is
a compact oriented surface whose connected components (called
vertebrae (singular, vertebra) all have nonempty boundary.
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2) A smooth fiber bundle πP : MP → S1 such that the connected
components (called pages) of fibers are all compact surfaces with
nonempty boundary, where they meet ∂MP transversely. More-
over, the boundary components of each page are fibers of πΣ.

We shall denote by

π :=
(
πΣ : MΣ → Σ, πP : MP → S1

)
the collection of information encoded in a spinal open book. We will
say additionally that π admits a smooth overlap if the fibration
πP : MP → S1 can be extended over an open neighborhood M ′

P ⊂ M

containing MP such that all fibers of πΣ intersecting M ′
P are contained

in fibers of the extended πP . Note that while an arbitrary spinal open
book does not always admit a smooth overlap, it can always be deformed
continuously to one that does, and the result is unique up to smooth
isotopy.

Definition A.4. Given a spinal open book π on M , a positive con-
tact form α on M will be called a Giroux form for π if the following
conditions hold:

1) The 2-form dα is positive on the interior of every page.
2) The Reeb vector field Rα determined by α is positively tangent to

every oriented fiber of πΣ : MΣ → Σ.

A contact structure ξ on M is supported by π whenever it admits a
contact form which is a Giroux form.

Theorem A.5. If π is a spinal open book on M which admits a
smooth overlap, then the space of Giroux forms for π is nonempty and
contractible. In particular, any isotopy class of spinal open books gives
rise to a canonical isotopy class of supported contact structures.

Remark A.6. One can also formulate the above definitions and prove
a generalization of Theorem A.5 for compact manifolds with boundary,
which allows for a useful alternative characterization of certain “local”
filling obstructions such as Giroux torsion and planar torsion; see [24]
for details.

The proof of Theorem A.5 will occupy the remainder of this subsec-
tion. As a first step, we define a fiberwise Giroux form for π to be
any smooth 1-form α on M for which the following conditions hold:

• dα is positive on the interior of every page,
• α is positive on the fibers of πΣ : MΣ → Σ, and the tangent spaces
to these fibers are contained in ker dα.

A fiberwise Giroux form is a Giroux form if and only if it is contact, but
since we have not required the latter in the above definition, the space
of fiberwise Giroux forms is convex.
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Choose for each connected component of ∂Σ a collar neighborhood
(−1, 0]×S1 with coordinates (s, φ), and enlarge Σ by attaching [0, 1)×S1

in the obvious way to each of these collars, denoting the resulting surface

by
−→
Σ. If π admits a smooth overlap, then this can be done so that there

is also an open neighborhood UΣ of ∂MΣ in M which we can identify
with (−1, 1) × ∂MΣ such that the fibration

UΣ = (−1, 1) × ∂MΣ → (−1, 1) × S1 : (s, x) �→ (s, πP (x))

matches πΣ on UΣ∩MΣ, which is the region {s ≤ 0}. In fact, this defines
an extended fibration

πΣ : MΣ → Σ,

where MΣ := MΣ ∪UΣ. We shall continue to denote the coordinates on
the collars (−1, 1) × S1 ⊂ Σ by (s, φ) and, in light of the compatibility
of the two fibrations, also use φ ∈ S1 to denote the coordinate on the
base of πP : MP → S1.

Choose a Liouville form σ on Σ that matches es dφ on the collars
(−1, 1) × S1. For convenience, we can also fix an identification of the
(necessarily trivial) bundleMΣ → Σ with Σ×S1 such that 
πΣ(z, θ) = z.
This identifies each connected component of UΣ with (−1, 1)×S1 ×S1,
carrying coordinates (s, φ, θ). In these coordinates on the collar MP ∩
UΣ

∼= [0, 1) × S1 × S1 we have πP (s, φ, θ) = φ.
To keep orientations straight, it will also be convenient to define an

alternative coordinate system on MP ∩ UΣ by

(t, φ, θ) := (−s, φ, θ) ∈ (−1, 0] × S1 × S1 ⊂ MP ∩ UΣ.

This has the advantage that (t, θ) ∈ (−1, 0]×S1 now defines a set of pos-
itively oriented collar neighborhoods of the boundary of each page. Note
that the monodromy of the bundle πP : MP → S1 cannot be assumed
trivial near the boundary, but up to isotopy we can still assume that it
takes the form (t, θ) �→ (t, θ) in the above collars while also permuting
boundary components. With this understood, the following lemma is
proved by a standard argument (see, for example, [13]).

Lemma A.7. On MP there exists a 1-form η such that dη is positive
on each fiber of πP : MP → S1 and, in the collar neighborhoods of ∂MP

with coordinates (t, φ, θ) as defined above, η = et dθ. q.e.d.

We can now construct a fiberwise Giroux form. Let F : MP → (0, 1]
denote a smooth function which is identically 1 outside of UΣ and
takes the form esf(s) in the collar coordinates (s, φ, θ) ∈ UΣ, where
f : (−1, 1) → (0, 1] is a smooth function satisfying the conditions

• f(s) = 1 for s ≤ 0,
• f ′(s) < 0 for s > 0,
• f(s) = e−s for s near 1.
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Now if η is given by Lemma A.7, the expression

α =

{
dθ on MΣ,

Fη on MP

defines a fiberwise Giroux form on M .
We will use a version of the Thurston trick to turn fiberwise Giroux

forms into Giroux forms. Given a constant δ ∈ (0, 1], choose a smooth
function gδ : [0,∞) → [0, 2] with

• gδ(s) = es for s near 0,
• g′δ(s) ≥ 0 for all s,
• gδ(s) = 2 for all s ≥ δ,

and define from this a smooth function Gδ : MP → [0, 2] by

Gδ =

{
2 on MP \ UΣ,

gδ(s) for (s, φ, θ) ∈ UΣ.

Then identifying the Liouville form σ on Σ with its pullback π∗Σσ on
MΣ, we define for any δ ∈ (0, 1] another smooth 1-form on M by

βδ =

{
σ on MΣ,

Gδ dφ on MP .

Lemma A.8. For any fiberwise Giroux form α, there exist constants
δ0 ∈ (0, 1] and K0 ≥ 0 such that for all constants δ ∈ (0, δ0] and K ≥
K0,

αK,δ := α+Kβδ

is a Giroux form. Whenever α itself is a Giroux form, one can take
K0 = 0.

Proof. Observe that αK,δ is automatically a fiberwise Giroux form for
all K ≥ 0, δ ∈ (0, 1], so we only need to show that αK,δ is contact for
the right choices of these constants. Since βδ ∧ dβδ ≡ 0, we have

αK,δ ∧ dαK,δ = K (α ∧ dβδ + βδ ∧ dα) + α ∧ dα;

thus it suffices to show that whenever δ > 0 is sufficiently small,

(6) α ∧ dβδ + βδ ∧ dα > 0.

The conditions on fiberwise Giroux forms imply that α(∂θ) > 0 at ∂MP ,
so this is also true on collars of the form {s ≤ δ0} ⊂ UΣ for sufficiently
small δ0 > 0. Assuming 0 < δ ≤ δ0, we shall now show that (6) holds
everywhere on M .

On MΣ, βδ ∧ dα = σ ∧ dα = 0 since σ(∂θ) = dα(∂θ, ·) = 0, but
α ∧ dβδ > 0 since α(∂θ) > 0 and dβδ = dσ is positive on Σ.

On MP outside of the collars {s ≤ δ}, we have βδ = 2 dφ and thus
dβδ = 0, while βδ ∧ dα = 2 dφ ∧ dα > 0 due to the assumption that dα
is positive on the fibers of πP .
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On the collars {s ≤ δ}, we have βδ = Gδ dφ, with Gδ > 0 on the
interior of MP ; hence βδ ∧ dα = Gδ dφ ∧ dα > 0 again except at ∂MP .
It thus remains only to show that α ∧ dβδ ≥ 0, with strict positivity at
∂MP . This follows from the fact that α(∂θ) > 0 on this region, since
α∧ dβδ = g′δ(s)α∧ ds∧ dφ, where g′δ(s) was assumed to be nonnegative
and strictly positive at s = 0. q.e.d.

The above implies Theorem A.5: indeed, since the space of fiberwise
Giroux forms is nonempty and convex, Lemma A.8 shows that Giroux
forms exist, and for any integer n ≥ 0, a continuous Sn-parametrized
family of Giroux forms can be contracted through Giroux forms. It
follows by Whitehead’s theorem that the space of Giroux forms is con-
tractible.

A.2. Lefschetz fibrations and Stein structures. In this section, we
take Π: E → Σ to be a Lefschetz fibration as described in the discus-
sion preceding Theorem A.1. This naturally gives rise to a spinal open
book on ∂E, with spine MΣ := ∂hE and paper MP := ∂vE. The fi-
bration πP : ∂vE → S1 is defined as the restriction Π|∂vE : ∂vE → ∂Σ
after choosing an orientation-preserving identification of each connected
component of ∂Σ with S1. Likewise, Π|∂hE : ∂hE → Σ defines a smooth
fibration whose fibers are disjoint unions of finitely many circles; hence
it can be factored as

∂hE
πΣ−→ Σ̃

p
−→ Σ,

where πΣ : ∂hE → Σ̃ is a fiber bundle with connected fibers over another
compact oriented surface Σ̃ with boundary, and p : Σ̃ → Σ is a smooth
finite covering map. After smoothing the corner at ∂hE ∪ ∂vE, this
construction gives rise to a unique isotopy class of spinal open books
admitting smooth overlaps.

To construct Stein structures on E, we will consider a special class
of almost complex structures that always admit plurisubharmonic func-
tions, thus giving rise to a distinguished deformation class of Weinstein
structures. This in turn yields a canonical deformation class of Stein
structures due to a theorem of Eliashberg [7]. Recall that a function
f : W → R on an almost complex manifold (W,J) is called J-convex

if the 1-form λ := −df ◦ J is the primitive of a symplectic form that
tames J . We will make repeated use of the standard fact that every com-
plex structure J on a compact and connected surface with nonempty
boundary admits a J-convex function which has the boundary as a reg-
ular level set. Indeed, such a function can be found by starting with
a Morse function that is J-convex near its critical points and post-
composing with a positive function with large second derivative (see,
e.g., [23, Lemma 4.1]); in this way, one can also choose the function’s
value and normal derivative at the boundary to be arbitrarily large.
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Denote by J (Π) the space of smooth almost complex structures J

on E that are compatible with its orientation and satisfy the following
conditions:

1) There exists a smooth complex structure j on Σ, compatible with
the given orientation, such that Π: (E, J) → (Σ, j) is pseudoholo-
morphic.

2) J is integrable on some neighborhood of Ecrit.
3) The maximal J-complex subbundle in T (∂hE) is preserved by

some smooth S1-action on ∂hE which restricts to a free and tran-
sitive action on each boundary component of each fiber Xz.

Observe that any J ∈ J (Π) makes the fibers into J-complex curves,
with the induced orientation matching their natural orientation. An
element of J (Π) can be constructed by picking complex Morse coordi-
nates near Ecrit, then choosing a suitable horizontal subbundle outside
this neighborhood which is S1-invariant at ∂hE, and extending the re-
sulting complex structures on the vertical and horizontal subbundles
globally. Since both are oriented bundles of real rank 2, the space J (Π)
is contractible.

Given J ∈ J (Π), we will say that a J-convex function f : E → R is
admissible if the Liouville form λ := −df ◦J restricts to a contact form
on both of the smooth boundary faces ∂hE and ∂vE, such that for all
z ∈ Σ, ∂Xz ⊂ ∂hE is a union of closed Reeb orbits. Observe that since
J is tamed by the symplectic form dλ, this construction automatically
makes the fibers symplectic, including the pages in ∂vE of the induced
spinal open book at the boundary, and in this sense one can reasonably
say that λ restricts to a Giroux form on ∂E. The contact condition
implies that the induced Liouville vector field at ∂E is outwardly trans-
verse to both smooth faces; hence one can smooth the corner so that the
Liouville vector field is also transverse to the smoothened boundary, and
in so doing one can arrange for λ to be a Giroux form for the resulting
spinal open book with smooth overlap. Moreover, the Liouville vector
field is gradient-like with respect to f , and one can then homotope f

near the smoothened boundary through Lyapunov functions to make
the smoothened boundary a regular level set, producing a Weinstein
structure uniquely up to Weinstein homotopy. In this way, any choice of
admissible J-convex function f determines a homotopy class of Wein-
stein structures which fill the contact structure supported by the spinal
open book at the boundary.

The above discussion reduces the proof of Theorem A.1 to the fol-
lowing:

Proposition A.9. If Π: E → Σ is allowable, then for every J ∈
J (Π), the space of admissible J-convex functions is nonempty and con-
tractible.
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Proof. We proceed in three steps.
Step 1: Existence of a fiberwise J-convex function. Given J ∈ J (Π),

let us call a smooth function f : E → R admissibly fiberwise J-

convex if the 1-form λ := −df ◦ J has the following properties:

1) At Ecrit, dλ is symplectic and tames J .
2) On E \ Ecrit, dλ is symplectic on every fiber.
3) For all z ∈ Σ, the tangent spaces to ∂Xz ⊂ ∂hE are positive for λ

but in the kernel of dλ|T (∂hE).

The space of admissibly fiberwise J-convex functions is convex and thus
contractible. Such a function is admissibly J-convex if and only if dλ is a
symplectic form taming J and λ defines contact forms on ∂hE and ∂vE.

Our first task is to construct an admissibly fiberwise J-convex func-
tion f : E → R. By our assumptions on J , there is a uniquely determined
complex structure j on Σ such that Π: (E, J) → (Σ, j) is pseudoholo-
morphic. There is also a vertical vector field ∂θ on ∂hE whose flow gen-
erates an S1-action that preserves the maximal J-complex subbundle

ξh := {v ∈ T (∂hE) | Jv ∈ T (∂hE)} ⊂ T (∂hE).

Note that Π is J–j holomorphic so J |ξh = Π∗j; hence it is automatic that
the flow of ∂θ also preserves J |ξh . We assume ∂θ is positive with respect
to the boundary orientation of each fiber, so −J∂θ points transversely
outward.

To construct the desired function f : E → R, we begin by choosing for
each z ∈ Σ\Σcrit a J-convex function fz : Xz → R which at ∂Xz satisfies
fz ≡ cz and dfz(−J∂θ) = νz for some constants cz, νz > 0. We can then
find a neighborhood Uz ⊂ Σ \Σcrit containing z such that fz admits an
extension to a smooth function fz : E|Uz → R having these same prop-
erties on every fiber in E|Uz . Observe that the constants cz and νz can
always be made larger without changing the choice of neighborhood Uz.
The 1-form λz := −dfz ◦ J on E|Uz now satisfies dλz|TXz > 0 for each
z ∈ Uz, and its restriction to the horizontal boundary αh

z := λz|T (∂hE)

satisfies αh
z (∂θ) = νz, α

h
z |ξh = 0.

We next construct similar functions near the singular fibers. For z ∈
Σcrit, let Ecrit

z denote the finite set of critical points in the fiber Xz.
For each p ∈ Ecrit

z , fix a neighborhood Up ⊂ E containing p on which
J is integrable, and choose holomorphic coordinates (z1, z2) identifying
Up with a neighborhood of 0 in C

2 such that Π(z1, z2) = z21 + z22 for a
suitable choice of holomorphic coordinate near Π(p) ∈ Σ. We use these
coordinates to define a function fz : Up → R by

fz(z1, z2) =
1

2

(
|z1|

2 + |z2|
2
)
.

Then −dfz ◦J is the primitive of a positive symplectic form in Up which
tames J and restricts symplectically to the vertical subspaces. Since Π
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is allowable, the connected components of Xz \E
crit
z are all compact ori-

ented surfaces with nonempty boundary and finitely many punctures. It
follows that fz can be extended so that it is J-convex on Xz and satis-
fies fz ≡ cz, dfz(−J∂θ) ≡ νz at ∂Xz for some large constants cz, νz > 0.
Since the J-convexity condition is open, we can then extend fz over E|Uz
for some neighborhood z ∈ Uz ⊂ Σ so that it has these same properties
on each fiber, and the constants cz, νz can be made larger if desired
without changing Uz.

Since Σ is compact, there is a finite subset I ⊂ Σ such that the
neighborhoods Uz constructed above for z ∈ I cover Σ. By making the
functions fz more convex near ∂hE, we can then increase the constants
cz > 0 for all z ∈ I so that they match a single constant c > 0, and
likewise increase νz for z ∈ I to match some large number ν > 0. Choose
a partition of unity {ρz : Uz → [0, 1]}z∈I subordinate to the covering
{Uz}z∈I , and define f : E → R by

f =
∑
z∈I

(ρz ◦ Π)fz.

If λ = −df ◦ J , we now have dλ positive on all fibers, while dλ is
symplectic and tames J near Ecrit, and the restriction αh := λ|T (∂hE)

to the horizontal boundary satisfies

αh(∂θ) ≡ ν > 0, αh|ξh ≡ 0.

It follows that αh is invariant under the flow of ∂θ; thus

0 ≡ L∂θα
h ≡ dαh(∂θ, ·).

Step 2: The Thurston trick. Suppose f : E → R is any admissibly
fiberwise J-convex function and denote λ = −df ◦J . Choose a j-convex
function ϕ : Σ → R which has ∂Σ as a regular level set. Let σ := −dϕ◦j
denote the resulting Liouville form on Σ. For any constant K ≥ 0,
consider the function

FK := f +K(ϕ ◦ Π): E → R.

We claim that this is admissibly J-convex whenever K is sufficiently
large, and that this is also true for all K ≥ 0 if f itself is admissibly
J-convex. Indeed, since Π: (E, J) → (Σ, j) is pseudoholomorphic, we
find

ΛK := −dFK ◦ J = λ+KΠ∗σ.

Choose a neighborhood Ucrit ⊂ E of Ecrit on which J is integrable
and dλ is a symplectic form taming J . Then for any nonzero vector
X ∈ TUcrit,

(7) dΛK(X,JX) = dλ(X,JX) +K dσ(Π∗X, jΠ∗X)

is positive; here we’ve used the fact that Π is J-j-holomorphic and dσ

tames j, implying that the second term is nonnegative.
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To see that dΛK also tames J on E \ Ucrit, observe that the second
term in (7) is always nonnegative, and is positive for K > 0 if and only
if the vector χ is not vertical. Likewise, the first term in (7) is positive
for nonzero vertical vectors V and therefore also for all nonzero vectors
in some open neighborhood of the vertical subbundle. It follows that the
sum can always be made positive if K is sufficiently large. Moreover, if
f is J-convex then the first term is positive for any X 
= 0, and the sum
is then positive for all K ≥ 0.

It remains to check that the restrictions

αv
K := ΛK |T (∂vE), αh

K := ΛK |T (∂hE)

are both contact for suitable choices of K ≥ 0. Let αv := λ|T (∂vE). Then
since dσ vanishes on T (∂Σ), Π∗dσ vanishes on ∂vE, implying

αv
K ∧dαv

K = (αv+KΠ∗σ)∧ (dαv+KΠ∗dσ) = αv ∧dαv+K(Π∗σ∧dαv).

Here, the second term is positive since dαv > 0 on fibers; thus αv
K is

contact for all K sufficiently large, and for all K ≥ 0 if αv is contact; the
latter is the case if f is admissibly J-convex. Likewise on ∂hE, we write
αh := λ|T (∂hE) and observe that Π∗σ ∧ Π∗dσ vanishes for dimensional

reasons, while Π∗σ ∧ dαh = 0 since the vertical direction is in ker dαh.
Thus

αh
K ∧dαh

K = (αh+KΠ∗σ)∧(dαh+KΠ∗dσ) = αh∧dαh+K(αh∧Π∗dσ).

Once again the second term is positive, as αh > 0 in the vertical direc-
tion, and the contact condition for αh

K follows.
Step 3: Contractibility. The existence of an admissible J-convex func-

tion follows immediately by combining steps 1 and 2. Moreover, since
the space of admissibly fiberwise J-convex functions is convex, step 2
implies that any continuous Sn-parametrized family of admissible J-
convex functions is contractible, so the result follows via Whitehead’s
theorem. q.e.d.
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Université de Nantes

Laboratoire de Mathématiques Jean Leray
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