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CLASSIFICATION OF SEMISIMPLE SYMMETRIC
SPACES WITH PROPER SL(2,R)-ACTIONS

Takayuki Okuda

Abstract

We give a complete classification of irreducible symmetric spaces
for which there exist proper SL(2,R)-actions as isometries, using
the criterion for proper actions by T. Kobayashi [Math. Ann. ’89]
and combinatorial techniques of nilpotent orbits. In particular, we
classify irreducible symmetric spaces that admit surface groups
as discontinuous groups, combining this with Benoist’s theorem
[Ann. Math. ’96].

1. Introduction

The aim of this paper is to classify semisimple symmetric spaces G/H
that admit isometric proper actions of non-compact simple Lie group
SL(2,R), and also those of surface groups π1(Σg). Here, isometries are
considered with respect to the natural pseudo-Riemannian structure on
G/H.

We motivate our work in one of the fundamental problems on locally
symmetric spaces, stated below:

Problem 1.1 (See [20]). Fix a simply connected symmetric space

M̃ as a model space. What discrete groups can arise as the fundamental
groups of complete affine manifolds M which are locally isomorphic to

the space M̃?

By a theorem of É. Cartan, such M is represented as the double coset

space Γ\G/H. Here M̃ = G/H is a simply connected symmetric space
and Γ ≃ π1(M) a discrete subgroup of G acting properly discontinuously

and freely on M̃ .
Conversely, for a given symmetric pair (G,H) and an abstract group Γ

with discrete topology, if there exists a group homomorphism ρ : Γ→ G
for which Γ acts on G/H properly discontinuously and freely via ρ, then
the double coset space ρ(Γ)\G/H becomes a C∞-manifold such that the
natural quotient map

G/H → ρ(Γ)\G/H
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is a C∞-covering. The double coset manifold ρ(Γ)\G/H is called a
Clifford–Klein form of G/H, which is endowed with a locally symmet-
ric structure through the covering. We say that G/H admits Γ as a
discontinuous group if there exists such ρ.

Then Problem 1.1 may be reformalized as:

Problem 1.2. Fix a symmetric pair (G,H). What discrete groups
does G/H admit as discontinuous groups?

For a compact subgroupH ofG, the action of any discrete subgroup of
G on G/H is automatically properly discontinuous. Thus our interest is
in non-compact H, for which not all discrete subgroups Γ of G act prop-

erly discontinuously on G/H. Problem 1.2 is non-trivial, even when M̃ =
R
n is regarded as an affine symmetric space, i.e. (G,H) = (GL(n,R)⋉

R
n, GL(n,R)). In this case, the long-standing conjecture (Auslander’s

conjecture) states that such discrete group Γ will be virtually polycyclic
if the Clifford–Klein form M is compact (see [1, 3, 11, 43]). On the
other hand, as was shown by E. Calabi and L. Markus [7] in 1962, no
infinite discrete subgroup of SO0(n+1, 1) acts properly discontinuously
on the de Sitter space SO0(n+1, 1)/SO0(n, 1). More generally, if G/H
does not admit any infinite discontinuous group, we say that a Calabi–
Markus phenomenon occurs for G/H.

For the rest of this paper, we consider the case that G is a linear
semisimple Lie group. In this setting, a systematic study of Problem
1.2 for the general homogeneous space G/H was initiated in the late
1980s by T. Kobayashi [15, 16, 17]. One of the fundamental results of
Kobayashi in [15] is a criterion for proper actions, including a crite-
rion for the Calabi–Markus phenomenon on homogeneous spaces G/H.
More precisely, he showed that the following four conditions on G/H
are equivalent: the space G/H admits an infinite discontinuous group;
the space G/H admits a proper R-action; the space G/H admits the
abelian group Z as a discontinuous group; and rankR g > rankR h. Fur-
thermore, Y. Benoist [5] obtained a criterion for the existence of infinite
non-virtually abelian discontinuous groups for G/H.

Obviously, such discontinuous groups exist if there exists a Lie group
homomorphism Φ : SL(2,R) → G such that SL(2,R) acts on G/H
properly via Φ. We prove that the converse statement also holds when
G/H is a semisimple symmetric space. More strongly, our first main
theorem gives a characterization of symmetric spaces G/H that admit
proper SL(2,R)-actions:

Theorem 1.3 (see Theorem 2.2). Suppose that G is a connected
linear semisimple Lie group. Then the following five conditions on a
symmetric pair (G,H) are equivalent:

(i) There exists a Lie group homomorphism Φ : SL(2,R) → G such
that SL(2,R) acts on G/H properly via Φ.
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(ii) For some g ≥ 2, the symmetric space G/H admits the surface
group π1(Σg) as a discontinuous group, where Σg is a closed Rie-
mann surface of genus g.

(iii) G/H admits an infinite discontinuous group Γ which is not virtu-
ally abelian (i.e. Γ has no abelian subgroup of finite index).

(iv) There exists a complex nilpotent orbit OGC

nilp in gC such that OGC

nilp∩
g 6= ∅ and OGC

nilp
∩ gc = ∅, where gc is the c-dual of the symmetric

pair (g, h) (see (2.1) for definition).

(v) There exists a complex antipodal hyperbolic orbit OGC

hyp
in gC (see

Definition 2.3) such that OGC

hyp ∩ g 6= ∅ and OGC

hyp ∩ gc = ∅.
The implication (i) ⇒ (ii) ⇒ (iii) is straightforward and easy. The

non-trivial part of Theorem 1.3 is the implication (iii) ⇒ (i).
By using Theorem 1.3, we give a complete classification of semisimple

symmetric spaces G/H that admit a proper SL(2,R)-action. As is clear
for (iv) or (v) in Theorem 1.3, it is sufficient to work at the Lie algebra
level. Recall that the classification of semisimple symmetric pairs (g, h)
was accomplished by M. Berger [6]. Our second main theorem is to
single out which symmetric pairs among his list satisfy the equivalent
conditions in Theorem 1.3:

Theorem 1.4. Suppose G is a simple Lie group. Then the two con-
ditions below on a symmetric pair (G,H) are equivalent:

(i) (G,H) satisfies one of (therefore, all of ) the equivalent conditions
in Theorem 1.3.

(ii) The pair (g, h) belongs to Table 6 in Appendix A.

The existence problem for compact Clifford–Klein forms has been ac-
tively studied in the last two decades since Kobayashi’s paper [15]. The
properness criteria of Kobayashi and Benoist yield necessary conditions
on (G,H) for the existence of compact Clifford-Klein forms [5, 15]. See
also [24, 28, 30, 33, 45] for some other methods for the existence prob-
lem of compact Clifford–Klein forms. The recent developments on this
topic can be found in [21, 22, 27, 31].

We go back to semisimple symmetric pair (G,H). By Kobayashi’s
criterion [15, Corollary 4.4], the Calabi–Markus phenomenon occurs for
G/H if and only if rankR g = rankR h holds (see Fact 2.6 for more de-
tails). In particular, G/H does not admit compact Clifford–Klein forms
in this case unless G/H itself is compact. In Section 2, we give the list,
as Table 2, of symmetric pair (g, h) with simple g which does not ap-
pear in Table 6 and rankR g > rankR h, i.e. (g, h) does not satisfy the
equivalent conditions in Theorem 1.3 with rankR g > rankR h. Applying
a theorem of Benoist [5, Corollary 1], we see that G/H does not admit
compact Clifford–Klein forms if (g, h) is in Table 2 (see Corollary 2.8).
In this table, we find some “new” examples of semisimple symmetric
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Table 1. Examples of G/H without compact Clifford–
Klein forms

g h

su∗(4m+ 2) sp(m+ 1,m)
su∗(4m) sp(m,m)
e6(6) f4(4)
e6(−26) sp(3, 1)
e6(−26) f4(−20)

so(4m+ 2,C) so(2m+ 2, 2m)
e6,C e6(2)

spaces G/H that do not admit compact Clifford–Klein forms, which we
cannot find in the existing literature, see Table 1.

We remark that Table 1 is the list of symmetric pairs (g, h) in Ta-
ble 2 which are neither in Benoist’s examples [5, Example 1] nor in
Kobayashi’s examples [17, Example 1.7, Table 4.4], [19, Table 5.18].

The proof of the non-trivial implication (iii) ⇒ (i) in Theorem 1.3
is given by reducing it to an equivalent assertion on complex adjoint
orbits, namely, (v) ⇒ (iv). The last implication is proved by using
the Dynkin–Kostant classification of sl2-triples (equivalently, complex
nilpotent orbits) in gC. We note that the proof does not need Berger’s
classification of semisimple symmetric pairs.

The reduction from (iii)⇒ (i) to (v)⇒ (iv) in Theorem 1.3 is given by
proving (i)⇔ (iv) and (iii)⇔ (v) as follows. We show the equivalence (i)
⇔ (iv) by combining Kobayashi’s properness criterion [15] and a result
of J. Sekiguchi for real nilpotent orbits in [38] with some observations
on complexifications of real hyperbolic orbits. The equivalence (iii) ⇔
(v) is obtained from Benoist’s criterion [5].

As a refinement of the equivalence (i) ⇔ (iv) in Theorem 1.3, we
give a bijection between real nilpotent orbits OG

nilp in g such that the

complexifications of OG
nilp do not intersect another real form gc and Lie

group homomorphisms Φ : SL(2,R)→ G for which the SL(2,R)-actions
on G/H via Φ are proper, up to inner automorphisms of G (Theorem
10.1).

Concerning the proof of Theorem 1.4, for a given semisimple symmet-
ric pair (g, h), we give an algorithm to check whether or not the condition
(v) in Theorem 1.3 holds, by using Satake diagrams of g and gc.

The paper is organized as follows. In Section 2, we set up notation
and state our main theorems. The next section contains a brief summary
of Kobayashi’s properness criterion [15] and Benoist’s criterion [5] as
preliminary results. We prove Theorem 1.3 in Section 4. The proof is
based on some theorems, propositions and lemmas that are proved in
Section 5 to Section 8 (see Section 4 for more details). Section 9 is
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about the algorithm for our classification. The last section establishes
the relation between proper SL(2,R)-actions on G/H and real nilpotent
orbits in g.

The main results of this paper were announced in [34] with a sketch
of the proofs.

Acknowledgments. The author would like to give heartfelt thanks to
Prof. Toshiyuki Kobayashi, whose suggestions were of inestimable value
for this paper.

This work is supported by Grant-in-Aid for JSPS Fellows.

2. Main results

Throughout this paper, we shall work in the following:

Setting 2.1. G is a connected linear semisimple Lie group, σ is an
involutive automorphism on G, and H is an open subgroup of Gσ :=
{ g ∈ G | σg = g }.

This setting implies that G/H carries a pseudo-Riemannian structure
g for which G acts as isometries and G/H becomes a symmetric space
with respect to the Levi-Civita connection. We call (G,H) a semisimple
symmetric pair. Note that g is positive definite, namely (G/H, g) is
Riemannian, if and only if H is compact.

Since G is a connected linear Lie group, we can take a connected
complexification, denoted by GC, of G. We write gC, g, and h for Lie
algebras of GC, G, and H, respectively. The differential action of σ on
g will be denoted by the same letter σ. Then h = {X ∈ g | σX = X },
and we also call (g, h) a semisimple symmetric pair. Let us denote q :=
{X ∈ g | σX = −X }, and write the c-dual of (g, h) for

gc := h+
√
−1q.(2.1)

Then both g and gc are real forms of gC. We note that the complex
conjugation corresponding to gc on gC is the anti C-linear extension of σ
on gC, and the semisimple symmetric pair (gc, h) is the same as (g, h)ada

(which coincides with (g, h)dad; see [35, Section 1] for the notation).
For an abstract group Γ with discrete topology, we say that G/H

admits Γ as a discontinuous group if there exists a group homomorphism
ρ : Γ→ G such that Γ acts properly discontinuously and freely on G/H
via ρ (then ρ is injective and ρ(Γ) is discrete in G, automatically). For
such Γ-action on G/H, the double coset space Γ\G/H, which is called
a Clifford–Klein form of G/H, becomes a C∞-manifold such that the
quotient map

G/H → ρ(Γ)\G/H

is a C∞-covering. In our context, the freeness of the action is less im-
portant than the properness of it (see [15, Section 5] for more details).

Here is the first main result:
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Theorem 2.2. In Setting 2.1, the following ten conditions on a
semisimple symmetric pair (G,H) are equivalent:

(i) There exists a Lie group homeomorphism Φ : SL(2,R) → G such
that SL(2,R) acts properly on G/H via Φ.

(ii) For any g ≥ 2, the symmetric space G/H admits the surface group
π1(Σg) as a discontinuous group, where Σg is a closed Riemann
surface of genus g.

(iii) For some g ≥ 2, the symmetric space G/H admits the surface
group π1(Σg) as a discontinuous group.

(iv) G/H admits an infinite discontinuous group Γ which is not virtu-
ally abelian (i.e. Γ has no abelian subgroup of finite index).

(v) G/H admits a discontinuous group which is a free group generated
by a unipotent element in G.

(vi) There exists a complex nilpotent adjoint orbit OGC

nilp of GC in gC

such that OGC

nilp ∩ g 6= ∅ and OGC

nilp ∩ gc = ∅.
(vii) There exists a real antipodal hyperbolic adjoint orbit OG

hyp of G in

g (defined below) such that OG
hyp ∩ h = ∅.

(viii) There exists a complex antipodal hyperbolic adjoint orbit OGC

hyp of

GC in gC such that OGC

hyp
∩ g 6= ∅ and OGC

hyp
∩ gc = ∅.

(ix) There exists an sl2-triple (A,X, Y ) in g (i.e. A,X, Y ∈ g with
[A,X] = 2X, [A,Y ] = −2Y , and [X,Y ] = A) such that OG

A∩h = ∅,
where OG

A is the real adjoint orbit through A of G in g.

(x) There exists an sl2-triple (A,X, Y ) in gC such that OGC

A ∩ g 6= ∅
and OGC

A ∩ gc = ∅, where O
GC

A is the complex adjoint orbit through
A of GC in gC.

Theorem 1.3 is a part of this theorem.
The definitions of hyperbolic orbits and antipodal orbits are given

here:

Definition 2.3. Let g be a complex or real semisimple Lie alge-
bra. An element X of g is said to be hyperbolic if the endomorphism
adg(X) ∈ End(g) is diagonalizable with only real eigenvalues. We say
that an adjoint orbit O in g is hyperbolic if any (or some) element in O
is hyperbolic. Moreover, an adjoint orbit O in g is said to be antipodal
if for any (or some) element X in O, the element −X is also in O.

A proof of Theorem 2.2 will be given in Section 4. Here is a short
remark on it. In (i) ⇒ (ix), the homomorphism Φ associates an sl2-
triple (A,X, Y ) by the differential of Φ (see Section 4.1). The complex
adjoint orbits in (viii) and (x) are obtained by the complexification of
the real adjoint orbits in (vii) and (ix), respectively (see Section 4.3). In
(x)⇒ (vi), the sl2-triple (A,X, Y ) in (x) associates a complex nilpotent

orbit in (vi) by OGC

X := Ad(GC) ·X (see Section 4.4). The implication (i)
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⇒ (ii) is obvious if we take π1(Σg) inside SL(2,R). The equivalence (iv)
⇔ (vii) is a kind of paraphrase of Benoist’s criterion [5, Theorem 1.1] on
symmetric spaces (see Section 4.2). The key ingredient of Theorem 2.2
is the implication (iii) ⇒ (i). We will reduce it to the implication (viii)
⇒ (x). The condition (viii) will be used for a classification of (G,H)
satisfying the equivalence conditions in Theorem 2.2 (see Section 9).

Remark 2.4. (1): K. Teduka [40] gave a list of (G,H) satisfying
the condition (i) in Theorem 2.2 in the special cases where (g, h) is
a complex symmetric pair. He also studied proper SL(2,R)-actions
on some non-symmetric spaces in [41].

(2): Y. Benoist [5, Theorem 1.1] proved a criterion for the condition
(iv) in a more general setting than we treat here.

(3): The following condition on a semisimple symmetric pair (G,H)
is weaker than the equivalent conditions in Theorem 2.2:
• There exists a real nilpotent adjoint orbit OG

nilp of G in g such

that OG
nilp ∩ h = ∅.

For a discrete subgroup Γ of G, we say that a Clifford–Klein form
Γ\G/H is standard if Γ is contained in closed reductive subgroup L of
G (see Definition 3.1) acting properly on G/H (see [14]), and is non-
standard if not. See [13] for an example of a Zariski-dense discontinuous
group Γ for G/H, which gives a nonstandard Clifford–Klein form. We
obtain the following corollary to the equivalence (i) ⇔ (iii) in Theo-
rem 2.2.

Corollary 2.5. Let g ≥ 2. Then, in Setting 2.1, the symmetric space
G/H admits the surface group π1(Σg) as a discontinuous group if and
only if there exists a discrete subgroup Γ of G such that Γ ≃ π1(Σg) and
Γ\G/H is standard.

Theorem 2.2 may be compared with the fact below for proper actions
by the abelian group R consisting of hyperbolic elements:

Fact 2.6 (Criterion for the Calabi–Markus phenomenon). In Set-
ting 2.1, the following seven conditions on a semisimple symmetric pair
(G,H) are equivalent:

(i) There exists a Lie group homomorphism Φ : R → G such that R

acts properly on G/H via Φ.
(ii) G/H admits the abelian group Z as a discontinuous group.
(iii) G/H admits an infinite discontinuous group.
(iv) G/H admits a discontinuous group which is a free group generated

by a hyperbolic element in G.
(v) rankR g > rankR h.
(vi) There exists a real hyperbolic adjoint orbit OG

hyp of G in g such

that OG
hyp ∩ h = ∅.
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(vii) There exists a complex hyperbolic adjoint orbit OGC

hyp of GC in gC

such that OGC

hyp ∩ g 6= ∅ and OGC

hyp ∩ gc = ∅.

The equivalence among (i), (ii), (iii), (iv), and (v) in Fact 2.6 was
proved in a more general setting in T. Kobayashi [15, Corollary 4.4].
The real rank condition (v) serves as a criterion for the Calabi–Markus
phenomenon (iii) in Fact 2.6 (cf. [7], [15]). We will give a proof of the
equivalence among (v), (vi), and (vii) in Appendix B.

The second main result is a classification of semisimple symmetric
pairs (G,H) satisfying one of (therefore, all of) the equivalent conditions
in Theorem 2.2.

If a semisimple symmetric pair (G,H) is irreducible, but G is not
simple, then G/H admits a proper SL(2,R)-action, since the symmetric
space G/H can be regarded as a complex simple Lie group. Therefore,
the crucial case is on symmetric pairs (g, h) with simple Lie algebra g.

To describe our classification, we denote

S := { (g, h) | (g, h) is a semisimple symmetric pair

with a simple Lie algebra g}.
The set S was classified by M. Berger [6] up to isomorphisms. We

also put

A := { (g, h) ∈ S | (g, h) satisfies one of the conditions in Theorem 2.2 },
B := { (g, h) ∈ S | rankR g > rankR h } \A,
C := { (g, h) ∈ S | rankR g = rankR h }.
Then A ∩ C = ∅ by Fact 2.6, and we have

S = A ⊔B ⊔ C.

One can easily determine the set C in S. Thus, to describe the classifi-
cation of A, we only need to give the classification of B.

Here is our classification of the set B, namely, a complete list of (g, h)
satisfying the following:

(2.2) g is simple (g, h) is a symmetric pair with rankR g > rankR h

but does not satisfy the equivalent conditions in Theorem 2.2.

Here, k ≥ 2, m ≥ 1, and n ≥ 2.
Theorem 1.4, which gives a classification of the set A, is obtained by

Table 2.
Concerning our classification, we will give an algorithm to check

whether or not a given symmetric pair (g, h) satisfies the condition (viii)
in Theorem 2.2. More precisely, we will determine the set of complex an-
tipodal hyperbolic orbits in a complex simple Lie algebra gC (see Section
6.2) and introduce an algorithm to check whether or not a given such
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Table 2. Classification of (g, h) satisfying (2.2)

g h

sl(2k,R) sp(k,R)
sl(2k,R) so(k, k)
sl(2k − 1,R) so(k, k − 1)
su∗(4m+ 2) sp(m+ 1,m)
su∗(4m) sp(m,m)
su∗(2k) so∗(2k)
so(2k − 1, 2k − 1) so(i+ 1, i)⊕ so(j, j + 1)

(i+ j = 2k − 2)
e6(6) f4(4)
e6(6) sp(4,R)

e6(−26) sp(3, 1)

e6(−26) f4(−20)

sl(n,C) so(n,C)
sl(2k,C) sp(k,C)
sl(2k,C) su(k, k)
so(4m+ 2,C) so(i,C)⊕ so(j,C)

(i+ j = 4m+ 2, i, j are odd)
so(4m+ 2,C) so(2m+ 2, 2m)
e6,C sp(4,C)
e6,C f4,C
e6,C e6(2)

orbit meets a real form g [resp. gc] (see Section 7). Table 2 is obtained
by using this algorithm (see Section 9).

Remark 2.7. (1) Using [5, Theorem 1.1], Benoist gave a number
of examples of symmetric pairs (G,H) which do not satisfy the
condition (iv) in Theorem 2.2 with rankR g > rankR h (see [5,
Example 1]). Table 2 gives its complete list.

(2) We take this opportunity to correct [34, Table 2.6], where the pair
(sl(2k − 1,R), so(k, k − 1)) was missing.

We discuss an application of the main result (Theorem 2.2) to the
existence problem of compact Clifford–Klein forms. As we explained in
the Introduction, a Clifford–Klein form of G/H is the double coset space
Γ\G/H when Γ is a discrete subgroup of G acting on G/H properly
discontinuously and freely. Recall that we say that a homogeneous space
G/H admits compact Clifford–Klein forms, if there exists such Γ where
Γ\G/H is compact. See also [5, 15, 16, 17, 19, 23, 24, 28, 30, 33, 39,
45] for preceding results for the existence problem for compact Clifford–
Klein forms. Among them, there are three methods that can be applied
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to semisimple symmetric spaces to show the non-existence of compact
Clifford–Klein forms:

• Using the Hirzebruch–Kobayashi–Ono proportionality principle [15,
Proposition 4.10], [23].
• Using a comparison theorem of cohomological dimension [17, The-
orem 1.5]. (A generalization of the criterion in [15] of the Calabi–
Markus phenomenon.)
• Using a criterion for the non-existence of properly discontinuous
actions of non-virtually abelian groups [5, Corollary 1].

As an immediate corollary of the third method and the description
of the set B by Table 2, one concludes:

Corollary 2.8. The simple symmetric space G/H does not admit
compact Clifford–Klein forms if (g, h) is in Table 2.

3. Preliminary results for proper actions

In this section, we recall results of T. Kobayashi [15] and Y. Benoist
[5] in a form that we shall need. Our proofs of the equivalences (i) ⇔
(x) and (iv) ⇔ (viii) in Theorem 2.2 will be based on these results (see
Section 4.1 and Section 4.2).

3.1. Kobayashi’s properness criterion. Let G be a connected linear
semisimple Lie group and write g for the Lie algebra of G. First, we fix
a terminology as follows:

Definition 3.1. We say that a subalgebra h of g is reductive in
g if there exists a Cartan involution θ of g such that h is θ-stable.
Furthermore, we say that a closed subgroup H of G is reductive in G if
H has only finitely many connected components and the Lie algebra h

of H is reductive in g.

For simplicity, we call h [resp. H] a reductive subalgebra of g [resp. a
reductive subgroup of G] if h is reductive in g [resp. H is reductive in G].
We call such (G,H) a reductive pair. Note that a reductive subalgebra
h of g is a reductive Lie algebra.

We give two examples relating to Theorem 2.2:

Example 3.2. In Setting 2.1, the subgroup H is reductive in G since
there exists a Cartan involution θ on g, which is commutative with σ
(cf. [6]).

Example 3.3. Let l be a semisimple subalgebra of g. Then any Car-
tan involution on l can be extended to a Cartan involution on g (cf.
G. D. Mostow [32]) and the analytic subgroup L corresponding to l is
closed in G (cf. K. Yosida [44]). Therefore, l [resp. L] is reductive in g

[resp. G].
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In the rest of this subsection, we follow the setting below:

Setting 3.4. G is a connected linear semisimple Lie group, H and
L are reductive subgroups of G.

We denote by g, h, and l the Lie algebras of G, H, and L, respectively.
Take a Cartan involution θ of g which preserves h. We write g = k+ p,
h = k(h)+p(h) for the Cartan decomposition of g, h corresponding to θ,
θ|h, respectively. We fix a maximal abelian subspace ah of p(h) (i.e. ah
is a maximally split abelian subspace of h), and extend it to a maximal
abelian subspace a in p (i.e. a is a maximally split abelian subspace of g).
We write K for the maximal compact subgroup of G with its Lie algebra
k, and denote the Weyl group acting on a by W (g, a) := NK(a)/ZK(a).
Since l is also reductive in g, we can take a Cartan involution θ′ of g
preserving l. We write l = k′(l) + p′(l) for the Cartan decomposition of
l corresponding to θ′|l, and fix a maximal abelian subspace a′l of p

′(l).
Then there exists g ∈ G such that Ad(g) · a′l is contained in a, and we
put al := Ad(g) · a′l. The subset W (g, a) · al of a does not depend on a
choice of such g ∈ G.

The following fact holds:

Fact 3.5 (T. Kobayashi [15, Theorem 4.1]). In Setting 3.4, L acts
on G/H properly if and only if

ah ∩W (g, a) · al = {0}.
The proof of Fact 2.6 is reduced to Fact 3.5 (see [15]). However, to

prove the equivalences between (v), (vi), and (vii) in Fact 2.6, we need
an additional argument which will be described in Appendix B.

3.2. Benoist’s criterion. Let (G,H) be a reductive pair (see Defini-
tion 3.1). In this subsection, we use the notation g, h, θ, ah, a, and
W (g, a) as in the previous subsection.

Let us denote the restricted root system of (g, a) by Σ(g, a). We fix a
positive system Σ+(g, a) of Σ(g, a), and put

a+ := {A ∈ a | ξ(X) ≥ 0 for any ξ ∈ Σ+(g, a) }.
Then a+ is a fundamental domain for the action of the Weyl group
W (g, a). We write w0 for the longest element in W (g, a) with respect to
the positive system Σ+(g, a). Then, by the action of w0, every element
in a+ moves to −a+ := {−A | A ∈ a+}. In particular,

−w0 : a→ a, A 7→ −(w0 ·A)
is an involutive automorphism on a preserving a+. We put

b := {A ∈ a | −w0 ·A = A }, b+ := b ∩ a+.

Then the next fact holds:
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Fact 3.6 (Y. Benoist [5, Theorem in Section 1.1]). The following
conditions on a reductive pair (G,H) are equivalent:

(i) G/H admits an infinite discontinuous group which is not virtually
abelian.

(ii) b+ 6⊂ w · ah for any w ∈W (g, a).
(iii) b+ 6⊂W (g, a) · ah.
Remark 3.7. Benoist showed (i)⇔ (ii) in Fact 3.6. The equivalence

(ii)⇔ (iii) follows from the fact below (since b+ is a convex set of a and
w · ah is a linear subspace of a for any w ∈W (g, a)).

Fact 3.8. Let U1, U2, . . . , Un be subspaces of a finite dimensional real
vector space V and Ω a convex set of V . Then Ω is contained in

⋃n
i=1 Ui

if and only if Ω is contained in Uk for some k ∈ {1, . . . , n}.

4. Proof of Theorem 2.2

We give a proof of Theorem 2.2 by proving the implications in the
figure below:

(i) +3
KS

��

9A

y� ④④
④
④
④
④
④

④
④
④
④
④
④
④

(ii) +3 (iii)

��
(v) (ix)

KS

��

ks (vii) ks +3
KS

��

(iv)

(vi) ks +3 (x) +3 (viii)

In this section, to show the implications, we use some theorems,
propositions, and lemmas, which will be proved later in this paper.

Notation: Throughout this paper, for a complex semisimple Lie al-
gebra gC and its real form g, we denote a complex [resp. real] nilpotent,
hyperbolic, antipodal hyperbolic adjoint orbit in gC [resp. g] simply by
a complex [resp. real] nilpotent, hyperbolic, antipodal hyperbolic orbit
in gC [resp. g].

4.1. Proof of (i) ⇔ (ix) in Theorem 2.2. Our proof of the equiv-
alence (i) ⇔ (ix) in Theorem 2.2 starts with the next theorem, which
will be proved in Section 5:

Theorem 4.1 (Corollary to Fact 3.5). In Setting 3.4, the following
conditions on (G,H,L) are equivalent:

(i) L acts on G/H properly;
(ii) there do not exist real hyperbolic orbits in g (see Definition 2.3)

meeting both l and h other than the zero-orbit,

where g, h, and l are Lie algebras of G, H, and L, respectively.
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By using Theorem 4.1, we will prove the next proposition in Section 5:

Proposition 4.2. Let (G,H) be a reductive pair (see Definition 3.1).
Then there exists a bijection between the following two sets:

• The set of Lie group homomorphisms Φ : SL(2,R)→ G such that
SL(2,R) acts on G/H properly via Φ,
• The set of sl2-triples (A,X, Y ) in g such that the real adjoint orbit
through A does not meet h.

In Setting 2.1, the subgroup H of G is reductive in G (see Example
3.2). Hence, we obtain the equivalence (i) ⇔ (ix) in Theorem 2.2.

4.2. Proof of (iv) ⇔ (vii) in Theorem 2.2. We will prove the next
theorem in Section 5:

Theorem 4.3 (Corollary to Fact 3.6). The following conditions on
a reductive pair (G,H) (see Definition 3.1) are equivalent:

(i) G/H admits an infinite discontinuous group that is not virtually
abelian.

(ii) There exists a real antipodal hyperbolic orbit in g that does not
meet h.

In Setting 2.1, the equivalence (iv) ⇔ (vii) in Theorem 2.2 holds as
a special case of Theorem 4.3.

4.3. Proofs of (x) ⇔ (ix), (viii) ⇔ (vii), and (x) ⇒ (viii) in The-
orem 2.2. Let gC be a complex semisimple Lie algebra. We use the
following convention for hyperbolic elements (see Definition 2.3):

H := {A ∈ gC | A is a hyperbolic element in gC }.
Ha := {A ∈ H | The complex adjoint orbit through A is antipodal }.
Hn := {A ∈ gC | There exist X,Y ∈ gC

such that (A,X, Y ) is an sl2-triple }.

We also write H/GC, Ha/GC for the sets of complex hyperbolic or-
bits and complex antipodal hyperbolic orbits in gC, respectively. Let us
denote by Hn/GC the set of complex adjoint orbits contained in Hn.

The next lemma will be proved in Section 6.3:

Lemma 4.4. For any sl2-triple (A,X, Y ) in gC, the element A of gC
is hyperbolic and the complex adjoint orbit through A in gC is antipodal.

By Lemma 4.4, we have

Hn ⊂ Ha ⊂ H.
Hence, the implication (x) ⇒ (viii) in Theorem 2.2 follows.
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Further, for any subalgebra l of gC, we also use the following conven-
tion:

Hl := {A ∈ H | The complex adjoint orbit through A meets l }.
Ha

l := Ha ∩Hl.

Hn
l := Hn ∩Hl.

Let us write Hl/GC, Ha
l /GC, Hn

l /GC for the sets of complex adjoint
orbits contained in H, Ha, Hn meeting l, respectively.

Here, we fix a real form g, and set

H(g) := {A ∈ g | A is a hyperbolic element in g },
Ha(g) := {A ∈ H(g) | The real adjoint orbit through A is antipodal },
Hn(g) := {A ∈ g | There exist X,Y ∈ g

such that (A,X, Y ) is an sl2-triple }.

We also write H(g)/G, Ha(g)/G, Hn(g)/G for the sets of real adjoint
orbits contained in H(g), Ha(g), Hn(g), respectively.

Then the following proposition gives a one-to-one correspondence be-
tween real hyperbolic orbits and complex hyperbolic orbits with real
points:

Proposition 4.5. (i) The following map gives a one-to-one corre-
spondence between H(g)/G and Hg/GC:

H(g)/G→Hg/GC, OG
hyp 7→ Ad(GC) · OG

hyp,

Hg/GC →H(g)/G, OGC

hyp
7→ OGC

hyp
∩ g.

(ii) The bijection in (i) gives the one-to-one correspondence below:

Ha(g)/G
1:1←→Ha

g/GC.

(iii) The bijection in (i) gives the one-to-one correspondence below:

Hn(g)/G
1:1←→Hn

g /GC.

The proof of Proposition 4.5 will be given in Section 7.
In Setting 2.1, recall that both g and gc are real forms of gC. In

Section 8, we will prove the following proposition, which claims that a
complex hyperbolic orbit meets h if it meets both g and gc:

Proposition 4.6. In Setting 2.1, Hg ∩Hgc = Hh.

The equivalences (x) ⇔ (ix) and (viii) ⇔ (vii) in Theorem 2.2 follow
from Proposition 4.5 and Proposition 4.6.
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4.4. Proof of (vi) ⇔ (x) in Theorem 2.2. The equivalence (vi) ⇔
(x) in Theorem 2.2 can be obtained by the Jacobson–Morozov theorem
and the lemma below (see Proposition 7.8 for a proof):

Lemma 4.7 (Corollary to J. Sekiguchi [38, Proposition 1.11]). Let
gC be a complex semisimple Lie algebra and g a real form of gC. Then
the following conditions on an sl2-triple (A,X, Y ) in gC are equivalent:

(i) The complex adjoint orbit through A in gC meets g.
(ii) The complex adjoint orbit through X in gC meets g.

4.5. Proof of (vii) ⇒ (ix) in Theorem 2.2. Let g be a semisimple
Lie algebra. In this subsection, we use H(g), Ha(g), and Hn(g) as in
Section 4.3.

To prove the implication (vii) ⇒ (ix), we use the next proposition
and lemma:

Proposition 4.8. We take

b := {A ∈ a | −w0 · A = A }, b+ := b ∩ a+

as in Section 3.2. Then the following holds:

(i) b = R-span(a+ ∩Hn(g)).
(ii) Ha(g) = Ad(G) · b+.
Lemma 4.9. Let (g, h, σ) be a semisimple symmetric pair. We fix a

Cartan involution θ on g such that θσ = σθ and denote by g = k+ p the
Cartan decomposition of g with respect to θ. Let us take a and ah = a∩h
as in Section 3.1. We fix an ordering on ah and extend it to a, and put
a+ to the closed Weyl chamber of a with respect to the ordering. Then

a+ ∩Hh(g) ⊂ ah,

where Hh(g) is the set of hyperbolic elements in g whose adjoint orbits
meet h.

Postponing the proof of Proposition 4.8 and Lemma 4.9 to later sec-
tions, we complete the proof of the implication (viii) ⇒ (x) in Theorem
2.2.

Proof of (viii) ⇒ (x) in Theorem 2.2. We shall prove that Ha(g) ⊂
Hh(g) under the assumption Hn(g) ⊂ Hh(g). By combining Proposi-
tion 4.8 (i) and Lemma 4.9 with the assumption, we have

b ⊂ ah(⊂ h).

Therefore, by Proposition 4.8 (ii), we obtain that Ha(g) ⊂ Hh(g). q.e.d.

We shall give a proof of Proposition 4.8 (i) in Section 7.5 by comparing
Dynkin’s classification of sl2-triples in gC [10] with the Satake diagram
of the real form g of gC. The proof of Proposition 4.8 (ii) will be given
in Section 5.1, and that of Lemma 4.9 in Section 8.
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4.6. Proofs of (i) ⇒ (ii), (iii) ⇒ (viii), and (i) ⇔ (v) in Theorem
2.2. The implication (i)⇒ (ii) in Theorem 2.2 is deduced from the lifting
theorem of surface groups (cf. [26]). The implication (iii)⇒ (viii) follows
by the fact that the surface group of genus g is not virtually abelian for
any g ≥ 2.

The equivalence (i) ⇔ (v) can be proved by the observation below:

Let Γ0 be the free group generated by

(
1 1
0 1

)
in SL(2,R). Then, for any

free group Γ generated by a unipotent element in a linear semisimple Lie
group G, there exists a Lie group homomorphism Φ : SL(2,R)→ G such
that Φ(Γ0) = Γ (by the Jacobson–Morozov theorem). Furthermore, by
[18, Lemma 3.2], for any closed subgroup H of G, the SL(2,R)-action
on G/H via Φ is proper if and only if the Γ-action on G/H is properly
discontinuous.

5. Real hyperbolic orbits and proper actions of reductive
subgroups

In this section, we prove Theorem 4.1, Proposition 4.2, Theorem 4.3,
and Proposition 4.8 (ii).

5.1. Kobayashi’s properness criterion and Benoist’s criterion
rephrased by real hyperbolic orbits. In this subsection, Theorem
4.1 and Theorem 4.3 are proved as corollaries to Fact 3.5 and Fact 3.6,
respectively. We also prove Proposition 4.8 (ii) in this subsection.

Let g be a semisimple Lie algebra. The next fact for real hyperbolic
orbits in g (see Definition 2.3) is well known:

Fact 5.1. Fix a Cartan decomposition g = k+p of g and a maximally
split abelian subspace a of g (i.e. a is a maximal abelian subspace of p).
Then any real hyperbolic orbit OG

hyp in g meets a, and the intersection

OG
hyp ∩ a is a single W (g, a)-orbit, where W (g, a) := NK(a)/ZK(a). In

particular, we have a bijection

H(g)/G→ a/W (g, a), OG
hyp 7→ OG

hyp ∩ a,

where H(g)/G is the set of real hyperbolic orbits in g and a/W (g, a) the
set of W (g, a)-orbits in a.

Let h be a reductive subalgebra of g (see Definition 3.1). Take a
maximally split abelian subspace ah of h and extend it to a maximally
split abelian subspace a of g in a similar way as in Section 3.1. Then
the following lemma holds:

Lemma 5.2. A real hyperbolic orbit OG
hyp in g meets h if and only if

it meets ah. In particular, we have a bijection

Hh(g)/G→ {OW (g,a) ∈ a/W (g, a) | OW (g,a)∩ah 6= ∅ }, OG
hyp 7→ OG

hyp∩a,
where Hh(g)/G is the set of real hyperbolic orbits in g meeting h.
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Sketch of the proof. Suppose that OG
hyp meets h; we shall prove that

OG
hyp meets ah. If h is semisimple, then OG

hyp∩h contains some hyperbolic
orbits in h. Hence, our claim follows by Fact 5.1. For the cases where h

is reductive in g with non-trivial center Z(h), we put

Zk(h)(h) := Z(h) ∩ k, Zp(h)(h) := Z(h) ∩ p,

where g = k + p, h = k(h) + p(h) are Cartan decompositions of g, h in
Section 3.1. Then we have

h = Zk(h)(h)⊕ Zp(h)(h)⊕ [h, h].

Here, we fix any X ∈ OG
hyp ∩ h and put

X = Xk +Xp +X ′

for Xk ∈ Zk(h)(h), Xp ∈ Zp(h)(h), and X ′ ∈ [h, h]. Then one can prove
that Xk = 0 and X ′ is hyperbolic in the semisimple subalgebra [h, h] of
g. Hence our claim follows from Fact 5.1. q.e.d.

We now prove Theorem 4.1 as a corollary to Fact 3.5.

Proof of Theorem 4.1. In Setting 3.4, by Fact 5.1 and Lemma 5.2, we
have a bijection between the following two sets:

• the set of W (g, a)-orbits in a meeting both ah and al,
• the set of real hyperbolic orbits in g meeting both h and l.

Hence, our claim follows from Fact 3.5. q.e.d.

To prove Theorem 4.3, we shall show the next lemma:

Lemma 5.3. Let g be a semisimple Lie algebra. Then a real hyper-
bolic orbit in g is antipodal if and only if it meets b+ (see Section 3.2
for the notation). In particular, we have a bijection

Ha(g)/G→ {OW (g,a) ∈ a/W (g, a) | OW (g,a)∩b+ 6= ∅ }, OG
hyp 7→ OG

hyp∩a,
where Ha(g)/G is the set of real antipodal hyperbolic orbits in g.

Proof of Lemma 5.3. By Fact 5.1, any real hyperbolic orbit OG
hyp in g

meets a+ with a unique element A0 in OG
hyp ∩ a+. It remains to prove

that −A0 is in OG
hyp if and only if −w0 ·A0 = A0. First, we suppose that

−A0 ∈ OG
hyp. Then the element −A0 of −a+ is conjugate to A0 under

the action of W (g, a) by Fact 5.1. Recall that both a+ and −a+ are
fundamental domains of a for the action of W (g, a), and w0 · a+ = −a+.
Hence, we obtain that −w0 · A0 = A0. Conversely, we assume that
−A0 = w0 · A0. In particular, −A0 is in W (g, a) · A0. This implies that
−A0 is also in OG

hyp. q.e.d.

We are ready to prove Theorem 4.3.

Proof of Theorem 4.3. In the setting of Fact 3.6, by Fact 5.1, Lemma
5.2 and Lemma 5.3, we have a bijection between the following two sets:
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• the set of W (g, a)-orbits in a which meet b+ but not ah,
• the set of real antipodal hyperbolic orbits in g that do not meet h.

Hence, our claim follows from Fact 3.6. q.e.d.

Proposition 4.8 (ii) is also obtained by Lemma 5.3 as follows:

Proof of Proposition 4.8 (ii). The first claim of Lemma 5.3 means that
an adjoint orbit O in g is real antipodal hyperbolic if and only if O is
in Ad(G) · b+. Thus we have Ha(g) = Ad(G) · b+. q.e.d.

5.2. Lie group homomorphisms from SL(2,R). In this subsection,
we prove Proposition 4.2 by using Theorem 4.1.

Let G be a connected linear semisimple Lie group and write g for its
Lie algebra. Then the next lemma holds:

Lemma 5.4. Any Lie algebra homomorphism φ : sl(2,R)→ g can be
uniquely lifted to Φ : SL(2,R) → G (i.e. Φ is the Lie group homomor-
phism with its differential φ). In particular, we have a bijection between
the following two sets:

• the set of Lie group homomorphism from SL(2,R) to G,
• the set of sl2-triples in g.

Proof of Lemma 5.4. The uniqueness follows from the connectedness of
SL(2,R). We shall lift φ. Let us denote by

φC : sl(2,C)→ gC

the complexification of φ. Recall that G is linear. Then we can take a
complexification GC of G. Since SL(2,C) is simply connected, the Lie
algebra homomorphism φC can be lifted to

ΦC : SL(2,C)→ GC.

Then ΦC(SL(2,R)) is an analytic subgroup of GC corresponding to the
semisimple subalgebra φ(sl(2,R)) of g. In particular, ΦC(SL(2,R)) is a
closed subgroup of G. Therefore, we can lift φ to ΦC|SL(2,R). q.e.d.

Let H be a reductive subgroup of G (see Definition 3.1) and denote
by h the Lie algebra of H. To prove Proposition 4.2, it remains to show
the following corollary to Theorem 4.1:

Corollary 5.5. Let Φ : SL(2,R)→ G be a Lie group homomorphism,
and denote its differential by φ : sl(2,R)→ g. We put

Aφ := φ

(
1 0
0 −1

)
∈ g.

Then SL(2,R) acts on G/H properly via Φ if and only if the real adjoint
orbit through Aφ in g does not meet h.
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Proof of Corollary 5.5. Since sl(2,R) is simple, we can assume that φ :
sl(2,R)→ g is injective. We put

L := Φ(SL(2,R)), l := φ(sl(2,R)).

Then L is a reductive subgroup of G (see Example 3.3). Since φ is
injective and the center of SL(2,R) is finite, the kernel KerΦ is also
finite. Therefore, the action of SL(2,R) on G/H via Φ is proper if and
only if the action of L on G/H is proper. By Theorem 4.1, the action of
L on G/H is proper if and only if there does not exist a real hyperbolic
orbit in g meeting both h and l apart from the zero-orbit. Here, we take
al := RAφ as a maximally split abelian subspace of l. Then, by Lemma
5.2, for any real hyperbolic orbits in g, if it meets l, then it also meets
al. Therefore, the action of SL(2,R) on G/H via Φ is proper if and only
if the real adjoint orbit through Aφ in g does not meet h. q.e.d.

6. Weighted Dynkin diagrams of complex adjoint orbits

Let gC be a complex semisimple Lie algebra. In this section, we recall
some well-known facts for weighted Dynkin diagrams of complex hyper-
bolic orbits and complex nilpotent orbits in gC. We also prove Lemma
4.4, and determine weighted Dynkin diagrams of complex antipodal hy-
perbolic orbits in gC.

6.1. Weighted Dynkin diagrams of complex hyperbolic orbits.
In this subsection, we recall a parameterization of complex hyperbolic
orbits in gC by weighted Dynkin diagrams.

Fix a Cartan subalgebra jC of gC. Let us denote by ∆(gC, jC) the root
system of (gC, jC), and define the real form j of jC by

j := {A ∈ jC | α(A) ∈ R for any α ∈ ∆(gC, jC) }.
Then ∆(gC, jC) can be regarded as a subset of j∗. We fix a positive
system ∆+(gC, jC) of the root system ∆(gC, jC). Then a closed Weyl
chamber

j+ := {A ∈ j | α(A) ≥ 0 for any α ∈ ∆+(gC, jC) }
is a fundamental domain of j for the action of the Weyl group W (gC, jC)
of ∆(gC, jC).

In this setting, the next fact for complex hyperbolic orbits in gC is
well known.

Fact 6.1. Any complex hyperbolic orbit OGC

hyp in gC meets j, and the

intersection OGC

hyp ∩ j is a single W (gC, jC)-orbit in j. In particular, we

have one-to-one correspondences below:

H/GC

1:1←→ j/W (gC, jC)
1:1←→ j+,

whereH/GC is the set of complex hyperbolic orbits in gC and j/W (gC, jC)
the set of W (gC, jC)-orbits in j.
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Let Π denote the fundamental system of ∆+(gC, jC). Then, for any
A ∈ j, we can define a map

ΨA : Π→ R, α 7→ α(A).

We call ΨA the weighted Dynkin diagram corresponding to A ∈ j, and
α(A) the weight on a node α ∈ Π of the weighted Dynkin diagram.
Since Π is a basis of j∗, the correspondence

Ψ : j→ Map(Π,R), A 7→ ΨA(6.1)

is a linear isomorphism between real vector spaces. In particular, Ψ is
bijective. Furthermore,

Ψ|j+ : j+ → Map(Π,R≥0), A 7→ ΨA

is also bijective. We say that a weighted Dynkin diagram is trivial if all
weights are zero. Namely, the trivial diagram corresponds to the zero of
j by Ψ.

The weighted Dynkin diagram of a complex hyperbolic orbit OGC

hyp

in gC is defined as the weighted Dynkin diagram corresponding to the

unique element AO in OGC

hyp∩ j+ (see Fact 6.1). Combining Fact 6.1 with

the bijection Ψ|j+, the map

H/GC → Map(Π,R≥0), OGC

hyp 7→ ΨAO

is also bijective.

6.2. Weighted Dynkin diagrams of complex antipodal hyper-
bolic orbits. In this subsection, we determine complex antipodal hy-
perbolic orbits in gC (see Definition 2.3) by describing the weighted
Dynkin diagrams.

We consider the same setting as in Section 6.1. Let us denote by wC
0

the longest element of W (gC, jC) corresponding to the positive system
∆+(gC, jC). Then, by the action of wC

0 , every element in j+ moves to
−j+ := {−A | A ∈ j+}. In particular,

−wC
0 : j→ j, A 7→ −(wC

0 · A)
is an involutive automorphism on j preserving j+. We put

j−wC
0 := {A ∈ j | −wC

0 · A = A }, j
−wC

0

+ := j+ ∩ j−wC
0 .

We recall that any complex hyperbolic orbit OGC

hyp in gC meets j+ with

a unique element AO in OGC

hyp∩ j+ (see Fact 6.1). Then the lemma below

holds:

Lemma 6.2. A complex hyperbolic orbit OGC

hyp
in gC is antipodal if

and only if the corresponding element AO is in j
−wC

0

+ . In particular, we
have a one-to-one correspondence

Ha/GC

1:1←→ j
−wC

0

+ ,
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where Ha/GC is the set of complex antipodal hyperbolic orbits in gC.

Proof of Lemma 6.2. The proof parallels that of Lemma 5.3. q.e.d.

Recall that the map

Ψ : j→ Map(Π,R), A 7→ ΦA

is a linear isomorphism (see Section 6.1). Thus −wC
0 induces an invo-

lutive endomorphism on Map(Π,R). By using this endomorphism, the
following theorem gives a classification of complex antipodal hyperbolic
orbits in gC.

Theorem 6.3. Let ι denote the involutive endomorphism on
Map(Π,R) induced by −wC

0 . Then the following holds:

(i) A complex hyperbolic orbit OGC

hyp
in gC is antipodal if and only

if the weighted Dynkin diagram of OGC

hyp (see Section 6.1 for the

notation) is held invariant by ι. In particular, we have a one-to-
one correspondence

Ha/GC

1:1←→ {ΨA ∈ Map(Π,R≥0) | ΨA is held invariant by ι }.
(ii) Suppose gC is simple. Then the endomorphism ι is non-trivial if

and only if gC is of type An, D2k+1, or E6 (n ≥ 2, k ≥ 2). In such
cases, the forms of ι are:
For type An (n ≥ 2, gC ≃ sl(n+ 1,C)):

a1
��	�

��

a2
��	�

��

an−1
��	�

��

an
��	�

�� 7→

an
��	�

��

an−1
��	�

��

a2
��	�

��

a1
��	�

��

For type D2k+1 (k ≥ 2, gC ≃ so(4k + 2,C)):

a1
��	�

��

a2
��	�

��

a2k−1
��	�

��

a2k
��	�

��

a2k+1
��	�

��

· · ·
❖❖

❖❖
❖❖

♦♦♦♦♦♦ 7→
a1
��	�

��

a2
��	�

��

a2k−1
��	�

�� a2k+1

��	�

��

a2k
��	�

��

· · ·
❖❖

❖❖
❖❖

♦♦♦♦♦♦

For type E6 (gC ≃ e6,C):

a1
��	�

��

a2
��	�

��

a3
��	�

��

a4
��	�

��

a5
��	�

��

a6 ��	�

��

7→
a5
��	�

��

a4
��	�

��

a3
��	�

��

a2
��	�

��

a1
��	�

��

a6 ��	�

��

It should be noted that for the cases where gC is of type D2k (k ≥ 2),
the involution ι on weighted Dynkin diagrams is trivial although the
Dynkin diagram of type D2k admits some involutive automorphisms.
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Proof of Theorem 6.3. The first claim of the theorem follows from Lemma
6.2. One can easily show that the involutive endomorphism ι on Map(Π,R)
is induced by the opposition involution on the Dynkin diagram with
nodes Π, which is defined by

Π→ Π, α 7→ −(wC
0 )

∗ · α.
Suppose that gC is simple. Then the root system ∆(gC, jC) is irreducible.
It is known that the opposition involution is non-trivial if and only if
gC is of type An, D2k+1, or E6 (n ≥ 2, k ≥ 2) (see J. Tits [42, Section
1.5.1]), and the proof is complete. q.e.d.

As a corollary to Theorem 6.3, we have the following:

Corollary 6.4. If the complex semisimple Lie algebra gC has no
simple factor of type An, D2k+1, or E6 (n ≥ 2, k ≥ 2), then any
complex hyperbolic orbit in gC is antipodal. Namely, H/GC = Ha/GC.

By Corollary 6.4, in Setting 2.1, if gC has no simple factor of type
An, D2k+1, or E6 (n ≥ 2, k ≥ 2), then the condition (viii) in Theorem
2.2 and the condition (vii) in Fact 2.6 are equivalent.

6.3. Weighted Dynkin diagrams of complex nilpotent orbits.
We consider the setting in Section 6.1, and use the notation Hn and
Hn/GC as in Section 4.3. In this subsection, we prove Lemma 4.4, and
recall weighted Dynkin diagrams of complex nilpotent orbits in gC.

First, we prove Lemma 4.4, which claims that Hn ⊂ Ha, as follows:

Proof of Lemma 4.4. For any sl2-triple (A,X, Y ) in gC, it is well known
that adgC(A) ∈ End(gC) is diagonalizable with only real integral num-

bers. Hence, A is hyperbolic in gC. We shall prove that the orbit OGC

A :=
Ad(GC) · A is antipodal. We can easily check that the elements

(
1 0
0 −1

)
and

(
−1 0
0 1

)
in sl(2,C)

are conjugate under the adjoint action of SL(2,C). Then, for a Lie
algebra homomorphism φC : sl(2,C)→ gC with

φC

(
1 0
0 −1

)
= A,

the elements A and −A are conjugate under the adjoint action of the
analytic subgroup of GC corresponding to φC(sl(2,C)). Hence, the orbit

OGC

A in gC is antipodal. q.e.d.

Let N be the set of nilpotent elements in gC and N/GC the set of
nilpotent orbits in gC. For any sl2-triple (A,X, Y ) in gC, the element
A is in Hn(⊂ Ha) and the elements X,Y are both in N . Let us con-
sider the map from the conjugacy classes of sl2-triples in gC by inner
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automorphisms of gC to N/GC defined by

[(A,X, Y )] 7→ OGC

X

where [(A,X, Y )] is the conjugacy class of an sl2-triple (A,X, Y ) in gC
and OGC

X the complex adjoint orbit through X in gC. Then, by the
Jacobson–Morozov theorem, with a result in B. Kostant [25], the map
is bijective. On the other hand, by A. I. Malcev [29], the map from the
conjugacy classes of sl2-triples in gC by inner automorphisms of gC to
Hn/GC defined by

[(A,X, Y )] 7→ OGC

A

is also bijective, where OGC

A is the complex adjoint orbit through A in
gC. Therefore, we have a one-to-one correspondence

N/GC

1:1←→Hn/GC.

In particular, by combining the argument above with Fact 6.1, we also
obtain a bijection:

N/GC → j+ ∩Hn, OGC

nilp 7→ AO,

where AO is the unique element of j+ with this property: there exist

X,Y ∈ OGC

nilp such that (AO,X, Y ) is an sl2-triple in gC.

Remark 6.5. It is known that the Jacobson–Morozov theorem and
the result of Kostant in [25] also hold for any real semisimple Lie algebra
g. Therefore, we have a surjective map from the set of real nilpotent
orbits in g to Hn(g)/G, where Hn(g)/G is the notation in Section 4.3.
However, in general, the map is not injective.

The weighted Dynkin diagram of a complex nilpotent orbit OGC

nilp in

gC is defined as the weighted Dynkin diagram corresponding to AO ∈
j+ ∩ Hn. Obviously, the weighted Dynkin diagram of OGC

nilp is the same

as the weighted Dynkin diagram of the corresponding orbit in Hn/GC.
E. B. Dynkin [10] proved that any weight of a weighted Dynkin di-

agram of any complex adjoint orbit in Hn/GC is 0, 1, or 2. Hence,
Hn/GC is (and therefore N/GC is) finite. Dynkin [10] gave a list of the
weighted Dynkin diagrams of Hn/GC as the classification of sl2-triples
in gC. This also gives a classification of complex nilpotent orbits in gC
(see Bala–Cater [4] or Collingwood–McGovern [8, Section 3] for more
details).

We remark that by combining Theorem 6.3 with Lemma 4.4, if gC is
isomorphic to sl(n + 1,C), so(4k + 2,C), or e6,C (n ≥ 2, k ≥ 2), then
the weighted Dynkin diagram of any complex adjoint orbit in Hn/GC

(and therefore the weighted Dynkin diagram of any complex nilpotent
orbit) is invariant under the non-trivial involution ι.
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Table 3. Classification of complex nilpotent orbits in sl(6,C)

Partition Weighted Dynkin diagram

[6]
2
��	�

��

2
��	�

��

2
��	�

��

2
��	�

��

2
��	�

��

[5, 1]
2
��	�

��

2
��	�

��

0
��	�

��

2
��	�

��

2
��	�

��

[4, 2]
2
��	�

��

0
��	�

��

2
��	�

��

0
��	�

��

2
��	�

��

[4, 12]
2
��	�

��

1
��	�

��

0
��	�

��

1
��	�

��

2
��	�

��

[32]
0
��	�

��

2
��	�

��

0
��	�

��

2
��	�

��

0
��	�

��

[3, 2, 1]
1
��	�

��

1
��	�

��

0
��	�

��

1
��	�

��

1
��	�

��

[3, 13]
2
��	�

��

0
��	�

��

0
��	�

��

0
��	�

��

2
��	�

��

[23]
0
��	�

��

0
��	�

��

2
��	�

��

0
��	�

��

0
��	�

��

[22, 12]
0
��	�

��

1
��	�

��

0
��	�

��

1
��	�

��

0
��	�

��

[2, 14]
1
��	�

��

0
��	�

��

0
��	�

��

0
��	�

��

1
��	�

��

[16]
0
��	�

��

0
��	�

��

0
��	�

��

0
��	�

��

0
��	�

��

Example 6.6. It is known that there exists a bijection between com-
plex nilpotent orbits in sl(n,C) and partitions of n (see [8, Section 3.1
and 3.6]). Table 3 presents the list of weighted Dynkin diagrams of com-
plex nilpotent orbits in sl(6,C) (i.e. the list of weighted Dynkin diagrams
corresponding to j+ ∩Hn for the case where gC = sl(6,C))

7. Complex adjoint orbits and real forms

Let gC be a complex simple Lie algebra, and g a real form of gC. Recall
that, in Section 6, we have a parameterization of complex hyperbolic
[resp. antipodal hyperbolic, nilpotent] orbits in gC by weighted Dynkin
diagrams. In this section, we also determine complex hyperbolic [resp.
antipodal hyperbolic, nilpotent] orbits in gC meeting g. For this, we
give an algorithm to check whether or not a given complex hyperbolic
[resp. nilpotent] orbit in gC meets g. We also prove Proposition 4.5 and
Proposition 4.8 (i) in this section.

7.1. Complex hyperbolic orbits and real forms. We give a proof
of Proposition 4.5 (i) in this subsection.

We fix a Cartan decomposition g = k + p, and use the following
convention:
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Definition 7.1. We say that a Cartan subalgebra jg of g is split if
a := jg∩p is a maximal abelian subspace of p (i.e. a is a maximally split
abelian subspace of g).

Note that such jg is unique up to the adjoint action of K, where K
is the analytic subgroup of G corresponding to k.

Take a split Cartan subalgebra jg of g in Definition 7.1. Then jg can be
written as jg = t+ a for a maximal abelian subspace t of the centralizer
of a in k. Let us denote jC := jg +

√
−1jg and j :=

√
−1t+ a. Then jC is

a Cartan subalgebra of gC and j is a real form of it, with

j = {A ∈ jC | α(A) ∈ R for any α ∈ ∆(gC, jC)},
where ∆(gC, jC) is the root system of (gC, jC). We put

Σ(g, a) := {α|a | α ∈ ∆(gC, jC)} \ {0} ⊂ a∗

to the restricted root system of (g, a). Then we can take a positive
system ∆+(gC, jC) of ∆(gC, jC) such that the subset

Σ+(g, a) := {α|a | α ∈ ∆+(gC, jC)} \ {0}
of Σ(g, a) becomes a positive system. In fact, if we take an ordering on
a and extend it to j, then the corresponding positive system ∆+(gC, jC)
satisfies the condition above. Let us denote by W (gC, jC), W (g, a) the
Weyl groups of ∆(gC, jC), Σ(g, a), respectively. We put the closed Weyl
chambers

j+ := {A ∈ j | α(A) ≥ 0 for any α ∈ ∆+(gC, jC) },
a+ := {A ∈ a | ξ(A) ≥ 0 for any ξ ∈ Σ+(g, a) }.

Then j+ and a+ are fundamental domains of j, a for the actions of
W (gC, jC) and W (g, a), respectively. By the definition of ∆+(gC, jC) and
Σ+(g, a), we have a+ = j+ ∩ a.

We recall that any complex hyperbolic orbit OGC

hyp in gC meets j+ with

a unique element AO in OGC

hyp∩ j+ (see Fact 6.1). Then the lemma below
holds:

Lemma 7.2. A complex hyperbolic orbit OGC

hyp
in gC meets g if and

only if the corresponding element AO is in a+. In particular, we have a
one-to-one correspondence

Hg/GC

1:1←→ a+,

where Hg/GC is the set of complex hyperbolic orbits in gC meeting g.

Lemma 7.2 will be used in Section 7.2 to prove Theorem 7.4. We now
prove Proposition 4.5 (i) and Lemma 7.2 simultaneously.

Proof of Proposition 4.5 (i) and Lemma 7.2. We show that for a com-

plex hyperbolic orbit OGC

hyp in gC, the element AO is in a+ if OGC

hyp meets

g. Note that an element of g is hyperbolic in g (see Definition 2.3) if
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and only if hyperbolic in gC. Thus any real adjoint orbit O′ contained

in OGC

hyp ∩ g is hyperbolic, and hence O′ meets a+ with a unique element

A0 ∈ O′ ∩ a+ by Fact 5.1. Since a+ is contained in j+, the element A0

is in OGC

hyp ∩ j+. Thus, A0 = AO. Therefore, we obtain that AO is in a+

for any OGC

hyp ∈ Hg/GC, which completes the proof of Lemma 7.2.

To prove Proposition 4.5 (i), it suffices to show that the intersection

OGC

hyp∩g becomes a single adjoint orbit. By the argument above, we have

Ad(G) ·AO = OGC

hyp ∩ g,

and hence Proposition 4.5 (i) follows. q.e.d.

7.2. Weighted Dynkin diagrams and Satake diagrams. Let us
consider the setting in Section 7.1. In this subsection, we determine
complex hyperbolic orbits in gC meeting g by using the Satake diagram
of g.

First, we recall briefly the definition of the Satake diagram of the
real form g of gC (see [2, 36] for more details). Let us denote by Π the
fundamental system of ∆+(gC, jC). Then

Π := {α|a | α ∈ Π } \ {0}
is the fundamental system of Σ+(g, a). We write Π0 for the set of all
simple roots in Π whose restriction to a is zero. The Satake diagram Sg

of g consists of the following data: the Dynkin diagram of gC with nodes
Π, black nodes Π0 in S, and arrows joining α ∈ Π \ Π0 and β ∈ Π \Π0

in S whose restrictions to a are the same.
Second, we give the definition of weighted Dynkin diagrams matching

the Satake diagram Sg of g as follows:

Definition 7.3. Let ΨA ∈ Map(Π,R) be a weighted Dynkin diagram
of gC (see Section 6.1 for the notation) and Sg the Satake diagram of g
with nodes Π. We say that ΨA matches Sg if all the weights on black
nodes in Π0 are zero and any pair of nodes joined by an arrow have the
same weights.

Then the following theorem holds:

Theorem 7.4. The weighted Dynkin diagram of a complex hyperbolic

orbit OGC

hyp
in gC matches the Satake diagram of g if and only if OGC

hyp

meets g. In particular, we have a one-to-one correspondence

Hg/GC

1:1←→ {ΨA ∈ Map(Π,R≥0) | ΨA matches Sg }.
Recall that Ψ is a linear isomorphism from j to Map(Π,R) (see (6.1) in

Section 6.1 for the notation), and there exists a one-to-one correspon-
dence between Hg/GC and a+ (see Lemma 7.2). Therefore, to prove
Theorem 7.4, it suffices to show the next lemma:
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Lemma 7.5. The linear isomorphism Ψ : j → Map(Π,R) induces a
linear isomorphism

a→ {ΨA ∈ Map(Π,R) | ΨA matches Sg }, A 7→ ΨA.

Proof of Lemma 7.5. Let A ∈ j. By Definition 7.3, the weighted Dynkin
diagram ΨA matches the Satake diagram of g if and only if A satisfies
the following condition (⋆):

(⋆)

{
α(A) = 0 (for any α ∈ Π0),

α(A) = β(A) (for any α, β ∈ Π \ Π0 with α|a = β|a).
Thus, it suffices to show that the subspace

a′ := {A ∈ j | A satisfies the condition (⋆) }
of j coincides with a. It is easy to check that a ⊂ a′. We now prove that
dimR a = dimR a′. Recall that Π is a fundamental system of Σ+(g, a). In
particular, Π is a basis of a∗. Thus, dimR a = ♯Π. We define the element
A′

ξ of a′ for each ξ ∈ Π by

α(A′
ξ) =

{
1 (if α|a = ξ),

0 (if α|a 6= ξ),

for any α ∈ Π. Then {A′
ξ | ξ ∈ Π } is a basis of a′ since

Π = {α|a | α ∈ Π } \ {0}.
Thus, dimR a′ = ♯Π, and hence a = a′. q.e.d.

7.3. Complex antipodal hyperbolic orbits and real forms. We
consider the setting in Section 7.1 and Section 7.2. In this subsection, the
proof of Proposition 4.5 (ii) is given. Related to the proof of Proposition
4.6 (i), which will be given in Section 7.5, we also determine the subset b
of a (see Section 3.2 for the notation) by describing the weighted Dynkin
diagrams in this subsection.

First, we prove Proposition 4.5 (ii), which gives a bijection between
complex antipodal hyperbolic orbits in gC meeting g and real antipodal
hyperbolic orbits in g, as follows:

Proof of Proposition 4.5 (ii). Note that Proposition 4.5 (i) has been
proved already in Section 7.1. Therefore, to prove Proposition 4.5 (ii),
it remains to show that for any OGC ∈ Ha

g/GC and any element A of

OGC ∩ g, the element −A is also in OGC ∩ g. Since OGC is antipodal, the
element −A is also in OGC . Hence, we have −A ∈ OGC ∩ g. q.e.d.

Recall that we have bijections between Ha/GC and j
−wC

0

+ (see Lemma
6.2) and between Ha(g)/G and b+ (see Lemma 5.3). By Proposition 4.5
(ii), which has been proved above, we have one-to-one correspondences

b+
1:1←→Ha(g)/G

1:1←→Ha
g/GC,
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where Ha
g/GC is the set of complex antipodal hyperbolic orbits in gC

meeting g.

To explain the relation between j
−wC

0

+ and b+, we show the following
lemma:

Lemma 7.6. Let wC
0 , w0 be the longest elements of W (gC, jC), W (g, a)

with respect to the positive systems ∆+(gC, jC), Σ+(g, a), respectively.
Then:

b = j−wC
0 ∩ a, b+ = j

−wC
0

+ ∩ a,

where b = {A ∈ a | −w0 · A = A } and j−wC
0 = {A ∈ j | −wC

0 ·A = A }.
Proof of Lemma 7.6. We only need to show that wC

0 preserves a and the
action on a is the same as w0. Let us put τ to the complex conjugation
on gC with respect to the real form g. Then we can easily check that
both Π and −Π are τ -fundamental systems of ∆(gC, jC) in the sense
of [36, Section 1.1]. Since (wC

0 )
∗ · Π = −Π, the endomorphism wC

0 is
commutative with τ on j, and wC

0 induces on a an element w′
0 of W (g, a)

by [36, Proposition A]. Recall that Π = {α|a | α ∈ Π }. Then we have
(w′

0)
∗ ·Π = −Π, and hence w′

0 = w0. q.e.d.

Recall that we have a bijection between a and the set of weighted
Dynkin diagrams matching the Satake diagram of g (see Lemma 7.5).
Combining with Lemma 7.6, we have a linear isomorphism

b→ {ΨA ∈Map(Π,R) | ΨA is held invariant by ι and matches Sg},
A 7→ ΨA,

where ι is the involutive endomorphism on Map(Π,R) defined in Section
6.2. Therefore, we can determine the subsets b and b+ of a. Here is an
example of the isomorphism for the case where g = su(4, 2).

Example 7.7. Let g = su(4, 2). Then the complexification of su(4, 2)
is gC = sl(6,C), and the involutive endomorphism ι on weighted Dynkin
diagrams is described by

a
��	�

��

b
��	�

��

c
��	�

��

d
��	�

��

e
��	�

�� 7→

e
��	�

��

d
��	�

��

c
��	�

��

b
��	�

��

a
��	�

�� .

The Satake diagram of g = su(4, 2) is here:

Ssu(4,2) : ��	�

�� ��	�

�� • ��	�

�� ��	�

��
~~ !!{{ ##

.

Therefore, we have a linear isomorphism

b
∼−→





a
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

a
��	�

�� | a, b ∈ R



 .
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In particular, we have one-to-one correspondences below:

Ha
g/GC

1:1←→ b+
1:1←→





a
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

a
��	�

�� | a, b ∈ R≥0



 .

7.4. Complex nilpotent orbits and real forms. Let us consider the
setting in Section 7.1 and Section 7.2. In this subsection, we introduce
an algorithm to check whether or not a given complex nilpotent orbit in
gC meets the real form g. In this subsection, we also prove Proposition
4.5 (iii).

First, we show the next proposition:

Proposition 7.8 (Corollary to J. Sekiguchi [38, Proposition 1.11]).
Let (A,X, Y ) be an sl2-triple in gC. Then the following conditions on
(A,X, Y ) are equivalent:

(i) The complex adjoint orbit through X meets g.
(ii) The complex adjoint orbit through A meets g.
(iii) The complex adjoint orbit through X meets pC, where pC is the

complexification of p.
(iv) The complex adjoint orbit through A meets pC.
(v) There exists an sl2-triple (A′,X ′, Y ′) in g such that A′ is in the

complex adjoint orbit through A.
(vi) The weighted Dynkin diagram of the complex adjoint orbit through

X matches the Satake diagram of g.

Proof of Proposition 7.8. The equivalences between (i), (iii), and (iv)
were proved by [38, Proposition 1.11]. The equivalence (iv) ⇔ (ii) is
obtained by the fact that Hg = Ha = HpC (cf. Lemma 7.2 and the proof
of [38, Proposition 1.11]). The equivalence (ii) ⇔ (vi) is obtained by
combining Theorem 7.4 with the observation that the weighted Dynkin
diagram of the complex adjoint orbit through X is the same as the
weighted Dynkin diagram of the complex adjoint orbit through A (see
Section 6.3). The implication (ii) ⇒ (v) can be obtained by the lemma
below. q.e.d.

Lemma 7.9. Let (A,X, Y ) be an sl2-triple in gC. Then the following
holds:

(i) If A is in g, then there exists g ∈ GC such that Ad(g) ·A = A and
Ad(g) ·X is in g.

(ii) If both A and X are in g, then Y is automatically in g.

Proof of Lemma 7.9. (i): See the proof of [38, Proposition 1.11]. (ii):
Easy. q.e.d.

Here is a proof of Proposition 4.5 (iii), which gives a bijection between
Hn

g /GC and Hn(g)/G (see Section 4.3 for the notation):



330 T. OKUDA

Proof of Proposition 4.5 (iii). We recall that Proposition 4.5 (i) has been
proved already in Section 7.1. Then Proposition 4.5 (iii) follows from
the implication (ii) ⇒ (v) in Proposition 7.8. q.e.d.

Recall that we have the one-to-one correspondence

j+ ∩Hn 1:1←→ N/GC,

where N/GC is the set of complex nilpotent orbits in gC (see Section
6.3). Combining Lemma 7.2 with Proposition 7.8, we also obtain

a+ ∩Hn(g) = (j+ ∩Hn) ∩ a
1:1←→ Ng/GC,

where Ng/GC is the set of complex nilpotent orbits in gC meeting g.
Therefore, by Lemma 7.5, we obtain the theorem below:

Theorem 7.10. Let gC be a complex semisimple Lie algebra, and g

a real form of gC. Then for a complex nilpotent orbit OGC

nilp in gC, the

following two conditions are equivalent:

(i) OGC

nilp
∩ g 6= ∅ (i.e. OGC

nilp
∈ Ng/GC).

(ii) The weighted Dynkin diagram of OGC

nilp matches the Satake diagram

Sg of g (see Section 7.2 for the notation).

Remark 7.11. (1): The same concept as Definition 7.3 appeared
earlier as “weighted Satake diagrams” in D. Z. Djokovic [9] and as
the condition described in J. Sekiguchi [37, Proposition 1.16]. We
call it a “match.”

(2): J. Sekiguchi [38, Proposition 1.13] showed the implication (ii)
⇒ (i) in Theorem 7.10. Our theorem claims that (i) ⇒ (ii) is also
true.

We give three examples of Theorem 7.10:

Example 7.12. Let g be a split real form of gC. Then all nodes
of the Satake diagram Sg are white with no arrow. Thus, all weighted
Dynkin diagrams match the Satake diagram of g. Therefore, all complex
nilpotent orbits in gC meet g.

Example 7.13. Let u be a compact real form of gC. Then all nodes
of the Satake diagram Su are black. Thus, no weighted Dynkin diagram
matches the Satake diagram of u except for the trivial one. Therefore,
no complex nilpotent orbit in gC meets u except for the zero-orbit.

Example 7.14. Let (gC, g) = (sl(6,C), su(4, 2)). The Satake diagram
of su(4, 2) was given in Example 7.7. Then, by combining with Example
6.6, we obtain the list of complex nilpotent orbits in gC meeting g (i.e.
the list of (j+ ∩Hn) ∩ a) as follows:

Ng/GC

1:1←→ { [5, 1], [4, 12], [32], [3, 2, 1], [3, 13], [22, 12], [2, 14], [16] }.
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7.5. Proof of Proposition 4.8 (i). In this subsection, we first explain
the strategy of the proof of Proposition 4.8 (i), and then illustrate actual
computations by an example.

By Lemma 5.3, we have

b+ ⊃ a+ ∩Hn(g).

Furthermore, in Section 7.4, we also obtained

a+ ∩Hn(g) = (j+ ∩Hn) ∩ a.

Therefore, the proof of Proposition 4.8 (i) is reduced to showing

(7.1) b ⊂ R-span((j+ ∩Hn) ∩ a)

for all simple Lie algebras g.
In order to show (7.1), we recall the Dynkin–Kostant classification of

weighted Dynkin diagrams corresponding to elements of j+∩Hn (which
gives a classification of complex nilpotent orbits in gC; see Section 6.3)
As its subset, we can classify the weighted Dynkin diagrams correspond-
ing to elements in (j+ ∩ Hn) ∩ a by using the Satake diagram of g (cf.
Example 7.14). What we need to prove for (7.1) is that this subset con-
tains sufficiently many in the sense that the R-span of the weighted
Dynkin diagrams corresponding to this subset coincides with the space
of weighted Dynkin diagrams corresponding to elements in b. Recall
that we can also determine such space corresponding to b by the invo-
lution ι on weighted Dynkin diagrams (see Section 6.2 for the notation)
with the Satake diagram of g (cf. Example 7.7).

We illustrate this strategy by the following example:

Example 7.15. We give a proof of Proposition 4.8 (i) for the case
where g = su(4, 2), with its complexification gC = sl(6,C).

By Example 7.14, we have the list of weighted Dynkin diagrams cor-
responding to elements of (j+ ∩Hn) ∩ a for g = su(4, 2). Table 4 shows
part of it.

By Example 7.7, we also have a linear isomorphism

b
∼−→





a
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

a
��	�

�� | a, b ∈ R



 .

Table 4. A part of (j+ ∩Hn) ∩ a for g = su(4, 2)

Partition Weighted Dynkin diagram

[22, 12]
0
��	�

��

1
��	�

��

0
��	�

��

1
��	�

��

0
��	�

��

[2, 14]
1
��	�

��

0
��	�

��

0
��	�

��

0
��	�

��

1
��	�

��
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Hence, we can observe that

b ⊂ R-span((j+ ∩Hn) ∩ a).

This completes the proof of Proposition 4.8 (i) for the case where g =
su(4, 2).

For the other simple Lie algebras g, we can find the Satake diagram of
g in [2] or [12, Chapter X, Section 6] and the classification of weighted
Dynkin diagrams of complex nilpotent orbits in gC in [4]. Then we can
verify (7.1) in the spirit of case-by-case computations for other real
simple Lie algebras. Detailed computations will be reported elsewhere.

8. Symmetric pairs

In this section, we prove Proposition 4.6 and Lemma 4.9.
Let (g, h) be a semisimple symmetric pair and write σ for the involu-

tion on g corresponding to h. First, we give Cartan decompositions on
g, h, and gc (see (2.1) in Section 2 for the notation), simultaneously.

Recall that we can find a Cartan involution θ on g with σθ = θσ
(cf. [6]). Let us denote by g = k + p and h = k(h) + p(h) the Cartan
decompositions of g and h, respectively. We set u := k +

√
−1p. Then

u becomes a compact real form of gC. We write τ , τ c for the complex
conjugations on gC with respect to the real forms g, gc, respectively.
Then τ c is the anti C-linear extension of σ on g to gC, and hence τ and
τ c are commutative. The compact real form u of gC is stable under both
τ and τ c. We denote by θ the complex conjugation on gC corresponding
to u, i.e. θ is the anti C-linear extension of θ. Then the restriction θ|gc
is a Cartan involution on gc. We write

(8.1) gc = kc + pc

for the Cartan decomposition of gc with respect to θ|gc .
Let us fix a maximal abelian subspace ah of p(h), and extend it to a

maximal abelian subspace a of p [resp. a maximal abelian subspace ac

of pc]. Obviously, ah = a ∩ ac. We show the next lemma below:

Lemma 8.1. [a, ac] = {0}.
The next proposition gives a Cartan subalgebra of gC which contains

split Cartan subalgebras of g, gc, and h with respect to the Cartan
decompositions.

Proposition 8.2. There exists a Cartan subalgebra jC of gC with the
following properties:

• jg := jC∩ g is a split Cartan subalgebra of g = k+ p (see Definition
7.1 for the notation) with jg ∩ p = a.
• jgc := jC ∩ gc is a split Cartan subalgebra of gc = kc + pc with
jgc ∩ pc = ac.
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• jh := jC ∩ h is a split Cartan subalgebra of h = k(h) + p(h) with
jh ∩ p(h) = ah.

Proof of Lemma 8.1 and Proposition 8.2. We put

ha := {X ∈ g | θσX = X }, qa := {X ∈ g | θσX = −X }.
Then (g, ha) is the associated symmetric pair of (g, h) (see [35, Section
1] for the notation). Note that qa = pc ∩ g +

√
−1(pc ∩

√
−1g) and

p ∩ qa = p(h). Let us apply [35, Lemma 2.4 (i)] to the symmetric pair
(g, ha). Then we have [a, ac] = {0}, since the complexification of ac is
a maximal abelian subspace of the complexification of qa containing
ah. This completes the proof of Lemma 8.1. Furthermore, let us extend
a+ ac to a Cartan subalgebra jC of gC. Then jC satisfies the properties
in Proposition 8.2. q.e.d.

We fix such a Cartan subalgebra jC of gC, and put

j := jC ∩
√
−1u.

Throughout this subsection, we denote the root system of (gC, jC) briefly
by ∆, which is realized in j∗. Let us denote by Σ, Σc the restricted root
systems of (g, a), (gc, ac), respectively. Namely, we put

Σ := {α|a | α ∈ ∆ } \ {0} ⊂ a∗,

Σc := {α|ac | α ∈ ∆ } \ {0} ⊂ (ac)∗.

Then we can choose a positive system ∆+ of ∆ with the properties
below:

• Σ+ := {α|a | α ∈ ∆+ } \ {0} is a positive system of Σ.
• (Σc)+ := {α|ac | α ∈ ∆+ } \ {0} is a positive system of Σc.

In fact, if we take an ordering on ah and extend it stepwise to a, to
a+ac, and to j, then the corresponding positive system ∆+ satisfies the
properties above (see [35, Section 3] for more detail). Let us denote by

j+ := {A ∈ j | α(A) ≥ 0 for any α ∈ ∆+ },
a+ := {A ∈ a | ξ(A) ≥ 0 for any ξ ∈ Σ+ },
ac+ := {A ∈ ac | ξc(A) ≥ 0 for any ξc ∈ (Σc)+ },

the closed Weyl chambers in j, a, and ac with respect to ∆+, Σ+, and
(Σc)+, respectively.

Combining Fact 6.1 with Lemma 7.2, we obtain the lemma below:

Lemma 8.3. Let OGC

hyp be a complex hyperbolic orbit in gC. Then the
following holds:

(i) There exists a unique element AO in OGC

hyp
∩ j+.

(ii) OGC

hyp meets g if and only if AO is in a+.

(iii) OGC

hyp meets gc if and only if AO is in ac+.
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We now prove Proposition 4.6 by using Lemma 8.3.

Proof of Proposition 4.6. Let OGC

hyp be a complex hyperbolic orbit in gC

meeting both g and gc. We shall prove thatOGC

hyp also meets h = g∩gc. By
Lemma 8.3, there exists a unique element AO ∈ a+∩ac+ with AO ∈ OGC

hyp,

and hence our claim follows. q.e.d.

Lemma 4.9 is proved by using Lemma 8.3 as follows.

Proof of Lemma 4.9. Let us take A ∈ a+ such that OG
A meets h, where

OG
A is the adjoint orbit in g through A. To prove our claim, we only

need to show that A is in ah. We denote by OGC

A the complexification of

OG
A . Then OGC

A is a complex hyperbolic orbit in gC meeting h = g ∩ gc.
Let us extend ah to a maximal abelian subspace ac of pc (see (8.1) for
the notation of pc) and take a Cartan subalgebra jC of gC in Proposition
8.2. We also extend the ordering on a stepwise to a+ ac and to j. Then

by Lemma 8.3, the orbit OGC

A intersects j+ with a unique element AO,

and AO is in a+∩ac+ ⊂ ah. Since A is also in OGC

A ∩ j+, we have A = AO.
Hence A is in ah. q.e.d.

9. Algorithm for classification

Let (g, h) be a semisimple symmetric pair (see Setting 2.1). In this
section, we describe an algorithm to check whether or not (g, h) satisfies
the condition (viii) in Theorem 2.2, which coincides with the condition
(v) in Theorem 1.3. More precisely, we give an algorithm to classify

complex antipodal hyperbolic orbits OGC

hyp in gC such that OGC

hyp ∩ g 6= ∅
and OGC

hyp ∩ gc = ∅.
Recall that for any complex semisimple Lie algebra gC, we can de-

termine the set of complex antipodal hyperbolic orbits in gC, which is
denoted by Ha/GC, as ι-invariant weighted Dynkin diagrams by The-
orem 6.3. Further, for any real form g of gC, we can classify complex
antipodal hyperbolic orbits in gC meeting g by using the Satake diagram
of g (see Section 7.3).

For a semisimple symmetric pair (g, h), we can specify another real
form gc of gC (see (2.1) in Section 2 for the notation) by the list of [35,
Section 1], since the symmetric pair (gc, h) is the same as (g, h)ada. The
Satake diagram of the real form g [resp. gc] of gC can be found in [2] or
[12, Chapter X, Section 6]. Therefore, we can classify the set of complex
antipodal hyperbolic orbits in gC meeting g [resp. gc], which is denoted
by Ha

g/GC [resp. Ha
gc/GC]. This provides an algorithm to check whether

the condition (viii) in Theorem 2.2 holds or not on (g, h).
Here, we give examples for the cases where (g, h) = (su(4, 2), sp(2, 1))

or (su∗(6), sp(2, 1)).



SEMISIMPLE SYMMETRIC SPACES WITH PROPER SL(2,R)-ACTIONS 335

Example 9.1. Let (g, h) = (su(4, 2), sp(2, 1)). Then gC = sl(6,C)
and gc = su∗(6). We shall determine both Ha

g/GC and Ha
gc/GC, and

prove that (g, h) satisfies the condition (viii) in Theorem 2.2.
The involutive endomorphism ι on weighted Dynkin diagrams of

sl(6,C) (see Section 6.2 for the notation) is given by

a
��	�

��

b
��	�

��

c
��	�

��

d
��	�

��

e
��	�

�� 7→

e
��	�

��

d
��	�

��

c
��	�

��

b
��	�

��

a
��	�

�� .

Thus, by Theorem 6.3, we have the bijection below:

Ha/GC

1:1←→





a
��	�

��

b
��	�

��

c
��	�

��

b
��	�

��

a
��	�

�� | a, b, c ∈ R≥0



 .

Here are the Satake diagrams of g = su(4, 2) and gc = su∗(6):

Ssu(4,2) : ��	�

�� ��	�

�� • ��	�

�� ��	�

��
~~ !!{{ ##

, Ssu∗(6) : • ��	�

�� • ��	�

�� •.
Thus, by Theorem 7.4, we obtain the following one-to-one correspondences:

Ha
g/GC

1:1←→





a
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

a
��	�

�� | a, b ∈ R≥0



 ,

Ha
gc/GC

1:1←→





0
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

0
��	�

�� | b ∈ R≥0



 .

Therefore, the condition (viii) in Theorem 2.2 holds on the symmetric
pair (su(4, 2), sp(2, 1)).

Example 9.2. Let (g, h) = (su∗(6), sp(2, 1)). Then gC = sl(6,C) and
gc = su(4, 2). Thus, by the argument in Example 9.1, we have

Ha
g/GC

1:1←→





0
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

0
��	�

�� | b ∈ R≥0



 ,

Ha
gc/GC

1:1←→





a
��	�

��

b
��	�

��

0
��	�

��

b
��	�

��

a
��	�

�� | a, b ∈ R≥0



 .

Therefore, the condition (viii) in Theorem 2.2 does not hold on the sym-
metric pair (su∗(6), sp(2, 1)). However, if we take a complex hyperbolic
orbit O′ in sl(6,C) corresponding to

0
��	�

��

b
��	�

��

0
��	�

��

b′
��	�

��

0
��	�

�� (for some b, b′ ∈ R≥0, b 6= b′),
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then O′ meets g but does not meet gc. Note that O′ is not antipo-
dal. Thus the condition (vii) in Fact 2.6 holds on the symmetric pair
(su∗(6), sp(2, 1)). In particular, rankR g > rankR h.

Combining our algorithm with Berger’s classification [6], we obtain
Table 2 in Section 2. Concerning this, if gC has no simple factor of type
An, D2k+1, or E6 (n ≥ 2, k ≥ 2), then the symmetric pair (g, h) satisfies
the condition (viii) in Theorem 2.2 if and only if rankR g > rankR h (see
Corollary 6.4 and Fact 2.6). Thus we need only consider the cases where
gC is of type An, D2k+1, or E6.

We also remark that for a given semisimple symmetric pair (g, h), by
using the Dynkin–Kostant classification [10] and Theorem 7.10, we can
check whether the condition (vi) in Theorem 2.2 holds or not on (g, h),
directly (see also Section 10).

10. Proper actions of SL(2,R) and real nilpotent orbits

In this section, we describe a refinement of the equivalence (i) ⇔
(vi) in Theorem 2.2, which provides an algorithm to classify proper
SL(2,R)-actions on a given semisimple symmetric space G/H.

Let G be a connected linear semisimple Lie group and write g for
its Lie algebra. By the Jacobson-Morozov theorem and Lemma 5.4, we
have a one-to-one correspondence between Lie group homomorphisms
Φ : SL(2,R) → G up to inner automorphisms of G and real nilpotent
orbits in g. We denote by OG

Φ the real nilpotent orbit corresponding to
Φ : SL(2,R)→ G. Then, by combining Proposition 4.2 and Proposition
4.6 with Lemma 4.7, we obtain the next theorem:

Theorem 10.1. In Setting 2.1, the following conditions on a Lie
group homomorphism Φ : SL(2,R)→ G are equivalent:

(i) SL(2,R) acts on G/H properly via Φ.
(ii) The complex nilpotent orbit Ad(GC) · OG

Φ in gC does not meet gc,
where gc is the c-dual of the symmetric pair (g, h) (see (2.1) after
Setting 2.1).

In particular, we have the one-to-one correspondence

{Φ : SL(2,R)→ G | SL(2,R) acts on G/H properly via Φ }/G
1:1←→ {Real nilpotent orbits OG in g | (Ad(GC) · OG) ∩ gc = ∅ }.

Here is an example concerning Theorem 10.1:

Example 10.2. Let (G,H) = (SU(4, 2), Sp(2, 1)). Then (gC, g, g
c) =

(sl(6,C), su(4, 2), su∗(6)). Let us classify the following set:

(10.1) {Real nilpotent orbits OG in su(4, 2)

| the complexifications of OG do not meet su∗(6)}.
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Recall that complex nilpotent orbits in sl(6,C) are parameterized
by partitions of 6 and these weighted Dynkin diagrams are listed in
Example 6.6. By Theorem 7.10, we can classify the complex nilpotent
orbits in sl(6,C) that meet su(4, 2) but not su∗(6), by using these Satake
diagrams (see Example 9.1 for Satake diagrams of su(4, 2) and su∗(6)),
as follows:

{Complex nilpotent orbits OGC in sl(6,C)

| OGC ∩ su(4, 2) 6= ∅ and OGC ∩ su∗(6) = ∅ }
1:1←→ { [5, 1], [4, 12], [3, 2, 1], [3, 13], [2, 14] }.

It is known that real nilpotent orbits in su(4, 2) are parameterized by
signed Young diagrams of signature (4, 2), and the shape of the signed
Young diagram corresponding to a real nilpotent orbit OG in su(4, 2)
is the partition corresponding to the complexification of OG (see [8,
Theorem 9.3.3 and a remark after Theorem 9.3.5] for more details).
Therefore, we have a classification of (10.1) as shown in Table 5.

In particular, by Theorem 10.1, there are nine kinds of Lie group
homomorphisms Φ : SL(2,R) → SU(4, 2) (up to inner automorphisms
of SU(4, 2)) for which the SL(2,R)-actions on SU(4, 2)/Sp(2, 1) via Φ
are proper.

Table 5. Classification of (10.1)

Partition Signed Young diagram of signature (4, 2)

[5, 1] + − + − +
+

[4, 12]
+ − + −
+
+

,
− + − +
+
+

[3, 2, 1]
+ − +
+ −
+

,
+ − +
− +
+

[3, 13]

+ − +
+
+
−

,

− + −
+
+
+

[2, 14]

+ −
+
+
+
−

,

− +
+
+
+
−
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Appendix A. Classification

Table 6 presents a complete list of symmetric pairs (g, h) with the
following property:

(A.1) g is simple, (g, h) is a symmetric pair

satisfying one of (therefore, all of) the conditions in Theorem 2.2.

Table 6. Classification of (g, h) satisfying (A.1)

g h

sl(2k,R) sl(k,C)⊕ so(2)
sl(n,R) so(n− i, i)

(2i < n)
su∗(2k) sp(k − i, i)

(2i < k − 1)
su(2p, 2q) sp(p, q)
su(2m− 1, 2m− 1) so∗(4m− 2)
su(p, q) su(i, j) ⊕ su(p− i, q − j)⊕ so(2)

(min{p, q} > min{i, j} +min{p− i, q − j})
so(p, q) so(i, j) ⊕ so(p− i, q − j)
(p+ q is odd) (min{p, q} > min{i, j} +min{p− i, q − j})
sp(n,R) su(n − i, i) ⊕ so(2)
sp(2k,R) sp(k,C)
sp(p, q) sp(i, j) ⊕ sp(p− i, q − j)

(min{p, q} > min{i, j} +min{p− i, q − j})
so(p, q) so(i, j) ⊕ so(p− i, q − j)
(p+ q is even) (min{p, q} > min{i, j} +min{p− i, q − j},

unless p = q = 2m+ 1 and |i− j| = 1)
so(2p, 2q) su(p, q)⊕ so(2)
so∗(2k) su(k − i, i) ⊕ so(2)

(2i < k − 1)
so(k, k) so(2k,C)⊕ so(2)
so∗(4m) so∗(4m− 4i+ 2)⊕ so∗(4i− 2)
e6(6) sp(2, 2)

e6(6) su∗(6)⊕ su(2)

e6(2) so∗(10) ⊕ so(2)

e6(2) su(4, 2) ⊕ su(2)

e6(2) sp(3, 1)

e6(−14) f4(−20)

e7(7) e6(2) ⊕ so(2)

e7(7) su(4, 4)
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Classification of (g, h) satisfying (A.1) (continued)

e7(7) so∗(12) ⊕ su(2)

e7(7) su∗(8)

e7(−5) e6(−14) ⊕ so(2)

e7(−5) su(6, 2)

e7(−25) e6(−14) ⊕ so(2)

e7(−25) su(6, 2)

e8(8) e7(−5) ⊕ su(2)

e8(8) so∗(16)

f4(4) sp(2, 1) ⊕ su(2)

sl(2k,C) su∗(2k)
sl(n,C) su(n− i, i)

(2i < n)
so(2k + 1,C) so(2k + 1− i, i)

(i < k)
sp(n,C) sp(n− i, i)
so(2k,C) so(2k − i, i)

(i < k unless k = i+ 1 = 2m+ 1)
so(4m,C) so(4m− 2i+ 1,C)⊕ so(2i− 1,C)
so(2k,C) so∗(2k)
e6,C e6(−14)

e6,C e6(−26)

e7,C e7(−5)

e7,C e7(−25)

e8,C e8(−24)

f4,C f4(−20)

Here, k ≥ 1, m ≥ 1, n ≥ 2, p, q ≥ 1 and i, j ≥ 0. Note that so(p, q)
is simple if and only if p + q ≥ 3 with (p, q) 6= (2, 2), and so(2k,C) is
simple if and only if k ≥ 3.

Appendix B. The Calabi–Markus phenomenon and
hyperbolic orbits

Here is a proof of the equivalence among (v), (vi), and (vii) in Fact
2.6:

Proof of (v) ⇔ (vi) ⇔ (vii) in Fact 2.6. We take a and ah in Section
3.1. The condition (v) means that a 6= W (g, a) · ah. By Fact 5.1 and
Lemma 5.2, we have a bijection between the following two sets:

• the set of W (g, a)-orbits in a that do not meet ah,
• the set of real hyperbolic orbits in g that do not meet h.
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Then the equivalence (v) ⇔ (vi) holds. Further, (vi) ⇔ (vii) follows
from Proposition 4.5 (i) and Proposition 4.6. q.e.d.
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