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AXIAL MINIMAL SURFACES IN S2
× R

ARE HELICOIDAL

David Hoffman & Brian White

Abstract

We prove that if a complete, properly embedded, finite-topology
minimal surface in S2×R contains a line, then its ends are asymp-
totic to helicoids, and that if the surface is an annulus, it must be
a helicoid.

1. Introduction

There is a rich theory of complete properly embedded minimal sur-
faces of finite topology in R3. In particular, we now have a good un-
derstanding of the ends of such surfaces: aside from the plane, every
such surface either has one end, in which case it is asymptotic to a he-
licoid [BB08], or it has more than one end, in which case each end is
asymptotic to a plane or to a catenoid [Col97], [HM89], [MR93]. For
the rest of this introduction, let us use “minimal surface” to mean “com-
plete, properly embedded minimal surface with finite topology”. (Cold-
ing and Minicozzi [CM08] have proved that every complete embedded
minimal surface with finite topology in R3 is properly embedded, so the
assumption of properness is not necessary.)

It is interesting to try to classify the ends of minimal surfaces in
homogeneous 3-manifolds other than R3. This paper deals with the
ambient manifold S2×R. (The fundamental paper on minimal surfaces
in S2 ×R is Rosenberg [Ros02]. The survey [Ros03] is a good intro-
duction to this paper as well as to the papers of [MR05], [Hau06],
and [PR99] mentioned below.) In that case, the only compact minimal
surfaces are horizontal 2-spheres. Any noncompact example has exactly
two ends, both annular, one going up and one going down. Therefore
the genus-zero, noncompact minimal surfaces in S2 ×R are all annuli.
The minimal annuli that are foliated by horizontal circles have been
classified by Hauswirth [Hau06]. They form a two-parameter family
that contains on its boundary the helicoids (defined in Section 1.2) and
the unduloids constructed by Pedrosa and Ritore [PR99]. There are
no other known minimal annuli.

These facts suggest the following two questions posed by Rosenberg:
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1) Is every minimal annulus in S2 ×R one of the known examples?
That is, is every minimal annulus fibered by horizontal circles?

2) If so, must each end of any minimal surface in S2×R be asymptotic
to one of the known minimal annuli?

In this paper, we show that the answer to both questions is “yes” in case
the surface is an axial surface, i.e., in case the surface contains a vertical
line. In particular, the axial minimal annuli in S2 ×R are precisely the
helicoids.

The assumption that the surface contains a line is a very strong one,
but there are many minimal surfaces that have that property. Indeed,
in [HW08] we outlined the proof of the existence of axial examples of
every genus g and every vertical flux. (See equation (5) in Remark 3.1
for a definition of vertical flux. The forthcoming [HW11] contains the
full existence proof.) By Theorem 1.3 below, those examples are all
asymptotic to helicoids, so we call them “genus-g helicoids”.

Combining these results with Theorem 1.3, we have:

1.1. Theorem. For every helicoid H of finite pitch in S2 ×R and for
every genus g > 0, there are at least two genus-g properly embedded,
axial minimal surfaces whose ends are, after suitable rotations, asymp-
totic to H. The two surfaces are not congruent to each other by any
orientation-preserving isometry of S2 × R. If g is even, they are not
congruent to each other by any isometry of S2 ×R.

The totally geodesic cylinder S1 ×R may be thought of as a helicoid
of infinite pitch. In this case, the methods of [HW11, HW08] still
produce two examples for each genus, but the proof that the two ex-
amples are not congruent breaks down. Earlier, by a different method,
Rosenberg [Ros02] explicitly constructed, for each g, an axial, genus-g
minimal surface asymptotic to a cylinder.

1.2. Helicoids. Let O and O∗ be a pair of antipodal points in S2×{0}
and let Z and Z∗ be vertical lines passing through those points. Let
σα,v denote the screw motion of S2 ×R consisting of rotation through
angle α about the axes Z and Z∗ followed by vertical translation by v.
A helicoid with axes Z and Z∗ is a surface of the form

(1)
⋃

t∈R

σκt,tX

where X is a horizontal great circle that intersects Z and Z∗. The pitch
of the helicoid is 2π/κ, whose absolute value equals twice the vertical
distance between successive sheets of the surface. Unlike the situation
in R3, helicoids of different pitch do not differ by a homothety of S2×R;
there are no such homotheties. Note that a cylinder is a helicoid with
infinite pitch (κ = 0), and that as κ → ∞ the helicoids associated with
κ converge to a minimal lamination of S2 × R by level spheres with
singular set of convergence equal to the axes Z ∪ Z∗.
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The main result of this paper is the following theorem:

1.3. Theorem. Let M be a properly embedded, axial minimal surface
in S2 ×R with bounded curvature and without boundary.

(1) If E is an annular end of M , then E is asymptotic to a helicoid;
(2) If M is an annulus, then M is a helicoid;
(3) If M has finite topology, then each of its two ends is asymptotic to

a helicoid, and the two helicoids are congruent to each other by a
rotation.

1.4. Remarks. Meeks and Rosenberg [MR05] proved that a properly
embedded minimal surface with finite topology in S2 ×R has bounded
curvature. Thus our assumption that the surfaces we consider have
bounded curvature is always satisfied.

In statement (1), it is not necessary that E be part of a complete
surface without boundary. The statement is true (with essentially the
same proof) for any properly embedded annulus E ⊂ S2 × [z0,∞) such
that ∂E ⊂ ∂S2 × {z0} and such that E contains a vertical ray.

We do not know whether the two helicoids referred to in statement (3)
must be the same. See the discussion in Remark 3.2 below.

Acknowledgments. We would like to thank Harold Rosenberg for help-
ful discussions. The research of the second author was supported by the
NSF under grant DMS 0707126.

2. A convexity lemma

2.1. Axial surfaces are symmetric and have two axes. Suppose
that M is a properly embedded, axial minimal surface in S2 ×R. Then
M contains a vertical line Z. We claim that M must also contain the
antipodal line Z∗, i.e., the line consisting of all points at distance πr
from Z, where r is the radius of the S2. To see this, let ρZ : S2 ×R →
S2×R denote rotation by π about Z. By Schwarz reflection, ρZ induces
an orientation-reversing isometry of M . In particular, ρZ interchanges
the two components of the complement of M . Thus no point in the
complement of M is fixed by ρZ , so the fixed points of ρZ must all lie
in M . The fixed point set of ρZ is precisely Z ∪ Z∗, so Z∗ must lie in
M , as claimed.

2.2. The angle function θ. We will assume from now on that an
axial surface in S2 × R has axes Z and Z∗ that pass through a fixed
pair O and O∗ of antipodal points in S2 = S2×{0}. Fix a stereographic
projection from (S2×{0})\{O∗} to R2, and let θ be the angle function
on (S2 × {0}) \ {O,O∗} corresponding to the polar coordinate θ on
R2. Extend θ to all of (S2 × R) \ (Z ∪ Z∗) by requiring that it be
invariant under vertical translations. Of course, θ is only well-defined
up to integer multiples of 2π.
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If H is a helicoid with axes Z and Z∗, we will call the components of
H \ (Z ∪ Z∗) half-helicoids. From (1) it follows that the half-helicoids
are precisely the surfaces given by

(2) θ = κ z + b.

Here 2π/κ is the pitch of the helicoid. Note that at each level z, specify-
ing θ = c specifies a great semicircle connecting Z to Z∗. Thus the half
helicoid specified by θ = κ z + b is foliated by great semicircles turning
at a constant rate. Rotating H by an angle γ changes the corresponding
b to b+ γ.

Note that the entire helicoid H consists of Z ∪ Z∗ (where θ is not
defined) together with all points not in Z ∪ Z∗ such that

θ ∼= κ z + b (mod π).

2.2. The restriction of θ to an annular slice. Let I ⊂ R be a closed
interval (possibly infinite) and let

E = M ∩ (S2 × I)

be the portion of M in S2 × I. Suppose that E is an annulus. Then
E\(Z∪Z∗) consists of two simply connected domains that are congruent
by the involution ρZ . Denote by D one of these domains, and consider
the restriction of θ to D. Because D is simply connected, we may choose
a single-valued branch of this function, and we will also refer to it as
θ when there is no ambiguity. Since I is closed, D \ D ⊂ Z ∪ Z∗.
Because D has a well-defined tangent halfplane at each point of D \D,
the function θ extends continuously to all of D.

At each level z, the angle function θ has a maximum and a minimum
on the compact set D∩ (S2×{z}). This allows us to make the following
definition:

2.3. Definition.

α(z) = max{θ(p, z) : (p, z) ∈ D ∩ (S2 × {z})},

β(z) = min{θ(p, z) : (p, z) ∈ D ∩ (S2 × {z})},

φ(z) = α(z)− β(z).

Note that α(z) = β(z) if and only if D ∩ (S2 × {z}) is half of a great
circle. Note also that E is a portion of a helicoid if and only if

α(z) ≡ β(z) ≡ κ z + b

for some κ and b.

2.4. Lemma. The functions α, −β, and φ = α−β are convex, and they
are strictly convex unless they are linear (in which case E is contained
in a helicoid and φ ≡ 0).



AXIAL MINIMAL SURFACES IN S2 ×R ARE HELICOIDAL 519

Proof. Suppose that α is not strictly convex. Then there exists z1 <
z2 and 0 < λ < 1 such that

(3) α(z1 + λ(z2 − z1)) ≥ α(z1) + κ(z1 + λ(z2 − z1)),

where

κ =
α(z2)− α(z1)

z2 − z1
is the slope of the line segment connecting (z1, α(z1)) and (z2, α(z2)).
It follows that there is a line of the form

y = κz + b̃

that lies above the graph of α between z1 and z2 and touches that graph
at a point (z̃, α(z̃)) with z1 < z̃ < z2. By the definition of α, there is a
point (p̃, z̃) in the compact set D ∩ (S2 × {z̃}) with

θ(p̃, z̃) = α(z̃).

Then in a neighborhood of (p̃, z̃), the surface D lies on one side of the

half-helicoid H given by θ = κ z + b̃ as in (2), and the two surfaces
touch at (p̃, z̃). By the maximum principle (or the boundary maximum
principle if (p̃, z̃) is a boundary point of D), a neighborhood in D of
(p̃, z̃) lies in H. By analytic continuation, all of D lies in H. Thus

θ = κz + b̃ on D, so α(z) ≡ β(z) ≡ κz + b̃ and φ(z) ≡ 0.
The statements about convexity and strict convexity of −β (or, equiv-

alently, about concavity and strict concavity of β) are proved in exactly
the same way. The assertions about α − β follow, since the sum of
two convex functions is convex, and the sum is strictly convex if either
summand is strictly convex. q.e.d.

3. The proof of Theorem 1.3

Consider first an annular end E. We may suppose that E is properly
embedded in S2 × [a,∞). Let

c := lim sup
z→∞

φ(z)

where φ = α− β is as in Definition 2.3. Choose zn → ∞ such that

lim
n→∞

φ(zn) = c.

(A priori, c might be infinite, but we will show below that it is equal to
zero.)

Let En and Dn be the result of translating E and D downward by
zn. Since we are assuming that the curvature of E is bounded, we may
assume by passing to a subsequence that the En converge smoothly
to a properly embedded minimal annulus Ê (see [MR05]), and that

the Dn converge smoothly to D̂, one of the connected components of
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Ê \ (Z ∪Z∗). The smooth convergence Dn → D̂ implies that the angle-
difference functions

φn(z) := φ(z + zn)

for the disks Dn converge smoothly to the angle-difference function φ̂
for the disk D̂. Note that because φ̂ is the angle-difference function for
the simply connected surface D̂, it has a well defined and finite value
for all z ∈ R. In particular, its value at z = 0 is finite. Also,

φ̂(z) = lim
n→∞

φn(z) = lim
n→∞

φ(z + zn) ≤ c

by the definition of c, with equality if z = 0. Thus φ̂(z) attains its

maximum value of c at z = 0. Consequently, φ̂ is not strictly convex,

so by Lemma 2.4, D̂ is contained in helicoid, and therefore φ̂ ≡ 0. In
particular, c = 0.

Returning our attention to the original surface D, we will now prove
statement (1) of the theorem. Since α ≥ β, the sets

{(z, y) : y > α(z), z > a},

{(z, y) : y < β(z), z > a}

are disjoint, convex subsets of R2, so they are separated by a line y =
az + d. Thus

β(z) ≤ az + d ≤ α(z).

Since α(z)−β(z) → 0 as z → ∞, the graphs of α and of β are asymptotic
to the line y = az + d. Thus D is C0-asymptotic to the half-helicoid
whose equation is θ = az + d. Since the curvature of D is bounded,
the surface D is smoothly asymptotic to that half-helicoid. It follows
immediately that the end

E = D ∪ ρZD

is asymptotic to the corresponding helicoid. This proves statement (1)
of the theorem.

To prove statement (2), suppose thatM is a properly embedded, axial
minimal annulus. Let D be one of the simply connected components of
M \ (Z ∪ Z∗). We know from Lemma 2.4 that φ is convex on all of R,
and from the proof above of the first statement of Theorem 1.3 (applied
to the ends of M) that

lim
z→±∞

φ(z) = 0.

Thus φ(z) ≡ 0, so by Lemma 2.4, M is a helicoid.
Statement (3) of the theorem follows from a standard flux argument

as follows. Let s < t and let

Σ = Σ(s, t) = M ∩ (S2 × (s, t)).

Let ν(p) be the outward unit co-normal at p ∈ ∂Σ ⊂ M (a vector field
along ∂Σ that is tangent to M). Since ∂/∂θ is a Killing field on S2×R,
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∫

∂Σ

(

ν ·
∂

∂θ

)

ds = 0

by the first variation formula. Equivalently, if we let Ma = M∩{z ≤ a},
then the flux

(4)

∫

∂Ma

(

ν ·
∂

∂θ

)

ds

is independent of a. We call (4) the rotational flux of M (with respect
to the axes Z and Z∗).

If M is asymptotic (as z → ∞ or as z → −∞) to a helicoid H,
then M and H clearly have the same rotational flux. Thus to prove
statement (3) of the theorem, it suffices to check that if two helicoids
with axes Z∪Z∗ have the same rotational flux, then they are congruent
by rotation. If we let F (κ) denote the rotational flux of the helicoid
H(κ) given by

θ ∼= κ z (mod π),

then it suffices to show that F (κ) depends strictly monotonically on κ.
To see it does, consider expression (4) for F (κ):

F (κ) =

∫

∂(H(κ)∩{z≤0})

(

ν ·
∂

∂θ

)

ds.

Note that the domain ∂(H(κ) ∩ {z ≤ 0}) is a fixed great circle C, and
that for each point in C \ {O,O∗}, the integrand is a strictly increasing
function of κ (because the larger κ is, the smaller the angle between the
vectors ∂/∂θ and ν). Thus F (κ) is a strictly increasing function of κ.
q.e.d.

3.1. Remark. The reader may wonder why we used rotational flux
rather than the vertical flux

(5)

∫

∂Ma

(

ν ·
∂

∂z

)

ds.

The problem with vertical flux is that the helicoid H(κ) and its mirror
image H(−κ) have the same vertical flux. Thus vertical flux alone does
not rule out the possibility that the two ends of M might be asymptotic
to helicoids that are mirror images of each other.

3.2. Remark. We have not proved that the constant terms b in the
equations

θ ∼= κ z + b (mod π)

for the helicoids asymptotic to the ends of M are the same. There is
some reason to expect that b can change from end to end.

A change in b corresponds to a rotation, and when κ 6= 0 (i.e., when
the helicoid is not a cylinder), a rotation by β is equivalent to a vertical
translation by β/κ. In the Introduction, we discussed known examples
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of properly embedded axial minimal surfaces of finite genus. Those ex-
amples may be regarded as desingularizing the intersection of a helicoid
H with the totally geodesic sphere S2 × {0}. Such desingularization
might well cause a slight vertical separation of the top and bottom ends
of the helicoid, in order to “make room” for the sphere. A similar situa-
tion exists in R3 when considering the Costa-Hoffman-Meeks surfaces as
desingularizations of the intersection of a vertical catenoid with a hori-
zontal plane passing through the waist of the helicoid [HM90], [HK97].
While the top and bottom catenoidal ends have the same logarithmic
growth rate, corresponding to the vertical flux, numerical evidence from
computer simulation of these surfaces indicates a vertical separation of
those ends. (In other words, the top end is asymptotic to the top of
a catenoid, the bottom end is asymptotic to the bottom of a catenoid,
and numerical evidence indicates that the two catenoids are related by
a nonzero vertical translation.)
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