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COUNTING NODAL LINES WHICH TOUCH THE
BOUNDARY OF AN ANALYTIC DOMAIN

John A. Toth & Steve Zelditch

Abstract

We consider the zeros on the boundary ∂Ω of a Neumann eigen-
function ϕλj of a real analytic plane domain Ω. We prove that the
number of its boundary zeros is O(λj) where −∆ϕλj

= λ2
jϕλj . We

also prove that the number of boundary critical points of either a
Neumann or Dirichlet eigenfunction is O(λj). It follows that the
number of nodal lines of ϕλj

(components of the nodal set) which
touch the boundary is of order λj . This upper bound is of the
same order of magnitude as the length of the total nodal line, but
is the square root of the Courant bound on the number of nodal
components in the interior. More generally, the results are proved
for piecewise analytic domains.

1. Introduction

This article is concerned with the high energy asymptotics of nodal
lines of Neumann (resp. Dirichlet) eigenfunctions ϕλj on piecewise real
analytic plane domains Ω ⊂ R2:

(1.1)




−∆ϕλj

= λ2
jϕλj

in Ω,

∂νϕλj = 0 (resp. ϕλj = 0) on ∂Ω,

Here, ∂ν is the interior unit normal. We refer to λj as the ‘frequency’ and
note that the Laplace eigenvalue is λ2

j (unlike [DF, L] and some other
references). We denote by {ϕλj} an orthonormal basis of eigenfunctions
of the boundary value problem corresponding to the eigenvalues λ2

0 <
λ2

1 ≤ λ2
2 · · · enumerated according to multiplicity. The nodal set

Nϕλj
= {x ∈ Ω : ϕλj (x) = 0}

is a curve (possibly with self-intersections at the singular points) which
intersects the boundary in the set Nϕλj

∩ ∂Ω of boundary nodal points.
The motivating problem of this article is the following: how many nodal
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lines (i.e., components of the nodal set) touch the boundary? Since the
boundary lies in the nodal set for Dirichlet boundary conditions, we
remove it from the nodal set before counting components. Henceforth,
the number of components of the nodal set in the Dirichlet case means
the number of components of Nϕλj

\∂Ω.

In the following, and henceforth, CΩ > 0 denotes a positive constant
depending only on the domain Ω.

Theorem 1. Let Ω be a piecewise analytic domain and let n∂Ω(λj)
be the number of components of the nodal set of the jth Neumann or
Dirichlet eigenfunction which intersect ∂Ω. Then there exists CΩ such
that n∂Ω(λj) ≤ CΩλj .

For generic piecewise analytic plane domains, zero is a regular value
of all the eigenfunctions ϕλj , i.e., ∇ϕλj 6= 0 on Nϕλj

[U]; we then
call the nodal set regular. Each regular nodal set decomposes into a
disjoint union of connected components which are homeomorphic either
to circles contained in the interior Ωo of Ω or to intervals intersecting
the boundary in two points. We term the former ‘closed nodal loops’
and the latter ‘open nodal lines’. Thus, we are counting open nodal
lines. Such open nodal lines might ‘percolate’ in the sense of [Ze] (i.e.,
become infinitely long in the scaling limit Ω → λjΩ), or they might
form λ−1

j -‘small’ half-loops at the boundary.
For the Neumann problem, the boundary nodal points are the same

as the zeros of the boundary values ϕλj |∂Ω of the eigenfunctions. The
number of boundary nodal points is thus twice the number of open nodal
lines. Hence we can count open nodal lines by counting boundary nodal
points. In the Neumann case, our result follows from:

Theorem 2. Suppose that Ω ⊂ R2 is a piecewise real analytic plane
domain. Then the number n(λj) = #Nϕλj

∩∂Ω of zeros of the boundary
values ϕλj |∂Ω of the jth Neumann eigenfunction satisfies n(λj) ≤ CΩλj,
for some CΩ > 0.

This is a more precise version of Theorem 1 in cases such as integrable
billiard domains (rectangles, discs, ellipses) where the entire nodal set
is connected due to the large grid of self-intersection points of the nodal
set. The analogous result in the Dirichlet case is stated in Corollary 4.
Counting boundary nodal points of eigenfunctions has obvious similar-
ities to measuring the length of the interior nodal line, and our results
show that the order of magnitude is the same. We recall that S. T.
Yau conjectured that in all dimensions, the hypersurface volume should
satisfy cλj ≤ Hn−1(Nϕλj

) ≤ Cλj for some positive constants c, C de-
pending only on (M, g) [Y1, Y2]. The lower bound was proved in
dimension two for smooth domains by Brüning-Gomes [BG] and both
the upper and lower bounds were proved in all dimensions for analytic
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(M, g) by Donnelly-Fefferman [DF, DF2] (see also [L]; an extensive
exposition is given in [HL]). For general C∞ Riemannian manifolds
(M, g) in dimensions ≥ 3 there are at present only exponential bounds
[HHL, HS]. Our methods involve analytic continuation to the complex
as in [DF, DF2, L], and it is not clear how to extend them to C∞
domains.

In comparison to the order O(λj) of the number of boundary nodal
points, the total number of connected components of Nϕλj

has the up-
per bound O(λ2

j ) by the Courant nodal domain theorem. Here, and
henceforth, the notation A(λ) = O(g(λ)) means that there exists a con-
stant CΩ > 0 independent of λ such that A(λ) ≤ CΩg(λ). Only in
very rare cases is it known whether this upper bound is achieved (in
terms of order of magnitude). When the upper bound is achieved, the
number of open nodal lines in dimension 2 is of one lower order in λj

than the number of closed nodal loops. This effect is known from nu-
merical experiments of eigenfunctions and random waves [BGS, FGS].
The only rigorous result we know is the recent proof in [NS] that the
average number of nodal components of a random spherical harmonic
is of order of magnitude λ2

j . In special cases, the number of connected
components can be much smaller than the Courant bound, e.g., two or
three for arbitrarily high eigenvalues [Lew].

Our methods also yield estimates on the number of critical points of
ϕλj which occur on the boundary. We denote the boundary critical set
by

Cϕλj
= {q ∈ ∂Ω : (dϕλj )(q) = 0}.

In the case of Neumann eigenfunctions, q ∈ Cϕλj
⇐⇒ d(ϕλj |∂Ω(q)) = 0

since the normal derivative automatically equals zero on the boundary,
while in the Dirichlet case q ∈ Cϕλj

⇐⇒ ∂νϕλj (q) = 0 since the
boundary is a level set.

A direct parallel to Yau’s conjecture for interior critical points of
generic analytic metrics would be the Bézout bound #Cϕλj

≤ CΩλn
j

in dimension n, and λn−1
j for boundary critical points. However, this

bound is unstable since the critical point sets do not even have to be
discrete when the eigenfunctions have degenerate critical points, and the
true count in the discrete case might reflect the size of the determinant
of the Hessian at the critical point. Note that there is no non-trivial
lower bound on the number of interior critical points [JN]. Related com-
plications occur for boundary critical points. For instance, the radial
eigenfunctions on the disc are constant on the boundary; thus, bound-
ary critical point sets need not be isolated. We therefore need to add
a non-degeneracy condition on the tangential derivative ∂t(ϕλj |∂Ω) to
ensure that its zeros are isolated and can be counted by our methods.
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We phrase the condition in terms of the Pompeiu problem and Schif-
fer conjecture, which asserts the disc is the only smooth plane domain
possessing a Neumann eigenfunction which is constant on the boundary.
In [Ber] it is proved that the disc is the only bounded simply connected
plane domain possessing an infinite sequence of such Neumann eigen-
functions. We say that the Neumann problem for a bounded domain
has the asymptotic Schiffer property if there exists C > 0 such that, for
all Neumann eigenfunctions ϕλj with sufficiently large λj ,

(1.2)
‖∂tϕλj

‖L2(∂Ω)

‖ϕλj‖L2(∂Ω)
≥ e−Cλj .

Here, ∂t is the unit tangential derivative, and the L2 norms refer to
the restrictions of the eigenfunction to ∂Ω. It seems plausible that
Berenstein’s result might extend to this asymptotic Schiffer property,
i.e., that the disc is the only example where (1.2) fails for an infinite
sequence.

Theorem 3. Let Ω ⊂ R2 be piecewise real analytic. Suppose that
ϕλj

|∂Ω satisfies the asymptotic Schiffer condition (1.2) in the Neumann
case. Then the number ncrit(λj) = #Cϕλj

of critical points of a Neu-
mann or Dirichlet eigenfunction ϕλj which lie on ∂Ω satisfies ncrit(λj) ≤
CΩλj for some CΩ > 0

This is apparently the first general result on the asymptotic number
of critical points of eigenfunctions as λj →∞. Our results on boundary
critical points give some positive evidence for the Bézout upper bound
in the analytic case, and simple examples such as the disc show that
there does not exist a non-trivial lower bound (see §2). In general,
counting critical points is subtler than counting zeros or singular points
(i.e., points where ϕλj (x) = dϕλj (x) = 0; see [HS, HHL]).

In the case of Dirichlet eigenfunctions, endpoints of open nodal lines
are always boundary critical points, since they must be singular points
of ϕλj . Hence, an upper bound for ncrit(λj) also gives an upper bound
for the number of open nodal lines.

Corollary 4. Suppose that Ω ⊂ R2 is a piecewise real analytic plane
domain. Let n∂Ω(λj) be the number of open nodal lines of the jth Dirich-
let eigenfunction, i.e., connected components of {ϕλj = 0} ⊂ Ωo whose
closure intersects ∂Ω. Then there exists CΩ > 0 such that n∂Ω(λj) ≤
CΩλj .

The question may arise why we are concerned with piecewise analytic
domains Ω2 ⊂ R2. By this, we mean a compact domain with piecewise
analytic boundary, i.e., ∂Ω is a union of a finite number of piecewise an-
alytic curves which intersect only at their common endpoints (cf. [HZ]).
Our interest in such domains is due to the fact that many important
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types of domains in classical and quantum billiards, such as the Buni-
movich stadium or Sinai billiard, are only piecewise analytic. Their
nodal sets have been the subject of a number of numerical studies (e.g.,
[BGS, FGS]). More generally, it is of interest to study the nodal dis-
tributions of piecewise analytic Euclidean plane domains with ergodic
billiards, which can never be fully analytic.

The results stated above are corollaries of one basic result concerning
the complex zeros and critical points of analytic continuations of Cauchy
data of eigenfunctions. When ∂Ω ∈ Cω, the eigenfunctions can be
holomorphically continued to an open tube domain in C2 projecting
over an open neighborhood W in R2 of Ω which is independent of the
eigenvalue. We denote by ΩC ⊂ C2 the points ζ = x + iξ ∈ C2 with x ∈
Ω. Then ϕλj (x) extends to a holomorphic function ϕCλj

(ζ) where x ∈ W

and where |ξ| ≤ ε0 for some ε0 > 0. We mainly use the complexifications
to obtain upper bounds on real zeros, so are not concerned with the
maximal ε0, i.e., the ‘radius of the Grauert tube’ around ∂Ω, and do
not include the radius in our notation for the complexification.

Assuming ∂Ω real analytic, we define the (interior) complex nodal set
by

NC
ϕλj

= {ζ ∈ ΩC : ϕCλj
(ζ) = 0},

and the (interior) complex critical point set by

CCϕλj
= {ζ ∈ ΩC : dϕCλj

(ζ) = 0}.
We are mainly interested in the restriction of ϕCλj

to the complexification
(∂Ω)C of the boundary, i.e. the complex curve in C2 obtained as the
image of the analytic continuation of a real analytic parameterization
Q : S1 → ∂Ω. The map Q admits a holomorphic extension to an annu-
lus A(ε) (see (3.2)) around the parameterizing circle S1 and its image
QC(A(ε)) ⊂ C2 is an annulus in the complexification of the boundary;
it is analogous to a Grauert tube around the real analytic boundary in
the sense of [GS1, LS1]. We then define the boundary complex nodal
set by

N ∂ΩC
ϕλj

= {ζ ∈ ∂ΩC : ϕCλj
(ζ) = 0},

and the (boundary) complex critical point set by

C∂ΩC
ϕλj

= {ζ ∈ ∂ΩC : dϕCλj
(ζ) = 0}.

More generally, we may assume ∂Ω is piecewise real analytic and holo-
morphically extend eigenfunctions to the analytic continuations of the
real analytic boundary arcs. The radii of these analytic continuations
of course shrink to zero at the corners.

Theorem 5. Suppose that Ω ⊂ R2 is a piecewise real analytic plane
domain, and denote by (∂Ω)C the union of the complexifications of its
real analytic boundary components.
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1) Let n(λj , ∂ΩC) = #N ∂ΩC
ϕλj

. Then there exists a constant CΩ > 0
independent of the radius of (∂Ω)C such that n(λj , ∂ΩC) ≤ CΩλj .

2) Suppose that the Neumann eigenfunctions satisfy (1.2) and let
ncrit(λj , ∂ΩC) = #C∂ΩC

ϕλj
. Then there exists CΩ > 0 independent

of the radius of (∂Ω)C such that ncrit(λj , ∂ΩC) ≤ CΩλj .

The theorems on real nodal lines and critical points follow from the
fact that real zeros and critical points are also complex zeros and critical
points, hence

(1.3) n(λj) ≤ n(λj , ∂ΩC); ncrit(λj) ≤ ncrit(λj , ∂ΩC).

All of the results are sharp, and are already obtained for certain se-
quences of eigenfunctions on a disc (see §2). If the condition (1.2) is not
satisfied, the boundary value of ϕλj must equal a constant Cj modulo an
error of the form O(e−Cλj ). It is plausible that this forces the boundary
values to be constant, but it would take us too far afield in this article
to investigate it.

Although our main interest is in counting open nodal lines, the method
of proof of Theorem 5 generalizes from ∂Ω to a rather large class of real
analytic curves C ⊂ Ω, even when ∂Ω is not real analytic. Let us call
a real analytic curve C a good curve if there exists a constant a > 0 so
that for all λj sufficiently large,

(1.4)
‖ϕλj‖L2(∂Ω)

‖ϕλj‖L2(C)
≤ eaλj .

Here, the L2 norms refer to the restrictions of the eigenfunction to
C and to ∂Ω. The following result deals with the case where C ⊂
∂Ω is an interior real-analytic curve. The real curve C may then be
holomorphically continued to a complex curve CC ⊂ C2 obtained by
analytically continuing a real analytic parametrization of C.

Theorem 6. Suppose that Ω ⊂ R2 is a C∞ plane domain, and let
C ⊂ Ω be a good interior real analytic curve in the sense of (1.4). Let
n(λj , C) = #Nϕλj

∩C be the number of intersection points of the nodal
set of the j-th Neumann (or Dirichlet ) eigenfunction with C. Then there
exists AC,Ω > 0 depending only on C, Ω such that n(λj , C) ≤ AC,Ωλj.

Although the upper bounds are sharp for some domains, we do not
present necessary or sufficient conditions on a domain so that the bounds
on zeros or critical points are achieved by some sequence of eigenfunc-
tions. It is plausible that the upper bounds are achieved on all piecewise
analytic domains; we do not know any domain for which they are not
achieved, but there are few domains where the bounds can be explic-
itly tested. The boundary (or rather its unit ball bundle) is naturally
viewed as a kind of quantum ‘cross section’ of the wave group [HZ]. The
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growth rate of the modulus and zeros of Cauchy data of complexified
eigenfunctions depend on what kind of ‘cross section’ the boundary pro-
vides. We conjecture that for piecewise analytic domains with ergodic
billiards, the number of complex zeros of ϕCλj

|∂ΩC is bounded below by
CΩλj , reflecting the fact that the boundary is then a representative cross
section of the billiard flow. Further results in the ergodic case are given
in [TZ].

Some of the methods and results of this paper should generalize to
higher dimensions, while some are basically two-dimensional. Among
those which should generalize are the upper bounds on the number of
boundary zeros of Neumann eigenfunctions. In higher dimensions one
should have similar bounds on the Hausdorff m−2 dimensional measure
of the boundary nodal set. On the other hand, such bounds do not seem
to have the same kind of applications to counting components of the
nodal set.

We also note an interesting application due to I. Polterovich [Po] of
Theorem 1 to an old conjecture of A. Pleijel regarding Courant’s nodal
domain theorem, which says that the number nk of nodal domains (com-
ponents of Ω\Zϕλk

) of the kth eigenfunction satisfies nk ≤ k. Pleijel [P]
improved this result for Dirichlet eigefunctions of plane domains: For
any plane domain with Dirichlet boundary conditions, lim supk→∞

nk
k ≤

4
j2
1
' 0.691..., where j1 is the first zero of the J0 Bessel function. He

conjectured that the same result should be true for a free membrane,
i.e., for Neumann boundary conditions. This was recently proved in the
real analytic case by I. Polterovich [Po]. His argument is roughly the
following: Pleijel’s original argument applies to all nodal domains which
do not touch the boundary, since the eigenfunction is a Dirichlet eigen-
function in such a nodal domain. The argument does not apply to nodal
domains which touch the boundary, but by Theorem 1 the number of
such domains is negligible for the Pleijel bound.

The organization of this article is as follow: In §3, we use the layer
potential representations of Cauchy data of eigenfunctions, or equiva-
lently the representation in terms of the Calderon projector, to ana-
lytically continue eigenfunctions. We believe that this representation
should be useful for more refined results in the complex domain, much
as layer potential representations were useful in the real domain in [HZ].
The analytic continuation of the layer potential representation has pre-
viously been studied by Vekua [V], Garabedian [G], and in the form
we need by Millar [M1, M2, M3]. The analytic continuation is some-
what subtle due to the presence of logarithms in the layer potentials,
and does not appear to be well-known; so we present complete details
(which are sometimes sketchy in the original articles) in Appendix 8.
In §4, we relate growth of complex zeros to growth of the log modulus
of the complexified eigenfunctions. In §5–§6, we prove the main results.
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The complexified layer potential representation is used to obtain an up-
per bound on the growth rate of the complexified eigenfunctions ϕCλj

in
a fixed complex tube around the boundary as λj →∞. The estimate is
simpler for interior curves (§5) since on the boundary the analytic con-
tinuation involves a Volterra operator that must be inverted. Almost
the same method gives analogous results on critical points; for the sake
of brevity, the argument is only sketched in §7. Finally, for the benefit
of the reader, in Appendix 9 we collect all the special functions formulas
for Bessel and Hankel functions that are used in §3 and §5–§6.

We would like to thank P. Ebenfelt, L. Ehrenpreis, C. Epstein, Q.
Han, P. Koosis, and M. Zworski for informative discussions. We would
also like to thank the referee for suggestions on improving the presen-
tation.

2. Examples

We begin with examples illustrating the issues we face. Eigenfunc-
tions are only computable in (quantum) completely integrable cases, and
at present the only known examples are the unit disc, ellipses and rect-
angles. It is a classical conjecture of Birkhoff that ellipses are the only
smooth Euclidean plane domains with integrable billiards, so one does
not expect further explicitly computable examples. In addition, one can
construct approximate eigenfunctions, or quasi-modes for many further
domains [BB]; it is plausible, although it is not proved here, that our
results extend to real analytic quasi-modes.

2.1. The unit disc D. The unit disc shows that there do not exist
universal lower bounds on the number of boundary nodal points in terms
of the frequency λj .

The standard orthonormal basis of real valued Neumann eigefunc-
tions is given in polar coordinates by ϕm,n(r, θ) = Cm,n sinmθJm(j′m,nr),
(resp. Cm,n cosmθJm(j′m,nr)) where j′m,n is the nth critical point of the
Bessel function Jm and where Cm,n is the normalizing constant. The
∆-eigenvalue is λ2

m,n = (j′m,n)2. The parameter m is referred to as the
angular momentum. Dirichlet eigenfunctions have a similar form with
j′m,n replaced by the nth zero jm,n of Jm. Nodal loops correspond to
zeros of the radial factor while open nodal lines correspond to zeros of
the angular factor.

If we fix m and let λm,n →∞ we obtain a sequence of eigenfunctions
of bounded angular momentum but high energy. In the sin case (e.g.),
the open nodal lines consist of the union of rays Cm = {θ = 2πk

m , k =
0, . . . , m−1

m } through the mth roots of unity. Hence, for each m there
exist sequences of eigenfunctions with λ → ∞ but with m open nodal
lines; hence, there exists no lower bound on the number of nodal lines
touching the boundary in terms of the energy. This example also shows
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that there cannot exist a general unconditional result counting intersec-
tions of nodal lines with interior curves, since ϕm,n|Cm ≡ 0 and hence
the ‘number’ of nodal points on the interior curve Cm is infinite. In
particular, Cm is not ‘good’ in the sense of (1.4).

At the opposite extreme are the whispering gallery modes which con-
centrate along the boundary. These are eigenfunctions of maximal an-
gular momentum (with given energy), and λm,m ∼ m. As discussed in
[BB], they are asymptotically given by the real and imaginary parts of
eiλmsAip(ρ−1/3λ

2/3
m y). Here, Aip(y) := Ai(−tp +y) where Ai is the Airy

function and {−tp} are its negative zeros. Also, s is arc-length along
∂D, ρ is a normalizing constant and y = 1 − r. Whispering gallery
modes saturate the upper bound on the number of open nodal lines.
2.2. An ellipse. A new feature in comparison to the disc is the exis-
tence of Gaussian beams along the minor axis, which is a stable elliptic
bouncing ball orbit. The modes oscillate along the minor exis and have
Gaussian decay in the tranvserve direction; thus, they are highly local-
ized along the minor axis. Such bouncing ball modes do not exist in the
disc and occur when m is fixed and n →∞.

We express an ellipse in the form x2+ y2

1−a2 = 1, 0 ≤ a < 1, with foci
at (x, y) = (±a, 0). We define elliptical coordinates (ϕ, ρ) by (x, y) =
(a cosϕ cosh ρ, a sinϕ sinh ρ). Here, 0 ≤ ρ ≤ ρmax = cosh−1 a−1, 0 ≤
ϕ ≤ 2π. The lines ρ = const are confocal ellipses and the lines ϕ = const
are confocal hyperbolae. The foci occur at ϕ = 0, π while the origin
occurs at ρ = 0, ϕ = π

2 .
The eigenvalue problem separates into a pair of Mathieu equations,

(2.1)





∂2
ϕGm,n − c2 cos2 ϕGm,n = −λ2

m,nGm,n

∂2
ρF − c2 cosh2 ρFm,n = λ2

m,nFm,n

where c is a certain parameter. The eigenfunctions have the form
Ψm,n(ϕ, ρ) = Cm,nFm,n(ρ) · Gm,n(ϕ) where, Fm,n(ρ) = Cem(ρ, knc

2 )
and Gm,n(ϕ) = cem(ϕ, knc

2 ) (and their sin analogues). Here, cem, Cem

are special Mathieu functions (cf. [C] (3.10)-(3.2)). The Neumann or
Dirichlet boundary conditions determine the eigenvalue parameters knc.
The nodal lines are of course given by {Gm,n = 0} ∪ {Fm,n = 0}. For
more details and computer graphics of elliptic bouncing ball modes we
refer to [C]; the original work was done by Keller-Rubinow.

The eigenfunctions which are the Gaussian beams are characterized
as follows: Since the minor axis is

I =
{

(ρ, ϕ) ∈ [0, ρmax]× [0, 2π]; ϕ =
π

2

}
.

one looks for eigenfunctions with mass concentrated along this interval.
Consider the extremal energy levels that satisfy

c2λ−2
m,n = 1 + O(λ−1

m,n).
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One rewrites (2.1) in the form:

(2.2)




−λ−2

m,n∂2
ϕGm,n + (λ−2

m,nc2 cos2 ϕ− 1)Gm,n = 0

−λ−2
m,n∂2

ρFm,n + (λ−2
m,nc2 cosh2 ρ + 1)Fm,n = 0

Given the choice of energy level,

λ−2
m,nc2 cos2 ϕ− 1 = cos2 ϕ− 1 + O(λ−1

m,n) = − sin2(ϕ) + O(λ−1
m,n).

The potential V1(ϕ) = cos2 ϕ − 1 has a nondegenerate minimum at
ϕ = π

2 . So, the solutions G = Gm,n to the first equation in (2.2) are
asymptotic to ground state Hermite functions. More precisely,

(2.3) Gm,n(ϕ;λm,n) = cm,n(λm,n)e−λm,n cos2 ϕ(1 + O(λ−1
m,n)).

In the second equation in (2.2) the potential is V2(ρ) = cosh2 ρ + 1 +
O(λ−1

m,n) > 0 for λm,n ≥ λ0 sufficiently large. In this case the solution
has purely oscillatory asymptotics:

(2.4) Fm,n(ρ; λm,n) = eiλm,n
∫ ρ
0

√
cosh2 x+1dxa+(ρ;λm,n)

+ e−iλm,n
∫ ρ
0

√
cosh2 x+1dxa−(ρ; λm,n)

where a±(ρ; λm,n) ∼ ∑∞
j=0 a±,j(ρ)λ−j

m,n are determined by the Dirichlet
or Neumann boundary conditions. Moreover, from the L2-normalization
condition

∫
I |Ψm,n(ρ, π

2 )|2dρ = 1 it follows that cm,n(λm,n) ∼ λ
1/4
m,n.

From (2.3) and (2.4), the Gaussian beams are roughly asymptotic to
superpositions of e±ikse−λm,ny2

(cf. [BB]), where s denotes arc-length
along the bouncing ball orbit and y denotes the Fermi normal coor-
dinate. It follows that outside a tube of any given radius ε > 0, the
Gaussian beam decays on the order O(e−λm,nε2). Hence on any curve
C which is disjoint from the bouncing ball orbit, the restriction of the
Gaussian beam to C saturates the description of a ‘good’ analytic curve.

Remark. In the case of circles and ellipses, it is elementary to obtain
the analytic continuations of the boundary values of Neumann eigen-
functions to the complexification of the boundary. One sees that the
growth rate of the analytic continuations are determined by the angu-
lar momenta of the eigenfunctions, i.e., the eigenvalue of the boundary
Laplacian, and not by the interior eigenvalue. This suggests that the
growth rate of boundary values of eigenfunctions and of their analytic
continuations should be estimated in terms of a ‘boundary frequency
function.’



COUNTING NODAL LINES ... 659

3. Holomorphic extensions of eigenfunctions to Grauert
tubes

It is classical that solutions of the Helmholtz equation on a Euclidean
domain are real analytic in the interior and hence their restrictions
to interior real analytic curves admit holomorphic extensions to the
complexification of the curves. A classical presentation can be found
in [G] §5.2, and to some extent we try to conform to its notation; see
also [MN, S, Mor, V]. Moreover, the Cauchy data along the boundary
of eigenfunctions satisfying Dirichlet or Neumann boundary conditions
admit analytic continuations into a uniform tube in the complexification
of the boundary, independent of the eigenvalue. We now use integral
representations for the analytic continuations to obtain upper bounds
for the growth rate of the complexified Cauchy data of eigenfunctions
in a fixed Grauert tube of interior curves or curves on the boundary as
λj →∞.
3.1. Complexification of domains Ω and their boundaries ∂Ω.
When (M, g) is a real analytic Riemannian manifold without boundary,
then there exists a complexification MC of M as an (open) complex
manifold, and Laplace eigenfunctions extend to a maximal tube in MC.
This has been studied in [Bou, GS1, GS2, GLS, Z] using the analytic
continuation of the geodesic flow and wave group. The notion of max-
imal tube depends on the construction of a special plurisubharmonic
exhaustion function ρ adapted to the metric g in the sense that i∂∂̄ρ
restricts to the totally real submanifold M ⊂ MC as g. The function√

ρ(t) is the distance from t to t̄.
The analogous results for manifolds with boundary have not appar-

ently been studied before. In this section, we study the complexification
of the boundary and analytic continuations of the Cauchy data of eigen-
functions on the boundary (or on interior curves) for domains Ω ⊂ R2

with the Euclidean metric. The complexification of the ambient space
is of course C2 and its Grauert tube function is |=t|. The novel fea-
tures concern the influence of the boundary on analytic extensions of
eigenfunctions.

We adopt the following notation from Garabedian [G] and Millar
[M1, M2]: We denote points in R2 and also in C2 by (x, y). We further
write z = x + iy, z∗ = x − iy. Note that z, z∗ are independent holo-
morphic coordinates on C2 and are characteristic coordinates for the
Laplacian, in that the Laplacian analytically extends to ∂2

∂z∂z∗ . When
dealing with kernel functions of two variables, we use (ξ, η) in the same
way as (x, y) for the second variable.

When the boundary is real analytic, the complexification ∂Ω is the
image of the analytic continuation of a real analytic parameterization.
To simplify notation, unless indicated otherwise, we will assume that
the length of ∂Ω is 2π. We denote a real analytic parametrization by
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arc-length by Q : S1 → ∂Ω ⊂ C, and also write the parametrization as
a periodic function

(3.1) q(t) = Q(eit) : [0, 2π] → ∂Ω

on [0, 2π]. We then put q(s) = q1(s) + iq2(s), q̄(s) = q1(s)− iq2(s).
We complexify ∂Ω by holomorphically extending the parametrization

to QC on the annulus

(3.2) A(ε) := {t ∈ C; e−ε < |t| < eε},
for ε > 0 small enough. Note that the complex conjugate parameteriza-
tion Q̄ extends holomorphically to A(ε) as Q∗

C. Throughout the paper,
the subscript C or superscript C denotes the holomorphic continuation of
a curve or function; when no confusion can arise, we sometimes omit the
sub or superscript for notational simplicity. The q(t) parametrization
analytically continues to a periodic function qC(t) on [0, 2π] + i[−ε, ε].

Next, we put r2((x, y); (ξ, η)) = (ξ − x)2 + (η − y)2. For s ∈ R and
t ∈ C, we have q(s) = ξ(s)+iη(s), q(t) = x(t)+iy(t), q∗(t) = x(t)−iy(t)
and we write r2(s, t) = r2(q(s); q(t)). Thus,

(3.3) r2(s, t) = (q(s)− q(t))(q̄(s)− q∗(t)).

We denote by d
dn the not-necessarily-unit normal derivative in the di-

rection iq′(s). Thus, in terms of the notation ∂
∂ν above, d

dn = |q′(s)| ∂
∂ν .

One has

d

ds
log r =

1
2

[
q′(s)

q(s)− q(t)
+

q′(s)
q(s)− q∗(t)

]
,

∂

∂n
log r =

−i

2

[
q′(s)

q(s)− q(t)
− q′(s)

q(s)− q∗(t)

]
.

When we are using an arc-length parameterization, d
dn = ∂

∂ν .
To clarify the notation, we consider the case of S1 = ∂Ω. Then,

q(s) = eis, t = θ + iξ, q(θ + iξ) = ei(θ+iξ), q∗ = e−i(θ+iξ), q∗ = ei(θ−iξ),
and

r2(s, θ + iξ) = (ei(θ+iξ) − eis)(e−i(θ+iξ) − e−is) = 4 sin2 (θ − s + iξ)
2

.

Thus, log r2 = log(4 sin2 (θ−s+iξ)
2 ). Clearly, d

ds = d
dθ , so

d

ds
log r2 =

[
ieis

eis − ei(θ+iξ)
+

−ie−is

e−is − e−i(θ+iξ)

]
,

∂

∂ν
log r =

−i

2

[
ieis

eis − ei(θ+iξ)
− −ie−is

e−is − e−i(θ+iξ)

]
.
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3.2. Complexification of analytic curves C ⊂ Ω. Theorem 5 con-
cerns complexifications of real analytic curves C ⊂ Ω, and we now intro-
duce analogous notation for them. As in the case of ∂Ω, we assume that
the length of all curves C is 2π. We use the notation QC : S1 → R2 ' C
for a real analytic parameterization of C. We then complexify C by
holomorphically extending the parametrization to QCC on the annulus
(3.2), and again Q̄C extends holomorphically to A(ε) as Q∗

C . We also
write qC(t) = QC(eit) : [0, 2π] → C.

3.3. Layer potential representations on Ω. We denote the Cauchy
data of the eigenfunction on ∂Ω by

(3.4) uλj = ϕλj |∂Ω (Neumann); uλj = ∂νϕλj |∂Ω (Dirichlet),

and write uCλj
for its holomorphic extension to ∂ΩC.

We will represent the analytic continuations of the Cauchy data in
terms of layer potentials. Let G(λj , x1, x2) be any ‘Green’s function’ for
the Helmholtz equation on Ω, i.e., a solution of (−∆−λ2

j )G(λj , x1, x2) =
δx1(x2) with x1, x2 ∈ Ω̄. By Green’s formula,

(3.5) ϕλj (x, y)

=
∫

∂Ω

(
∂

∂νq

G(λj , q, (x, y))ϕλj (q)−G(λj , q, (x, y))
∂

∂νq

ϕλj (q)
)

dσ(q),

where (x, y) ∈ R2, where dσ is arc-length measure on ∂Ω and where
∂ν is the normal derivative by the interior unit normal. Our aim is to
analytically continue this formula.

In the case of Neumann eigenfunctions ϕλ in Ω,
(3.6)

ϕλj (x, y) =
∫

∂Ω

∂

∂νq
G(λj , q, (x, y))uλj (q)dσ(q), (x, y) ∈ Ωo (Neumann).

In the Dirichlet case, the corresponding formula is

(3.7) ϕλj (x, y) = −
∫

∂Ω
G(λj , q, (x, y))uλj (q)dσ(q) (Dirichlet)

where uλj are as in (3.4).
To obtain concrete representations we need to choose G. We choose

the real ambient Euclidean Green’s function S (in the notation of [G],
§5),

(3.8) S(λj , ξ, η;x, y) = −Y0(λjr((x, y); (ξ, η))),

where r =
√

zz∗ is the distance function (the square root of r2 above)
and where Y0 is the Bessel function of order zero of the second kind.
(see equation (9.1) in Appendix 9.) The Euclidean Green’s function has
the form

(3.9) S(λj , ξ, η; x, y) = A(λj , ξ, η;x, y) log
1
r

+ B(λj , ξ, η; x, y),
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where A and B are entire functions of r2 (see (9.1) and (9.2) in Appen-
dix 9 for the formulas). The coefficient A = J0(λjr) is known as the
Riemann function.

By the ‘jumps’ formulae, the double layer potential ∂
∂νq̃

S(λj , q̃, (x, y))

on ∂Ω× Ω̄ restricts to ∂Ω× ∂Ω as 1
2δq(q̃)+ ∂

∂νq̃
S(λj , q̃, q) (see e.g., [T]).

Hence in the Neumann case the boundary values uλj satisfy,

(3.10) uλj
(q) = 2

∫

∂Ω

∂

∂νq̃
S(λj , q̃, q)uλj

(q̃)dσ(q̃) (Neumann).

In the Dirichlet case, one takes the normal derivative of ϕλj at the
boundary to get a similar formula for ∂νϕλj |∂Ω, with a sign change on
the right side. We have,

(3.11)
∂

∂νq̃
S(λj , q̃, q) = −λjY1(λjr) cos∠(q − q̃, νq̃)

where the formula for Y1(z) is given in (9.3) in Appendix 9. As is
well-known, the pole of Y1 is cancelled by the cos∠(q − q̃, νq̃) factor.

It is equivalent, and sometimes more convenient, to use the (complex
valued) Euclidean outgoing Green’s function Ha(1)

0 (kz), where Ha(1)
0 =

J0 + iY0 is the Hankel function of order zero. It has the same form as
(3.9) and only differs by the addition of the even entire function J0 to
the B term. If we use the Hankel free outgoing Green’s function, then
in place of (3.11) we have the kernel

N(λj , q(s), q(s′))(3.12)

=
i

2
∂νy Ha(1)

0 (λj |q(s)− y|)|y=q(s′)

= − i

2
λj Ha(1)

1 (λj |q(s)− q(s′)|) cos∠(q(s′)− q(s), νq(s′)),

and in place of (3.10) we have the formula

(3.13) uλj (q(t)) =
∫ 2π

0
N(λj , q(s), q(t))uλj (q(s))ds.

3.4. Analytic continuation of layer potential representations.
In this section, we analytically continue the layer potential represen-
tations (3.10) and (3.13). The main point is to express the analytic
continuations of Cauchy data of Neumann and Dirichlet eigenfunctions
in terms of the real Cauchy data. For brevity, we only consider (3.10)
but essentially the same arguments apply to the free outgoing represen-
tation (3.13).

As mentioned above, both A(λj , ξ, η, x, y) and B(λj , ξ, η, x, y) admit
analytic continuations. In the case of A, we use a traditional notation
R(ζ, ζ∗, z, z∗) for the analytic continuation and for simplicity of notation
we omit the dependence on λj .
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3.4.1. Interior curves. Before considering Cauchy data on ∂Ω, we
consider the simpler problem of expressing the analytic continuations of
the Cauchy data of eigenfunctions along interior real analytic curves C
in terms of the real Cauchy data.

The Cauchy data of the eigenfunction on C consists of the pair

ϕλj
|C , ∂νϕλj

|C .

We then restrict the Green’s formula (3.5) to C. As above, we let qC :
[0, 2π] → C denote the real-analytic, arclength parametrization of the
curve C. To simplify notation put R(qC(s), q̄C(s), z, z∗) =: R(s; z, z∗).
When the coefficients A,B are restricted to qC(t), qC(s) we also abbre-
viate them by A(λj , s, t), B(λj , s, t) or when dealing with the analytic
continuation in t by A(λj , s, qC(t), q∗C(t)) and B(λj , s, qC(t), q∗C(t)).

For ε > 0 sufficiently small, we consider the annulus (3.2) and the
corresponding complexification of C given by

CC =
{

QCC(ei(s+iτ)) ∈ qCC(A(ε)); QCC(ei(s+iτ)) = qCC(s + iτ);

0 ≤ s ≤ 2π, |τ | < ε
}

,

where we recall that C denotes holomorphic continuation. Since C is
assumed to be an interior curve, it follows by compactness of ∂Ω that
for |=qC| sufficiently small, r2|CC×∂Ω 6= 0. As a result, one can choose a
globally defined holomorphic branch for log r and so, the holomorphic
continuation formula for Neumann eigenfunctions in this case follows
immediately from (3.6):

(3.14) ϕCλj
(qCC(t)) =

∫

∂Ω

∂

∂νq̃
S(λj , q, q

C
C(t))uλj (q) dσ(q).

Note that we are using Green’s formula on ∂Ω to study the restriction
to C and its complexification.

3.4.2. When ∂Ω is real analytic. As before, q : [0, 2π] → ∂Ω denotes
the real analytic paramaterization of ∂Ω by arc-length, so that dσ(s) =
ds. Let uλj (q(t)) be the Neumann case of (3.4). From (3.9), we can
write (3.10) as

uλj
(q(t)) =

1
2π

∫ 2π

0

(
−uλj

(q(s))
∂A

∂ν
(λj , s, t)

)
log r2ds(3.15)

− 1
π

∫ 2π

0
uλj

(q(s))A(λj , s, t)
1
r

∂r

∂ν
ds

− 1
π

∫ 2π

0
(−uλj (q(s)))

∂B

∂ν
(λj , s, t)ds.

With different choices of B the same formula is valid for the outgoing
Green’s function as well. We wish to analytically continue this formula



664 J.A. TOTH & S. ZELDITCH

to the complex parameter strip [0, 2π] + i[−ε, ε]. For brevity, we de-
note by uCλj

(qC(t)) the analytic continuation of (3.4) to the complex
parameter strip.

Since r2(s, t) = 0 when s = t, the logarithmic factor in S now gives
rise to a multi-valued integrand, and it is not obvious that the repre-
sentation can be holomorphically extended. The analytic continuation
of the representation (3.15) was stated by Millar, and uses the function

(3.16) Φ(t; z, z∗) =
∫ t

0
uCλj

(qC(s))
∂

∂n
R(s, z, z∗)ds.

Proposition 7 ([M1, M2]). Let uCλj
be the analytic continuation to

∂ΩC of the boundary trace of the Neumann eigenfunction, ϕλj . Then,
for =t > 0, resp. < 0,

uCλj
(qC(t))(3.17)

= ±iΦ(t, qC(t), qC∗(t))

+
∫ 2π

0

[
Φ(s; qC(t), qC∗(t)) + iuλj (q(s))R(s, qC(t), qC∗(t))

]

· q′(s)
q(s)− qC(t)

ds

+
∫ 2π

0

[
Φ(s; qC(t), qC∗(t))− iuλj (q(s))R(s, qC(t), qC∗(t))

]

· q̄′(s)
q̄(s)− qC∗(t)

ds

− 2
∫ 2π

0
uλj (q(s))

∂B

∂n
(s; qC(t), qC∗(t))ds.

Since we rely on this Proposition and since the argument in [M1, M2]
is somewhat sketchy, we give a detailed proof in Appendix 8.
3.4.3. When ∂Ω is piecewise real analytic. We now consider the
case where ∂Ω is piecewise real-analytic. This has previously been dis-
cussed in [M3].

By a piecewise analytic boundary of length ` we mean ∂Ω =
⋃m

k=1 Ck

where
• Ck ⊂ R2 are the maximal real analytic components of ∂Ω, enu-

merated in counterclockwise order so that Ck intersects only Ck−1

and Ck+1.
• The Ck are parameterized by m real analytic functions qk(tk) :

[0, `k] → Ck on m parameterizing intervals (where `k = L(Ck) is
the length of Ck.) We assume Ck ∩ Ck−1 = {qk(0) = qk−1(`k)}
when m ≥ 2.

We denote the Cauchy data of the eigenfunction ϕλj on the bound-
ary component Ck by uk

λj
. Our aim is to analytically continue uk

λj
to
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⋃m
k=1 Ck,C where Ck,C is a complexification of the interior of Ck. Thus,

as we define it, ∂ΩC is pinched at the corner points and the analytic
continuation of the boundary data of ϕλj is somewhat simpler than in
the fully analytic case in that we are analytically continuing to a smaller
kind of neighborhood of ∂Ω. We denote the holomorphic extension of
uk

λj
◦ q(tk) to the complex parameter ‘strips’ [δk, `k − δk] × i[−ε, ε] by

ukC
λj
◦ qC(tk)). Millar’s formula for the analytic extension of uλj to Ck,C

in the Neumann case is given by:

Proposition 8 ([M3]). For <tk ∈ [0, `k] and =tk > 0, resp. < 0,

uk,C
λj

(qC(tk))(3.18)

= ±iΦ(tk, qCk (tk), qC∗k (tk)) +
1
π

m∑

n=1

[ ∫ `n

0
[Φ(sn; qCk (tk), qC∗k (tk))

+ iun
λj

(q(sn))R(sn, qCk (tk), qC∗k (tk))]
q′n(sn)

qn(sn)− qCk (tk)
dsn

]

+
1
π

m∑

n=1

[ ∫ `n

0
[Φ(sn; qCk (tk), qC∗k (tk))

− iun
λj

(q(sn))R(sn, qCk (tk), qC∗k (tk))]
q̄n
′(sn)

q̄n(sn)− qC∗k (tk)
dsn

]

− 2
π

m∑

n=1

∫ `n

0
un

λj
(q(sn))

∂B

∂n
(sn; qCk (tk), qC∗k (tk))dsn.

A proof is supplied in Appendix 8.

3.4.4. The case C ∩ ∂Ω 6= ∅ with C 6= ∂Ω. This is a somewhat
complicated hybrid of the previous cases, but we briefly explain how to
deal with it. Unlike the case of interior C, and like the case of ∂Ω, we
use Green’s formula
(3.19)

ϕλj (x, y) =
∫

C

(
∂

∂νq

G(λj , q, (x, y))ϕλj (q)−G(λj , q, (x, y))
∂

∂νq

ϕλj (q)
)

dσ(q)

on the domain int (C) bounded by C. Above, (x, y) ∈ R2, q ∈ C, dσ is
arc-length measure on C and ∂ν is the normal derivative by the interior
unit normal. There are no boundary conditions on C to simplify (3.19)
and the jumps formula, so the restriction of ϕλ to C satisfies

(3.20) ϕλj |C (q)

= 2
(∫

C

∂

∂νq̃
S(λj , q̃; , q)ϕλj (q)dσ(q̃)−

∫

C
S(λj , q̃, q)

∂

∂νq̃
ϕλj (q̃)dσ(q̃)

)
.

The first term is handled exactly as in the case C = ∂Ω, while the
second term (the single layer potential term) is new.
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Proposition 9. The restrictions ϕλj
|C of the eigenfunctions of the

Neumann problem to an analytic curve C with C ∩ ∂Ω 6= ∅ admit the
following holomorphic extension to a uniform tube around C in its com-
plexification CC: (for =t > 0, < 0)

ϕCλj
(qCC(t))(3.21)

= ±iΦ(t, qCC(t), qC∗C (t))

+
∫ 2π

0

[
Φ(s; qCC(t), qC∗C (t)) + iϕλj (qC(s))R(s, qCC(t), qC∗C (t))

]

· q′C(s)
qC(s)− qCC(t)

ds

+
∫ 2π

0

[
Φ(s; qCC(t), qC∗C (t))− iϕλj (qC(s))R(s, qC∗C (t), qCC(t))

]

· q̄C
′(s)

q̄C(s)− qC∗C (t)
ds

− 2
∫ 2π

0
ϕλj (qC(s))

∂B

∂n
(s; qCC(t), qC∗C (t))ds

−
∫ 2π

0
R(s, qCC(t), qC∗C (t))L(s, t)∂νϕλj (qC(s)) ds

∓ 2πi

∫ t

0
R(s, qCC(t), qC∗C (t))∂νϕλj (qC(s)) ds

− 2
∫ 2π

0
B(s, qCC(t), qC∗C (t))∂νϕλj (qC(s))ds.

In (3.21), L(s, t) is a specific branch of the multi-valued analytic contin-
uation of log r2(s, t) defined in Appendix 8.

4. Growth of zeros and growth of uCλj

The main purpose of this section is to give an upper bound for the
number of complex zeros of uCλj

in (∂Ω)C in terms of the growth of∣∣∣uCλj
(qC(t))

∣∣∣. The method applies equally well to any closed analytic
curve C ⊂ Ω, so we give an upper bound for the number of zeros of
ϕλj |CC in CC, or more precisely in the annulur region qCC(A(ε)) where
A(ε) = {z ∈ C; e−ε < |z| < eε}.

To simplify notation, in this section we write uλj = ϕλj |C for any
real analytic curve C ⊂ Ω regardless of whether or not C = ∂Ω. For
λj ∈ Sp(

√
∆) and for a region D ⊂ CC we denote by

(4.1) n(λj , D) = #{qCC(t) ∈ D : uCλj
(qCC(t)) = 0}.
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To orient the reader, we recall that the classical distribution theory
of holomorphic functions is concerned with the relation between the
growth of the number of zeros of a holomorphic function f and the
growth of max|z|=r log |f(z)| on discs of increasing radius. In contrast,
our problem concerns the family of functions {ϕλj} on a fixed domain.
The following estimate, suggested by Lemma 6.1 of Donnelly-Fefferman
[DF], gives an upper bound on the number of zeros in terms of the
growth of the family:

Proposition 10. Suppose that C is a good real analytic curve in the
sense of (1.4). Normalize uλj so that ||uλj ||L2(C) = 1, where L2(C) :=
L2(C; (2π)−1d<t). Then, there exists a constant C(ε) > 0 such that for
any ε > 0,

n(λj , Q
C
C(A(ε/2))) ≤ C(ε) max

qCC(t)∈QCC(A(ε))

∣∣∣log |uCλj
(qCC(t))|

∣∣∣ .

Proof. Let Gε denote the Dirichlet Green’s function of the ‘annulus’
QCC(A(ε)). Also, let {ak}n(λj ,QCC(A(ε/2)))

k=1 denote the zeros of uCλj
in the

sub-annulus QCC(A(ε/2)). Let Uλj =
uCλj

||uCλj
||

QC
C

(A(ε))

where ||u||QCC(A(ε)) =

maxζ∈QCC(A(ε)) |u(ζ)|. Then there exists a subharmonic function Hλj such
that

log |Uλj (q
C
C(t))|

=
i

π

∫

QCC((A(ε/2)))
Gε(qCC(t), w)∂∂̄ log |uCλj

(w)|+ Hλj (q
C
C(t))

=
∑

ak∈QCC(A(ε/2)):uCλj
(ak)=0

Gε(qCC(t), ak) + Hλj (q
C
C(t)),

since i
π∂∂̄ log |uCλj

(w)| = ∑
ak∈CC:uCλj

(ak)=0 δak
. The function Hλj

is sub-

harmonic on QCC(A(ε)) since

i

π
∂∂̄Hλj

=
i

π
∂∂̄ log |Uλj

(qCC(t))| −
∑

ak∈QCC(A(ε/2)):uCλj
(ak)=0

i

π
∂∂̄Gε(qCC(t), ak)

=
∑

ak∈QCC(A(ε))\QCC(A(ε/2))

δak
> 0.

So, by the maximum principle for subharmonic functions,

max
QCC(A(ε))

Hλj (q
C
C(t)) ≤ max

∂QCC(A(ε))
Hλj (q

C
C(t))

= max
∂QCC(A(ε))

log |Uλj (q
C
C(t))| = 0.
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It follows that

(4.2) log |Uλj
(qCC(t))| ≤

∑

ak∈QCC(A(ε/2)):uCλj
(ak)=0

Gε(qCC(t), ak),

hence that

(4.3) max
qCC(t)∈QCC(A(ε/2))

log |Uλj
(qCC(t))|

≤
(

max
z,w∈QCC(A(ε/2))

Gε(z, w)

)
n(λj , Q

C
C(A(ε/2))).

Now Gε(z, w) ≤ maxw∈QCC(∂A(ε)) Gε(z, w) = 0 and Gε(z, w) < 0 for
z, w ∈ QCC(A(ε/2)). It follows that there exists a constant ν(ε) < 0 so
that maxz,w∈QCC(A(ε/2)) Gε(z, w) ≤ ν(ε). Hence,

(4.4) max
qCC(t)∈QCC(A(ε/2))

log |Uλj
(QCC(t))| ≤ ν(ε) n(λj , Q

C
C(A(ε/2))).

Since both sides are negative, we obtain

n(λj , Q
C
C(A(ε/2))) ≤ 1

|ν(ε)|

∣∣∣∣∣ max
qCC(t)∈QCC(A(ε/2))

log |Uλj
(qCC(t))|

∣∣∣∣∣(4.5)

≤ 1
|ν(ε)|

(
max

qCC(t)∈QCC(A(ε))
log |uCλj

(qCC(t))|

− max
qCC(t)∈QCC(A(ε/2))

log |uCλj
(qCC(t))|

)

≤ 1
|ν(ε)| max

qCC(t)∈QCC(A(ε))
log |uCλj

(qCC(t))|,

where in the last step we use that maxqCC(t)∈QCC(A(ε/2)) log |uCλj
(qCC(t))| ≥

0, which holds since |uCλj
| ≥ 1 at some point in QCC(A(ε/2)). Indeed,

by our normalization, ‖uλj‖L2(C) = 1, and so there must already exist
points on the real curve C with |uλj | ≥ 1. Putting C(ε) = 1

|ν(ε)| finishes
the proof. q.e.d.

5. Zeros on interior curves: Proof of Theorem 6

In this section we prove Theorem 6. We prove it before Theorem 5
since it is simpler and provides a model for the more difficult boundary
case. It is simpler because the analytic continuation of the layer poten-
tial formula (3.13) is straightforward and does not use Proposition 7.
We use the analytic continuation to bound

max
qCC(t)∈QCC(A(ε))

∣∣∣log |ϕCλj
(qCC(t))|

∣∣∣
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from above, and then an application of Proposition 10 concludes the
proof.

Proof. As above, the arc-length parametrization of C is denoed by
by qC : [0, 2π] → C and the corresponding arc-length parametrization
of the boundary, ∂Ω, by q : [0, 2π] → ∂Ω. Since the boundary and C
do not intersect, the logarithm log r2(q(s); qCC(t)) is well defined for |=t|
sufficiently small and the holomorphic continuation of equation (3.13)
is given by:

(5.1) ϕCλj
(qCC(t)) =

∫ 2π

0
N(λj , q(s), qCC(t))uλj (q(s))dσ(s),

From the basic formula (3.12) for N(λj , q, qC) and the standard inte-
gral formula for Ha(1)

1 (z) (see (9.5) in Appendix 9), one easily gets an
asymptotic expansion in λj of the form:

N(λj , q(s), qCC(t)) = eiλjr(q(s);qCC(t))
k∑

m=0

am(q(s), qCC(t))λ
1/2−m
j(5.2)

+ O(eiλjr(q(s);qCC(t)) λ
1/2−k−1
j ).

Note that the expansion in (5.2) is valid since for interior curves,

C0 := min
(qC(t),q(s))∈C×∂Ω

|qC(t)− q(s)|2 > 0.

Then, <r2(q(s); qCC(t)) > 0 as long as

(5.3) |=qCC(t)|2 < C0.

So, the principal square root of r2 has a well-defined holomorphic ex-
tension to the tube (5.3) containing C. We have denoted this square
root by r in (5.2).

Substituting (5.2) in the analytically continued single layer potential
integral formula (5.1) proves that for t ∈ A(ε) and λj > 0 sufficiently
large,

(5.4) ϕCλj
(qCC(t))

= 2πλ
1/2
j

∫ 2π

0
eiλjr(q(s),qCC(t))a0(q(s), qCC(t))(1+O(λ−1

j ))uλj
(q(s))dσ(s).

Taking absolute values of the integral on the RHS in (5.4) and applying
the Cauchy-Schwartz inequality proves

Lemma 11. For t ∈ [0, 2π] + i[−ε, ε] and λj > 0 sufficiently large

|ϕCλj
(qCC(t))| ≤ C1λ

1/2
j exp λj

(
max

q(s)∈∂Ω
< ir(q(s); qCC(t))

)
· ‖uλj‖L2(∂Ω).
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From the pointwise upper bounds in Lemma 11, it is immediate that
(5.5)
log max

qCC(t)∈QCC(A(ε))
|ϕCλj

(qCC(t))| ≤ Cmaxλj + C2 log λj + log ‖uλj‖L2(∂Ω),

where,
Cmax = max

(q(s),qCC(t))∈∂Ω×QCC(A(ε))
< ir(q(s); qCC(t)).

Finally, we use that log ‖uλj
‖L2(∂Ω) = O(λj) by the assumption that

C is a good curve and apply Proposition 10 to get that n(λj , C) = O(λj).
This completes the proof of Theorem 6. q.e.d.

5.1. A remark on goodness and unique continuation. Before
leaving Theorem 6, we make a few remarks on the goodness requirement
(1.4): On any interior curve C ⊂ Ω, goodness is implied by an exponen-
tial growth estimate involving only the Cauchy data (ϕλj |C , ∂νϕλj |C)
along C. This is a consequence of the following unique continuation
argument.

Assume that C is a closed curve in the interior of Ω. Let UC be the
domain with boundary C ∪ ∂Ω. It follows from the Sobolev restriction
theorem that

(5.6) ‖ϕλj‖2
L2(∂Ω) ≤ C‖ϕλj‖2

H1/2(UC)
.

Let int (C) be the interior of the domain bounded by the curve C and
take x ∈ int (C). From the potential layer formula (see 3.5) ϕλj (x) =∫
C(∂ν(q)G(x, q;λ)ϕλj (q)−G(x, q; λj)∂νqϕλj (q))dσ(q) and so, by squaring

both sides, using the bounds |G(x, q, λj)| = O(λ−1/2|x − q|−1/2) and
|∂νqG(x, q; λj)| = O(λ1/2

j ) and applying Cauchy Schwartz, one gets

(5.7) ‖ϕλj‖2
L2(int(C)) ≤ Cλj(‖ϕλj‖2

L2(C) + ‖∂νϕλj‖2
L2(C)).

By a standard Carleman estimate/unique continuation argument [EZ,
Ta]:

‖ϕλj‖2
H1/2(UC)

≤ eCλj‖ϕλj‖2
L2(int(C))

≤ λje
Cλj (‖ϕλj

‖2
L2(C) + ‖∂νϕλj

‖2
L2(C)),

where the last inequality follows from (5.7). Inserting the last bound on
the RHS in (5.6) yields the comparison estimate relating Cauchy data
along C and ∂Ω:

(5.8) ‖ϕλj
‖L2(∂Ω) ≤ eCλj (‖ϕλj

‖L2(C) + ‖∂νϕλj
‖L2(C)).

As an immediate consequence of (5.8) we note that (1.4) follows from
the exponential bound

(5.9) ‖∂νϕλj‖L2(C) ≤ eCλj‖ϕλj‖L2(C)

involving only Cauchy data along C.
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A natural question is whether (5.9) is automatically satisfied when
ϕλj does not vanish identically on C?

6. Boundary zeros: proof of Theorem 5

The proof of Theorem 5 is more complicated than that for interior
curves because we need to invert the Volterra operator of Proposition
7.

We recall that the analytic continuation of uλj is the solution of a
Volterra equation,

(6.1) (I + Kλj
)uCλj

(qC(t)) = Uλj
(qC(t)),

where Uλj
(qC(t)) has an explicit analytic continuation, and where

(6.2) Kλju
C
λj

(qC(t)) =
∫ t

0

∂R

∂ν
(λj , s, q

C(t), qC∗(t))uCλj
(qC(s))ds.

Here, R = A is the Riemann function, so explicitly

Kλju
C
λj

(qC(t)) =
∫ t

0

∂J0(λjr)
∂ν

(λj , s, q
C(t), qC∗(t))uCλj

(qC(s))ds.

Therefore,

Kλj (t, s) = 1[0,t](s)J1(λjr)r
∂ log r

∂ν
(s, t)

= 1[0,t](s)rJ1(λjr)
(

q′(s)
q(s)− qC(t)

− q̄′(s)
q̄(s)− qC∗(t)

)
,

where 1[0,t] is the indicator function of the interval [0, t]. We note that
the pole of q(s)

q(<t+is)−qC∗(t) at the upper limit of integration s = t is
cancelled because the Taylor expansion of rJ1(r) begins with r2. So the
integrand is regular and holomorphic along the path of integration.

On the right side of the Volterra equation,

uCλj
(qC(t))∓ iΦ(t, qC(t), qC∗(t))(6.3)

=
∫ 2π

0
Φ(s; qC(t), qC∗(t))ds

+
∫ 2π

0
iuλj (q(s))R(s, qC(t), qC∗(t))

q′(s)
q(s)− qC(t)

ds

+
∫ 2π

0

[
Φ(s; qC(t), qC∗(t))− iuλj (q(s))R(s, qC(t), qC∗(t))

]

· q̄′(s)
q̄(s)− qC∗(t)

ds

− 2
∫ 2π

0
uλj (q(s))

∂B

∂ν
(s; qC(t), qC∗(t))ds,
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the Cauchy data uλj
is only integrated over the real domain where

by a standard Sobolev estimate it has polynomial growth in λj . And
further, the Riemann function and other special functions occurring
there have exponential growth with exponent bounded by the ambient
complexified distance function. The main problem is thus to invert the
Volterra operator I + Kλj

and to obtain a similar growth estimate for
(I + Kλj )

−1(RHS).
We first simplify the operator, Kλj

. Given t = <t + i=t we may
choose the contour to go along the real interval [0,<t] and then to go
along the vertical line segment <t + is for s ∈ [0,=t]. This decomposes
Kλj = K

(1)
λj

+ K
(2)
λj

, where

(6.4) K
(1)
λj

uCλj
(qC(t)) =

∫ <t

0
uλj (q(s))

∂

∂ν
R(λj ; s; qC(t), qC∗(t))ds

and where

K
(2)
λj

uCλj
(qC(t)) =

∫ =t

0
uCλj

(qC(<t+ is))
∂

∂ν
R(λj ;<t+ is; qC(t), qC∗(t))ds.

We move the K
(1)
λj

term again to the right side since it only involves the
Cauchy data on the real domain.

We now write t = <t + i=t and treat <t as a parameter. We need to
study the mapping properties of K

(2)
λj

and (I +K
(2)
λj

)−1 on the weighted

Hilbert space L2([−ε, ε], e−λj |=t|d=t).

6.0.1. Model example. As a model example, we consider the operator
Kλj

u(y) =
∫ y
0 eλj(y−s)u(s)ds. A simple calculation shows that for n ≥ 0,

Kn+1
λj

(y, s) = eλj(y−s) (y − s)n

n!
,

and
(I −Kλj

)−1(y, s) = e(λj+1)(y−s).

Hence, in the model example, the exponential growth of the kernel (I−
Kλj )

−1(s,=t) is the same as for Kλj (s,=t).

6.1. Upper bounds. In view of the growth estimate for complex zeros
in Proposition 10, one needs to determine asymptotic pointwise upper
bounds for the |uCλj

(qC(t))| as λj →∞. In this section, we prove:

Lemma 12. Given t ∈ [0, 2π] + i[−ε, ε] and λj > 0 sufficiently large,
there exists a constant C > 0 such that∣∣∣uCλj

(qC(t))
∣∣∣ ≤ expCλj |=t| · ‖uλj

‖L2(∂Ω).

Proof. Let C0 > 0 be a constant. To bound the kernel K
(2)
λj

(=t, s)
we split the analysis into two cases: (i) |r(<t + is, t)| ≤ 1

C0
and (ii)

|r(<t + is, t)| ≥ 1
C0

.
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6.1.1. The range |r| ≥ 1
C0

. In this range, J1 has an asymptotic ex-
pansion given by

J1(λjr) =
k∑

m=0

λ
−1/2−m
j am(r)eiλjr + O(λ−1/2−k−1

j eλj |=r|).

From the identity

K
(2)
λj

= ∂νJ0(λjr)

= 1[0,=t](s)J1(λjr) r
∂ log r

∂ν

= 1[0,=t](s) r J1(λjr)
[

q′(s)
q(s)− qC(t)

− q̄′(s)
q̄(s)− qC∗(t)

]
,

it follows that there exists a symbol Sλj of order −1
2 such that

(6.5) |K(2)
λj

(=t, s)| ≤ Sλj (=t, s)1[0,=t](s) eλj |=r(<t+is,t)|.

The estimate (6.5) is locally uniform in <t and the dependence on the
parameter <t is implicit.

6.1.2. The range |r| ≤ 1
C0

. In this range, the asymptotic expansion
breaks down when |r| ¿ 1

λ . Instead, we use the standard integral
representation for J1 (see (9.4) in Appendix 9) to get the bound

(6.6) |J1(λjr)| ≤ Ceλj |=r|,

and so, when |r(<t + is, t)| ≤ 1
C0

,

(6.7) |K(2)
λj

(=t, s)| ≤ C1[0,=t](s) eλj |=r(<t+is,t)|.

Combining the estimates (6.5) and (6.7), it follows that

(6.8) |K(2)
λj

(=t, s)| ≤ C1[0,=t](s) eλj |=r(<t+is,t)|,

locally uniformly in |s|+ |=t| and in <t. Again, the dependence of Kλj

on the parameter <t has been suppressed.

6.1.3. Pointwise estimates for r. By definition,
(6.9)
r(<t+ is, t) = 〈qC(<t+ i=t)− qC(<t+ is), qC(<t+ i=t)− qC(<t+ is)〉 1

2 ,

Taylor expansion around s = =t in (6.9) gives

(6.10) |r(<t + is, t)| ≤ C|=t− s|,
since,

qC(t)− qC(<t + is) =
∫ 1

0

d

dx
qC(<t + i(x=t + (1− x)s))dx

= (=t− s)
∫ 1

0
i(qC)′(<t + i(x=t + (1− x)s))dx.
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From (6.10) and the bound (6.8) it follows that there are constants
Cj > 0; j = 1, 2, such that

(6.11) |K(2)
λj

(=t, s)| ≤ C11[0,=t](s)e
C2|=t−s|.

Next, we expand (I −K
(2)
λj

)−1 in a norm convergent geometric series
∑∞

n=0[K
(2)
λj

]n(=t, s) where

[K(2)
λj

]n(=t, s) :=
∫ =t

0

∫ sn

0
· · ·

∫ s1

0
K

(2)
λj

(=t, sn) · · ·K(2)
λj

(s1, s) ds1 · · · dsn.

We recall that the n-simplex ∆n is defined by

{(s1, . . . , sn) : 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ 1}.
Let =t ·∆n be the scaled simplex. Applying the estimate (6.11) to each
factor in the above formula for [K(2)

λj
]n gives the following pointwise

bound:

|[K(2)
λj

]n(=t, s)|

≤
∫

=t·∆n

eCλj(=t−sn) · eCλj(sn−sn−1) · · · eCλj(s2−s1) · eCλ(s1−s)ds1 · · · dsn.

So, by the model example,

|(I −K
(2)
λj

)−1(=t, s)| ≤ e(C+1)λj |=t−s| · 1[0,=t](s).

To complete the proof of Lemma 12, we note that for qC(t) ∈ QC(A(ε)),
the right side of the analytic continuation formula (6.3) together with
the K

(1)
λ term satisfies the estimate

(6.12) (∗∗) ≤ C1 exp
(

λj max
q(s)∈∂Ω

< ir(t, s)
)
· ‖uλj‖L2(∂Ω) ≤ C1e

C2λj |=t|,

since by our normalization, ‖uλj‖L2(∂Ω) = 1. It follows that

(I −K
(2)
λj

)−1(∗∗) ≤ C

∫ =t

0
e(C+1)λj(=t−s)eC2λjsds(6.13)

≤ C exp(λj max{C + 1, C2}|=t|).
This finishes the proof of Lemma 12. q.e.d.

By Lemma 12,
∣∣∣log maxqC(t)∈QC(A(ε)) |uCλj

(qC(t))|
∣∣∣ ≤ Cλj and Propo-

sition 10 then implies that n(λj ; ∂Ω) ≤ CΩλj . This completes the proof
of Theorem 5 (1). q.e.d.
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7. Critical points: Proof of Theorems 3 and 5 (2)

We now prove part (2) of Theorem 5 concerning the growth of critical
points. It immediately implies Theorem 3. The argument is similar to
that for counting zeros, the only change being that we now take the
derivative and restrict to the boundary in (3.7). For the sake of brevity
we only sketch the proof.

In the Dirichlet case, the jumps formula for the double layer potential
gives (3.15) except that now uλj denotes the restriction to the boundary

of
∂ϕλj

∂ν . We refer to [T, HZ] for background. We then define n(λj , D) as
in (4.1) but for the new uλj . The layer potential representation implies
the analogue of Lemma 12 and by Proposition 10 we conclude that the
number of complex zeros (hence real zeros) is O(λj).

In the Neumann case, we must take the tangential derivative ∂
∂t(uλj ◦

q)(t). Since the normal derivative is zero, the critical points of the
tangential derivative are critical points of the eigenfunction along the
boundary. The tangential derivative now has the representation,

∂

∂t
(uλj ◦ q)(t) =

1
2π

∫ 2π

0

(
−uλj (q(s))

∂2A

∂t∂ν
(s, t)

)
log r2ds(7.1)

+
∫ 2π

0

(
−uλj (q(s))

∂A

∂ν
(s, t)

)
∂

∂t
log r2ds

− 1
π

∫ 2π

0
uλj (q(s))

(
∂

∂t

(
A(s, t)

1
r

∂r

∂ν

))
ds

− 1
π

∫ 2π

0

(
−uλj (q(s))

∂2B

∂ν∂t
(s, t)

)
ds.

The analytic continuation of Proposition 7 applies equally to the equa-
tion (7.1) and the analytic continuation of ∂

∂t(uλj ◦ q)(t) has the form
(6.1) with a slight change in Kλj . However, the phase function is the
same, so the proof of Lemma 12 applies with only small modifications
to the new Volterra operator, giving the upper bound

(7.2)
∣∣∣∂tu

C
λj

(qC(t))
∣∣∣ ≤ λj expCλj |=t| · ‖uλj

‖L2(∂Ω).

Only the exponential growth rate is significant here. We then apply
Proposition 10 to bound the number of zeros by the maximum of

(7.3) log
|∂tu

C
λj

(qC(t))|
||∂tuλj ||L2(∂Ω)

≤ C1λj + C2 log λj + C3 log
||uλj ||L2(∂Ω)

||∂tuλj ||L2(∂Ω)
.

Of course this estimate assumes ∂tuλj (q(t)) 6= 0 identically, as can hap-
pen with radial eigenfunctions on the disc. Assuming (1.2), the third
term of (7.3) is ≤ C4λj , completing the proof.
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8. Appendix: Proofs of Propositions 7, 8, and 9

This Appendix is devoted to Propositions 7, 8 and 9. Since they do
not appear to be well-known, or to be proved in detail in [M1, M2, V],
we supply the details of the proof. To simplify notation, when the
context is clear, we often denote the holomorphic functions qC(t) (resp.
qC∗(t)) simply by q(t) (resp. q∗(t)).
8.1. Proof of Proposition 7.

Proof. We will analytically continue the formula (3.15). Although
uλj is real analytic on ∂Ω and hence admits an analytic continuation
to a small complex ‘tube’ (∂Ω)C, it is not clear that the representation
(3.15) can be extended analytically due to singularities of the integrand.
Moreover, it is not clear that the right side of (3.17) is in fact complex
analytic. The main task in the proof is to clarify these points.

We begin by showing that the last two terms of (3.15) analytically
continue in a straightforward way.

Lemma 13. The integrals (i) 1
π

∫ 2π
0 uλj (q(s))A(s, t)1

r
∂r
∂ν (s, t)ds, resp.

(ii) 1
π

∫ 2π
0 uλj (q(s))

∂B
∂ν (s, t)ds, are real analytic on the parameter inter-

val S1 parametrizing ∂Ω and are holomorphically extended to an annulus
by the formulae

(i)
∫ 2π

0
iuλj (q(s))R(s, q(t), q∗(t))

(
q′(s)

q(s)− q(t)
− q̄′(s)

q̄(s)− q∗(t)

)
ds,

resp.

(ii) − 2
∫ 2π

0
uλj (q(s))

∂B

∂ν
(s; q(t), q∗(t))ds.

Proof. Any derivative of log r2 is unambiguously defined and we have
1
r

∂r

∂n
=

∂ log r

∂n
=

1
2i

[
q′(s)

q(s)− q(t)
− q̄′(s)

q̄(s)− q∗(t)
].

In the real domain, q∗(t) = q̄(t), so

1
r

∂r

∂n
= = q′(s)

q(s)− q(t)
.

We recall that ∂r
∂ν = |q′(s)|−1 ∂r

∂n . In terms of the real parametrization
q(s),

∂r

∂ν
= cos∠(q(t)− q(s), νq(s))

vanishes to order one on the diagonal in the real domain so that 1
r

∂r
∂ν is

real and continuous. In complex notation, the same statement follows
from the fact that

lim
t→s

q(s)− q(t)
s− t

= q′(s) =⇒ q′(s)
q(s)− q(t)

=
1

s− t
+ O(1), (s → t),
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where 1
s−t is real when s, t ∈ R. Hence, = q′(s)

q(s)−q(t) is continuous for s, t ∈
[0, 2π] and since q(s), q(t) are real analytic, the map s → [ q′(s)

q(s)−q(t) −
q̄′(s)

q̄(s)−q∗(t) ] is a continuous map from s ∈ [0, 2π] to the space of holomor-
phic functions of t.

Since A = J0(kr) is an analytic function of r2, A∂ log r
∂ν has the form

F (r2)
1
2i

[
q′(s)

q(s)− q(t)
− q̄′(s)

q̄(s)− q∗(t)
],

for an analytic function F . Clearly, F (r2(s, t)) is also a continuous map
from s ∈ [0, 2π] to the space of holomorphic functions of t. Hence, so
is the product and therefore so is the integral over s ∈ [0, 2π] of the
product.

Similarly for case (ii). In this case, B is an entire function H(r2) of
r2 which is of the form r2h(r2) for another entire h. Hence,

∂B

∂ν
= r2H ′(r2)× 1

2i
[

q′(s)
q(s)− q(t)

− q̄′(s)
q̄(s)− q∗(t)

].

So the integral (ii) also admits an analytic continuation. q.e.d.

Thus, the difficulty in analytic continuation of the representation is
entirely with the integral

∫ 2π
0 (−uλj (q(s))

∂A
∂ν (s, t)) log r2(s, t)ds. Due to

the logarithm, the analytic continuation of the integrand is multi-valued
in any neighborhood of ∂Ω. Nevertheless, the integral admits a single-
valued analytic continuation there.

Lemma 14. The integral
∫ 2π
0 (−uλj (q(s))

∂A
∂ν (s, t)) log r2(s, t)ds ex-

tends to a holomorphic function of t in a neighborhood of [0, 2π] in
[0, 2π]× [−ε, ε] given by

±iΦ(t, q(t), q∗(t)) +
∫ 2π

0
[Φ(s; q(t), q∗(t))]

q′(s)
q(s)− q(t)

ds

+
∫ 2π

0
[Φ(s; q(t), q∗(t))]

q̄′(s)
q̄(s)− q∗(t)

ds,

where, ± corresponds to =t > 0, resp. < 0.

Proof. We first observe that

(8.1)
∂A

∂ν
= J ′0(r)

∂r

∂ν
= J1(r)

∂r

∂ν
.

Now J1 is odd in r so (8.1) has the form

F (r2) r
∂r

∂ν
= F (r2) r2 ∂ log r

∂ν
(8.2)

= F (r2) r2

(
1
2i

[
q′(s)

q(s)− q(t)
− q̄′(s)

q̄(s)− q∗(t)

])
,



678 J.A. TOTH & S. ZELDITCH

where F is a holomorphic function. From (8.2) it follows that ∂A
∂ν (t, s) is

a smoothly varying family of holomorphic functions of t in a sufficiently
small annulus.

Thus, our problem is a special case of the general problem of analyt-
ically continuing the integral

∫ 2π
0 f(s) log r2(s, t)ds where f is real ana-

lytic and where r2(s, t) is given by (3.3). In our case, f(s) also depends
holomorphically on t but this does not affect the analytic continuation
issue.

We have slit the complex parameter annulus through the vertical
segment through 0 to obtain the complex t parameter strip I = [0, 2π]+
i(−ε, ε). To define the analytic continuation, we specify a branch L(s, t)
of the multi-valued analytic continuation of log r2(s, t) on [0, 2π] × I.
Our integrals only involve pairs (s, t) ∈ [0, 2π] × I. For each t, we
remove the set {s : 0 ≤ s < <t}. For fixed s, these cuts disconnect the
t-strip into four ‘quadrants’, defined by the inequalities =t > 0 (resp.
=t < 0) and 0 ≤ <t ≤ s (resp. s ≤ <t ≤ 2π). In the right ‘half-plane’
where s > <t, we define =L(s, t) so that it is continuous in the right
‘half-plane’ and tends 0 as =t → 0 from either top or bottom. In the
slit left ‘half-plane’, {s < <t}\[0,<t] we define L(s, t) by continuation
from the right half plane. It then tends to ∓2π as =t → 0 from above,
resp. below the cut along the ‘negative’ real axis s < <t.

To illustrate, we consider the basic case of the circle, where q(t) = eit

and where we are defining arg
(
(eis − eit)(e−is − e−it)

)
. We fix <t = t0

and consider the map (s, τ) → (eis − eit)(e−is − e−it) where t = t0 + iτ .
In the ‘first quadrant’ s > t0,=t > 0, this map is anti-holmorophic and
takes the real axis =t = 0 to the positive real axis and the ‘imaginary
axis’, s = t0 and =t > 0, to the negative real axis. Since the map is anti-
holomorphic, the image of a counter-clockwise path in the first quadrant
from the real to imaginary axis is a clock-wise path from the positive
real axis to the negative real axis, so the arg equals −π on the imaginary
axis. As the path in the domain moves counter-clockwise in the second
quadrant to s < t0,=t = 0 the image path moves to argument −2π.
Similarly, the continuation in the fourth and third quadrants leads to a
value of 2π on the axis s < t0.

We now make:

Claim (cf. Millar [M2]). If f admits an analytic continuation to a
neighborhood of ∂Ω, then the integral

∫ 2π
0 f(s) log r2(s, t)ds admits an

analytic continuation to a neighborhood of ∂Ω in (∂Ω)C by

(8.3)
∫ 2π

0
f(s) log r2(s, t)ds →

∫ 2π

0
f(s)L(s, t)ds± 2πi

∫ t

0
f(s)ds,

where the path from 0 to t is defined in the integral is the same as the
path used to analytically continue log r2(s, t), and where the + sign is
taken for =t > 0 and the − sign when =t < 0.
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Furthermore, the right side of (8.3) is periodic.
We check the last statement first. It follows from the fact that

∫ 2π

0
f(s)L(s, 2π + i=t)ds± 2πi

∫ 2π+i=t

0
f(s)ds

=
∫ 2π

0
L(s, i=t)f(s)ds± 2πi

∫ 2π+i=t

0
f(s)ds∓ 2πi

∫ 2π

0
f(s)ds

=
∫ 2π

0
L(s, i=t)f(s)ds± 2πi

∫ i=t

0
f(s)ds,

where the last line follows from the Cauchy formula and the fact that
f(t + 2π) = f(t).

To prove the first statement of the claim it suffices to show that the
right side in (8.3) is:

(i) Holomorphic in the upper annulus =t > 0.
(ii) Holomorphic in the lower annulus =t < 0.
(iii) Continuous in the whole annulus, and restricts to

∫ 2π

0
f(s) log r2(s, t)ds

for real t.
Let us prove (iii) first, since it explains the second term on the right

side of (8.3). With no loss of generality, suppose that =t → 0+ with
t → t0. Then

∫ 2π

0
f(s)L(s, t)ds + 2πi

∫ t

0
f(s)ds →

∫ 2π

0
f(s)L(s, t0)ds + 2πi

∫ t0

0
f(s)ds,

and we must show that∫ 2π

0
f(s)L(s, t0)ds + 2πi

∫ t0

0
f(s)ds =

∫ 2π

0
f(s) log r2(s, t0)ds.

Here, arg r2(t, s) = 0 while =L(s, t) equals zero for s ≥ t and equals
−2π for s ≤ t. Hence, the imaginary part of the left side cancels and
we obtain the right side.

Now let us prove (i)-(ii). Since the proofs are essentially the same we
only prove (i).

We first note that all branches of analytic continuation of log r2(s, t)
differ by constants in 2πiZ. Hence, if the period 〈f〉 := 1

2π

∫ 2π
0 f(s)ds

of f vanishes, then all choices of branch of log r2 give the same value
of the integral

∫ 2π
0 f(s) log r2(s, t)ds. Similarly, the integral

∫ t
0 f(s)ds

is only multi-valued due to the period of f . Hence, when the 〈f〉 = 0,
both terms on the right side of the claim are well-defined independently
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of any choice of integration path or branch of log r2. Since we can write
f = (f − 〈f〉) + 〈f〉, we only need to show:

1)
∫ 2π
0 f(s)L(s, t)ds ± 2πi

∫ t
0 f(s)ds is holomorphic for =t > 0 when

〈f〉 = 0;
2)

∫ 2π
0 L(s, t)ds ± 2πi

∫ t
0 ds is single-valued holmorphic function for

=t > 0.

To prove (1), we assume 〈f〉 = 0 and let F (t) =
∫ t
0 f(s)ds be the

(well-defined) primitive of F in the annulus. We then integrate by parts
in the first integral to obtain

∫ 2π

0
F ′(s)L(s, t)ds(8.4)

= F (2π)L(2π, t)− F (0)L(0, t)

−
∫ 2π

0
F (s)

q′(s)
q(s)− q(t)

ds−
∫ 2π

0
F (s)

q′(s)
q(s)− q∗(t)

ds

= −
∫ 2π

0
F (s)

q′(s)
q(s)− q(t)

ds−
∫ 2π

0
F (s)

q′(s)
q(s)− q∗(t)

ds.

Here, we use that F (2π) = F (0) since it is a single-valued holomorphic
function on the annulus and that F (0) = 0 by definition. It is clear that
the right side of (8.4) is holomorphic in =t > 0 since poles occur only
when =t = 0. Since F (t) is single valued and holomorphic, this proves
(1).

To prove (2), we write
∫ 2π

0
L(s, t)ds± 2πi

∫ t

0
ds(8.5)

=
∫ 2π

0
log

Q(eis)−Q(eit)
eis − eit

Q∗(eis)−Q∗(eit)
e−is − e−it

ds

+
∫ 2π

0
log

(
(eis − eit)(e−is − e−it)

)
ds± 2πi

∫ t

0
ds.

We observe that the first term is holomorphic for =t > 0 since the arg of
both numerator and denominator are continued so that each arg tends
to −2π as =t → 0 for s ∈ [0,<t] and so that each arg tends to zero for
s ∈ [<t, 2π]. Hence, the arg of the ratio tends to zero as =t → 0 in both
integrals. Since the arg is only ambiguous up to a constant in 2πiZ, it
follows that the arg of the ratio is well defined and single valued and
the integrand is well-defined as a single-valued holomorphic function for
=t > 0. Therefore, to prove (2) it suffices to show that for =t ≥ 0

(8.6) g(t) :=
∫ 2π

0
L(s, t)ds + 2πi

∫ t

0
ds = 0,
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where L(s, t) = log
(
(eis − eit)(e−is − e−it)

)
with our choice above of

the branch cut at s = <t. Note that g is an analytic continuation of
the integral

∫ 2π
0 log |eis − eit|2ds = 0 for real t, so analyticity of g is

equivalent to g = 0.
This reduces the analysis to the integral
∫ 2π

0
log

(
(eis − eit)(e−is − e−it)

)
ds =

∫ 2π

0
log (2− 2 cos(s− t)) ds,

where as above the logarithm is defined by breaking up the integral
into

∫ <t
0 +

∫ 2π
<t and defining the arg by the method above. Note that

formally the integral is constant in t by a change of variables but
that such a change of variables is not consistent with the definition
of the logarithm. However, the integrand is a function of s − t and
so, d

dt log (2− 2 cos(s− t)) = d
d(t−s) log (2− 2 cos(t− s)) is well-defined

independent of the branch of log used (since these differ by integer mul-
tiples of 2πi). Hence,

d

dt

∫ 2π

0
log (2− 2 cos(s− t)) ds = −

∫ 2π

0

d

ds
log (2− 2 cos(s− t)) ds

= − log (2− 2 cos(s− t)) |2π
0

= −2πi,

by definition of the logarithm. It follows from (8.6) that

d

dt
g(t) =

d

dt

∫ 2π

0
log (2− 2 cos(s− t)) ds +

d

dt
(2πit) = −2πi + 2πi = 0.

Hence, g is constant and as noted above it equals 0 for real t. q.e.d.

This completes the proof of the claim and hence of the proposition.
q.e.d.

Remark. By integrating by parts directly in the integral Lf(t) :=∫ 2π
0 log r2(s, t)f(s)ds for t real and using that

∫ 2π
0 log |eis − eit|2ds = 0,

one gets the formula

(8.7) Lf(t) = −
∫ 2π

0

(
q′(s)

q(s)− q(t)
+

q̄′(s)
q̄(s)− q̄(t)

)
· (F (s)− F (t)) ds

+〈f〉
∫ 2π

0
log

|Q(eis)−Q(eit)|2
|eis − eit|2 ds,

where, F (t) :=
∫ t
0 (f − 〈f〉)ds. It follows from (8.7) that for t ∈ [0, 2π] +

i[−ε, ε] there is an alternative formula for the analytic continuation of
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Lf which is given by

(Lf)C(t) = −
∫ 2π

0

(
q′(s)

q(s)− q(t)
+

q̄′(s)
q̄(s)− q∗(t)

)
· (F (s)− F (t)) ds

(8.8)

+ 〈f〉
∫ 2π

0
log

[Q(eis)−Q(eit)][Q∗(eis)−Q∗(eit)]
[eis − eit][e−is − e−it]

ds.

We note that the log in the second term on the RHS of (8.8) is defined
unambiguously (independent of branch) since as =t → 0 and s → <t
from either side, we have that arg[Q(eis)−Q(eit)]−arg[eis−eit] → 0 and
so the arguments cancel. The same thing is true for the ratio involving
Q∗.

8.2. Proof of Propositions 8 and 9.

Proof. We only sketch the proofs, because they only involve a small
modification of Proposition 7.

First, consider Proposition 8. Green’s formulae (3.5)-(3.6) remain
correct in the piecewise analytic case, with the definition that on the
kth component, the normal derivative is calculated by taking the limit
from within the kth component.

The verification of the Millar formula is then similar to the fully
analytic case. The main difference is that we now have pairs (sn, tk) of
parameter points which may come from different intervals. When n = k
there is no difference in the argument except that ∂ΩCk is not an annulus
but rather two regions meeting along a common interval. But the same
choice of branch of the logarithm extends uλj holomorphically above and
below the interval, and the first term on the right side ensures that the
two holomorphic extensions agree on the common interval. When n 6= k,
one defines arg r2(sn, tk) = 0 for all real sn, tk. Since qn(sn) 6= qk(tk)
when n 6= k the logarithm extends to a holomorphic function in tk with
this choice of branch.

In the case of Proposition 9, the additional step is to analytically
continue the second term of (3.20). To do so, we use the arc-length
parameterization qC(s) of C to write

− 1
2

∫ 2π

0
A(λj , s, t) log r2(s, t) ∂νϕλj (qC(s))ds

−
∫ 2π

0
B(λj , s, t) ∂νϕλj (qC(s)) ds.

Since B = F (r2) where F is entire, the second term above has a straight-
forward analytic continuation. The first term is another case of the inte-
grals discussed in the previous section, and by the proof of Proposition
7, its holomorphic continuation is the one stated in the Proposition.

q.e.d.
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9. Appendix on Hankel and Bessel functions

For the reader’s convenience, we summarize the facts we use about
these special functions. We recall that Bessel’s function of order ν is a
solution of the equation x2y′′ + xy′ + (x2 − ν2)y = 0.

A fundamental set of solutions for Bessel’s equation of order 0 is given
by J0, Y0 where

(9.1)





J0(z) :=
∑∞

k=0(−1)k z2k

22k(k!)2

Y0(z) = J0(z) log(z)−∑∞
m=1

(−1)m(1+2···+ 1
m

)(z)2m

4m(m!)2
.

The coefficients A,B in (3.9) then have the form
(9.2)

A = J0(λjr), B = −
∞∑

m=1

(−1)m(1 + 2 · · ·+ 1
m)(λr)2m

4m(m!)2
+ J0(λr) log λ.

A fundamental set of solutions for Bessel’s equation of order one is
given by J1, Y1 where:

(9.3)





J1(z) =
∑∞

k=0(−1)k z2k+1

22k+1 k!(k+1)!

πY1(z) = −2
z + 2 J1(z) (log(z/2) + γ)

−∑∞
k=1(−1)k+1 1

k!(k−1)! (z/2)2k−1[ 1k + 2
∑k

m=1
1
m ].

Here, γ is Euler’s constant. We also have the integral formula

(9.4) J1(z) = −πi

∫ π

0
eiz cos θ cos θ dθ.

Finally, we also use the Hankel function Ha(1)
1 (z) = J1 + iY1, which

is given by the integral formula,

(9.5) Ha(1)
1 (z) =

(
2
πz

) 1
2 ei(z−3π/4)

Γ(3/2)

∫ ∞

0
e−ss−

1
2 (1− s

2iz
)

1
2 ds.
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