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CORRESPONDENCE OF HERMITIAN
MODULAR FORMS

TO CYCLES ASSOCIATED ΎOSU(p92)

Y. L. TONG & S. P. WANG

In the previous papers [11], [12] we have given a correspondence, in the form

of a lifting through a theta function, from Hermitian modular forms of degree

r to codimension r geodesic cycles in the locally symmetric spaces associated to

SU{p,X). Our purpose here is to extend this correspondence to the case where

the target is associated to a unitary group of rank greater than one: SU(p,2).

In [11, §1] we have defined geodesic cycles of codimension 2r, l < r < / ? — 1,

associated to SU(p,2). In this paper we make the further restriction that

r — 1. This has the merit that while exhibiting some of the new phenomena in

higher rank, it is basically differential forms of degree (2,2) we are dealing with

and some steps are manageable by direct calculations.

The theory of Weil representation and theta functions for dual reductive

pairs has been utilized to construct liftings of automorphic forms in abundant

cases (cf. the references to [5], [8], [11], [12]). All these give correspondence of

automorphic forms associated to two different groups. Other than some

accidental lower dimensional cases it is considerably more surprising, and

technically more subtle, that this machinery embodies a lift from automorphic

forms to harmonic forms dual to special cycles. The technical subtleties appear

inevitable since one is trying to link automorphic objects with higher dimen-

sional geometric objects.

As first found for SO(p, 1) in [8], and then a modified version found for

SU(p, 1) in [11], [12], this link to geometry comes from two ingredients.

(i) A construction of the harmonic form dual to such a cycle as a special value

via analytic continuation of a one {complex) parameter family of dual forms. Let

<$) be the bounded symmetric domain for G = SU(p,2) and Γ a cocompact

discrete subgroup of G. In §1 we consider a particular subdomain ^D, C ^ of

codimension 2. Denote by Gx C G the subgroup leaving βi)λ invariant and
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Γ, = Γ Π G,. The cycle of interest is the image of Γ^^D, via the projection

> Γ\^D. One constructs a family ω(s) of dual forms in Γ,\<>D and then

descends to the dual form in T\βί) by the sum

ώC0 = Σ ϊ M O

The construction of ω(s), as in [11] (cf. [7] for a different method), is to

compare the Bott-Chern singular forms of two canonical metrics on a natural

vector bundle on ΓjX6]), which has a section vanishing precisely on ΓjX^D,. The

resulting explicit formula of ω(s) is in terms of Gx invariant forms. For

analytic continuation of ώ(s) we study the action of Laplacian on the various

families of Gx invariant forms. In general with increasing q (in SU(p,q)) and

codimension the number of Gλ invariant forms increase rapidly and the

calculations of their Laplacians become unwieldy (cf. Lemmas (1.8)—(1-11) and

Proposition (1.12)).

(ii) Identification of the special value ω(p — 1) with polynomials which are

admissible as the coefficients of certain theta functions. For this the differential

forms are pulled back from ^ to a vector space and the main point in [12] as

well as §2 below is a splitting of the appropriate tensors into % θ £ (we have

interchanged the symbols %, £ of [12] so that % is in the kernel and £ is where

lifting takes place) where (a) ω(p — 1) vanishes on %, and (b) the special

values ω(p — 1) | e give precisely the admissible polynomials. It is also the

differential operators corresponding to tensors in £ which have the correct

action on the basic Schwartz function (cf. Proposition (2.10)). We carry

through (a) and (b) by an explicit evaluation which is manageable in the

present case. In general a systematic use of invariant theory seems necessary.

After (i) and (ii) it remains to compare the lifted family

(cf. (4.1)) with ώ(s). In the rank one case [12] there is a simple relation

P(to(s)) = (A/B)s~p+ιω(p — 1) where P is the projection to leading primitive

component and is expressible in terms of the Kahler operators L, Λ. In the

present higher rank case a new G invariant form a appears (other than the

Kahler form and its powers cf. (4.14)(i)) and is essential to the construction of

ω(s). It leads us to the following main result:

( I I A \S~P+]

γ e Γ , \ Γ \ X β J
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where Pa is the cohomology operation (4.14)(ii)

(**) Pa(x) = x ^(Λα)(Λx)+^Γ^Λ{α(Λx)}

- Ί Ό r«(Λ2x).
(p+l)(p + 2) K '

This displays the lifting explicitly as a harmonic form. We also prove that

Pa(ώ(p — 1)) is primitive and is orthogonal in Hodge inner product to all forms

on T\6ί) arising from G invariant forms. The last result is a consequence of %

containing all the G invariant tensors.

From the present result it is reasonable to guess in general there is a lifting

from Hermitian modular forms of degree r to the cohomology spanned by

geodesic cycles of codimension rq associated to SU(p9q). Furthermore the

image should lie in the subspace which is both primitive and orthogonal to all G

invariant forms. It is harder to see how the various G invariant forms intervene

to bring a generalization of (**).

The lifting derived from (*) has as its main consequence (cf. (4.18)) the

equality of Fourier coefficients of Hermitian cusp forms (in the image of

adjoint of lifting) with intersection numbers (cf. [3], [6], [8]). Siegel has proved

via his Main Theorem that volumes of analogous cycles in arithmetic quotients

associated to indefinite quadratic forms are the Fourier coefficients of Eisen-

stein series (cf. his papers on indefinite quadratic forms, particularly [9, §§1,

12]). SiegeΓs results are exactly complementary to ours since volumes are

obtained by pairing with powers of Kahler forms which vanishes in our case

since we have primitive cohomology. This is also reflected in the cusp forms

that we obtain in contrast to SiegeΓs Eisenstein series. We know of a more

direct approach to SiegeΓs type of results based partly on the geometric forms

developed here.

Finally it is intriguing to observe that the two ingredients (i) and (ii)

described here are exactly analogous to the two steps involved in the proof of

the Riemann Roch Theorem based on intersection theory [10]. Namely, there

one makes a canonical construction of the dual cochain of a cycle and then

uses invariant theory to identify the restrictions of this cochain. In fact, the

general problem in (ii) is also to make fuller use of invariant theory. This

analogy renders more interesting the question of the image and kernel of the

lifting and perhaps also of the eventual applications of these correspondences.

In this respect we note that the analogous Hirzebruch-Zagier cycles on Hubert

modular surfaces play an important role in the recent work of Harder,

Langlands, and Rapoport on Tate's conjectures for these surfaces.
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1. Harmonic forms dual to geodesic cycles

Let G = SU(p,q) and ^ be the symmetric space associated to G which is

realized as the bounded domain

q}={ZEMpg(C)\'ZZ<Eq}.

For g G G, g = (£ *) with A £ Mpp(C), B G Mpq(C), C E Mqp{C) and Z) e

Mqq{C). G acts on <$ by

We have an automorphic factor j(g, Z) = CZ + D and the linear action of G
is related to its action on ty by

(1.1) I

On <>D the Kahler metric is

(1.2) κ = t r ( ( £ - Z ' 5

We decompose Z as

(1.3) Z =

with Z, E Mp_Xq(C\ Z2 E MXq(C) and denote by 6D1 the subsymmetric do-

main

V * / 1 v. I • 2 J *

Let e,, , e p + ? be the standard basis of Cp+q and G, the isotropy subgroup of
G at the line Cep.g & Gx has a block form

(1.5) g =

Ax 0 5,

0 λ 0
C, 0 Z>,

with ^ , EiM p _, 1 ,_ I (Q, Dx e M w ( Q , | λ | = 1. From [11, Lemma (1.2)] G,
leaves 'Φ, invariant and its action on ̂ D is given by

(1.6) gZ =
/),)"

, z)
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We order the coordinates of Z by z π , ,zlq9 z2 1, ,z2q9> ,zpl, ,zpq. At

Zj = 0 the coefficient matrix of the metric (1.2) is given by

(1.7)
- I ^2 !2

'Z,

1 - | Z 2 |

0 £„ + •
'Z 2 Z 2

and its inverse is

- ' z 2 z 2

(1.8)

(l-|Z2|
2)(E,-'Z2Z2)

As in [11, §1] we introduce functions

Λ(Z) = det(£-'ZZ),

(1.9) B(Z) = det(£-'Z,Z,),

Now since

£ ZZ== E Z|Z| Z2Z2

= (£ -'Z,Z,)' / 2{£ - ( £ -'Z,Z,)- | / 2 'Z 2Z 2(£ -'Z.Z,)"1

we have

(1.10) f (Z) = l-Z2(£-<Z,Z,)-''Z2.

Let Hz = (E -'Z^y1 and Hz = (E -'ZZ)-\
Lemma (1.1) [11].

= j(g,Z)Hz'j(g,Z),

= j(g,Z)Hz'j(g,Z),
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It follows that B/A is Gx invariant. By [11, Proposition (1.7)] B/A has the
geometric meaning

(1.11) 4(Z) = cosh2 ^(Z,

where d(Z, <5D1) is the distance from Z to ^D,. Now consider the bundle
E = ty X C where C is viewed as the space of complex column q-vectors. We

define an action of G, on E. For

8 =

Λ, 0 Bι

0 λ 0
C, 0 Z),

(Z,Y)<EE,

(1.12)

On £, i/ z and Hz define Hermitian fiber metrics which give admissible
connections of type (1,0). We have a canonical holomorphic section υ .^ύ-^E

(1.13)

Note that the fiber metrics defined by Hz and i/ z respectively, and the
holomorphic section v are all Gx invariant. From the constructions of 6D1 and
ϋ, it is easy to observe

Let C(E) and C(£) be the q-th Chern forms of the Hermitian structures given
by Hz and Hz respectively. By the construction in [11, §2] there exist forms ψ
and ψ, defined outside Φj, of type (q,q — 1) such that

and dψ = C(E).

We recall briefly the construction. The connection and curvature matrices are
given by

(1.14)

ω = d'Zx(E - Zx'Zι)' Z,,

ώ = d'Z(E-Z'Z)'ιZ,

Ω = -d'Zx(E - Z,<Z,)"Iί/Z1(£ -'ZfZ,

Ω = -d'Z(E - Z'Z)'xdZ{E -'ZZ)'\
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Let us introduce

v = (eι ' * * e

qY
Z2 = exzpl + +eqzpq9

a = ίfodϋ, # = -eΩi/" 1 'e,

(1.15) 5Λ = ΰdυak~ιKq~k,

I°I k=\

where χ = ^ 1 / 2 ^ ! - eq and c^ = (-l)^2 / 2"1^!(2ττ)< 7. There are also the corre-

sponding objects ά, K, sk, ψk and ψ for the metric H given by the same

formulas as (1.15). At Zx - 0

{!dZ2)Z2

ω - 0 , ω- 1 - | Z 2 J 2 .

Hence

(1.16) 5 A = 7 ϋ A , &=(Ί)a

and also

Consequently

(1.17) K=K+ (j)«

From (1.15)—(1.17) the following lemma is straightforward.

Lemma (1.2). ψ = ψ - Σ ^ φ ί C / Λ ) ^ .

For the rest of this section we assume q — 2. Regrouping the above formula

we have

<••»> H^H2)1H!Γ(§4
This leads us to the form depending on s E C.
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Proposition (1.3). Let Tx be a discrete subgroup of Gλ such that Tλ\^)x is

compact, and η α Γ, invariant 9 closed (2(p — 1),2(/? — 1)) form on D̂ with

bounded norm. Then for Re(^) > p + 1,

Proof. Let

From (1.18) we have 3ψ(s) = Φ(s) on ^ - <$,. Let T(r) be the tubular

neighborhood of distance r of ®ύx in Φ.

Φ(.ϊ) Λ η = lim

Now ||ψ(j) Λ i71| < (A/B)Re(s) and by [11, Proposition (1.10)]

lim ( ψ(s) Λη = 0.

By [11, Proposition (2.5)]

r -2 c
l im / ψ ( ^ ) Λ 7? = -7 77 7 / T7.

This finishes the proof.

Let Γ be a torsion free discrete subgroup of G and Tx = Gx Π Γ. We assume

that

(1.20) T\ty and Γ1\
6D1

are compact. Let iτ\ ΓjX6!) -> Γx^D be the projection map. Then its restriction

to ΓjX^, is generically 1-1. In the following, we construct the harmonic dual

of the cycle T Γ ^ X ^ ) in T\6ί).

We define

(1.21) « ( s ) = i 5 ( j + l ) ( j + 2)Φ(j), ω(S)= Σ Y*ω(j).
r,\r

By formula (1.8), an estimation of ||Φ(s)|| shows

(1.22) ||φ(,)|| = o((^)

From [11, Proposition (1.13)], the series ώ(s) converges absolutely for Re(s) >

p — 1. It is an immediate consequence of Proposition (1.3) and an unfolding

argument that ώ(s) is a dual form of the cycle ^ ( Γ , ^ , ) . In the following, we
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discuss the analytic continuation of ώ(s) to obtain the harmonic dual of the

cycle ^(Γ^^Dj). For this purpose, we need an explicit formula of the Lapla-

cian.

We use the formula of the complex Laplacian

(1.23) D = /{33Λ - ΘΛ3 + 3Λ3 - Λ33}.

This is the same as [11, §4] except that to conform with standard sign

conventions [13], [14], the Λ operator here differs by a sign from that of [11,

§4] and [4]. Thus in local coordinates (cf. [4, p. 112])

(1.24)

We shall be computing D on G, invariant forms. The invariance implies

that it suffices to compute at Zx = 0 where gaβ has the particularly simple

form (1.8). This makes the computation of /Λ fairly straightforward, and by

(1.23) the action of D becomes effectively computable.

We shall use the following notations:

(1.25) w,= : , 1 = 1 , 2 ,

so that Zj = (H>,H>2) and

(1.26) vt = zip9 ΐ = l , 2 ,

so that v = (vl9 v2) may be used interchangeably with Z2 = (zlp, z2p). We

denote by α, b9 c, d the Gj invariant (1,1) forms whose value at Zx — 0 are

given by

a =tdwι Λ dwx +W>v2 Λ ί/w2 = -33 log B,

b = {^
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The following are easy to check:

-ddlogB = a, -93log A = a + b + c + d,

(1.28) Z2(E-tZιZιy
ltdZι(E-Zι%yldZι{E-tZιZι

Lemma (1.4).

Proo/. We compute /Λ(ft); the other ones are easier. At Zλ = 0,

iA(b) = (4)ί'Λ{|ϋ1 |
2 /Λv1 Λ Jw, + t ) 1 i ) 2 Ά 2 Λ « 1

+ ϋiϋ2yw, Λ dw2 + 11>2 |
2'ί/w2 Λ dw2)

- I {| t,, I2 (/, - 1)(1 - I«, I2) - t , , ^ - l ) c , o 2

^ ^ ( . P - 0 θ l » 2 + I »2 I2 (/» - 0 ( 1 - I »2 I 2 ) }

Again at Zx = 0 the curvature matrices Ω, Ω take the forms

(1.29) /

fi = -

_ / tdw] Λ dwx

 tdw] Λ dw2 \

\ ιdwλ Λ dwλ

 tdw2 Λ dw2 J'

dv} Λ dvχ t dυλ Λ ,

A

A,

V •% I \ (A Γ V Λ

Λ rfiil,
Λ dv2

(E-'z2z2y.
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Hence we get for the Chern forms:

C(E) = - ^ [tdwx A dwx A'dw2 A dw2 -<dw2 A dwx A'dwx A dw2),

C{E) = ̂ — ( — J ( 'dwx A dwx A'dw2 A dw2 -*dw2 A dwx A'dwx A dw2

4τ7" \ Ά J \

B rt

— [ dwx A dwx A dv2 A dv2 +
ldw2 A dw2 A dυλ A dυx

B rt

+ [

-dw2 A dwx A dvx A dϋ2 -
ιdwx A dw2 A dυ2 A dvx]

— \ dvx Adϋx Adυ2Adϋ2

and by [11, (2.15)]

d(—ψx) = — ί -[ 'dw x A dwx A dυ2 A dv2 Vd^ A dw2 A dvx

(1.31) Advx -'dw2 A dwx A dυx A dΰ2 -
tdwx A dw2 A dv2 A dϋx]

Lemma (1.5). (i) (-4τr2)(/Λ)C(£) = pA(a + b)/B.

(ii) (-4π2)(iA)C(E) = (p + \)(a + b + c + d).

(iii) (-4τr2)(iA)d(Cψx/B) ={-{{-pA/B + (p - \)(A/B)2)(a + b)

+ (\-p)(A/B)\c + d)}.

Proof. We prove (i); the other ones are similar.

iA(tdwx A dwx A*dw2 A dw2) = (p - l ) ( l - | vx |
2 ) ^ w 2 Λ dw2

+ (p- l ) ( l - l ^ l 2 ) ^ Adwx

+ vxv2dw2 A dwx -h ϋxv2dwx A dw2,

iA(tdw2 A dwx A'dwx A dw2) = - (p - \)υxϋ2dw2 A dwx

- {p - \)ϋxv2dwx A dw2 - (l - I vx \2Ydw2

Adw2 - (l - I υ2 \
2)'dwx A dwx.

From (1.27) and (1.30) the identity (i) follows.

For a Gx invariant form/with bounded norm we define
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The series is absolutely convergent for Re(.s) > p — 1 and has at most a single

pole at s — p — 1 because the series ΣΓ \ry*(A/B)s+2 has such a property.

From the formula of (gaβ) one shows readily that a. b.c. d have bounded

norm, thus we can consider as,bs,cs, ds.

Lemma (1.6).

(^) + \)(as + bs + cs + ds)

Proof. By our construction ω(s) is a real form which is both 3 and 3

closed. Therefore by (1.23)

By Lemma (1.5) and (1.21), (1.19)

(1.33) (ιΛ)ω(ί)

This proves the lemma.

To discuss analytic continuation we need the action of Laplacian on

etc.

Lemma (1.7). (i) iA(a Λ a) = 2(p - 2)a + 2(p - \)(A/B)a + 2(A/B)b.

(ii) iA(b Λb) = 2(p- 2)(1 - A/B)b.

(iii) ίA(έi Λ b) = (p - 1)(1 - A/B)a + ((^ - 1) + (/? - 3)A/B)b.

(iv) iA(c Λc) = 2(i4/ΛXc + </).

(v) /Λ(c Λί/) = ( 1 - A/B)(c + J).

Proof. We prove (i); the other ones are similar although (iii) is tedious.

tdwι Λ dwx)
2 + 2ιdwλ Λ dwλ Λ'dw2 Λ dw2 + ( ^ 2 Λ

2(p-2)(\ - \υx\
2ydwχΛdwx

+ 2(p- l)(l - \vx\
2ydw2Λdw2

{dw2 Λ ί/vv! + 2vιv2

tdwι Λ ί/v
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Remark. The contractions of a Λ c, a Λ d, b Λ c, b Λ d follow immediately
from Lemma (1.4) since in these products the factors do not have common
variables.

Lemma (1.8).

(s + 2){(ί -p + I)a + (s - 3p + 3)b + (s - 3p + 3)c

(s + 2){(s -3p + 3)(-ddlogA) + 2(p - I)a

+2(p - l)(ί + 2)d-(s-p + 3 ) |

Proof. We have

,J+2 I A \s + 2

391 ΐ
•(a + b + c + d).

Then the result follows from the previous lemma.
Lemma (1.9).

5 + 2

i A \s+2

= (s + 2 ) ( | ) { (*-/>+ l)β - (p ~ l)(b + c) + (s+ \){p - \)d

+ ^[-(s-p + 3)a-(p- 3)b -{p - \)c + (s

4 ) β
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Lemma (1.10).

(^) {(S-2P + 2)(b + c)+ spd

s-2p + 6)b -(s-2p + 4)c - (sp

- 2p + 2)(-331og^) -(s -2p + 2)aD

+ (s + 2)(p — \)d — (s — 2p + 4) — ( -

+ ^ [(s -2p + 4)β - 26 - (5 + 2)(/? - \)d]

From (1.28) we have

A ^ s + ι

(i)
and thus at Z, = 0

{ΊΓ*<+ I ̂  ) v'dZ, Λ dZλ A'dZ, Λ

(1-34) - I jj \ dϋ f\'dZx Λ

From this we have the following formula.

Lemma (1.11).

— (p — l)sc + (p — l)(s + l)sd

A

B
4 [ α - ( * 2 - 2{p-A)s -(4p - U))b

(p - \)(s + \)c- (p - \)(s2 + 3s + 3)d]}
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-(*)

s + 2

(s2 ~(p- 3)s - 2(p - (p - l)s(s + 2)d

|l ) | ( - θ 9 1 o g Λ ) + | [ - ((p -\)s+p- 2)a

+ 2)2d}}.- (s2 - (p - Ί)s - {3p - \0))b -(p -

Now denote

s + 2
_

«S = M\-B) (-93 log A),

(1.35)

«,= Σ Ϊ*«,. βs= 2
Γ,\Γ Γ,\Γ

γ , = Σ r*γ,» 4 = Σ y*8s-
Γ,\Γ Γ,\Γ

These forms are holomorphic for Re(ί) >/> — 1. Now we show that they are
holomorphic at s = p — 1 by analytic continuation. From Lemmas (1.8) to
(1.11), the following proposition is immediate.

Proposition (1.12).

- D

w/iere

/ - \
as\

βs

tu = M(s)
A + iV(j)

Ϊ5+1

* , + l
\ /

(5 + 2

- ( 5

-

\ s

)(s - 3p -f

+ 2)(p-
(p-\)s

-2p + 2

0
2(5 +

(s

(P

WP-
+ 2)5
-1)5

- 2p -

0

(
2)

0

0

5 + 2)(5-/> +

0
0 (P

( 5

- 1)(5 + 2)

- 1)(5 + 2)2

- 1)5(5 + 2)

+ 2)(p - 1) 1
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- (s + 2)(s-p + 3) 0 0 0

-(p-\)(s + 2) -(s + 2)(s-2p + 4) 2(5 + 2) ( p - \)(s + 2) 2

(p ~ \)(s + 1 ) -((p-\)s+p-2) -(s2-(p-Ί)s- (3/7 - 10)) -(p- \)(s + 2 ) 2

- ( 5 - 2 / 7 + 4) 5 - 2 / 7 + 4 - 2 - ( / 7 - !)(.? + 2 ) 2

To obtain a simpler matrix equation, we make a change of basis. Let

L(S) =

T(s) =

Then we have

1

0
\ 0

/ 1
-1

0
\ 0

-1
2
0
0

-1
2
0
0

0
0
1
0

0
0
1
0

0
0
0
1/

0^
0
0
1 i

M(s)

N(s)

2
1
0
0

0
0

1
1
0
0

1
1
0
0

0
0
1
0

0
0
1
0

0
0
0
1/

0\
0
0
1/

- D
i
i,

= L(s)

1 * \

isu
+ T(s)

1 A \

Js+\

(1.37)

where

L(s) =

Lemma (1.13). det(L(s) 4- XE) φ 0, for λ > 0 and Re(s) > p - 1.

Proof. det(LO) + XE) = ((s + 2)(J - /? H- 1) + λ)3λ φ 0 for λ > 0 and

h 2)(s -2/7 + 2)

0 (

-(p-\)s

s-2p + 2

0

s + 2)(s - p + 1)

0

0

0

0

(s + 2)(J

0

Proposition (1.14). As functions of the complex variable s the differential

forms 33(αs), 39(^), 33(^), 33(^5) have meromorphic continuations to the

entire plane and their continuations are regular without poles at the point

s — p — 1.

Proof. Since 33(α5), 33(6S), 33(c5), 33(ί/5) are linear combinations of όs,

f5, γ5, δs with constant coefficients, it is enough to verify the assertion for σs, τs,

ys, 8S. Let ηn (n = 1,2, ) be an orthonormal basis of eigenforms of degree

(2,2) for D on Γ x ^ and Xn the corresponding sequence of increasing
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eigenvalues. Let

°*(") = (όs>-nn)> ts(n) = (τs,ηn),

t(")=(y5,Vn), Ss(n)=(Ss9ηn)9

where (σs, ηn) denotes the Hodge inner product. If λn = 0, ηn is harmonic and
since όs, τs, ys, δs are exact, we have σs(n) = τs(n) = ys(n) = 8s(n) = 0. Now
suppose that λn > 0. Then by formula (1.37) and Lemma (1.13),

(1.38)
*,(«)

Note adj(L(^) + λnE) is polynomial in λn of degree < 3. Applying D', we
obtain

(a%,vn]
— \/

and therefore

- f - - ^ , ^ Γ ι / ι — I / Λ \ ι I / I — I / Λ « ~ \ I 1 / 1 — ι / - Λ ~ , \ ι 1 / 1 — i / £ ~ > \ ι \

\Γ U \ U °s^n/\ Λ\Uτs^n)\ Λ\U yS^n/\ A \ U °s» ^ /1)

Now since λn ~ const. AZ1/2/7 [2], given any m > 0 w e can, by choosing / large
enough, find constant cm such that

max{|σ5(n)| , | f 5 (n) | , | γ , ( π ) | ,ί5(w)} < ^ .

This holds for Re(J) > /? - 1 and by (1.38),

max{|σs(/?)| ^ ^ ( / i ) ! , |γ 5 (/ι) | ,^(«)} < ^

for s in the complement of a disjoint union of small open disks around the
poles of σ5(«), τs(n\ ys(n\ δs(n). Thus we obtain a meromorphic continuation
of these functions to the entire plane, and by Lemma (1.13) they are holomor-
phicats — p - \.
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Theorem (1.15). ώ(s) has a meromorphic continuation in s to the entire

plane. The continuation is regular at s — p — 1, and ώ(p — 1) is the harmonic

form Poincare dual toπ(Tχ\
6ύ]).

Proof. By Lemma (1.6)

(1.39) - d,)

By the preceding proposition ddas, etc. are meromorphic in s. By a similar

argument as in the preceding discussion (cf. proof of [11, Theorem (4.10)])

ώ(s) is meromorphic. Since ddas, etc. are regular at s = p — 1 it follows that

ώ(/7 — 1) is regular. Then by (1.39) Ώω(p — 1) = 0, i.e., ώ(/? — 1) is harmonic,

and by our construction ώ(s) always has the cohomology class which is the

Poincare dual of flT

2. Polynomials as special values of the dual form

In this section we shall identify ω(p — 1) with certain spherical harmonic

polynomials. To do this, the differential forms on φ will be pulled back to a

vector space.

Let n—p-\-q, Van n-dimensional complex vector space, and W — Vq — V

® -" ΘV (q copies). We identify V with Mnl(C) and W with Mnq(C). For

X, 7 E WOTVWC define

0)
(ϋ)

where

0 -Eq

We shall also use the notations (2.1) when say X G W and Y E V. The product

( ,) in the sense (2.1)(ii) will only be used in this section.

Let W_= {X<ΞW\ (X, X) < 0} and Φ = {X G W\ (X, X) = - ^ } . For

XG JΓ we write

(2-2)
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with X+ EMpq(C), X_GMqq(C). If XE W_, it is easy to see that X_ is

invertible. Thus we have a map π:W_^6ΐ) given by

(2.3) π(X) = X+X:x.

Let G denote SU(p,q). Clearly TΓ is holomorphic and G-equivariant with G

acting on W by left translation. Although Φ is not a complex submanifold of

W_, one can select canonically for every i G ^ a complex subspace of Tx(ty)

which identifies with T^^fy) under π^. For X E W, we define

(2.4) J f ± = { 7 G PF|(X, y ) = θ}.

The following lemma is straightforward.

Lemma (2.1). For X E Φ, X"1 w tf complex subspace of TX(W_) contained in

Tx(% such that

(i) π* identifies X1- with

(n) for every g E G,

In the rest of this section again assume q — 2. For M E F with (M, M) > 0,

we write ( M ) for the span of M and G^M> for the isotropic subgroup of G at

the line ( M ) . We define a G< Λ / > action on the trivial bundle <*D X (C2 ® <M».

For g E G < Λ / ) , (Z,(g) Θ X) E ^) X (C2 0 <M»,

(2.5) g(Z, (-) 9X) = {gZ,'j(g, Zy\l) ® **) .

Let e!, , en be the standard basis of V and G λ — G ^ e y. Identifying C 2 <8) ( ep >

with C2, clearly the action (2.5) coincides with that of (1.12). More generally

for h E G the same formula (2.5) defines a map Λ: 6DX(C 2

(C2 <8) (ΛM», and we have a commutative diagram

(2.6)

withgE G< Λ / > .

For M E F with (M, M) > 0, by [11, Definition 1.1] there is a totally

geodesic subdomain tf)(My. Let ^ be as in (1.4) and g E G with g^ep)— (M),

then 6i)(Λ/)= g^i The dual form for the cycle ΓjX^, is constructed from the

two Hermitian fiber metrics (E —lZZyx and (E - ' Z ^ ) " 1 . Now we derive

these forms for ^ { M y We fix an M and identify the fiber C 2 ® (M> with C 2

via
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Lemma(2.2). Let g G Gsuch that g(ep)= (M):

(i) (?"')•(£ -'ZZT1 = (M, M)(E -'ZZ)'\

_._, ί <(M (ZW(M (ZW Γ 1

(ii) (g ' ) * (£ —'Z|Z,) = (M, M)κ£ — 'ZZ H

Proo/. (i) Let Z = λM, by (2.5)

(g" ')*(£ - f Z Z ) ' ' ( ( ί ) ® X, (J) ® X)

= (M, M ) ( £ - 'ZZ)- ' ( ( ) ® X, H) ® Jf).

The factor (M, M) arises because of different identifications of C2 ® (ep) and
2 <M> with C2.<>
(ii) E -'Z,ZX = E -'ZZ +'(ep,(

z

E))(ep, ( f)) . It follows that

•;-' (r1, z)
and the proof proceeds as in (i).

For X G ^ , we write A^-L for the component of X which is orthogonal to M
with respect to inner (2.1) (cf. the remark there). In terms of matrix multiplica-
tion,

<"> X = MWW + X-
Now we pull back the data to W_vi&π:W_-> fy.

Lemma (2.3). (i) π*(E -'ZZ)-χ = -X_{ X, X) "' 'X_,

Proof, (i) follows from

= -X"1 'XEP9qxx:x = -'x:x (x, x) x:λ
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(ii) follows from

E-tπ(X)π(X) +•
(M,M)

and (X, X)= (XM, , XM,) + '(M, X)(M, X)/(M, M) by (2.7).
Recall that B/A = cosh2d(Z, <$,). Choose g e G such that g(ep)= (M)

as above. We have

d{Σ, Q<κ>) = d(Z, g%) = d{g->Z, %) = (g'ι)*(d(Z, %)).

We denote

then

(2.9)

Lemma (2.4). Let X E W_. Then

i i B \ \ / x det(Λr

Λ/f± , XM± ) det(Afy± , Mγ±)
r * | | ϋ | \(γ\ = x 7 —M__L = v x x j

det(Z, ΛΓ) (M, M)

(M,X){X,X)-\X,M)
(M, M)

Proof.

by Lemmas (2.2) and (2.3). Next,

17 trr ϊj — J7 tΎΎ Λ-tΎ Ύ
Hi ZjγZsχ Hi ΔIZJ Π̂  Zj'χ^'i

= (E - ZZ)m{E + (E -<ZZYV2'Z2Z2(E -ιZZy1/2}(E -'ZZ)W1,

thus

4 = det(£ + (E -'ZZyV2'Z2Z2(E -'ZZ)']

= 1 + Z2(E -'ZZ)'] 'Z2
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It follows that

JIB
- 1 Jjtjf)

= (MX)(

(M,M)

Finally since M = X(X, X)'X(X9 M) + Mx± ,

(M, M) = (M, X)(X, XY1(X, M) +(MX, , Mx±)9

(M, X)(X, X)'l(X9 M) = (Mx, , Mχ.)

(M9M) (M,M) '

We now proceed to pull back Φ(p — 1) where Φ(^) is defined in (1.19). For
simplicity of notation we omit the pull back π* in the following discussion. Let
M G V with (M, M) > 0. Corresponding to the cycle of the image of
we have by Lemmas (2.2) and (2.3) the fiber metrics

(2.10) * * = - * < * * > • " * .

HX = -x_ (x M , , xM, >-' x ( x e »n).
From (2.10), one can compute the connection and curvature matrices. Here we
have

ω = H^dH = -'X:1 (dX, X)(X, X)'] 'X_+'X:λd'X_,

='X:ι{(dX,dX)- (dX, X)(X,X)-χ{X,dX)}(X, X)~UX_,

(2.11)

- χ

(X,M)(M,dX)
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The formulas in (2.11) simplify considerably when we restrict to X E <t> and
the differentials to the sub tangent space X1- . By Lemma (2.1) our forms on φ
identify with this restriction. Note that for X G Φ, (X, X) - -E and on X±

both (dX, X) = (X9 dX) = 0.
Lemma (2.5). Restricting to X E Φ and to X± , the connection and curvature

matrices are given by

7MM)
,X) . γ λ

<Λ/>

Proof. The expressions for ώ, Ω and ω are immediate from (2.11), and only
the formula for Ω needs justification. From (2.11), we have

Ω ='X:X (dX, dX)(XM± , XM± >"' 'X_

, (dX,M) Γ (M,X) , v-. (X.M)

"'- r ( 1 + ( r ( V ' V ) <
(M,dX) .

However, we have the identities

( ) ^ { M ' M

= det

(2.12)

- ( 4 ) ( b y Lemma (2.4)).

This proves the formula for Ω.
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The space Φ is contained in Mn2(C). For X G M M 2 ( C ) , we write X = (XλX2)

where Xt is the z-th column of X. From Lemma (2.5), we have the following

explicit formulas for Chern classes:

(-4π2)C(E) = det(dX,dX),

(2.13)
(M)

(dXx,dXx)

(dX2,dXx)

(dXx,M)(M,dX2)

(dX2,M)(M,dX2)

)

, M)(M,dXx)

(M,M)
(dXx,dX2)

(M,M)

+ ^r
(dX,M)(M,dX)

1 (M,M)

To compute Φ(p — 1), it remains to evaluate 9(Cψi/^). For this purpose, we

examine K, K and a — dυdϋ. By (1.15), we have

(2.14)

and by (1.17)

, dX)X:ue,

(dX, M)(M, dX)lA

2

 x(dX9M)(M9dX)-u

<Λ/> (M,M)

By definition [11, 2.6], wλ = aK, w0 = K2 and by [11, 2.15]

- 1

θ(s,) = +w, + 2^1 ~ β

Since
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it follows that

(2.15)

.2(4) det
(M)\ \B!(M)

(dXλ,dXx)

(dX9M)(M,dX)
(M9M)

(dXl9M)(M9dX2)

(M9M)

(dX2,M)(M,dX2)

(dXuM)(M,dXλ)

(M,M)

(dX2,M)(M,dXx)
(M,M)

(dXudX2)

(dX2,dX2)

From (2.13) and (2.15), we have

(2.16)

By (1.21) and (2.16), we have

(2.17) ω(s)=U-2(s+ϊ

By Lemma (2.4), (B/A)(M)= det(Mx±, MX±)/(M, M\ whose value is
((M, M) 4- (M, X)(X, Af))/(M, M) on Φ, thus (M, M)(B/A)(M} for fixed
X is a polynomial inΛf. Now from the expressions of C{E\ C(E) and ω(s) it
follows that the form

(2.18) F(M, X) = ( f

is a polynomial in M. Moreover F(M, X) is defined for every M G F.
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In the following we study the evaluation of F(M9 X) on ®2XJL ® 2 Y Γ . Let

1 6 ^ , i.e., (X9 X) = (-J_?) and X$ = {t> G K| (*, t>) = 0}. Since (,) has

signature (/?, 2), (,) induces a positive definite metric on Xy. Let eλ9 9ep be

an orthonormal basis of Λ^. As W = F θ F, X 1 has a basis

(.,,O), .(.,.O).
( ' (o,e,), . ,(o,< , ) .
Denote by Xf and X^ the subspaces of X± spanned by (el90)9- -,(ep,0) and

(0, ex),- ,(0, ep) respectively. We write mi = (M, ^ > , (/ = 1, •,/?). Then we

have^f = λ m i m i — (Mx± , MX.L> and

(2.20)

We give below a table of values of C(E)9 C(E) and

(dX,M)(M,dX)

on the tensors listed in the left-hand column.

TABLE

(-4TΓ 2 )C(£) (-4π2)C(E) det-

/ ^ \ 3 (dX,M)(M,dX) (dX,M)(M,dX)

U/ (Λ/Λ/> (Λ/Λ/>

(Λ/,Λ/>2

(Λ/,Λ/>2
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TABLE (CONTINUED)

Ϋ
<?,,O)(θ, ej)(eh0)(0, ek)% * B '<"> (M< M) mimirnJmk

ij, k distinct +2( — Ϋ W%ιmimjmk (M, M)2

P\B B)<M)(M,M)
j , k distinct

2(l\
\Al<

"jr"k

(ίL-(ί)<"> (M.MΫ
2-ij distinct +lί-Ϋ m'mJmjmj (M,M)2

(M,M)2

For simplicity, we use the following notation:

σ(i, j ; k,ϊ) = (e,,0) ® (0, ej) ® (e,,0) ® (0, e,),

6(ι, 7; Λ, / ) = («,,0) ®(0, β >) ® (0, efc) ® (e,,0),
(2.21)

c{i, j ; k,ϊ) = (0, e,) ® (eJt0) ® (eΛ,0) ®(0, e,),

rf(i, y; Λ, / ) = (0, e,) ® (ey,0) ® (0, β j ® (e,,0).

Here we introduce two subspaces of <S>2X± 02X± . Let % be the subspace of
®2X±®2XΛ- spanned by

(2.22) Θ 2 * / - ® 2 ^ - 1 , Θ 2 ^ ® 2 ^ - 1 , Θ 2 ^ ® 2 ^ , ® 2 J f x ® 2 J^- ,

Σf=1σ(/, j ; i, k)(j Φ k), Σf=1α(/, y;', 7) and corresponding elements in terms
of b, c, d.

We denote by £ the subspace of ®2X^ ®2XX spanned by

a{j>J^Lk)-a(k,j;k,k) {jΦk),

a{i,j;'i,k)-\a{j,j;j,k) (1 <2 {j,k} andj Φk),

a(i, j; i, j) - 1 [a(i, i; i, i) + a(j, j; j, j )} (/ Φj)

and corresponding elements in terms of b, c, d, which are permutations of the

tensors a(i, j ; ϊc, I).
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Proposition (2.6). We have the following conditions on £ and %.

(i) 3Cθ£ = ®2X±®2X± ,

(ii) F(M9

(iii) % is contained in the kernel ofF(M, X).

M)(M, dX),

Proof, (i) Due to our construction, % Π £ = 0, hence it suffices to show
that % + £ = ®2X±_®2X± . We show that α(ι, 7; £ /") G % + £. If {/, 7} Π
(A:, /} = 0, Λ(/, 7; A:, /") E £. Thus we may assume that {1, j) Π {A:, /} Φ 0 .
For; ̂ A:,

a(i,j;i9k) ={a(j,j\ j\k) i £ {j\k},

2 a(i, j \ i9 [ ) Ξ O (mod5C+ £),

hence it follows that a(j, 7; 7, k) G % + £ and consequently Λ(I, 7; 1, ̂ ) G 5C
+ £ for i = 1,2, ,/?. We have that

=0
(2.24)

As a consequence

o(i9j;ϊ9J)=0 (mod5C+£).
1 = 1

2 a(i, i; ί, ί) + (^ + 2)fl(y, 7; /, /) = 0,

7 = 1,2, •-,/?. Since

1

1

• p + 3

we now conclude by (2.24) that a(i, i\ 7, 7) G % H- £ for every 1,7. Therefore
we have shown that α(ι, 7; k, /") G 5Cj- £. By a similar argument, we also have
that 6(1, 7; A:, /), φ \ 7; Λ, /"), rf(i, 7; fc, /") G 5C + £.
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(ii) From the table

and by (2.17) and (2.18), (ii) follows.
(iii) is immediate from the table and (2.23), (2.24).
We summarize the results in the following theorem.
Theorem (2.7). F{M, X) is a differential form of degree (2.2) whose coeffi-

cients dependpolynomially in Msuch that if(M, M) > 0,

F(M9 X) = ( f ) ^ ( M , M)2ω(M)(p - 1);

furthermore <g>2X± (g)2 X1- has a splitting % + £ such that

(i) F(M,X)\%=0,

(ii)

, £ are g/ϋew fey (2.22) and (2.23).
For applications to §4, it is useful to know that all the invariant (2.2) tensors

of X1- are contained in %. At a point I G Φ the isotropic subgroup of G is
isomorphic to S(U(p) X ί/(2)), and its action on X 1 can be expressed in terms
of the standard basis (2.19) and matrix product by

(2.25) (g, X g2)(ul9 u2) = g l ( W l , w2)'g2,

where g, X g 2 G *S(ί/(/?) X 17(2)) and

(<,.o)

M
, u2 =

(0,e.)

(0,e )
w, =

Lemma (2.8). The G invariant (2.2) tensors of X1- are contained in %.
Proof. We prove that in fact the S(U(p) X /) invariant tensors of type

(2.2) are already in %. By invariant theory (cf. [1, Theorem (3.12)] and [15]),
under the standard action of SU(p) on Cp, YLomSU{p)(®rCp ®SCPX) is
spanned by the "elementary contractions" and the determinant function. In
the present case S(U(p) X /) acts identically on the two columns of X± , and
the invariant tensors of type (2.2) are the following, which correspond to the
contractions:

Uy), α, β9 2.
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It is easy to check that all these tensors lie in %9 e.g.,

p

'ux ® δ, ®'u2 ® w2 = 2 a(i9j;ϊ9J)9

p
ι u x ® w 2 <8>'w2 ® δ , = 2 b ( i 9 j ; ϊ 9 J ) 9

'ux ® δ, <S>rW! ® w2 G ® 2 ^ ( g ) 2 ^ , etc.

This finishes the proof.
For w, z E F, let Z)M, D- be the differential operators

We use the notation e[x] — exp(2πix).
Lemma (2.9). Let a,b,c9d E F and t be an indeterminant. Then we have

e[-t(M9 M)]DaDbDc-Dje[t(M + z, lz = O

+ •

)(M, d).

Proof. Straightforward.
Now W= VΘV^Mn2(C) and for € = ( ^ 1 , ^ 2 ) ® ^ , ^ ) ® ^ , ^ ) ®

(dl9 d2) E ®2^F ®2PF, we define

(2.26) Z)€ = DaDb2D-Dd-2 - DapbD-cD;χ - Dapbp-Cp^ + DapbΌ-Όiχ.

Proposition(2.10). Let %= x X& <Ξt<Z®2W®2W\ then

1 = 1

= ^/4(det(^f, M)(M, dX))[ 2 \Λe[t(M9 M)}.

Proof. This follows from the definition of £, the fact that (M + z, M + z)
(M + z, M + z), and a simple calculation making use of Lemma (2.9).
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3. Theta functions and the lifting

In this section we shall use freely the results on the Weil representation and
theta functions for the Hermitian pair U(r,r) X U(p,q) described in [12,
§1,3]. For the present paper we restrict to r — 1 and q = 2. Let kλ be a totally
real algebraic number field with [kλ:Q] = m9 m > 1 and k an imaginary
quadratic extension of kv Let n = p + 2, Vλ be an π-dimensional vector space
over k, and (,): Vx X Vx -* k be a nondegenerate Hermitian form. Set # = fc
®QR, K= Vλ ® Q R and extend (,) to a Hermitian form (,): VX V^ R.
Clearly . R ^ C Θ ΘC(m copies). Let ex, ,em be the irreducible idempo-
tents of /? and K(y) = e^F, 1 <y < m. We assume that the signature of K(1) is
(/?, 2), and those of Vu\j > 1, are (Λ, 0). Let G = St/(F, (,)); then

G= f[SU(V«\(9)).
i=\

By our assumption, Π ^ 2 ^ ^ ( ^ ( l ) ) ^s compact, thus the Hermitian symmetric
space associated to G coincides with that of SU(V(l)). Let fy = {Z (Ξ F ( 1 ) θ
F ( 1 ) I (Z, Z) = (-J _?)} as in §2. For Z G Φ, we denote

(3.1) Z£o>={*

Recall that by [12, (1.14)] we have a majorant associated to (,) and Z,

1 m

(x,x) if Jfez^i,θ0

-(Jf,Jf) ifJfe(Z>,

where <Z> is the Λ-module spanned by Z1? Z2 with

z = (zuz2) e
Now we choose a fixed element i in # with /2 = - 1 . The Hermitian symmetric

space associated to @(R) = {g <Ξ GL(2, R) |'g(_?}))£ = (-?o)} i s realized as

(3.3) %(R)=

Here an element v E R is positive if βjV E C (j = 1, ,m) are all positive.
Clearly 3C(#) - %(C)m. On X(Λ), S acts by fractional linear transformation

gτ = (aτ + b)(cτ + d)~

for g = ( ^ ) We have the automorphic factors
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FOΓT E %(R) we write

(3.4) τ = u + iv

with u — w, v = v > 0. As in [12, (1.15)] we define a Schwartz function on V

(3.5) / T , Z (M) = e [ t r Λ / R ( κ ( M , M ) + fc(Λf, M ) z ) ] ,

T E %(R), Z E Φ, M E F. We denote M ( 1 ) = exM which is the component of

M in F ( 1 ) . Now let M ( 1 ) ι-> F(M ( 1 ) , Z) be the polynomial in F ( 1 ) given by

(2.18) with differential forms on D̂ of degree (2.2) as values. We have the new

Schwartz function

(3.6) / T > Z (M) = F(M< 1 ) ,Z)/ T , Z (M).

Recall the notation: for x E R, and xέ the j-th component in the decomposi-

tion R ^ C θ ΘC (m copies) and t = ( ^ , ί m ) E Z m , then x r stands for

x\x Λ;^. For g E §(R) we also recall that ε(g) is given by [12, Proposition

(1.4)] with r — 1. Let K(R) be the isotropic subgroup of β ( # ) at /, and x be a

character of A'(Λ) given by

Let Ω°, Ω', Ω be the sets defined in [12, §1], and let r(g\ ro(g) be the unitary

operators defined in [12, (1.10)] and [12, following Proposition (1.4)].

Proposition (3.1). For g E Ω° U Ω' U Ω,

Kg)Az(M) = ε(g)j(g, τ)-Pj,(g, τ Γ ρ / g τ , z ( M ) ,

where P = (p + 4, p + 2, -,/? -h 2) W ρ = (2,0, ,0). In particular for
k E K(R\

where X " ^ + 2 > stands for X<P+2^ ' •' P+2\

Proof. Let Z E Φ and let π ( Z ) be its image in 6ί>. By Lemma (2.1), Z x is

identified with the tangent space of Φ at ττ(Z). By Theorem (2.7), ® 2 Z X ® 2 Z X

has a decomposition % θ £ on which F(M ( 1 ) , Z) satisfies the following condi-

tions:

(i) The restriction of F ( M ( l ) , Z) to 5C vanishes identically.

(ii) For its restriction to β, we have

+ 2 ) det<£/Z, MW)(M«\ dZ).
4ττ

Therefore it suffices to show the proposition for fT Z(M) \ £. For ξ = Σ λ^y E

£ C <g> 2(F ( 1 )θ F ( 1 ) ) ® 2 ( F ( 1 ) Θ F ( 1 ) ) we define the 4-th order differential
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operators Dξ = Σz λ,/^ by (2.26). By Proposition (2.10), we have

Dξ{e[tτR/R(M +Z9M+ Z)c~ιd] fτ,z(M + Z)} z = 0

Then by [12, Proposition (1.4)] and a standard argument as in [5, Proposition

(4.2)] and [8, Lemma (8.3)], we have the relation

ξ e e.

Let Θ be the ring of integers of k, L an Θ-lattice of F l 9 and L* its dual lattice

given by L* = {v E K| t r Λ / R ( ϋ , L) C Z}. Now as in [12], we can define our

basic theta function. For T = u + iv E %(R)9 let

0 v

so that στ(/') = T. By Proposition (3.1),

We construct a theta function for h 6E L*/L by

θ ( τ , A , Z ) = 2

(3-8) M

By [12, Proposition (1.6)], there exists a positive integer iV such that

(3.9) θ ( γ τ , A, Z ) = y ( γ , τ ) p + 2 θ ( τ , A, Z ) ,

for γ E Γ(JV) C S(θ), where/? H- 2 stands for (/? -f 2, -,p + 2).

Let T = u + it? E %{R) and g E g(Λ). From

g τ - g τ = y ( g j T ) ( τ - f )y(g , T ) " 1

one deduces Im(gτ) = Im(τ)(y'(g τ)y(g, T))" 1 . The invariant measure on %(R)

is given by

(3.10) NR/R(v)-\dv}{dv}.

Lemma(3.2). LetηGR with rj = η > 0. Then

w/iere Γ^/, + 1) = (27r)-(/;+1>Γ(/,. + 1).



196 Y. L. TONG & S. P. WANG

Proof. This is a special case of [ 12, Lemma (3.2)].
Now let

f = t(N),

= {a(=k\a = a},

= {aEN6\a = a},

(3.11) Sf(NΘ) = {i, e Sx(k) I trΛ/c(τ,S,(M))) C ZJ,

Γ~ι in /-> I I — 1
ΛΛ

For T G %(R)9 s E C and η E Sf(M>) with η > 0 define

(3.12) < U T ) = Q ' 2 Xr,

where ^ + 2 = (/? H- 2, , p 4- 2). As in [12, §3] this series is absolutely
convergent for 2re(s) + /? H- 2 > 2, and φη 0 is the holomorphic Poincare series
associated to η. The functions φη 0, ij > 0, η G Sf(NΘ) span the space Sβ + 2(^)
of Hermitian (Hubert) cusp forms of weight (p + 2, -,/? H- 2) for Γ. The
Petersson product on S/?+2(f) is given by

(3.13) (Φ

for φ,, φ2 E Sp+2(Γ). The Fourier expansion for φ E Sp+ 2(f) is

(3.14) φ ( τ ) = 2
η e SfίΛ

and

(3.15) ( φ η - , φ ) = 2 - ' " ^ + 1 + ί » Γ 1 (

Finally, by (3.2), for M G V
m

(3.16) (M, M) + (M, M)z = 2(Mg2 , M$ϊ) + 2 2 (Ma\ M<").
( = 2

Theorem (3.3). Let % - Θ(τ, Λ, Z) fee αί in (3.8). TΛen /or /? + 2 = (/> +
2, ••,/> + 2 ) α«ύfRe(ί)> 1,

,-, θ ( τ , A, Z)) = 2-C"-IX'+'+1)2-( ϊ+'+3>Γ1(ί +,p + l ) 1 " " ^ ^ * +/? + 3)

x — n{L,)
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Proof.

= C^1 I Θ(τ, h, Z)exp(-2πitτR/cηu — 27τtτR/c(ηυ))

vis+p>->s+p){du}{dυ}.

Let the fundamental domain of Γw be

{T = M + ro

The integral becomes

Q1 Σ F{M^\Z)( ί aφ(2πi(u(M,M)-η))
M=h(L) Jv>0JSι(R)/Sι(Nβ)

• {</w}exp(-2τrtrΛ/c(τjt; + (M, M) z ϋ))t; ( 2 ' 0 ' : Mv<'+P'--'+P){d

F(M<λ\Z)f exp(-2τrtrΛ / c((M,M)+(M,M) z)t;)M=h(L)
(M, Λ/)=η

+/? + 3)

p + 3)

(M, M) = η

As in [12] we need re(s) > 1 to guarantee the interchangeability of integral and

summation signs.
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Recall G = S£/(F,(,)) = Π£, SU(V{i)). Let Γ = {γ E G | γL = L and γ
acts trivially on L*/L}. Replacing Γ by a subgroup of finite index if necessary,
we may assume that Γ is torsion free. Since U™=2SU(V(i)) is compact, we
identify Γ with its image in SU(V(l)). By our hypothesis SU(V(l))/T is
compact, or equivalently Γx̂ D is compact (this can be achieved by assuming
that (K,, (,)) is anisotropic). We are thus in a position to make use of the dual
form &(M)(s) constructed in §1. For h E L*, let

Lηfh = [M E L* I M = h(L)9 (M, M) = η).

We know that Lη h is Γ-invariant and has only finitely many Γ-orbits,

(3.Π) Lη,A = U ΓΛ/,.

We denote

(3.18) ώη(s)= 2 «<^)>(i).

Then it follows readily that
/

s(Ό = Σ Σ
ι = l Λ/eΓΛ/,

= Σ [Γ<Λ/,>:ΓΛ/1 Σ
i = i L J r ( A / / 1 ) > \ r

/

= Σ
i = l

By §1, &(MfUy(s) converges for Re(5 ) >p — 1 and is dual to the cycle

which is the image of Φ/M\X)) in ΓN^D. Thus ώη(s) is dual to

(3.19) ς= Σ

Similarly the result in Theorem (3.3) can be expressed as

(«,„-, θ(τ , h, Z)> = ( 4 W Γ ( ί + " + 1 ) - 2 Γ ( , + /, + I)"

(3.20) •Γί ί+^
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Note that since the series (3.18) defining ωη(s) does not converge at
s = p — 1, one must compare its analytic continuation at that point with the
continuation of (φηj9 Θ(τ, Λ,Z)> at s — 0. This is carried out in the next
section.

4. Cohomological interpretation of lifting

From (3.20), to give a geometric interpretation to the lifting we need to
study Σ γ e Γ ι \ r y*((A/B)sω(p - 1)) at s = 0. We denote

(4.1) /(*)= Σ

From (1.30) and (1.31)

(4.2)

where at Z, = 0

F\-B

E)~A

( D \ 2

— I [tdwι Λ dwx Λ dv2 Λ ί/ϋ2 +y>v2 Λ ί/iv2 Λ dυλ A dϋλ

(4.3) -y>v2 Λ J ^ Λ Jϋ! Λ dϋ2 -tdwι Λ Jiv2 Λ dv2 Λ d ϋ j ,

( 7> \ 3

— έfo, Λ dϋλ Λ J ϋ 2 Λ ί/t5"2.

Substituting (4.3) in (1.21) we have
Lemma (4.1).

( 1 " s ) { s + 2 ) f
- (s + l)(s + 2)ξx}

(* + 0C(£) + (ί + 2 ) | c ( £ ) + (s + l)(s + 2)ί2)

For a G, invariant differential form h with bounded norm, we define

(4-4) *,= Σ
r,\r
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The series is absolutely convergent for Re(^) > p — 1 and has at most a simple
pole at s — p — 1 since this is so for the series Σ Γ ( X r y*(A/B)s+2. We write

(4.5) res(Λ) = residue of hs at s — p — 1.

Lemma (4.2). The residue o/ΣΓ l\r y*(A/B)s+2 at s = p - 1 is

in particular it is a constant function.
Proof. From results of §1,

AMs) = (-iΛ) j ( ^ ) ( ί -p + 1)[- (a + b)

_(s-p+\)(s-p + 2

2ττ2 \B

It follows that

and it remains to prove

This equality follows from (cf. [12, proof of Corollary (4.4)])

and the fact [4, p. 90]

Corollary (4.3). For a G invariant form v,

res(p) = σv, where σ- π 2vol(Γ,\6D1)/vol(Γ\όD).

Lemma (4.4). The form f(s) is regular at s — p — 1 and moreover

f(p - 1) = ώ(p -\) + aC(E) - r e s ( - | c ( £ ) ) - (2p + l)res(*2)
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Proof. We have that

A \ s-p+\

( A \ s-p+\

{ P ~ ι ) p d { E ) ~ { p ~ 2 ) i p

(p + l)^

It follows that

s-p+l( 4
Ί

^)j C(E)

ί A \ ί + 2

= ω(s)+ (s+l-p)(±) C(E)

and the assertions ίoτf(p — 1) are immediate.

In the following, we study τes(BC(E)/A), τes(ξx) and res(£2). Their

cohomological meaning will give us the desired interpretation. Since ώ(s) is

regular at s = p — 1, we derive easily from Lemma (4.1) the following lemma

on residues.

Lemma (4.5).

0) (£ττH(*) + ! τ M 7 C { E ) ) -«*(*!) = 0

The following lemma is an easy consequence of Kuga's formula of the

Laplacian operator on symmetric spaces.

Lemma (4.6). Let ty be a symmetric space, and G the identity component of

the group of isometries of 6ύ. Let f and h be differential forms of Φ such that f is

harmonic and h is G invariant, then f Λ h is harmonic.
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We now let α, b, c, d denote the Gx invariant forms defined in (1.27). For
forms / and h we denote

(4.6) ε(/, h) = (ιΛ)(/Λ h) - (iλf) ΛΛ-/Λ (iAh).

We also recall from Lemmas (1.4) and (1.5) that

(4.7) (iA)(a + b) = 2(p-l), (iA)(c + d) = 2,

We list below a table of values of ε(f, h) which are proved in the same way as
Lemmas (1.4) and (1.5).

/ A ε(/, A)

a + b

0

a + b £, - 2 | ,
c + d ί, - 2 | ,
β + 6 ξ2 0

(c + df

Lemma (4.7). The form (iA)(ώ(p — \)) is harmonic and

Since ω(p — 1) is harmonic, (iA)ώ(p — 1) is also harmonic. The
second assertion follows from (1.33).

The form C(E) is G invariant and by Lemma (4.6), ((iA)ώ(p — \))C(E) is
harmonic. In the following, we compute (/A) {((/Λ)ώ(/? — \))C(E)}. By the
preceding lemma, we have

(4.8) ((iA)ώ(p - \))C(E) = (^)res{ [- (a + b) + p(c +

for C(E) is G invariant. Thus

(ιA){[(, Λ)ώ(p-l)]C(£)}
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and from the table the above value is

~ (a + b) + p(c + d)]

4•(-33logΛ) + 4C(E)^ + 2(1 -p ) { , -p

(4.9) =

2r 2

Lemma (4.8).

j 2(1 -

-2σC(£) - (p - l)[iλώ(p -

From Lemmas (4.5) and (4.8) we have a system of three linear equations in

the three unknowns res(^), res(£2) and TQS(BC(E)/A). Solving this system we

obtain

res(f C(E)) + (2p + l)res(^2)

(4.10)

We now summarize all the known results concerning f(p — 1).

Theorem (4.9). The family of differential forms Σ γ G Γ i \ Γ y*((A/B)sω( p - 1))

w regular at s — 0 α«rf /te ϋα/we /Λere w ίΛe harmonic form

(4.11)
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This harmonic form is primitive, and is orthogonal in the Hodge inner product to
all G invariant forms

Proof. The regularity at s = 0 follows from Lemma (4.4). Also by that
lemma and (4.10) and (4.7), f(p — 1) has the value (4.11) if one notes that in
the proof of Lemma (4.2),

To prove the last statement of the theorem, we first show Af(p — 1) = 0. For
this we use the first formula in Lemma (4.4) and Lemmas (1.5)(i)(ii), (1.7)(iv),
and (4.7) to derive

iAf(p - 1) = - ^ r e s { - (a + b) + p(c + d)}

- ( 2 / > + l ) ( ^ ) r e s ( c

Finally let

be the antilinear isomorphism defined by the G invariant metric. Then p takes
invariant forms to invariant tensors, and by [4, pp. 92-93]

(4.13) f(p - 1)Λ * h=f(p - l)(p(λ))22 /WV

To prove the orthogonality of f(p — 1) to invariant forms, it now suffices by
(4.1) to show that ω(p — 1) vanishes on invariant tensors, but that is a
consequence of Theorem (2.7) and Lemma (2.8).

This theorem shows that it is appropriate to introduce a normalized G
invariant form and a linear operator on 3C2'2(Γ\6D), the space of harmonic
forms of degree (2,2), given by (cf. (4.6))

(i) « = 2π 2 C(£),

(4 14) 1 1 , / XΪ

v*-1^/ z \ p / \ (ΛαHΛ t) + Λfα(Λx)]

—a(A 2x)

= x + y^e(a9 Ax)
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Theorem (4.9) proves that if x is the harmonic dual of a complex geodesic
cycle, then Pa(x) is primitive and orthogonal to all invariant forms. It can be
readily shown that in the present situation the only invariant forms of degree
(2,2) on <3) are spanned by κ2 and α. Note that the image of Pa is not just the
primitive forms since a is an eigenvector of Pa and not primitive. We now
apply these results to (3.20). By the duality of Cη and ώη(p — 1) and the
linearity of Pa we denote

(4.15) Pa(Cη) = Pa{ώη(p - 1)) = Σ [ I W Γ M W " < M < >>(/> ~ 1))

Theorem (4.10). The family of differential forms (Φηj, Θ(τ, h9 Z)) has an
analytic continuation to s — 0, and its value at s — 0 is the harmonic form

where Pa(Cη) as given by (4.15) is primitive and is orthogonal in the Hodge inner
product to G invariant forms.

As remarked before, the Poincare series φη 0 span Sp+2(Γ) where p + 2 =
(p -f 2, •,/? + 2). We now use Theorem (4.10) to define a lifting or corre-
spondence:

( 4 1 6 ) L:

L(φ) = (φ,Θ(τ,Λ,Z)>.

Let L* be the adjoint of L defined by the Petersson product on S/ ) + 2(f) and
the Hodge inner product on 0C2l2(Γ\<Φ). For ψ e DC^Γx'Φ) we have by
(3.15)

LΦ,,oΛ*Ψ=<Φη,o,L*Ψ>
(4-17)

where

a(η)e[tτR/c{ητ)].
η^Sf(NΘ)

η>0

It follows by (4.17) and Theorem (4.10) that

(4.18) a(η) = (4π)-2(p + \){p 4- 2 ) / Pa(Cη) Λ * ψ.

Via Poincare duality, this gives the desired geometric interpretation of the
Fourier coefficients of the cusp forms in the image of L* as intersection
numbers.
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Now define

(4.19) Ω(τ,Z) = (4τ,Γ2(/>+ !)(/> +2) Σ
ηζΞSf(Nβ)

η>0

Theorem (4.11). (i) L(φ) = (φ, Ω(τ, Z)>,

Proof. Let

K{τ,τ')

1Γ 2
η>0

By (3.15), K{τ, T') is the reproducing kernel of S/7+2(f), namely,

<*(τ,τ'),φ(τ))=φ(τ').
It follows that

<tf(τ,τ'),θ(τ,Λ,Z))=O(τ',Z),

and consequently,

<φ(τ'), Q(τ', Z)> = (φ(τ'), <*(τ, T'), θ(τ, A, Z ) »

= « * ( τ ' , T), Φ(TO>, Θ(T, A, Z)> =

This proves (i), and (ii) follows formally as in (4.17).
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