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DEFORMATIONS OF CLOSED SPACE CURVES

E. A. FELDMAN

1. Introduction

In this note we will be interested in closed space curves, that is Ck (k > 2)
immersions of S1 into JR3. We say a space curve is non-degenerate if the
square of the curvature is never zero. This non-degeneracy condition is the
classical hypothesis used to insure the existence of the moving Frenet frame
along the curve. The question we would like to ask is the following one.
Given any two closed non-degenerate space curves, when are they homotopic
through a homotopy composed entirely of closed non-degenerate space
curves? More precisely we want to study the space N of non-degenerate
closed space curves, considered as a subspace of C*(S\ Rz), the C* maps
from S1 into R\ with the O'-topology (k > 2) [4]. We ask: what are the arc
components of NΊ A continuous path in N will be called a non-degenerate
homotopy.

It will be convenient to make all homotopies based. To make this specific
let us first define the Frenet frame for γ(s) € N. This is done by fixing the sign
of the curvature to be positive, and letting the principal normal u(s) be de-
fined by dtx{s)lds = k(s)t2(s)f where s is arc-length parameter, t^s) = dγ(s)/ds
is the unit tangent vector, and k(s) is the curvature of the given space curve
;-. One then defines the binormal vector tz(s) by the formula tz(s) = tx(s) x t2(s).
Now let us fix a base point θ0 e S1, and let

NQ = {γ e NI γ(θ0) = 0, φ j = el9 /2(0O) = e2, tz(θ0) = ez} ,

where (tl912, tz) is the Frenet frame of γ, and the et are the unit coordinate
vectors of R* (i.e., ex = (1, 0, 0) etc.). An element of No will be called a
based non-degenerate curve, and a continuous path in No a based non-degen-
erate homotopy. By using rotations and translations the arc components of
N are determined by those of JV0, because the group of rigid motions is con-
nected. Given any γ e No, we define F(γ): S1 —> 5O(3), by associating to each
point of γ9 its Frenet frame, where SO(3) is the special orthogonal group.
We see F(γ) is of class Ck'\ and F(r)(0o) = /o = (fiu *, %) € SO(3). Our main
result is the following theorem.
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Theorem I. Let γ and η € No. Then γ and η are based non-degenerately
homotopic if and only if F(γ) is based homotopic to F(η) (that is they deter-
mine the same element of πί(SO(3), /0)).

The "if" part is obvious; hence the main task will be to show the con-
verse. We will now apply the theorem to get the desired classification.

It is well known that ^(50(3), f0) s Z2 and that the generator is represented
by the curve of 3-frames f(θ) = (Λ(0), /2(0), ez) where fx(fl) = (costf, sintf, 0),
and /2(0) = ( - sin 0, cos θ, 0) for 0 < θ < 2π (see [6]). Let a(θ) = (sin 6,
1 — cos 0, 0). Then a e No, and F(a)(θ) = f(β). Therefore we see No has two
connected components, the first determined by traversing the circle a once,
the second by traversing a twice (i.e., by a(2θ), 0 < θ < 2π). Hence, if we
deform the latter curve a bit so it is an embedded circle, we see that any
γ € N(N0) is (based) non-degenerately homotopic to either the circle or curve
2 pictured below.

Curve 2

Besides the intrinsic geometric interest of this problem, it is also the most
elementary open part of the following more general problem. Let X be a
Riemanian manifold. We say an immersed circle is non-degenerate if the
geodesic curvature never vanishes. When are two non-degenerate immersed
circles homotopic through non-degenerate immersions? Let us restrict our-
selves to curves which are "based", that is, fix 0Q e S1, x0 g X, fτ and f2 mutu-
ally perpendicular unit tangent vectors at x0, and restrict ourselves to
f:S1-^X, such that f(θ0) = x0, and the unit tangent (unit principal normal)
to / at ΘQ is fiifz)- By associating with each θ e S1 the unit tangent and unit
principal normal of / at f(θ) one obtains a curve in V2{X) the orthonormal
two frame bundle of X. Hence the non-degenerate immersion / defines an
element V(f) of ;ri(F2(AΓ), /0), where f0 = (x0, fl9 /2). If / and g are based non-
degenerate immersions of S1 in X, is the condition that V(j) = V(g) sufficient
to insure that / is based nondegenerate regularly homotopic to g? When
dim X > 4 it is indeed the case since π^V^) = 0 (k > 4) where F2)fc is the
Stiefel manifold of 2 frames in £-sρace. Therefore π^V^X), /0) s π^X.Xo).
We showed in [1] that in this case / and g ait (based) non-degenerately
homotopic if and only if they were (based) homotopic. This leaves only two
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and there dimensional manifolds, and this note supplies an affirmative answer
to the question in case X = Rz, since V2iZ ^ 50(3). For X = R2, the question
is quite easily answered. The winding number (normal degree) is the only in-
variant, and every winding is realized except of course 0. The proof is much
easier than that of the Whitney-Graustein theorem [8], since the positivity
(negativity) of the curvature guarantees that the tangent map is a covering
map of 5 1 by 51. If we take the above question as a conjecture I would as-
sume it is true for dim X = 3, and false for dim X = 2. One can clearly ask
the analogous questions which arise by demanding that higher and higher
order curvatures never vanish.

Finally I would like to thank R. Sacksteder for making an essential sim-
plification in the proof of FencheΓs theorem [3], and C. Weaver for pointing
out a way of simplifying the original proof of this theorem.

2. The factorization and spherical curves

Let us first identify 50(3), F 2 t 3 and ToiS2), the unit tangent circle bundle of
52, as follows. Note for any 3-frame (/l5 f2, /3) e50(3), fz = fx x /2, and
(/i, /2) e F2,3. Thus we can identify F 2, 3 and 50(3). We then view (fl9 /,) € F2,3

as defining a point fτ € 52, and a unit tangent vector to 5s at fx by parallel
translating the foot of f2 from 0 to /1# With the above identifications in mind
we will use these three spaces interchangeably. Now let us fix 0O e 51, and
/„ = (el9 e2) <= F2t3, where et is the i-th coordinate vector. Let Fo = {f € C*~2

(51, F2,3) |/(0O) = /0}. Then by associating to each γ € NQ, the moving 2-frame
defined by its unit tangent and principal normal vectors, we have defined a

continuous map F: NQ—» Fo, where Vo is given the
C*-2 topology. Let /0 = {λ € Ck"\S\ S2) \ λ is an im-
mersion, Λ(0O) = el9 and λ'(θ0)/ \ λ'(θ0) \ — e2}, and give
/0 the C*"1 topology. Then we can factor F through /0

as follows. Let γ e No, and set G(γ)(θ) = γ\θ)l \ γ'(θ) \.
We could define G(γ) for an arbitrary C1 space curve
γ however G(γ) is an immersion if and only if γ is
non-degenerate. G clearly maps No into 70 continu-

ously. Let λ €/0 , and set S(λ)(θ) = (λ(θ), λf(θ)/ \λ'(ff)\). Then 5 is continuous
and F = 5 o G. We now quote the following theorem of Smale [5].

Theorem S. Let λ and 7 € 70. Then λ and J are based regularly homotopic
(i.e. lie in the same arc component of 70), if and only if S(λ) and SQ) repre-
sent the same element of πx(V2y, /0). // S(λ) is homotopic to SQ), and further-
more there exists a neighborhood U of θ0 on which λ and X agree, then we
can find a neighborhood U' C.U of θ0, and a regular homotopy λs joining λ to
λ (i.e. a path in 70) such that ?>s and λ agree onU' for 0 <s < 1.

Remark. This is a special case of Smale's theorem and it admits a rather
easy elementary proof, by first applying the Whitney-Graustein theorem [8]
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to the punctured sphere, and then "cancelling" loops. By applying theorem
S we see that the following Theorem I' is equivalent to Theorem I.

Theorem I'. Let γ andγeN0. Then γ is based non-degenerately homo-
topic to γ if and only if G(γ) is based regularly homotopic to G(f).

If we are to prove F, we have to know which closed spherical curves are
tangent indicatrices of closed space curves. This question is answered by
the following proposition of Fenchel [2], [3]. In the "if" part we will merely
sketch Loewner's well known remarks [2]. In the "only if" part FencheΓs
argument is somewhat simplified by a remark of Sacksteder we include this
proof because the argument is central in the proof of Theorem F.

Let us fix the following notation. If A is a subset of JR3, let [A], Ac, A1

denote respectively the convex hull of A, the closure of A, and the interior
of A.

Proposition 2.1. a) Let γ(θ) be a closed non-plane space curve of class
C\k > 1), and G{θ) = r'(0)/1/(0)| the tangent map. Then 0 6 [{G(θ) \ θ e S1}]'.

b) Let λ{β) be a closed curve of class C"1 (& > 1) on S2 C R\ If
0 € [{λ(θ) I θ € S1}]* then λ(θ) is the tangent indicatrix of a closed Ck, nonplane,
space curve.

Proof, a) Let P be a plane in JR3 which does not meet γ. Then there
must be both a maximum and a minimum of the distance from P to γ. If
Px = γ(β*) is either a maximum or minimum point of this distance function,
then G(θ*) is parallel to P and therefore G(β*) lies on the great circle deter-
mined by the intersection of S2 with the plane parallel to P which passes
through the origin. The fact that we have both maxima and minima implies
that the set {G(θ)\θ€S1} meets both open hemispheres determined by the
aforementioned great circle.

b) Let λ{θ) be viewed as a periodic vector valued function of period 2π,
C be the vector space of real valued C00 functions on S1, viewed as periodic
functions with period 2τr, and P = {p € C \ p{θ) > 0, 0 < θ < 2π). We note

/•2.T

that it suffices to find a peP such that I p(θ)λ(θ)dθ = 0, because we can
0

ζ t

then set γ(t) = I p(θ)λ(θ)dd, and γ will be the desired space curve.

Let K = {y <= R3 \ there exists p € P such that y = Γ *p(θ)λ(θ)dθ). We see
0

that K is a convex cone because P is such. At this point Sacksteder noticed
that it suffices to show {λ(θ)\0<θ<2π}^K% because 0€ [{λ(θ)10<θ<2π}]\
and therefore 0 € K provided the above inclusion holds. The remainder of the
argument is essentially FencheΓs.

Let
0 elsewhere,
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J oo 1

φ(x)dx\ therefore we set φ(x) = —φ(x). Pick
b

— 00

θ* such that 0 < θ* < 2π, and ξ such that 0 < 2π ξ < 1. We then define a
function fξ(θ, θ*) on an interval of length 2π
with θ* as midpoint as follows. fξ(θ, 0*)

( ft — /9 \
-i—iS-j where h is so chosen

—^r; 1 J ^ r that J'**'fAO, θ*)dθ = 1. We extend /, to

all of R by making it periodic of period 2π. ft(θ,θ*)€P. Let ^

= Π * ^ ) / ^ , θ*)dθ. Then ^(tfj € £ . Note that Γ~fξ = 1 implies that
0 0

Thus we see λξ(θ*) -* ^(0^) as £ -»0 by the continuity of λ and the construc-
tion of fξ. Hence λ(θ*) € ϋ:c.

We can prove Theorem I7, if we can carry out the following procedures.
First, let Go = G(γ0) and Gx = Gfo) be the tangent images of γ0 and γx ε No.
If Go and Gj are regularly homotopic, does there exist a base regular homo-
topy Gs joining Go to Gλ such that 0 β [{Gs(0) 10 < θ < 2π}f for each 5,
0 < s < 1? Second, if we have the desired homotopy Gs above, can we find
a continuous 1-parameter family of weighting functions pseP such that

Psφ)Gs(θ)dθ = 0 where Po(θ) = | γ'0(θ) \ and Pl(θ) = | γί(θ) | ?

3. First deformations

From now on we will view all maps with S1 as source, as periodic maps of
period 2π with R as source.

Proposition 3.1. Let γeNQ. Then there exists a based non-degenerate
homotopy between γ and an element γ e Λf0, where f has the following pro-
perty: For some parametrization t of γ, we can find a number I > 0 depend-
ing on γ, such that G(f)(t) = (cos t, sin ί, 0) for 0<t mod 2τr < /.

Proof. Let us note that γ is non-degenerate if and only if the vectors γ'(t)
and γ"(t) are linearly independent for each ί, 0 < t < 2π. By reparametrizing
γ if necessary we can assume f(0) = eu and γ"(0) = | γ"(0) \ e2 where et is
the unit vector in the ϊ-th direction. If we let γ(t) = (^(r), γ2(t), γz(t)), we see
that there exists a number lλ > 0 such that if 11 \ mod 2π<lly then the vectors
(rί(0, ϊίiO, 0) and (γ"(t), γ'2'(t), 0) are linearly independent. Let ψ(t) be a C~
periodic function of period 2τr, such that ψ(t) = 1 for 0 < 11 \ mod 2π < IJ2,
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φ(f) = 0 for \t\ mod2π > ll9 and 0 < ψ < 1. We define a based non-degene-
rate homotopy by the formula

such that γo(t) = γ(t), and γu(t) = γ(t) for 111 mod 2;r > lλ. Then rtt(ί) e No by
our choice of lτ. Let f(ί) = ^(ί). For 0 < 11\ mod 2π < IJ2, γ(t) lies in the
(x, y) plane and has positive curvature. Hence we can reparametrize f so
that G(7)(τ) = (cos τ, sin r, 0) for 0 <, \ τ \ mod 2π < I for some / > 0, which
depends upon lλ.

Proposition 3.2. Let γ(t) € No, and assume γ lies in the (x, y) plane. Then
for an arbitrarily small ξ, 0 < ξ < π, γ is based non-degenerately homotopic
to a nonplane curve η, such that γ(t) = η(t) for 0 < 11 \ mod 2π < π — ξ.

— 1), - 1 < ί < 1,
0 elsewhere.

Proof. Let <pQ(t) = Extend [ 0 > 2π]

for 0 < ξ < π to all of R, by making it periodic of period 2π, and denote this
function by φ. Let φ(μ): R->R by a C00 function, such that ^(«) = 0 for
u < 0, φ(μ) = 1 for u > 1 and 0 < 0(w) < 1. Set r . ( 0 = <n(0, ΓtίO, #(«>9(0)
Then ^0(ί) = ^(0 and define 37(0 = γx(t). We thus see that γu(t) is the desired
non-degenerate homotopy.

Lemma 3.3. Let λ(i) and η(t) be in 70, and assume that λ and η are based
regularly homotopic and that

0 € [{^(ί) 10 < t < 2π}Y Π [fo(0|0 < / < 2π}Y .

Finally we assume that λ(t) = η(J) = (cos ί, sin t, 0)forO<t< ll9 for some
ί2 > 0, lx < π. ΓAerz there exists a based regular homotopy ?.u(t) joining λ to η
such that 0 e [{λu(t) 10 < ί < 2?:}]* for each u,0<u<l.

Proof. First pick a regular homotopy ^ ( ί ) such that y0 = A, vτ = ^, and
vω(r) = (cos ί, sin ί, 0) for 0 < t < I where 0 < / < /x, and is determined by
Theorem S of §2 . Let us look at the great circle c which passes through

λ ί —/] and the north pole. Let Ωu(t) be a regular homotopy of immersions

Figure 1.
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of the interval [0, /] into S2 which we will describe as follows. Let Ωu(t)

= (cos t, sin t, 0) for 0 < t < -1/ and for -- < t < /, and let βo(ί) = (cos t,
4 4

sin t, 0) for all t. Finally as u varies from 0 to 1 we pull out a long skinny
"bump" which is symmetric about the great circle c, until finally at u = 1 the
bump has gone more than halfway around the circle c, as we see in figure 1.

We can now define the desired homotopy λu(t).

\λ(t) I < t < 2π

0<t<l λ < u < λ
l<t<2π 3 ' - 3

This homotopy clearly has the correct properties as the long hump guarantees
the convexity property as we deform through the homotopy ι v

4. Deforming the weighting functions

Let P = {p € C*- 1 ^ , JR) I p(θ) > 0 for 0 < θ < 2π}. If we give C * - 1 ^ , R)
the C*-1 topology, then P is an open convex cone. Denote C fc"1(51, Λ) by C.

Lemma 4.1. Ler Λo and ^ i ^ non-plane elements of 70, «̂c/z that for some
l>0,0<θ<Kπ, λo(6) = ^x(^) = (cos0, sin0, 0) = a(θ). Assume further-
more that

0 € [ { ^ ) 10 < 0 < 2π}Y Π [{ΛW10 < θ < 2π}Y ,

and that Λo w ^ased regularly homotopic to λx. Pick pi(θ)€P, i = 0, 1,

rΛfl/ Γ 'pi(ff)λt(β)dθ = 0 for / = 0, 1. Ψe can then find a regular homotopy
0

K<β), 0 < w < 1, between λ0 and λl9 an interval [0, /J, 0 < lx < /, and a con-
tinuous path ρw(θ) € P {continuous as a map from [0, 1] into P) with the fol-
lowing properties: λw(θ) = a(θ) for 0<w<l and θ e [0, ZJ, each 2W(0) is

nonplaner, Oε[{λw(θ)\Q <>θ <2π}Y for each w, and Γ*λw(θ)pw(θ)dθ = 0
0

for each w.
Before proving Lemma 4.1 we note that this lemma and the results of § 3

will imply theorem I' as follows. Let ηQ and ηx e NQ, and assume G(η0) is based
regularly homotopic to Gfo). By applying Propositions 3.1 and 3.2 we can
find curves ^ 6 No, i = 0 , 1 , such that γt is based non-degenerately homotopic
to ηu i = 0,1, and such that the curves λt = G{ji), i = 0 , 1 , have the prop-
erties of the λt of Lemma 4.1. Let pt(6) = IrίWU ^ d λwiβ) and ^o ,̂̂ ) be
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the regular homotopy and path of weighting functions determined by Lemma

4.1. We then set γw(t) = j λw(θ)pw(θ)dθ which determines the desired path
0

mΛr0.
Proof of Lemma 4.1. By Lemma 3.3 we can find a based regular homo-

topy λu(θ) joining λ0 to λl9 and an interval [0, /J, 0 < lx < /, such that
0e[{λu(θ)\0<θ<2π}]i for each fixed u, and such that λu(θ) = a(θ) for
0 € [0, y , 0 < u < 1. Let L = L2(S\ R) denote the space of square integrable
periodic real-valued functions, and write λu(θ) = (λUtl(θ}, λUf2(θ), λUtZ(θ)). For
each fixed /, λUJ € C C1L, and in fact λu<1, λUf2 and λtat3 are linearly indepen-
dent elements of L as well as of C, for each u. We will now adopt the follow-
ing notation. If x(θ) and y{θ) e C we will set <*(0), y(0)> = V*x(θ)y(θ)dθ. We

0

will suppress the circle variable θ, and we will write λUfj(θ) as λj(u) for
1 < 7 < 3, and pt{6) as p(ι) for 1 = 1,2. Hence we are given three continu-
ous curves λj(u) in C, which for each fixed w, determines 3 elements linearly
independent in both C and L. Therefore we want to find a curve />(«) in P
joining |o(O) to ^(1) such that </o(«), ^/w)) = 0 for / = 1, 2 and 3.

By the Gram-Schmidt process we can replace the curves (λj(u)), 1 < j < 3,
by curves (jij(μ))9 1 < / < 3, such that <Λi(w), ^/w)> = δυ for 1 < ί < j < 3,
and such that for each M, ̂ !(W), /i2(«) and ^3(w) span the same subspace of C
as ^(u), Λ2(M) and λ3(u). Hence <p, ̂ /M)> = 0, 1 < / < 3, if and only if
</0> f*j(u)y = 0, 1 < / < 3. Therefore it suffices to find a curve ^(M) in P join-
ing p{0) to ^(1) such that </o(w)J /ι̂ («)> = 0, 1 < / ̂  3. For each ΐ> 6 [0, 1]
let us pick by Proposition 2.1 an element ρveP such that (pυ, μj(v)y
= 0, 1 < 7 < 3, and such that p0 = p(0) and pλ = ^(1). Let pv(μ) = ^

- Σ <μj(»)> P*>μj(*) W e s e e t h a t <^(w)» ^Xw)> = 0 for 1 < 7 < 3. We also
see that there exists a real number εv > 0 depending upon />„, such that if
I M — t?I < εΌ then />V(M) € P. Let Iv = {w| | M — v| < β*}. The ΪΌ form an open
covering of [0, 1], and therefore there exists a finite subcovering /^ 7ϋjc. If
Io is not in this list throw it in. Hence by relabeling these intervals if neces-
sary, we can find a sequence of intervals 70, , Ik, where In = ZVn, and
points 0 = w_! < w0 < < uk_! < uk = 1 with the following properties:
70 = 70, un € 7n Π 7n+1, and 1 e 7*. Therefore [0, u0] C 70, [«0, wj C 7 l 5 . ,
[Mjfc-2, «jfe-i] £ h-ι and [wfc_1? 1] C Ik. Let ^(w) = ^^(M) be the curve in P
defined by pVn on the interval In = 7Cn, and reparametrize the curves μj(u)
as follows:

, N ( μΛun-i + 2(w - iin.J) for un,x <w< un_Ύ + }(un - un^)
uAw) = i

I A«(«) for w,^ + i(un - w^,) < > v < W 7 l , 0<n<k.

Let us formally set pk+1(uk) = /Ô +xCl) = p(l). We then define p(w) by the
formulas:
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W - Un_j] fOΓ «„_! < >V < I I , . ! + £(Kn - Wn-i),

pn\un) Γ Pn+ιKun)

for wn_x + \{un - «„_!> < w < un .

Note that the above second formula is a convex sum, and therefore repre-

sents a line in P joining ρn(un) to pn+i(wn). Hence p(w) is a continuous path

in P. Finally we see that <p(w), μj(w)> = 0 for 1 < / < 3 because this is

true for un^ < w < un_τ + \{μn — un_ύ, and because

<μj("n), pn(Un)> = <i"X"n), /On+i("n)> = 0 fOΓ 1 < / < 3

implies

<μj(μn)9 tPn(un) + (1 - ί)lθn+1(Mn)> = 0 for 0 < t < 1, and 1 < / < 3 .

This completes our proof.
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