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UMBILICAL FOLIATIONS AND TRANSVERSELY
HOLOMORPHIC FLOWS

MARCO BRUNELLA & ETIENNE GHYS

1. Introduction

Consider a codimension-1 foliation 9" on a closed oriented 3-manifold
M equipped with a Riemannian metric g and denote by JV the orthogo-
nal one-dimensional foliation. There is an interesting relationship between
the local geometry of the leaves of & and the transverse structure of Λf.
More precisely, assume for simplicity that JV is oriented by a unit speed
flow φ*, denote by π the orthogonal projection of the tangent space TM
onto the tangent space TSF and by IIχ the second fundamental form at
x of the leaf ^ of & through the point x. Then, if v is any vector
tangent to 9*χ at x , one easily checks that:

As immediate corollaries, one gets the following:
(1) The leaves of & are minimal surfaces, i.e., the mean curvature

(or the trace of //) vanishes, if and only if the holonomy of JV, map-
ping pieces of leaves of & to pieces of leaves of 9~, is area preserving.
Equivalently, φ* is volume preserving. Using this remark, D. Sullivan
could give a precise description of "taut" codimension-one foliations, i.e.,
those for which there is a Riemannian metric such that leaves are minimal
surfaces. The result can be stated in the following way: a codimension-
one foliation on a closed oriented manifold M is not taut if and only if
there is a compact domain in M whose boundary is a nonempty union of
compact leaves and such that the transverse orientation on the boundary
points inwards. See [16].

(2) The leaves of & are totally geodesic, i.e., // vanishes, if and only
if the length of the vectors πdφ\v) does not depend on t one says that
g is bundle-like for JV or that φ* is a Riemannian flow [3]. This remark
made possible the description of all codimension-1 "geodesible" foliations,
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i.e., those for which there is a metric such that leaves are totally geodesic
[4], [8]. The list of these foliations is much more restrictive than in case

(1).
(3) The leaves of y are totally umbilical, i.e., for each point x the

quadratic form IIχ is a multiple of the metric g on the tangent space to
&χ , if and only if the holonomy of JV acts conformally on leaves of &.
The purpose of this paper is to classify these umbilical foliations.

Assume that & is such an umbilical foliation. On any leaf L of &
the Riemannian metric g defines a conformal structure and, hence, a
holomorphic structure (by the existence of the so-called isothermal coor-
dinates). Since the holonomy of JV is conformal from leaves of & to
leaves of &, one deduces that JV is naturally a transversely holomorphic
foliation. This means that JV is locally defined by submersions onto open
sets in C and that two of these submersions differ (on the intersection of
their domains) by a holomorphic map [12].

Conversely, suppose we are given a transversely holomorphic foliation
/ o n a closed 3-manifold M and assume that rf is transverse to a
codimension-one foliation fF. The transverse structure of Jlί induces a
conformal structure on every leaf of &. Let g be any Riemannian metric
making & and JV orthogonal and inducing these conformal structures on
leaves of &. Then, it is obvious that & is umbilical for this Riemannian
metric g.

Therefore, it is equivalent to classify umbilical foliations on 3-manifolds
and transversely holomorphic foliations which are transverse to a codimen-
sion-one foliation.

This approach of the problem was noticed by Y. Carriere jointly with
the second author [2].

Let us say that we are basically interested in the qualitative description
of umbilical foliations. The expression "umbilical foliation" will have
the same meaning as "foliation which is umbilical for some Riemannian
metric g".

This paper is organized as follows. In §2 we construct a family of exam-
ples and state our main result according to which any umbilical foliation
is conjugated to one of these examples. In §3 we establish a very general
property of domains of definition of holonomy maps of transversely holo-
morphic foliations. In §4 we show that our problem reduces indeed to
globalizing the holonomy of JV. A basic tool is described in §5: the no-
tion of harmonic measure enables us to show that the "distance" between
two leaves of &, "measured along JV ", is a harmonic function on leaves
of &, at least if the latter are dense. This leads to a proof of the main
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result in §6 if the leaves are dense, and in §7 if there is an exceptional
minimal set. Finally §§8 and 9 deal with the case where & has compact
leaves: by a surgery technique, one reduces it to §§6 and 7.

We shall always assume that the foliations under consideration are of
class C°° . For simplicity, we also assume that manifolds and foliations
are oriented and transversely oriented, and that the ambient manifold M
is connected. Finally, since our study constantly switches between the two
foliations &" and JV , and to avoid confusion, we shall use the expression
"1 -foliation" to mean "one-dimensional oriented foliation".

This paper has been written during a visit of both authors to IMPA of
Rio de Janeiro. We would like to thank this institution for its hospitality.

2. Examples and the main result

Example 1. Recall that a Seifert fibration on a closed 3-manifold is a
1-foliation such that all leaves are closed (with finite holonomy). The leaf
space of a Seifert fibration is a two-dimensional orbifold and can therefore
be equipped with a holomorphic structure (in many ways) [17]. Hence,
Seifert fibrations are examples of transversely holomorphic 1-foliations.
Many of these (but not all) are transverse to codimension-1 foliations [12]
so that we get many examples of umbilical foliations. Note that these
Seifert fibrations are also Riemannian foliations in an obvious way, and the
umbilical foliations that we construct by this procedure are also geodesible.

Example 2. Let A be an element of SL(2, Z) with two real distinct
positive eigenvalues. Let fχ and f2 be the two irrational linear foliations
on the torus T 2 = R 2/Z 2 by lines parallel to one of the two eigendirec-
tions of A. The product T x R can be equipped with two transverse
foliations of respective dimensions 1 and 2 and whose leaves are respec-
tively products of leaves of fχ by points and of f2 by R. These two
foliations are invariant under the diffeomorphism sending (x, t) eT2 xR
to (Ax, t + 1) G T 2 x R, and define two foliations yF and & on the
compact quotient, denoted τ\. In this example yΓ is actually Rieman-
nian, and & is therefore geodesible (and umbilical). For more details on
this example, see [11] or [4]. It is shown in [4] that any codimension-1
foliation on τ\ which is transverse to Jf is conjugated to &.

Example 3. Let / b e a linear 1-foliation on T 3 = R 3 / Z 3 . It is
obviously Riemannian so that any codimension-one foliation transverse
to JV is geodesible (and umbilical). The description of these foliations is
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easy since, by a small perturbation, JV can be changed in a trivial circle
bundle over T 2 so that one is back to Example 1.

Example 4. Let φ be a Moebius diffeomorphism of the Riemann
sphere C, of elliptic type, and let Jlί be the 1-foliation on C x S ob-
tained by suspending φ. It is clearly transversely holomorphic (even Rie-
mannian), so that the foliation by spheres of C x S1 is umbilical. By
small perturbation, yK can be changed in a Seifert fibration which lifts to
a trivial circle bundle in a finite cover of C x S 1 . It follows easily that any
codimension-one foliation transverse to JV is conjugated to the foliation
by spheres.

Example 5. Let JV be the 1-foliation on C x S1 constructed by sus-
pending a parabolic Moebius transformation. It is transversely holomor-
phic but not Riemannian. A codimension-1 foliation & transverse to
JV cannot have a Reeb component [14] and so must be conjugated to the
(geodesible) foliation by spheres [12].

Example 6. We now come to the examples of umbilical but not geode-
sible foliations. Let A be a complex number such that 0 < |λ| < 1 and let
Ψ : C x [0, -hoc) -+ C x [0, +oo) be the "homothety" (z, /) •-> (λz, \t).
The 1-foliation by vertical lines of C x [0, +oo) is invariant by Ψ and
hence defines a 1-foliation jVχ on the quotient of C x [0, +oo)\{(0, 0)}
by Ψ, which is diffeomorphic to a solid torus. The 1-foliation JVλ is
transverse to the boundary and has a hyperbolic closed leaf in the interior
(with "eigenvalue" λ) on which all other leaves accumulate. Clearly, J^λ

is transversely holomorphic and, with this structure, the boundary of the
solid torus is biholomorphic to the elliptic curve C\{0}/z ~ λz. We may
obtain transversely holomorphic 1-foliations JV on closed manifolds by
glueing two copies of JVχ by a biholomorphism between the boundaries.
The resulting manifolds are either lens spaces (possible S3) or S2 x S 1 .
The structure of codimension-1 foliations transverse to one of these trans-
versely holomorphic 1-foliations is easily analyzed, thanks to [14]. If the
ambient manifold is a lens space, then such a foliation &" must have a
Reeb component and each Reeb component must contain a closed leaf
of JV. It follows that & is either composed by two Reeb components
glued along their common boundary or composed by two Reeb components
separated by a product T2 x [0, 1] equipped with a foliation tangent to
the boundary and transverse to {*} x [0, 1]. If the ambient manifold is

5 x S 1 , there is a third possibility: & is a foliation by spheres (and in
this case JV is the suspension of a hyperbolic Moebius transformation of
C).
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Theorem. Examples 1 to 6 exhaust the list of transversely holomorphic
orientable \-foliations on closed orientable 3-manifolds which are transverse
to some codimension-one foliation. Equivalently, Examples 1 to 6 exhaust
the list of orientable umbilical codimension-one foliations on closed ori-
entable 3-manifolds.

Note in particular that this strongly restricts the topology of the ambient
manifold.

Corollary. If a closed orientable 3-manifold M admits an umbilical
foliation, then it is diffeomorphic to the total space of a Seifert fibration or
of a torus bundle over the circle.

For each example of transversely holomorphic 1-foliation in the previ-
ous list, we give the description of all possible transverse foliations. Hence
to prove the theorem it will be sufficient to classify transversely holomor-
phic 1-foliations JV which admit some transverse foliation &, instead
of classifying directly the pair (J^, &). This remark will be useful in the
last two sections.

3. A general property of transversely holomorphic foliations

Let JV be a transversely holomorphic foliation on a closed manifold
M, of complex codimension one but of any dimension. A point x in M
is said to be wandering if there is a small transverse disc D to JV at x
such that two distinct points of D belong to different leaves of Λ'. By
definition, the space of wandering points is open and saturated by JV.
The space of wandering leaves is a Riemann surface which might be a
priori non-Hausdorff. The following theorem is proved in [10] in the same
spirit as Ahlfors' finiteness theorem or Sullivan's theorem on wandering
domains for rational maps.

Theorem 3.1. No Hausdorffpoints are isolated in the space of wandering
leaves of a transversely holomorphic foliation on a compact manifold.

The following corollaries will be very useful for globalizing the holon-
omy maps of transversely holomorphic 1-foliations.

Corollary 3.2. Let M be a compact 3-manifold with boundary equipped
with a transversely holomorphic \-foliation JV transverse to the boundary.
Assume that at least one leaf of JV connects two distinct boundary compo-
nents of M. Then M is diffeomorphic to a product Σ x [0, 1], and JV is
conjugated to the foliation by intervals {*} x [0, 1].

In particular, if Jf is a transversely holomorphic 1-foliation on a closed
3-manifold M, and Σ c M is a surface transverse to JV and intersecting
a closed leaf of JV, then Σ is a global cross section for JV .
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Proof. Consider the double 2M of M equipped with the double foli-
ation UV which is obviously transversely holomorphic. The leaf of 2Λ*
through a point in 9 ¥ c 2M intersects the connected component of dM
containing it at only one point and is therefore wandering; any connected
component of dM embeds in the space of wandering leaves. From Theo-
rem 3.1, one deduces that if Σχ and Σ 2 are two connected components of
dM connected by at least one leaf of lv, then for all except a finite num-
ber of points x of Σ 2 , the leaf through x intersects Σ j . We shall show
that, indeed, for all points x of Σ2 the leaf of Jlf through x intersects
Σj and that will prove the corollary.

Let {px, , pn} cΣ2 be the finite set of points whose leaf does not
intersect Σχ, and choose a point q in Σ 2 different from all p.. Let
F c M be the closed set of points whose leaf does not intersect Σ 2 .
Assume by contradiction that n Φ 0. The leaf of Jί through pχ is
noncompact; choose a point x in its limit set, necessarily contained in
F. Let D be a small disc transverse to jV at x and not intersecting the
(compact) leaf through q, and let K = F n D. One has a well-defined
map φ : D\K —> Σ2\{q} sending a point to the (unique) intersection of
its leaf with Σ 2 .

Of course, φ is holomorphic and nonconstant. Also, it is clear that
if a sequence zk of D\K converges to a point of K, then φ(zk) can
only accumulate in {pχ, , pn} . Choose a nonconstant meromorphic
function θ on Σ 2 vanishing on {pχ, ••• , pn} and having q as its unique
pole, and consider ψ = θ o φ : D\K —• C. If one extends ψ on K by the
value 0, we get a continuous function ψ : D —• C which is holomorphic
on the set where it is nonzero. By Radό's theorem [13, p. 255], this implies
that ψ is holomorphic.

On the other hand, we know that x is a limit of points of the leaf
of pχ so that there is a sequence of points xk in D\K converging to x
and for which φ(xk) = px and hence ψ(xk) = 0. This is of course a
contradiction to the fact that ψ is holomorphic and nonconstant in D.
Thus the corollary is proved, q.e.d.

In the same way we obtain the following.
Corollary 3.3. Let M be a compact 3-manifold with boundary and cor-

ners whose boundary has the form Σ + u Σ_ u T, where Σ + , Σ_, and
T are nonempty surfaces with boundary, intersecting on their nonempty
boundary. Let JV be a transversely holomorphic ί-foliation on M having
the following properties:

(i) T is diffeomorphic to a disjoint union of cylinders S1 x [0, 1], and
JV is tangent to T. The restriction of JV to each cylinder is a trivial
I-foliation by intervals [0, 1].
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(ii) JV is transverse to Σ+ and Σ_, pointing inwards on Σ + and out-
wards on Σ_ . Then there is a diffeomorphism from M to a product
Σ x [ 0 , 1], sending Σ + , Σ_,and T to Σx{0}, Σx{l},and dΣx[0, 1]
respectively and sending the leaves of JV to the intervals {*} x [0, 1].

Proof A neighborhood of T is foliated trivially. We can find real
analytic simple curves in Σ + close to each boundary component of Σ + .
Hence, we can always assume that the boundary of Σ + (and Σ ) consists
of real analytic curves. Now, consider the double 2M of M along T it
is a compact 3-manifold whose boundary consists of the doubles 2Σ+ and
2Σ_ of Σ + and Σ_ . Using Schwarz's reflection across the real analytic
curves in dΣ+ and dΣ_ , one sees that the double foliation UV on 2M
is transversely holomorphic. The corollary now follows from 3.2 applied
to

4. Transversely holomorphic 1-foliations with trivial universal covering

The aim of this section is to show that, in some cases, the main theorem
reduces to studying the domains of definition of holonomy maps of JV .
Remark that the following proposition does not need the existence of a
transverse codimension-1 foliation.

Proposition 4.1. Let JV be a transversely holomorphic l-foliation on
a closedji-manifold M. Assume that the lift JV* of JV to the universal
cover M of M is given by the fibers of a global fibration F from M to
some {simply connected) surface S. Then JV is conjugated (by a smooth
transversely holomorphic diffeomorphism) to one of Examples 1 to 6.

Proof Of course, we can assume that the fibers of F are lines, since
otherwise they would be circles and JV would be a Seifert fibration on a
lens space.

The transverse holomorphic structure of Jf provides a holomorphic
structure on S. Therefore, one has three cases to consider.

1. S is the unit disc D c C. The fundamental group Γ of M acts on
D by biholomorphisms and hence by isometries of the Poincare metric.
This defines a transverse invariant (hyperbolic) Riemannian metric for
Jf . The structure of these 1-foliations has been described in [3], [5], [17]:
we are in Examples 1 and 2.

2. S is the Riemann sphere C. In this case, M is diffeomorphic to
C x R and, in particular, has two ends. It follows from [6] that the 1-
foliation JV has a global cross section in M so that JV is the suspension
of some Moebius automorphism of the Riemann sphere (Examples 4, 5,
6).
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3. S is the complex plane C. In this situation, Γ necessarily acts
by affine automorphisms of C, but we shall show that it acts by (Eu-
clidean) isometries. One could use the classification of transversely affine
flows, given in [9], but we can easily prove it directly. Indeed, as for any
1-foliation on a closed manifold, JV possesses a nontrivial transverse in-
variant measure which defines a measure μ on C invariant under Γ.
Notice that the only invariant measure of an affine bijection of C which
is not an isometry is a Dirac mass concentrated at its fixed point. Hence
we have two possibilities:

(i) Γ has a common fixed point x0 in C. Since the stabilizer of a point
of C under the action of Γ is the fundamental group of the corresponding
leaf of JV, this would imply that Γ is infinite cyclic, so that M is an
infinite cyclic covering of a compact manifold and would therefore have
two ends. This is a contradiction since M is diffeomorphic to C x R.

(ii) Γ acts by isometries of the complex plane. Once again, this implies
that Jf admits a transversely invariant Euclidean metric and this has been
described in [2]: we are in Examples 1 and 3. q.e.d.

Let us remark that among the examples described in §6 some have a
nontrivial universal covering.

5. Harmonic measures and the "distance between leaves"

We shall use the notion of harmonic measure, as introduced by Garnett
[7]. Fix a foliation & on a closed Riemannian manifold M, and denote

ςg-

by Δ the Laplace operator along the leaves, considered as a differential
operator on the space of smooth functions on M. A probability measure
μ on M is said to be harmonic if for every smooth function / on M,
the integral f(A^f) dμ vanishes. According to [7], such a measure always
exists and its support is a closed ^"-saturated set. In particular, if all leaves
are dense, then μ has full support.

Let us analyze the local structure of these measures in the special case
where & is an umbilical foliation on a 3-manifold, whose orthogonal
foliation is still denoted by Jf. Suppose we have an open set U in the
ambient manifold M and a diffeomorphism / from a product Ω x (0, 1)
onto U, where Ω is an open set in C, such that:

(i) / maps Ω x {*} conformally into a leaf of &,
(ii) / maps {*} x (0, 1) into a leaf of JV.
Since JV is transversely holomorphic, M can be covered by open sets

U with these properties. We can disintegrate μ in U via the coordinates
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given by / , i.e., there exist:
(i) a measure v on (0, 1), and

(ii) for v-almost every t in (0,1) a positive measure λt in Ω x {t},
such that for every Borel set B in Ω x (0, 1) one has

u(f(B))= f λt(BΠ(ax{t}))du(t).

Each plaque Ω x {t} is equipped with a Riemannian metric which is
conformal to the metric \dz\2, so that its Laplace operator is a multiple
of the classical Laplace operator d1 jdzdz. If one expresses the condition
that μ is harmonic for & in these local coordinates, one finds that for
ι/-almost all t the measure λt has a density ut with respect to the area
form on Ω x {t} = Ω which is a nonnegative harmonic function [7].

Fix a point z in Ω and consider the measure θz on the arc f({z}x
(0, 1)) defined by

θz(f({z}xC))= f ut(z)dv(t),
JC

where C c (0, 1) is a Borel set. Note that this construction does not
depend on the choice of the open set U satisfying the above properties
and covering the arc f{{z} x (0, 1)).

In summary, if one chooses a harmonic measure for &, one naturally
constructs a measure on any arc which is a piece of leaf of JV. Of course
these measures are compatible in the sense that if we restrict one of these
to a subarc we get the measure associated to this subarc.

Suppose now that the leaves of 9" are dense, so that μ has full support.
The above measures θz are then without atoms and positive on open sets.
We can use this collection of measures to define a topological flow φι on
M, whose orbits are the leaves of JV. One simply defines φ\x) for small
positive t as the unique point on the leaf of JV* through x, in positive
direction, such that the small arc joining x and φt(x) in this leaf has
measure t. Since the functions ut are harmonic, we get the following
proposition which expresses the fact that some kind of "distance" between
leaves of & is harmonic.

Proposition 5.1. Let & be an oriented umbilical foliation on a closed
oriented 3-manifold M', and let JV be its orthogonal l-foliation. Assume
that the leaves of & are dense. Then there is a parametrization of JV by
a topological flow φ* with the following property. Let xχ and x2 be two
points of M on the same leaf of yf, let Ω be a small neighborhood of xχ in
the leaf & of & through xx, and let T : Ω —• R be a continuous function



10 MARCO BRUNELLA & ETIENNE GHYS

defined near xχ such that φτ{Xχ\xχ) = x2 and that φT{x\x) belongs to
the leaf &. through x,. Then this function T is harmonic.

6. Umbilical foliations with dense leaves
We assume in this section that & is an umbilical foliation with dense

leaves on a closed 3-manifold M , and we still denote its orthogonal 1-
foliation by Λf. We shall use thejiatural parameter along JV constructed
in §5 to show that the foliations & and JV, which are the lifts of & and
JV to the universal covering M of M, are product foliations. Hence, this
hypothesis of Proposition 4.1 will be satisfied.

As & has no Reeb component, none of its leaves is^cut by a transverse^
curve homotopic to zero. In particular, a leaf of & and a leaf of JV
intersect at most one point. Leaves of & and yΓ are closed subsets of
M . Note also that all leaves of & are planes and that this implies that
M is diffeomorphic to R3 [12]. _

Let L, and L2 be two leaves of ^ and consider the open set Ω(Lj, L2)
of Lj consisting of those points x in Lχ such that the leaf of JV through
x intersects L2 at a point denoted h(Lχ, L2)(x).

Lemma 6.1. Ω(Lχ, L2) is a simply connected open set in L{.
Proof Let yχ be a Jordan curve contained in Ω(L{, L 2 ) , bounding

a disc Z), contained in L, . We shall show that Dγ is contained in
Ω(Lj, L 2 ) . Let γ2 be the curve h(L{, L2)(y1), and D2 the disc of L2

bounded by γ2. Then D{, Z)2 and the cylinder from γχ to y2 along Λf
determine an embedded (topological) sphere in M which bounds a ball
B. Since all leaves of JV are closed in M, they intersect B on a compact
set. It follows that for every x in D{ the leaf of JV through x enters
B and has to get out of B at some point of D2 . This shows that Dχ is
contained in Ω(L{, L2) and proves the lemma.

Lemma 6.2. For UWJ; ίwo leaves Lχ and L2 of &, the open set
Ω(Lj, L2) coincides with Lχ.

Proof Let Lχ and L2 be distinct leaves of & such that Ω =
Ω(Lj, L2) is nonempty. We shall show that Ω coincides with Lχ and
this will imply the lemma by connectivity of M.

Using Proposition 5.1, we get a harmonic function T : Ω -> R. Since
leaves are disjoint, this function has constant sign, positive for instance.
Let x0 be a point in the boundary of Ω in Lx . Since the leaf of JV
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through JC0 does not cut L2, it follows that T(x) goes to +00 as x goes

to x0. This follows from the fact that the topological flow φt on M lifts

to a complete flow on M.
The leaf Lχ is naturally a simply connected Riemann surface, confor-

mally equivalent to the unit disc D or to the plane C, and Ω is a simply
connected open set in Lχ. Hence Lemma 6.2 follows from the following
sublemma.

Sublemma 6.3. Let Ω be a nonempty simply connected open set in D
or in C. If there is a positive (super) harmonic function T: Ω —> R+ going
to +00 on the boundary dΩ, then this boundary is empty, i.e., Ω coincides
with D or C accordingly.

Proof. The positive superharmonic function T can be extended to a
superharmonic function f on D or C setting T = +00 on the com-
plement of Ω. Since Ω is simply connected, its complement is certainly
not totally disconnected, and if it were nonempty it would contain a con-
tinuum (i.e., a compact connected set with more than one point) and its
capacity [15] would be nonzero. This would be a contradiction to the fact
that a positive superharmonic function assumes the value +00 on a set of
zero capacity [15, p. 183].

Corollary 6.4. Let &~ be an oriented umbilical foliation with dense
leaves on a closed 3-manifold M, and let JV be the orthogonal l-foliation.
Then & and JV are conjugated to one of Examples 1, 2, 3.

Proof By 6.2, we know that any leaf of JV cuts any leaf of & at
exactly one point. Hence there is a diffeomorphism from M to R2 x
R mapping leaves of & to R2 x {*} and leaves of JV to {*} x R.
The corollary follows from Proposition 4.1, since in Examples 4, 5, 6 the
umbilical foliation has compact leaves.

7. Umbilical foliations with an exceptional minimal set

Let & be a codimension-1 foliation on a closed manifold M, and let
Jf be a l-foliation transverse to it. Recall that a minimal set J[ of S?
can be of three types:

(i) Jί' = M in case all leaves are dense,
(ii) Jt is a compact leaf,

(iii) Jί is an exceptional minimal set intersecting transversals on Cantor
sets [12].

Umbilical foliations of type (i) have been described in §6. We analyze in
this section foliations having a minimal set of type (iii). Note that among
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FIGURE 1

the examples described in §2 exceptional minimal sets can only occur in
Example 1.

We need the description of open saturated sets given by the nucleus
theorem that we recall now [12]. Let V be a nonempty connected open
set saturated by &. Then there exist:

(i) a (possibly noncompact) manifold V with boundary, of the same
dimension as M, called the completion of M

(ii) an immersion i: V —> M whose restriction to the interior of V is
a bijection onto V, such that the foliation & = C&~ is tangent to the
boundary of Ύ, and the foliation JV = i*JV is transverse to the boundary.
Moreover, JV is "trivial outside a compact set" in the following sense (see
Figure 1). There is a compact part K of Ύ (the nucleus) such that:

(iii) AT is a submanifold with boundary and corners, saturated by JV
(iv) in the complement of K all leaves of JK are compact intervals

going from one component of d V to another one.
Suppose now that & is an umbilical foliation on a closed 3-manifold

M, and let JV be its orthogonal 1-foliation. Suppose & admits an excep-
tional minimal set Jί c M. Let V be a connected component of M\Jt,
and let K be a nucleus in V, as described above. Since V is certainly
noncompact, the boundary of K in the interior of V is nonempty, and
we can apply Corollary 3.3 to K. It follows that K is trivially foliated by
JV SO that every leaf of JV goes from one component of dV to another
one. Therefore, there is a diffeomorphism from V to a product L x [0, 1]
mapping the leaves of Jf to the arcs {*} x [0, 1]. In V, the foliation
& is given by the suspension of a group of diffeomorphisms of [0, 1], so
that, in particular, & lifts to a product foliation in the universal covering
of V.

We can now prove the main result of this section.
Proposition 7.1. Let & be an oriented umbilical foliation on a closed

3-manifold M, and let Jf be its orthogonal I-foliation. Assume that &



UMBILICAL FOLIATIONS AND HOLOMORPHIC FLOWS 13

has an exceptional minimal set Jί. Then JV* and & are conjugated to
Example 1.

Proof. For each connected component V of M\Jt we know that Ύ
can be identified with a product L x [0, 1]. For each x in L, let us col-
lapse all points in i{{x}x[0, 1]) to a single point. Doing this construction
in each connected component of M\Jt, one produces a collapsing map
c: Λf -> Mf onto a space which is clearly a topological 3-manifold home-
omorphic to M. Moreover, there are two foliations &' and Jf' on M'
such that c is a local homeomorphism when restricted to a leaf of & and
maps a leaf of ^ onto a leaf of ./Γ' (by collapsing the arcs in the comple-
ment of Jί). Since Jί is an exceptional minimal set and c(J?) = Mf,
all leaves of &1 are dense in Mf. Note also that JV' is transversely
holomorphic.

Let μ be a harmonic measure on M whose support is Jί. Then
£„(//) is a harmonic measure for &"' with full support (note that, even
though &1 is not a smooth foliation, each leaf of &1 is a smooth surface
equipped with a conformal structure, so that the definition of harmonic
measure of &1 makes sense). The argument of §6 therefore^applies to
^ : in the universal cover Mf of M' the lifted foliations &' jind Ji^
are product foliations. Moreover, c : M —• Mf lifts to a map c : Λί —• Mf

between universal covers. One can reconstruct M from M' by opening a
countable collection of leaves L of «r and inserting a product L x [0, 1]
foliated as a product.

This shows that^there is also a homeomorphism from M to R2 x R
sending leaves of & to R2 x {*} and leaves of JV to {*} x R. Thus the
proposition follows from Proposition 4.1.

8. Umbilical foliations with compact leaves: a first case

Let JV be a transversely holomorphic 1-foliation on a closed 3-manifold
M, and suppose that JV admits a transverse foliation &. We assume
that & does not contain spherical leaves, otherwise the structure of JV
would be evident (a suspension of a Moebius diffeomorphism). A result
of [1] allows us to perturb the foliation & in order to obtain a foliation
&1 all of whose compact leaves are tori and their number is finite. The
perturbation is in the C°-topology on plane fields, so that transversality
with JV will be preserved. For this reason we will assume that every
compact leaf of & is a torus and that the number of compact leaves is
finite.
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If & has dense leaves or admits an exceptional minimal set, then the
previous two sections classify Jlf \ it is a Riemannian foliation, trans-
versely Euclidean or hyperbolic (Examples 1, 2, 3). In this section and
the next one we consider the remaining case, where & does not have all
leaves dense and an exceptional minimal set. It follows that the set of toric
leaves is nonempty.

Let MQ be a connected component of the complement in M of the
union of toric leaves, and let ^ , J^ be the restriction of &, JV to
AΓ0 . By the theory of local minimal sets [12] there are two possibilities:

(i) ^ has a minimal set Jt which is exceptional or a proper leaf,
(ii) all the leaves of ^ are dense in Mo.
We denote the completion of MQ by JfQ and the corresponding folia-

tions by J?"o and JV'0 Mo is a compact manifold whose boundary dMQ

is a nonempty union of tori, J?"o is tangent to the boundary, and JfQ is
transverse.

Proposition 8.1. If some leaf of ^ is not dense, then Mo is diffeomor-
phic to either D x S 1 or T2 x [0, 1], and JV*0 is either a foliation of the
type jVλ, 0 < \λ\ < 1 (Example 6), or a trivial fibration by intervals over
T 2 .

Proof Let Tχ, , Tk be the tori on which the minimal set Jί of
^ accumulates. Because Jί is not locally dense, the holonomy of every
Tj is cyclic, by KopelΓs lemma [12]. For every j let Sj c MQ be a torus
isotopic and close to T., and transverse to ^ and JP^ let U. be the

open set diffeomorphic to T2 x (0, 1) bounded by Sj and T..
Every leaf of ^ | UuS is topologically an annulus, and holomoφhically

a punctured closed disc D* = D\{0} , so that there exists a diffeomorphism

φj: UjϋSj —> D* x S 1 holomoφhic on leaves of ^ , which maps &Q\UUS

to the foliation on D* x S1 whose leaves are D* x {*}. The 1-foliation
•^olc/us is mapped by φ. to a foliation transverse to the boundary dΌ* x

1 o —*

S ~ T and to every leaf D x {*} . See Figure 2.

FIGURE 2



UMBILICAL FOLIATIONS AND HOLOMORPHIC FLOWS 15

The first return map defined by φj (Λ^\ U U S ) on every D* x {*} is

holomorphically conjugated to the linear map z »-• λ.z, for some λ. e D*

(by Riemann extension theorem, Schwarz lemma, and Poincare lineariza-

tion theorem). In other words, Φj i/Qu.us) ( a n d h e n c e -^olc/us.) i s

equivalent to a 1-foliation of the type J^ with the closed leaf removed.

We now glue these closed leaves to Ή0\{Tχ, , Tk} . Let Mχ be the

compact 3-manifold obtained from M0\{Tχ, , Tk) by glueing, for ev-

ery j = 1, , k, a copy of D x S via the previous diffeomorphisms

φj : Uj U Sjf -> D* x Sι c D x Sι. The complement of the natural in-

clusion of M0\{T{, , Tk} into Mχ is a union of circles γχ γk.

The previous arguments show that on Mχ there are defined a transversely

holomorphic 1-foliation Jfχ and a foliation ^ transverse to Jfχ, such

that 7j, , γk are closed hyperbolic leaves of JVχ, and (Jfχ, &[) re-

stricted to Af^ίyj, -" ,yk} is equivalent to ( y Γ 0 , ^ 0 ) restricted to

Λ/0\{Γ1? ,7),}. The compact manifold Mχ can have a boundary,

if the tori {Tχ, , Tk} do not exhaust the boundary of Λ/̂  in this case

we pass to the double, again denoted by Mχ, with foliations again denoted

by jrχ, 9[.

Let us return to the minimal set Jt of ^ . It will correspond to a
minimal set Jί of ^ , which intersects all the closed hyperbolic leaves
γχ, , γk (and their doubles, if exist) of jVχ. But a transversely holo-
morphic 1-foliation on a closed 3-manifold with some hyperbolic closed
leaf cannot admit a transverse foliation with an exceptional minimal set,
by Proposition 7.1. Hence a first conclusion is that Jί is a compact leaf,
and so Jί is a proper leaf.

By Corollary 3.2, Jί is a global cross section for Λ^ , so that Λ[ is the

suspension of a biholomorphism / : Jί —• ^ # . The set U7 ^ intersects

^f in a nonempty set which is contained in the set of hyperbolic periodic
points of / . It follows that:

(a) Jί is a sphere (and consequently Mχ is diffeomorphic to S2 x S 1 ,
and &[ is conjugated to the foliation by spheres),

(b) k < 2, and / is a hyperbolic Moebius diffeomorphism.

It is now easy to return to ^ and yΓ0, and to conclude the following:

(i) If k = 1, then (MQ, «^0) is a Reeb component, and J^o is a

foliation of the class JVλ , 0 < |Λ| < 1.

(ii) If k = 2, then M o is diίfeomorphic to T 2 x [0, 1], and JV'0 is the

obvious fibration by closed intervals over T2 .
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9. Umbilical foliations with compact leaves: a second case

We now turn to the case where the leaves of ^ are dense in Mo .

Proposition 9.1. If the leaves of ^ are dense, then Mo is diffeomorphic

to T 2 x [0, 1], and J^o is afibration by intervals.

Proof Let Tχ, , Tk be the (toric) connected components of dΉ0 .

Due to the possible existence of some torus T. with noncyclic holonomy,

we cannot make a "transversely holomorphic surgery" as in the proof of

Proposition 8.1, and so we proceed as follows.

First of all, let Mx be the double of Mo, and let ^ , J^ be the doubles

of Wo, ~JV^. We denote again by Tχ, , Tk the toric leaves of ^ ,

arising from dMQ.

Let U be a small tubular neighborhood of T. in Mχ, bounded by

two tori transverse to 9[ and JVχ. Let u. : Uj; -• T2 x [-1, 1] be a

diffeomorphism, with Uj{T.) = T 2 x {0} , and set V. = u~ι(T2 x (-\ , {)).

We replace the foliations JVχ and ^ by two foliations JVχ and ^ ,
on the same manifold Mχ, transverse to each other, with the following
properties (see Figure 3):

(a) jVχ = jVχ, ^χ—^χ outside the open set \]- Uj,

(b) in every Uj9^[ is transverse to every torus u~ (T x {/}), t e

[-1, 1], so that it is equivalent to a product of a linear foliation on T2

with the interval [-1^1].

(c) in every ΊJ., yVχ is tangent to T., transverse to u~ι(Ύ2 x {t}) for

t Φ 0, and near T it is conjugated to the suspension of h : Sι x ( - 1 , 1) —•

S ' x ί - l , 1), A ( ^ x ) = ( β , I χ ) .

Remark that J^ is «oί transversely holomoφhic (h cannot be holo-

morphic!).

The foliation ^ has dense leaves, so we may consider a harmonic

measure μ on Mχ with full support. To construct such a measure, we

JK

j [ J r i

y

FIGURE 3
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put a metric on T^χ, which is Hermitian outside \JjU-9 where jVχ is

transversely holomorphic, and the leaves of &[ are holomorphic. As in

§5, this measure can be used to parametrize Jfχ with a topological flow

φ*: Mχ -> Mχ. However Proposition 5.1 is not valid anymore because

Jfχ is not transversely holomorphic in all of Mχ. To avoid this difficulty,

we replace φ* by another flow ψι\ Mχ -> Mχ (still parametrizing J^)

which coincides with 0' outside M U. and with the property that, for

every t e R, (/| K n v,-' ( κ.) maps leaves of &[\ v into leaves of &[\ v .

This is possible thanks to the particular structure of Jfχ and 9\ in every
neighborhood I/,.

The parametrization of Jfχ by y/ has the property that the lack of

harmonicity of the time needed to go from one leaf to 9^ to another one

is concentrated in the (compact) set U / ^ \ ^ ) M o r e precisely, after

remarking that every leaf of JVχ intersects \Jj(UλK) i n at most two

compact intervals, one easily sees that: there exists a positive constant K

such that if xχ, x2 are two points in the same leaf of J^, and T is the time

needed by ψ* to go from a neighborhood of xχ in (&[)x to a neighborhood

of x2 in [9[)x , then \AT\ < K. It is important that K does not depend

on jCj and x2.

We are now in a position very similar to that of §6. Let Mχ be the

universal cover of Mχ, and &[, JVχ be the lifts of 9[, J^x (Mχ is dif-

feomoφhic to R 3 , &[ is a foliation by planes).

Lemma 9.2. There exists a diffeomorphism d : Mχ -> R3 which maps

&x to the foliation by horizontal planes, and JVX to the foliation by vertical

lines.
Proof For every Lχ, L2^^x let Ω(LX, L2) c Lχ be as in §6. It is an

open simply connected set, and on it there is defined a positive function
Γ, which has bounded Laplacian (|ΔΓ| < K), and diverges to +oo when
approaching to the boundary of Ω(Lχ, L2).

Suppose by contradiction that dΩ(L{, L2) is nonempty, and let x be
one of its points. Let υ be any positive C2 function defined in a spherical
neighborhood O of x in Lχ and satisfying Av < -K. Then the restric-
tion of T + v to OnΩ(Lχ, L2) satisfies the hypotheses of Sublemma 6.3,
so we get the desired contradiction, and Ω(Lχ, L2) is equal to the full
leaf Lχ. One completes the proof working as in §6. q.e.d.
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Let Mo be the universal cover of MQ, and ^ , yyo be the lifts of ^ ,

Lemma 9.3. There exists a dijfeomorphism q : Mo -• R3 which maps

^ to the foliation by horizontal planes, and J^ to the foliation by vertical

lines. ^ ^
Proof Remark that ( « ^ , ^ ) is conjugated to {^χ\M^[\M) (but

(9s

0, J?o) is not conjugated to (9[\ Έ , ̂ fj F )!). The tori ^ , , Tk

in Λ/j lift to Mχ to planes saturated by Jfχ, and a connected component

C of the complement of these planes can be identified with Mo (such a

connected component is diffeomorphic, via the d of the previous lemma,

to a product of a domain in the (x, >>)-plane, bounded by closed lines, with

the z-axis). The universal covering of (9[\M , ̂ [\M ) c a n ^ e identified

with ( ^ | c , jyχ\ c), and the lemma follows from the previous one. q.e.d.
This means (compare §4) that J^ is transversely hyperbolic or trans-

versely affine, and the same must be true for the double of JV'0, Jfχ. But
the hyperbolic case cannot occur, because JVχ admits a transverse torus,
so that jVχ is transversely affine.

Taking the list in [9] of transversely affine 1-foliations, taking into ac-
count that JVχ is a double of some foliation, and recalling that the trans-
verse foliation 9^ has no Reeb component, we obtain that JVχ is a trivial
circle fibration over T 2 , and finally JV0 is a trivial fibration by intervals
over T . q.e.d.

Propositions 8.1 and 9.1 have the following consequence, which com-
pletes the proof of our theorem.

Corollary 9.4. Let JV be a transversely holomorphic 1-foliation on a
closed oriented 3-manifold M, and let & be a foliation transverse to JV*,
with a finite number of compact leavesf all of them being tori. If ^ has not
all its leaves dense and does not admit an exceptional minimal set, then JV
is either a suspension of an automorphism of an elliptic curve {Examples 1
and 3) or belongs to Example 6.
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