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CONVEX DECOMPOSITIONS OF REAL PROJECTIVE
SURFACES. I: π-ANNULI AND CONVEXITY

SUHYOUNG CHOI
Dedicated to the memory ofSookja Lee

Abstract

A real protective surface is a surface with a flat real projective structure.
A π-annulus is an easy-to-construct real projective annulus with geodesic
boundary. Let Σ be an orientable compact real projective surface with
convex boundary and negative Euler characteristic. We prove that there
is a π-annulus with a projective map to Σ whenever Σ is not convex.

The real projective plane RP 2 is the quotient space of R3 - {0} for
the origin O under the equivalence relation determined by

x ~ y if and only if χ = sy,

where s € R - {0} and x, y e R3. The action of the general linear group
GL(3, R) induces a transitive action of the projective general linear group
PGL(3, R) on RP2 . Felix Klein's Erlangen program states that real pro-
jective geometry is the study of properties of RP invariant under the
action of PGL(3, R) (Goldman [10]). Given a differentiable surface, an
atlas of charts to RP2 such that transition functions are restrictions of el-
ements of PGL(3, R) induces real projective geometric properties locally
and consistently on the surface from RP2 . A maximal element of the col-
lection of such atlases is said to be a real projective structure. (We omit the
word real from the words real projective from now on since the projective
structures that we work with are real projective structures.) A differen-
tiable surface with a projective structure is said to be a projective surface,
and an immersion from a projective surface to projective surface preserv-
ing projective structures is said to be a projective map. Let RP2 have the
obvious projective structure (with a single coordinate chart). PGL(3, R)
consists of projective automorphisms of RP2 . The standard unit sphere
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S 2 may be viewed as the quotient space of R3 - {0} by the equivalence
relation determined by

x ~ y if and only if x = sy,

where ί e R + and x, y e R3 hold. Let S 2 have the projective structure
induced from its double covering map to RP2 the sphere S 2 is a pro-
jective surface. The transformations induced from elements of GL(3, R)
from the projective automorphism group Aut(S2), a Lie group isomorphic
to the group SL±(3,R) of linear automorphisms of R3 with determinant

± 1 . Let RP1 be a one-dimensional subspace of RP2; let RP2 - RP1

be given the projective structure restricted from RP . The complement
RP2 - RP1 has a unique natural affine structure, such that affine auto-
morphisms of RP2 - RP1 are precisely the restrictions of projective au-
tomorphisms of RP2 preserving RP1. Moreover, we give the restricted
projective structure for every subsurface of RP2 or S 2 . Thus, every sub-
surface of RP or S 2 is a projective surface. Furthermore, the quotient
of such a subsurface under the properly discontinuous and free action of
a projective automorphism group of the subsurface inherits a projective
structure. The projective torus that is the quotient projective surface of
RP2 - RP1 under the action of the group of projective automorphisms cor-
responding to affine translations by integer-valued vectors is an example.
Also the Klein model of the hyperbolic plane provides more examples of
quotient projective surfaces. Let SO(1, 2) be the group of linear automor-
phisms of R3 that leave invariant the quadratic form -x\+x^+JC2 . This
can be identified with a subgroup of PGL(3, R) in a standard manner.
Each hyperbolic surface (in the Riemannian geometry sense) can be real-
ized as a hyperbolic projective surface, i.e., the quotient projective surface
of the interior of the standard disk in RP2 by the action of a discrete and
torsion free subgroup of SO(1, 2). For more details, refer to Goldman
[9] and Thurston [22].

A projective homeomorphism is a homeomorphism that is a projective
map. The boundary of a projective surface is said to be convex if each
boundary point has a neighborhood projectively homeomorphic to a sub-
surface of RP2 - RP1 convex under the affine geometry. (The projective
surfaces that we consider are projective surfaces with convex boundary.)
The main objects of our study are closed projective surfaces as in many
older papers (see Goldman [9], [10], [11], Koszul [15], [16], and Kuiper
[17]). However techniques of this paper apply without any difficulties to
compact projective surfaces with convex boundary. Furthermore, we need
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to consider compact projective surfaces with geodesic boundary for pur-
poses in [5]. Therefore, we study closed projective surfaces and compact
projective surfaces with convex boundary.

A compact projective surface with nonpositive Euler characteristic is
said to be convex if the projective surface is projectively homeomorphic
to a quotient projective surface of a domain in RP2 - RP1 convex un-
der the affine geometry. Such convex projective surfaces form a relatively
plentiful and well-understood class of compact projective surfaces. Closed
hyperbolic projective surfaces are examples. Koszul [16] showed that small
projective deformations of hyperbolic projective surfaces are in the class
also; more recently, Goldman [11] produced one-parameter families of
deformed projective surfaces from projective triangle group constructions.
Many properties of the projective surfaces in the class are made known by
a line of research dating back to 1930s. Let Ω be the domain in RP2-RP1

of which a closed projective surface of the class is a quotient projective
surface. Benzecri [1], Kac and Vinberg [13], and Kuiper [17] proved that
Ω is strictly convex, that bd Ω either is a conic or does not belong to C 2 ,
and that each closed surface in the projective surface is freely homotopic
to a unique closed geodesic. Recently, Goldman [11] proved a surpris-
ing result that the deformation space of convex projective structures on a
closed surface with negative Euler characteristic χ is homeomorphic to
a cell of dimension - 8 / . (For consequences of Goldman's result, this
paper, and the next paper [5], see [6] and [11].)

Another class of well-understood compact projective surfaces consists
of tori, Klein bottles, annuli, and Mόbius bands with projective structures.
Nagano and Yagi [20] studied projective structures on tori and Klein bot-
tles. Goldman [8] and Sullivan and Thurston [21] produced and classi-
fied many examples of projective annuli, and Mόbius bands with geodesic
boundary.

Simple examples of these are π-annuli. A great disk is a closed hemi-
sphere of S 2 . A lune is a closed disk that is the closure of a component
of S 2 - l{ - l2 for two distinct great circles l{ and l2 . A lune is a proper
subset of a great disk and is bounded by two geodesic segments connecting
a given antipodal pair of points. Let A be a great disk or a lune, let a be
a segment in bdA ending at two antipodal points, and let x be a point of
the manifold interior a0 . The quotient projective surface of the domain
A0 U (a0 - {x}) under the properly discontinuous and free action of (ϋ)
where ϋ e Aut(S2) is said to be a π-annulus. The article [5] contains
detailed constructions of π-annuli and their classifications. In particular,
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π-annuli are shown to be compact annuli. The articles of Goldman [8],
[9], [11] present related constructions and projective surfaces.

Furthermore, projective surfaces of the above two classes can be com-
bined to produce compact projective surfaces. Given a projective surface
M and subsurfaces M{, , Mn of M, we say that M is the sum of
Mχ, , Mn if M = Mχ U UMn , and Mf\M. is the union of mutually
disjoint simple closed geodesies or is the empty set for every two integers i
and j such that 1 < / < j < n . Sullivan and Thurston [21] observed that
many projective surfaces can be constructed by summing convex projective
surfaces and projective annuli with geodesic boundary in a process known
as grafting; they and Goldman [9] produced many examples of compact
projective surfaces by summation (see also Maskit [18], Hejhal [12]).

A natural question that Thurston and Goldman asked around 1977 is
whether such sums yield all compact projective surfaces with negative Eu-
ler characteristic. In this series of papers, we give a positive answer, the
admissible decomposition theorem [5]. By the above method it is easy to
construct a closed nonconvex projective surface by grafting a projective
annulus including a π-annulus into a closed convex projective surface.
Loosely speaking, we cut open a closed convex projective surface along a
simple closed geodesic and past by projective maps the resulting boundary
components with the appropriate boundary components of a nonconvex
annulus with geodesic boundary (with matching holonomy), say obtained
as in Sullivan and Thurston [21]. In [5], we show a converse result that an
arbitrary compact nonconvex projective surface with negative Euler char-
acteristic includes a π-annulus, which is sufficient to prove the admissible
decomposition theorem.

Main Theorem. Suppose that Σ is an orientable compact projective
surface with convex boundary and negative Euler characteristic, and that
Σ is not convex. Then there is a π-annulus Λ with a projective map
Φ-.Λ-+Σ. _

Given a projective surface M, its universal cover M has a uniquely
induced projective structure. Every projective map defined on an open
subset of M to S2 extends to a global projective map from M. A pro-
jective structure on M therefore has an S2-development pair (dev, h)
where dev: M —• S2 is an immersion, said to be a developing map,
where h: n{(M) —> Aut(S)2) is a homomorphism, said to be a holon-
omy homomorphism. Every S2-development pair (dev7, A'( )) equals
(ψ o dev, ψ o h(-) o ψ~ι) where ψ e Aut(S2). (Note that M is devel-
oped into S2 instead of RP 2 .)
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The sphere S2 has the distance metric d induced from the standard
Riemannian metric μ of constant curvature 1, such that arcs are geodesic
if and only if they are geodesic in the Riemannian sense (up to parameter
changes), i.e., represented by arcs in great circles. The developing map dev
of M induces the Riemannian metric on M, denoted by μ again, and
μ induces a distance metric on M, denoted by d again, d and μ are
said to be the spherical metric and the spherical Riemannian metric of M
associated with dev respectively^ Let M denote the metric completion
of M let M^ denote M - M. The sets M and M^ are a dense
open subset and a closed subset of M respectively. M and M^ have
well-defined topology (independently of the choice of the S2-development
pair). We call M the projective completion of M, and call M^ the
ideal boundary of M, and its elements ideal points, dev extends uniquely
to a distance decreasing map from M, and each deck transformation ϋ
extends uniquely to a self-homeomorphism of M, preserving M and
M^. By abuse of terminology, these extended maps are said to be a
developing map and a deck transformation respectively and are denoted by
dev and ϋ respectively. A developing image of a subset of M is the image
of the subset under a given developing map. (See [14].)

To prove the main theorem, we obtain a geometric object, a crescent,
and refine it into a π-annulus. § 1 provides the foundations for geometry,
and an appendix discusses convergence of convex subsets of a projective
completion. The second part, §§2, 3, and 4, discusses geometric objects,
i.e., crescents, concave subsets, and great disks for compact projective sur-
faces. Let Σ be a projective completion of Σ. The last part, consisting
of §§5, 6, and 7, presents the proof, which consists of obtaining three
geometric objects sequentially:

(I) a crescent in Σ,
(II) a simplistic crescent in Σ, and

(III) a π-annulus with a projective map to Σ.
In §1, convexity is defined, convex subsets are classified, and their in-

tersection properties are explored. In the appendix, we discuss a criterion
for the convergence of sequences of convex disks in the projective com-
pletions.

Crescents are discussed in §2. In particular, the transversal intersection
property is crucial.

A great disk or a lune in M is a subset such that the developing map of
M restricted to it is an imbedding onto a great disk or a lune respectively.
A subset J of ¥ is said to be a crescent if & is a great disk or a lune,
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31° c M, δ3ί ΠM φ 0 , and ί J n i ^ includes a great line, i.e., a line
connecting an antipodal pair of points. An example of a crescent is the
projective completion of a π-annulus. Let B be a π-annulus that is the
quotient projective surface of (L° U a0) - {x} where L is a lune, a is
an edge of L, and x is a point of a°. The universal cover B can be
identified with (L°Ua°) - {x} . Then the projective completion of B can
be identified with L. Since L° c B, δLnfi = a0-{x} , and δLΠ(L-B)
includes the other edge of L, it follows that L is a crescent. (For more
examples, see §2 and Figure 1.)

In §3 we generalize the notion of crescents to obtain sets that are invari-
ant under deck transformations. A nonempty connected subset A of M
is said to be concave if A satisfies the following (a), (b), and^(c):

(a) Each component of bd^4 n M is a maximal line in M and is an
open line.

(b) Each component of bdAnM is a subset of δ3t for a crescent or
a great disk 3ί included in A.

(b') Each component of bdAnM is a subset of δ3ί for a crescent
31 included in A^

(c) If int(,4 n M) Π ϋ(A) / 0 for a deck transformation ϋ, then A =
ϋ(A).

In condition (b), 3ί may be a great disk that is not a crescent. If A
satisfies (a), (b ;), and (c), then A is properly concave, A line in M is
simplistic if it corresponds to a non-null-homotopic simple closed curve
in M, and a crescent 31 is simplistic if a component of ( J ^ D M is
simplistic. In a sum projective surface S constructed by Sullivan and
Thurston and Goldman, a properly concave set is realized as a connected
portion of the completion S corresponding to attached annuli. In §6,
examples of concave sets will be obtained by taking a union of crescents.

Concavity Lemma. Suppose that A is a concave subset of M and that
a is a component of bd A n M. Then a is a simplistic. Furthermore, if
A is properly concave, then A includes a simplistic crescent 31 such that
aCδ3ί. _

In §4, we show by the concavity lemma that if M includes a great disk,
then M is a great disk or is projectively homeomorphic to RP2 or S2 .
This implies that if χ(M) < 0, then geodesies in M are imbeddings into
M.

We begin the proof of the main theorem in §5, where we obtain a cres-
cent in Σ completing the first step (I). First, find a triangle with an edge
v intersecting an ideal point. Choose a sequence of points of v converg-
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ing to a ideal point. Pull back these points by deck transformations to a
compact neighborhood of a fundamental domain of the universal cover Σ
along with the triangle. The techniques of the appendix show that an ap-
propriate sequence of the image triangles does not degenerate and, hence,
a subsequence converges to a crescent.

In §6, we refine the previously obtained crescent to a simplistic crescent
(II). The methods depend on whether Σ includes a great-disk crescent or
not. Suppose that Σ includes a great-disk crescent. Since the crescent
itself is properly concave, the concavity lemma implies that the crescent
is simplistic. Suppose that Σ includes no great-disk crescent. We define
an equivalence relation on the collection of crescents. Two overlapping
crescents are considered equivalent, and this generates the equivalence
relation. Given a crescent 31, the union K{βί) of crescents equivalent to
3ί is properly concave. The concavity lemma yields that K[βί) includes
a simplistic crescent.

Last, §7 completes step (III) and the proof of the main theorem. We
show that a simplistic crescent is almost the universal cover of a π-annulus.

This paper is an expanded and revised version of Chapter 2 of the au-
thor's thesis [4]. I wish to thank my thesis advisor W. Thurston for the
constant encouragement during this work and for insights. I thank W.
Goldman greatly for working with me on many occasions and for being
a pioneer in this field. I thank R. Bishop, Y. Carriere, P. Doyle, C. Mc-
Mullen, and P. Tondeur for many stimulating discussions on this subject.
I thank the referee for advice on refining my writing. It is also my plea-
sure to thank the members of the Department of Mathematics, University
of Illinois, Urbana-Champaign and the Topology and Geometry Research
Center at Kyungpook National University for their kind hospitality during
the time when this paper was written. Finally, I must pay tribute to the
memory of my mother for the abundant support given to me while she
was alive.

1. Introductory material on projective surfaces

We discuss notation in §1.1, list examples of projective surfaces in §1.2,
and in §1.3 we define convex subsets, show that a simply convex subset is
a subset of an ellipsoid, introduce the notion of dimension, and classify
convex sets according to dimension. In §1.4, given a projective surface,
we introduce our notion of convexity for the subsets of the projective
completion of the surface. The definition differs from those in the older
papers (see Benzecri [1], Goldman [9], [10], [11], and Kuiper [17]), and
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has better properties. In relevant situations, a developing map restricted
to convex subsets are imbeddings. Also, the properties stated in Theorem
1.7 do not hold for the older definitions. Since we cannot prove that the
closure of a convex subset is convex, we introduce the notion of tame
subsets. The closure of a tame subset is tame, and the developing map
restricted to a tame subset is an imbedding. We classify tame subsets
according to dimension and show that the preliminary notion of convexity
given in the introduction agrees with the definition given here.

Next, we compare the intersection of two subsurfaces of the universal
cover and the intersection of their developing images, using this, explore
the intersection properties of convex subsets in §1.7, and then discuss the
dipping intersection property in §1.9.

Lastly, we introduce the notion of tiny disks, which we often use to
understand local phenomena, and, further, exhibit a compatibility rela-
tion of the spherical metric and a complete metric on the universal cover
restricted to a tiny disk.

1.1. Let X be a metric space with distance function η, let A be a
compact subset of X, and let x £ X. We define the distance between x
and A by

η(x, A) = η(A, x) = inf{?/(x, y)\y e A}.

When A and B are compact subsets of X, the Hausdorff distance be-
tween A and B is given by

ηH(A, B) = sup{/7(x, B), η(A, y)\x e A, y e B}.

It is well known that if X is compact, then the collection of compact
subsets of X forms a compact metric space with distance function ηH.

An j/-ball of radius r, where r > 0, around x is the subset

Bη(x,r) = {yeX\η(x,y)<r}.

Let M be a projective surface. In this paper, Jgven a subset A of a
projective completion M or the universal cover M, let bάA and int^l
respectively denote the topological boundary and the topological interior
of A with respect to the topology of M . In this paper, an imbedding is
a topological imbedding. Let A be a submanifold of M or an imbedded
manifold in M. We agree that δA and A0 denote the boundary and
the interior of A as a manifold respectively. In general, bd A and int A
differ from δA and A0 respectively.

A geodesic is a continuous map a: / —> M where / is an interval of R
that is locally geodesic with respect to the charts of M. A subset of S is
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a line if it is the image of an injective geodesic and is not homeomorphic
to a circle. A segment is the image of an injective geodesic defined on a
closed interval of R. A segment is an imbedded arc and is a line. Lastly,
disks or lunes that we consider are compact unless we say otherwise.

1.2. Let us list some examples of projective surfaces (see Figure 1),
which are simple in the sense that their developing maps are inclusion
maps. To obtain more complicated examples, add these to a hyperbolic
projective surface. However, the resulting surfaces are too complicated to
be pursued here.

First, let us introduce a homogeneous coordinate system on S 2 . Given a
vector (xχ, x2, x3) in R3 - {0} , let [xχ, x2, x3] denote the semi-infinite,
open line starting at O and passing through (xχ, x2, JC3) . Each point
of S2 equals a unique open line [xχ, x2, x3]. Let eχ = [ 1 , 0 , 0 ] , let
e2 = [0, 1, 0], and let e3 = [0, 0, 1]. Given mutually distinct points
x , y, and z, we use following notations, -x: the antipodal point
of x Ύyz: the shortest segment with endpoints x and z and passing
through y let Icy: the shortest segment with endpoints x and y when-
ever x Φ — y . Let B2 denote the lune bounded by segments e2eχ — e2 and
e2e3 - e2 let B3 denote the lune bounded by e3eχ - e3 and e3e2 - e3.
Let HA be the open great disk defined by xχ > 0. Let Tλ λ λ denote

the projective automorphism of S2 corresponding to the diagonal matrix
with eigenvalues λl9 λ2, and λ3 with respective eigenvectors ( 1 , 0 , 0 ) ,
(0, 1,0), and ( 0 , 0 , 1) (see Figure 1, next page).

Let Σj be the quotient projective surface of (B2 nB3n HA) - {ex} by
the action of (T3 x 1 / 3 ) , i.e., the subgroup generated by T3 χ 1 / 3 . Let Σ 2

be the quotient projective surface of (B2 Γ\HA) - {eχ} by the action of
(T3 j 1 / 3 ) . Let Σ 3 be the quotient projective surface of H^e^e^Ue^e^
by the action of

Γ2 0 0
1 2 0
0 0 l/4_

Let Σ 4 be the quotient projective surface of ((B2UB3) — {ex})C\HA by the
action of (T4 χ/2 1 / 2 ) . Finally, let Σ 5 be the quotient projective surface
of HA - {eχ} by the action of (T4 1 / 2 1 / 2 ) .

The projective surface Σj is a compact convex projective annulus. Σ2

and Σ 3 are π-annuli, Σ 4 is the union of two π-annuli that overlap on a
compact convex projective annulus, and Σ5 is the sum of two π-annuli.
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FIGURE 1

For each / = 1, 2, 3, 4, we may identify the universal cover Σ. of Σt

with the domain of which Σ. is a quotient, and identify a developing map
with the inclusion map. Each point x of C\(HA) - {eχ} has coordinates
(p, θ), 0 < p < π/2, 0 < θ < 2π, where /> denotes the d-distance
from ex to x , and θ denotes the oriented μ-angle between "e^x and
Tfa . (Recall from the introduction the standard Riemannian metric μ of
curvature 1 on S 2 and the associated distance metric d.) The universal
cover Σ5 of Σ5 may be identified with {(/?, 0)|O < p < π/2, θ e R}.
A developing map sends the element of the form (p, θ), 0 < p < π/2,
θ € R, to (p, θ') where 0 < θf < 2π and θ' = θ (mod2π). This is an
infinite-cycle covering map.

By identification by the (extended) developing map of Σj, we have

and Σ l o o = {eχ}
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Similarly, we have

Σ2 =
 Bi > Σ 2 o o = {ex}ue2e3-e2;

Σ3 = a(HA), Σ3>00 = {e2}ue3-e2-e3;

The completion Σ5 can be identified with the quotient space of {{p, 0)|O
< p < π/2, 0 € R} by the equivalence relation given by

(/>i , #i) ~ (/>2 > θ2) if and only if p{= p2 = 0

where 0j, Θ 2 G R . The developing map sends the equivalence class [p, 0]
of (p,0) , p > 0, θ e R, to (/>, 0') where 0 < θ' < 2π and 0' = 0
(mod2π) the developing map sends [0, 0] to eχ.

1.3. Because of antipodes, the set of lines in S 2 divides into three
projectively invariant classes: the first is the set of great lines, the second
is the set of simply convex lines, and the third is the set of nonconvex
lines. A great line is a line whose endpoints are antipodal, a simply convex
line is a line that lies properly in an open great line, and a nonconvex line
is a line that includes a great segment properly. We may characterize these
lines as follows: a line is great if and only if its d-length equals π, a line
is simply convex if and only if its d-length is less than π, and a line is
nonconvex if and only if its d-length is greater than π.

Great lines and simply convex lines are called convex lines. A subset
A of S 2 is said to be convex if given every two points of A, the subset
A includes a convex segment connecting two points. For convenience, the
empty set is not considered convex. A great circle and a lune are convex. A
component of S 2 - S1 for a great circle S1 is an open great disk, which is
convex, and is projectively homeomorphic to RP2 - RP1 where RP1 is a
one-dimensional subspace of RP2 . Similarly to the case of RP2-RP*, the
open great disk has a unique natural affine structure. A subset of the open
great disk is convex if and only if it is convex under the affine geometry
of the open great disk. The universal covering domain of a π-annulus is
not convex.

A convex subset A of S 2 is said to be simply convex if there is a
positive constant c such that the d-length of every segment in A is less
than π - c. An ellipsoid is a component of the subset of S 2 of points
corresponding to nonzero vectors in R3 with nonnegative values under a
given nondegenerate quadratic form with index of inertia 1. An ellipsoid
is a disk: a subset is an ellipsoid if and only if it is the standard unit disk
with respect to an affine coordinate system of an open great disk including
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it. An ellipsoid is simply convex, and so is B2 Π B3 (see §1.2). A dense
convex subset of a great disk or a lune is not simply convex.

Moreover, a simply convex subset is a subset of an ellipsoid and hence
is a precompact subset of an open great disk. Let A be a simply convex
subset of S2 let x be the point in the complement of A such that d(x, A)
achieves the maximum value of {ά(y9 A)\y e S2} . The simple convexity
yields that d(x, A) > π/2 and hence that a d-ball whose radius is less
than π, is an ellipsoid including A.

In S , there are three types of great spheres: a great sphere of dimen-
sion zero, or the set consisting of two antipodal points; a great sphere of
dimension one, or a great circle; and a great sphere of dimension two, or
S itself. Each convex subset A is a subset of a unique great sphere of
dimension / for i = 0, 1, 2 such that no great sphere of lower dimension
includes A here, / is said to be the dimension of A. A convex subset
of dimension zero is a set of consisting of a single point; a convex subset
of dimension one is a great circle, a great line, or a simply convex line;
and a compact convex subset of dimension two equals S2 , a great disk, a
lune, or a simply convex subset. Since a compact simply convex subset is
a compact subset of an open great disk convex under the affine geometry,
it is a disk when its dimension is two. Hence, a compact convex subset
of dimension two is a disk whenever it is not identical with S . The clo-
sure of a convex subset is convex, the closure of a simply convex subset is
simply convex, and a dense convex subset of S2 equals S2 . Therefore, a
convex subset of dimension two equals S2 or a dense convex subset of a
great disk, a lune, or a simply convex disk.

Our notion of convexity is similar to the affine convexity (see [2]). Let
A be a convex subset of S 2 . Then int A is a convex subset whenever
intA Φ 0. Also C\(A) is convex. Suppose that the dimension of A is
two and A is not identical with S2 . Then int A is an open disk, Cl(A)
is a compact disk, intCl(^) = int A, and bdA is homeomorphic to a
circle. (These hold also if A is compact and if int A, intCl(Λ), and
bd^ί are replaced by A0, Cl(A)°, and δA respectively.) If x is a point
not belonging to int A , then S2 includes a great disk H such that x e H
and A Π H° = 0 . Suppose that A is compact, and a is an imbedded
geodesic satisfying an A° Φ 0 . Let β = aΠ A. The subset β is a
connected line such that β° c A0 . If furthermore a is a great circle, then
δβ c δA.

However, the intersection properties of our notion of convexity differ
slightly from the properties of affine convexity. Let A and B be two
convex subsets of S 2 . Then A Π B is either the pair of antipodal points
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or a convex subset or an empty set. Hence, if A nB contains at least three
points or the pair of nonantipodal points, then A n B is convex.

1.4. Let M be an arbitrary projective surface, and let M be its uni-
versal cover. Let (dev, h) be its S2-development pair, and let M and
M^ be the projective completion and the ideal boundary of M respec-
tively; let d be the spherical metric associated with dev. The notion of
convexity for subsets of S2 extends to a notion for subsets of M. We first
generalize the notion of lines. A continuous map a: I —• M, where / is
an interval of R, is a geodesic if devoα is a geodesic. A subset of M is a
line if it is the image of an injective geodesic and is not homeomorphic to
a circle; the subset is a segment if it is the image of an injective geodesic
defined on a closed interval. Define the spherical length or the d-length of
a line a to be the d-length of the geodesic corresponding to dev|α. The
subset {[π/2, θ]\θ e R} of Σ 5 is a line whose spherical length is infinite.
If the d-length of a equals π , then a is said to be great, if the d-length
of α is less than π, then a is said to be simply convex. In Σ 4 , e2e3 - e2 ,
~eψ^ , and -e2e3 - e3 are a great segment, a simply convex line, and a
line respectively (see §1.2).

Great lines and simply convex lines are again said to be convex, (dev
restricted to a convex line corresponds to an injective geodesic onto a
convex line in S .) A subset A of M is convex if given points x and
y of A, A includes a convex segment containing x and y. A convex
subset A of M is simply convex if there is a positive constant c such that
the d-length of each segment in A is less than π - c. A lune is convex
but not simply convex. The line of Σ 5 , {[π/2, θ]\θ e R} , is not convex.

Unfortunately, we cannot prove that the closure of a convex subset is
convex at the moment. If A is a convex subset of M, then dev|̂ 4 is
an isometry with respect to d on M and d on S 2 . Since d on M is
complete, dev| C\(A) for the closure C\(A) of A in M is an imbedding
onto Cl(dev(Λ)). If A is a convex subset of a convex compact subset B
of M, then dev|J9 is an imbedding onto dev(J?). We say that A is a
tame subset if A is a convex subset of M or a convex subset of a convex
compact subset of M . It follows that if A is tame, then dev|̂ 4 is an
imbedding onto dev(Λ). Moreover if A is a tame, then dev| C1(Λ) is an
imbedding onto a convex subset Cl(dev(Λ)). Therefore, C1(Λ) is a convex
subset of M and is tame. (In Σ 4 , the subsets B°2 n B°z and e2e3 - e2° are
tame subsets.)

Tame subsets may be classified according to their developing images.
For example, if A is compact, and dev(̂ 4) is a lune, then A is said to
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be a lune. If άev(A) is identical with S 2 , then A is said to be a great
sphere. The dimension of A is the dimension of dev(^4). A tame subset
of dimension zero is the set of a point. A tame subset of dimension one
is a great circle or a convex line, which may be a great line or a simply
convex line. A compact tame subset of dimension two is a great sphere, a
great disk, a lune, or a simply convex disk. Since a dense convex subset of
S2 equals S2 , a tame subset of dimension two is either a great sphere or
a dense convex subset of a great disk, a lune, or a simply convex disk.

In this paper, convex disks or lunes that we consider are tame and are
such that their manifold interiors are subsets of M unless we say oth-
erwise. (Recall also from §1.1 that disks and lunes that we consider are
compact unless we say otherwise.)

1.5. We say that M is convex (resp. simply convex) if M is convex
(resp. simply convex). For example, hyperbolic projective surfaces are
simply convex. Σ{ is simply convex, π-annuli are not convex, and Σ 4

and Σ 5 are not convex. The following lemma shows that this definition is
consistent with the preliminary definition given in the introduction. (Note
that the open great disk G in the following lemma may be replaced by
RP — RP for a one-dimensional subspace RP .)

Lemma. Suppose that M is compact. Then M is convex if and only
if one of the following holds:

(1) χ{M) > 0, and M is projectively homeomorphic to R P 2 , S 2 , or a

convex disk in S 2 .
(2) χ(M) = 0, and M is projectively homeomorphic to a quotient pro-

jective surface of a convex domain in an open great disk G.
(3) χ(M) < 0, and M is projectively homeomorphic to a quotient pro-

jective surface of a bounded convex domain in an open great disk G thus,
M is simply convex.

Proof. Suppose that M is convex. M is thus tame, and dev|M is an
imbedding onto dev(M). Let Γ be the image of the holonomy homomor-
phism h associated with dev. There is a commutative diagram

M - ^ U dev(jfif)

M

where p denotes the universal covering map, q the quotient map, and
dev' the induced map. It is easy to see that dev' is a projective homeo-
morphism.
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Since dev(M) is a convex^ subset of S 2 , it follows that dev(M) is a
great sphere or that Cl(dev(M)) is a great disk, a lune, or a simply convex
disk (see §L3).

If dev(M) is a great sphere, then dev is a homeomorphism to S 2 .
Thus, M is as in (1).

Suppose that dev(M) is not a great sphere. If χ(M) > 0, then M is
compact. Hence, dev(M) is a compact convex disk, p is a trivial covering
map, and M is as in (1).

We will now assume t h a t ^ ( M ) < 0. Suppose that Cl(dev(M)) is
a great disk. Then Cl(dev(M)) = H for a greatjlisk H. Let a =
dev(M) Π δH. We claim that a = 0 . Since de\(M°) = H° , it follows
that a = άev(δM) thus, a is a boundaryless oήe-dimensional manifold
in δH or the empty set. Since dev(Λf) is a convex subset ofH, a is
convex or empty. Thus a is either δH itself, a great line, a simply convex
line, or the empty set. Since χ{M) < 0, a does not equal δH. Suppose
that α is a greaUine or a simply convexJine. The unique boundary com-
ponent of dev(Λf) equals a. Since dev(Λf) is Γ-invariant, so is a. Since
dev(Λf) = aUH° , dev(M)/Γ is a compact surface with unique boundary
component α/Γ. Since the action of Γ on α is properly discontinu-
ous and free, dev(Λf)/Γ is homotopy equivalent to α/Γ. However, no
surface with connected boundary is homotopy equivalent to its unique
boundary component. This is a contradiction. Therefore, a = 0 , and
άey(M) = H°.

Since H° has an affine structure, and elements of Γ preserve H° and
hence restrict to affine automorphisms of H°, it follows that M has an
affine structure. By Milnor [19], χ(M) = 0. Since dev' is a projective
homeomorphism, M is as in (2).

Suppose that Cl(dev(Af)) is a lune. Then the vertices of the lune is not
a subset of dev(M) since they are Γ-invariant. Thus, dev(M) is a subset
of an open hemisphere. Also, similarly to Lemma 2.5 [11], χ(M) = 0.
Thus, M is as in (2). ^

Suppose that Cl(dev(Λf)) is a simply convex disk. Then, clearly,
Cl(dev(Λf)) is a bounded convex subset of an open hemisphere, and M
and M are simply convex; M is as in (2) or (3).

The converse part follows from the obvious fact that quotient surfaces
in (1), (2), and (3) are convex. ^

1.6. Now we study intersection properties of convex subsets of M
beginning with the following lemma.

Lemma. Let A and B be open subsurfaces of M. Suppose that
AΠB Φ 0, . dev\A and dev|5 are imbeddings, and de\(A) Π dev(5) is
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a path-connected subset of S 2 . Then des\A n B is an imbedding onto
dev(^4)Udev(2?). Moreover, dev|^UJ? is an imbedding onto dev(^4)Udev(2?).

Proof. The lemma is a consequence of thejbllowing: Given an arbi-
trary path in dev(M) and an initial point in M, there exists at most one
lift to M . (Compare to Proposition 1.3.1 [3].)

1.7. Suppose that Fχ and F2 are convex disks in M. Since F° and
F2 are dense subsets of Fχ and F2 , respectively, the following statements
are equivalent:

~<0

FχΠF2φ0; FχΠF2φ0; FχΠF2φ0.

Similarly, these are also equivalent to the following equivalent statements:

mt{FχΠM)nF2φ0; int{F2 Π M) Π Fχ φ0;

intF 2 ΠF2 φ 0 intF 2 n Fχ φ 0 .

We say that Fχ and F2 overlap if the above statements hold, and say that
a subset of M is backed if it is a subset of a convex disk in M.

Intersection Theorem. Suppose that Fχ and F2 overlap, and suppose
that a is a backed convex segment or a great circle such that aΠFχ Φ0.
Then the following hold:

(1) dev\Fχ Π F2 is an imbedding onto dev(Fj) (Ί dev(F2).
(2) dev\Fχ U F2 is an imbedding onto dev^) u dev(,F2).
(3) FχΠ F2 is a convex disk.
(4) Fχ u F2 is a disk.
(5) FfnFΪ = (FχΠF2)°fand F?UF° = {FχuF2)° . These are nonempty

subsets.
(6) Fχ Π a is a convex subsegment β such that β° c Fχ .
Proof (1) Since dev(i7

1) n dev(F2) is convex (see §1.3) and has a non-
empty interior, it is a disk. Since de\(Fχ) and dev(/Γ

2) are disks as well,

dev(Fj) Π dev(F2) = Cl(dey{Fχ)° n de\(F2)°).

By Lemma 1.6, de\\Fχ Π F2 is an imbedding onto d e v ^ ) 0 n de\(F2)° .
Hence, Fχ n F2 is a convex open disk, and its closure K, a convex disk,
is a subset of Fχ n F2. Since

and devl̂ Fj and dev|JF2 are injective, we have

K = FχΓ)F2 and d e v ^ n F2) = de\(Fχ) n dev(F2).

This implies (1), and (2), (3), (4), and (5) easily follow from (1).
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FIGURE 2. A DIPPING INTERSECTION.

(6) Since a is backed, M includes a convex disk K such that a c K.
Since de\\Fx UK is an imbedding onto dev(/Γ

1) Udev(AΓ) by (1), we have
(6) (see §1.3).

1.8. Example. Given θχ e R, let Bθ be the subset of Σ 5 given by

B θ = { [ p , θ ] \ 0 < p < π / 2 , θ χ < θ < θ χ + π } .

BQ and B_π,2 are tame subsets imbedding onto B2 and B3 respectively
under the developing map of Σ 5 . The above theorem applies here. B π

and BQ intersect at {[/?, 0]|0 < p < π/2}; however, the intersection of
the developing images of B_π and Bo is e2eχ - e2 , which differs from the
developing image of B_π Π BQ . Moreover, the developing map restricted

to B_π U ^o ^s n o t i n J e c t i y e ( s e e § 1-2).
1.9. We now discuss a crucial technical corollary of Theorem 1.7. Let

D be a convex disk in M such that δD includes a convex segment or a
great circle a. We say that a convex disk F is dipped into (D, a) if it
has the following properties (see Figure 2):

(a) F and D overlap.
(b) FΓ)a is a segment β such that δβ c δF , β° c F° .
(c) F - β has two convex components Oχ and O2 such that

C\(Oχ) = OχUβ = F-O2, Cl(O2) = O2Όβ = F-O{.

(d) FΠD is identical with C l ^ ) or C1(O2).
(A useful heuristic idea is that of a slice of bread dipped into a bowl
of milk.) We say that F is dipped into (D, α) nicely if the following
statements hold:

(i) F is dipped into (D, a).
(ii) F Π f l 0 is identical with Oχ or O2.
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(iii) δ(F ΠD) = β Uξ for a compact arc ξ in b d F where βnξ = δβ .
(So, in this case, δβ c bdF.)

Corollary. Suppose that F and D overlap, and that F° Π (δD - a0) =
0 . Γλew F is dipped into (D,a). Assume the following two equivalent
conditions:

(1) F°Πaφ0.
(2) F£D.

If F Π (<5Z> - α°) = 0 furthermore, then F is dipped into (D, a) nicely.
Proof Each of the properties (a), (b), (c), and (d) is proved below, (a)

is a part of the premise.
As a consequence of (a) and Theorem 1.7, the proofs of (b), (c), and

(d) are implied by their proofs under the assumption that D and F are
subsets of S2 . So, assume that D, F c S 2 .

(b) By Theorem 1.7(6), F Π a is a convex segment. Let it be denoted
by β . Since F° n δa = 0 by the premise, δβ cδF . Since F°Πβ ^ 0 ,
it follows that β° c F° .

(c) Suppose that S ι is the great circle including a. Then S I Π F = jS.
Let Hχ and 7/2 be components of S2 - S 1 . Since F° n S1 ^ 0 , we have
HχΠF ^0 and i/2 Π f ^ 0 . Let Oj = ̂  Π f , and O2 = H2nF. Then
(c) follows.

(d) Since F° Π D° Φ 0 , a point x belongs to it. Since x does not
belong to β, the point x belongs to Oχ or O2. Let us assume without
loss of generality that x e Oχ and hence that x e O\. Since we have
O\ Π δD = 0 , 6^ Π bdD = 0 , and C l ^ ) c Z), it follows that Cl(O{) c
F Π f l . Since D Π H{ φ 0 and α c S 1 , we have D c C l ^ ) and
O2 Π Z) = 0 thus, CKOj) = f n ΰ .

Let us prove the second part of the corollary. Assume that Cl(Oj) =
F ΠD without loss of generality. Since F ΠδD = β ,

FΠD° = Cl(Oj) - δD = (0j U jS) - <ϊ£) = Oj.

Since Cl(Oj) is a disk, £0(6^) is homeomorphic to a circle. Let ξ1 =
(J ClίOj) - β. Since /? is a segment, the closure ξ of £' is a compact arc.
We have

δCl{Oι) = βuξ and βnξ = δβ.

Since <JZ> n F = β, it follows that ξ' cD° . Thus, f c b d F .
1.10. Example. BQ is dipped into (B_π/2, v) in Example 1.8 where

v = {[p,θ]\0<p<π/2, θ = -π/29 π/2}.

Let d1 be the spherical metric associated with the developing map of Σ 5 .

The /-ball B([π/4,π/2]9π/&) is dipped into (B_π/2,v) nicely. The
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projective complection Σ 4 includes the lune Lχ bounded by

, 0, 1/2] -e2 and £2[l/4, 0, 1/2] -e2, and includes the second

lune L2 bounded by * 3 [ l/2, 1 / 2 , 0 ] - ^ and * 3 [l/4, 1 / 2 , 0 ] - ^ . The
lune Lj is not dipped into (L 2 , i/) for any edge ι/ of L2 (see §1.2 and
Figure 1).

1.11. In addition to the metric d associated with dev, we need a com-
plete Riemannian metric and the associated distance metric on M. The
reader may choose them. The complete metrics induce a complete Rie-
mannian metric and a complete distance metric on M. We call these an
original Riemannian metric and an original metric of M respectively.

Let d be the original metric. For each point x of M, every neigh-
borhood^* x includes a compact neighborhood that is a simply convex
disk in M. Let us call such a neighborhood a tiny disk of x. This is a
bounded subset of M with respect to d.

We exhibit a compatibility relation between d and d holding on a tiny
disk. Let v and μ be the original Riemannian metric of M and the
spherical Riemannian metric of M associated with dev respectively. Let
B be a tiny disk. Because B is compact, there exists a positive constant
c depending on B such that

c~ιv(x, y) < μ(x, y) < α/(x, y)

for vectors x and y at every point of B. Therefore,

c~ld(x,y)<d(x,y)<cd(x,y),

where x, y e B. The constant c depends only on B and the choice of
the original metric d and the spherical metric d.

2. Crescents

Professor Goldman and I would loosely describe a crescent as a half-
plane. Indeed, a crescent is projectively "equivalent" to a half-plane if
the boundary is ignored. For example, in Σ 4 , the lune Bχ bounded by
x[l/2, 0, 1/2] - x and xe3 -x for a point x of e2 - e3° is a crescent,
which is a half-plane. As in the case of a half-plane, one side of a crescent
lies in the ideal boundary, and the other side has finite points. More-
over, the intersection properties of two overlapping crescents are projec-
tively "equivalent" to the intersection properties of two overlapping half-
planes (see Theorem 2.6). Because of these properties similar to those of
half-planes, the existence of crescents in the projective completion of a
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projective surface imposes a very strong condition on the global geometry
of the projective surface.

In this section, we discuss properties of crescents in M when M is
compact, after discussing some elementary properties, show that overlap-
ping great-disk crescents are identical if χ(M) < 0, and finally present the
transversal intersection property.

2.1. Recall the definition of crescents given in the introduction. A

subset 31 of ¥ is a crescent if 31 is a great disk or a lune, ί J n M Φ 0 ,

and δ3ί n M^ includes a great line (compare Chapter 2 of Benzecri [1]).

(Note the condition 31° c M hidden by a convention made in §1.4.)

Suppose that 3ί is a crescent. Let a^ denote the unique maximal element

of the set of open lines included in δ3% n M^ and including a great line

in δ3ί Π M^ . Let v^ denote δ3ί - a^ Recall also that 3ί is simplistic

if a component of δ3ί Π M is a simplistic line, i.e., a line corresponding

to a simple closed curve in M.

Consider B2 in Σ4 . This is a crescent such that

<*B2=
e2e3'e2

hold. B2 is a simplistic crescent with simplistic lines ΊΓ^r£ and eχ - e2° .

The previously mentioned Bχ is the lune in Σ4 bounded by

x[l/2, 0, 1/2] - x° and xe3 - x° where x e e2 - e3° . The subset Bχ

is a crescent but is not a simplistic crescent. We have

uB = x [ l / 2 , 0 , 1/2] -x and

An example of a crescent that is also a great disk is Σ 3 , which is simplistic

as well. L{ and L2 in Σ4 are not crescents (see §1.2 and Example 1.10).
2.2. Let 3i be a crescent. If 31 is a lune, then v^ is a great segment,

and agg is a great line. If 31 is a great disk, then v^ is a convex segment,
and α^, is a line whose d-length is greater than or equal to π . For each
deck transformation ϋ, the subset ϋ{3ί) is also a crescent such that

"*&) = ϋ{y&) a n d aϋm = ϋ ^ )

2.3. The subset ^ is a disk, the finite edge v^ is a segment, and

3ί-v^ is a noncompact disk with boundary a^ . Moreover, 31-v^ is an

open subset of A/. Let JC e ̂  - v# let y e M -31. Then d(jc, vm) > c

for a positive constant c. Since every path on M connecting a point of

31° and a point of Λ/ - 31 passes through i/^ , it follows that d(x, y) >

c/2. Hence, 3ί -v^ is an open subset of M.



DECOMPOSITIONS OF PROJECTIVE SURFACES 185

2.4. Suppose that M includes a convex disk F overlapping a crescent
31 . Since Cl(α^) Π F° = 0 , by Corollary 1.9, F either is a subset of 31
or is dipped into {β, v^). If, furthermore, F is a subset of M , then F
either is a subset of «# or is dipped into {β, vm) nicely. In particular,
this is true if F is a tiny disk.

What happens when two crescents intersect? In general, their intersec-
tion may be complicated (see Example 1.8). Here, we study overlapping
crescents.

Let us start with the simplest case. Suppose that 3lχ and 3ί2 are
crescents. If 3ίΊ c 31 λ , then 3lΊ is bounded by vφ and a subset aφ of

a^ . Moreover, 3H2 c 31 x and v0^ c ^ if and only if 3ϋ2 is a proper

subset of 31 x.
Next, suppose that 31 χ and <^2 are arbitrary overlapping great-disk

crescents. We claim that if χ(M) < 0, then 31 x Φ 31 2 . Suppose not. By
Theorem 1.7, d e v ^ U ^ is an imbedding onto d e v ^ j u d e v ^ ) . The
following statements hold:

is a disk.

^ 2

We deduce two consequences. First, since Aw{3lχ) Φ dev(^ 2 ), it follows

that 3ί°χ\}3ί2 is not convex. Second, since each point of a^ Uα^, belongs

to a convex neighborhood M\ or 3ί2 , by Lemma 2.5, 3ϊo

χV>3ll = M , and

M is convex. This is a contradiction. Thus, if χ{M) < 0, then 31 x Φ 3ί2

holds.
2.5. Lemma. Suppose that χ(M) < 0 and that F is a disk in M such

that F° c M and δF c M^. Suppose that there is a finite subset L of
δF such that F includes a relative convex-disk neighborhood of each point
of δF - L. Then M equals F° and is convex.

Proof Since bάF° c δF , we deduce that bάF° n M = 0, F° = M,
and F - M, Let Lf be the subset of elements of L that do not have
relative convex-disk neighborhoods in F . Suppose that Lf φ0. Since F
and (5F are invariant under deck transformations of M, so is L'. Let
ϋ be a deck transformation. Since M is orientable and δF is a closed
curve, (ϋ) acts on L1 and on the set of components of δF - ll cyclically.
If one of the actions of (ϋ) is not trivial, then the Brouwer fixed point
theorem implies that ϋ fixes a point in F° . This is absurd. Since each
point of L1 is fixed by every deck transformation, Lemma 2.5J11] implies
the contradiction that χ(M) = 0, and Lf = 0 , and F and M are convex
(see Thurston [22]).
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FIGURE 3. A TRANSVERSAL INTERSECTION

2.6. The most important case, yielding the transversal intersection
property, is presented now. Two convex segments intersect transversally
at a point x if x is a point of intersection, and their developing im-
ages intersect at dev(x) transversally. Suppose that 31 χ and 3ί2 in M
are overlapping lune crescents. 31 x and 3ί2 intersect transversally if the
following properties hold (i = 1, j = 2 or / = 2, 7 = 1):

(a) There exists a unique point x of intersection of υm and v^ .

Furthermore, x is the transversal point of intersection and belongs to

(b) Let ai = v^ Π 31} . The subset a{ is a convex segment connecting

x to a point in α ^ , is the closure of a component of v™ - {x}, and

satisfies a° c 31°, .
(c) M\ Π £%2 is the closure of a component of 31. - a..

(d) Both α ^ Π α ^ and a™ Ua^ are open lines in M .

(See Figure 3.)
The crescents Bo and 5_ π / 2 in Σ5 (see Example 1.8) form an example

of two transversally intersecting crescents. We do not want to have an
intersection like that of L{ and L2 in Σ 4 (see Example 1.10).

Transversal Intersection Theorem. Suppose that χ{M) < 0 and M is
not convex. Suppose that &{ and 3ί2 are overlapping lune crescents. Then
either 3ί\ and 3ί2 intersect transversally or 3ίχ c 3ί2 or 3l2a3ίχ.

Proof. Assume that we have / = 1 and j = 2, or / = 2 and 7 = 1,
and also that 31 x </L 3ί\ and 3l2<t:3lx. By Corollary 1.9, 31. is dipped
into {31 i, Vφ). Hence, the following statements hold:

(i) vm Π 31} is a closed connected segment at such that δa( c δ3ί.,
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(ii) 31 χ n 31} is the convex disk that is the closure of a component of
31} - a%.

Since at is a segment with endpoints in 631}, one of the following
properties holds:

(α) Both endpoints of a are in a^ .

(β) Both points are in v^ .

(γ) One of them is in v^ , and the other is in α ^ .

Clearly (α) is impossible since ai <£ a^ . In case (/?), we have αf. = v^ ,

δv^ c 6v^ , and v°m c 31°. (ii) yields two possibilities: 3ίi Π 31} is

the disk in 31. bounded by vφ and vφ , or by vφ and α ^ . Since

^ ίί 31}, the former holds; thus, 31^31} is a disk bounded by segments

Cl(α^) and C\(aφ). Lemma 2.5 now contradicts the premise that M

is not convex. The case (γ) implies a transversal intersection. Since

at (£. C\(a^ ) , the endpoint of at in v^ is in v0^ . This and the relation

imply (a). Condition (b) follows from (i), (ii), and (a); conditions (c) and
(d) follow from (ii).

3. Concavity

A concave subset of M may be thought of as the complement of a
convex set in a great disk with geodesic boundary components satisfying
an invariance property. In general, this picture is oversimplified since not
all concave subsets correspond to subsets of great disks. The notion of
concave subsets is a generalization of the notion of crescents. A result of
§2.4 implies that a great-disk crescent and its overlapping image under a
deck transformation are identical. Since this is not true for a lune crescent
in general, we need to obtain an invariant subset from a collection of
crescents, which turns out to be concave (see §6).

We will prove the concavity lemma here since this can be done inde-
pendently of many other results and we need the lemma for the proof
of Theorem 4.1. To do this, we recall the dipping intersection property
(see §2.4), and prove two claims, from which the concavity lemma follows
immediately. ^

3.1. A maximal line in M is a line that is not a proper subset of any
line or an imbedded closed geodesic in M . A line / is maximal in M
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and is open if and only if the ^-length of each component of / removed a
point of 1° is infinite. A connected subset A of M is said to be concave
if A satisfies (a), (b), and (c).

(a) Each component of bd^4 n M is a maximal line in M and is an
open line.

(b) Each component of bά A Γ\M is a subset of δ3% for a crescent or
a great disk ^ included in A .

(b') Each component of bd^4 n M is a subset of δ& for a crescent
31 included in A^

(c) If int(^ Π M) Π ϋ(A) φ0 for a deck transformation ϋ, then A =
ϋ(A).

If A satisfies (a), (b'), and (c), then A is said to be properly concave.

An example of a concave subset is Σ3 in itself or B2 in Σ 4 . Also Σ5 is

concave in itself; Bχ in Σ4 for x in e2 - e3° is not concave (see §1.2

and §2). L{ and L2 in Σ4 are not concave (see Example 1.10).

We prove that each component of bdAnM for a concave subset A is
simplistic, and that each component of bdAnM is a. subset of δ3ί for
a simplistic crescent & included in A if A is a properly concave subset.
We shall divide the proof into several steps as follows.

3.2. The first step is a recollection of a result of §2.4. Let A be^a
concave subset of M; let α be a component of bdAnM. Let* e Λf;
let B(x) be a tiny disk of x . Suppose that int B(x) n α ^ 0 . The line
α is a subset of <J^ for a crescent or a great disk ^ included in A . It
follows that &° includes either B(x)° or a component Cα of B(x)-α.
Since int(Λ PIM)D&° , int(Λ Π M ) D ^(JC) 0 , or D CQ .

3.3. The second step is to prove the claim that given a deck transfor-
mation ϋ and a component α of bd A n M for a concave set ^4, either
α = ϋ(α) or a i l ϋ(α) = 0 holds. We prove the equivalent statement
that if α Π ϋ(α) Φ 0 for a deck transformation ϋ, then α = ϋ(α). Let
x G α d d(α). If α and 0(α) are tangent at x , then α = τ?(o:). Suppose
that α and d(α) are transversal at x. Let B(x) and Cα be determined
as above. Since ϋ{α) n 5(x)° ^ 0 or d(α) Π Cα φ 0 , it follows that
int(Λ Π M) Π # ( ^ # 0 . Thus, ^ = ϋ(A). Since α and ϋ{α) are compo-
nents of bdAnM, we have α = d(o ). This is a contradiction.

3.4. We need
^Lemma. Suppose that a is an imbedded geodesic in M such that a0 n

δMφ0. Then aCδM.
Proof. It is straightforward to prove.
The following is a consequence of the above lemma:
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If a is a maximal line in M and is an open line, and a0 Π δM φ 0 ,
then a is identical with a component of δM.

3.5. The third step is to prove the claim that given a concave subset A,
the number of distinct images of a component a of bd A DM intersecting
a compact subset K of M is finite.

Suppose not. Then K contains a point x that is a cluster point of
U#€π (M) ̂ ( α ) but is not in it. By §3.4, the images of a intersecting a com-
mon component of δM are identical. Let B(x) be a tiny disk of x such
that B(x)C\δM is a connected arc; consequently, no more than one image
of a may intersect B(x) Π δM. Hence, we may extract a sequence {xj
converging to x where JCZ E ϋi(a)Γ\B(x)° , fy G 7ΓJ (M), i = 1, 2, 3, ,
and ϋ^a) Φ ϋAa) whenever i' Φ j , i, j = 1, 2, 3, ... . Let 31 be a cres-
cent such that α c ( 5 ^ and ^ c A. For each /, let x/ be the boundary
orientation vector at xt of ϋ^). We may assume without loss of gen-
erality that {xj converges. For each /,let B(x)(i9L) and B(x)(i,R)
be the left and right components of B(x) - #f (α) respectively. We have
for each i

i, L) C Π B(x) C i n¥)n Λ(J

Since the previous claim (§3.3) implies that df.(α) Π d (α) = 0 for 1^7,
/, 7 = 1 , 2 , 3 , . . . , there are some positive integers k and /, suffi-
ciently large, satisfying ϋk(a) Π B(x) c B(x)(l, L) (see Figure 4). Since
5(x)(/, L) C int(dz(^) Π M ) , ϋk(A) = ϋ^A) this implies the absurdity

ϋk(a) Π B(x) C int(dΛ(^) Π M).
3.6. Now, the^roof of the concavity lemma follows: Let̂  a be a com-

ponent of bdAΓ\M for a concave subset A of M let p: M —> M be the

B(x)(i,L)

FIGURE 4. ϋt(a), B(x)(i, L), AND SO ON.
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universal covering map. By the first claim, p|α is either injective or an
infinite cyclic covering map onto a simple closed curve. Since the second
claim implies that p(α) is compact, a is simplistic. Hence the lemma
follows.

4. The great-disk theorem

A great disk in M is a disk such that dev restricted to it is an imbedding
onto a hemisphere of S2 . As an application of the concavity lemma, we
will prove the following theorem.

4.1. Great-Disk Theorem. Suppose that M is compact and that M
includes a great disk. Then M isprojectively homeomorphic to (I) a great
disk (2) RP2,or(3) S 2.

Remark. The theorem easily generalizes to an ^-dimensional version
for n great than 2 with an almost identical proof: Let M be an n-
dimensional projective manifold with convex boundary; replace the term
great disk with the term n-dimensional great ball, and replace RP 2 and
S2 with RPn and Sn respectively. _

^4.2. Let us begin the proof. Suppose that H n δM Φ 0 . Since δH c
δM by Lemma 3.4, H = M. The universal covering map p: M -* M is
the trivial covering map and a projective map. Hence (1) follows.

Suppose that H c M° . Let p be the center of dev(JίΓ) recall that for

B(-p,ε) = {qeS2\d(q,-p)<ε}.

Let us consider the collection of open disks that include H and such that
dev restricted to each of them is an imbedding onto the complement of
B(-p, ε) where 0 < ε < π/2. Clearly, the collection is not empty, and,
by Lemma 1.6, contains a unique maximal element P, where dev|P is an
imbedding onto S2 - B(-p, ε) for some ε (0 < ε < π/2).

Suppose that ε = 0. The condition that P = M shows that the holon-
omy group action must leave dev(.P), {-p}, and {p} invariant, so that
deck transformations fix the point (devlP)" 1 ^). Since this is absurd, P
is a proper subset of M. Let B be an open tiny disk neighborhood of a
boundary point of P. By Lemma 1.6, PUB is a great sphere, and, hence,
that M is a great sphere. (2) and (3) follow.

4.3. We will not need^he following results to go on. Let A be a
connected open subset of M. A developing map dev|̂ 4 of A induces a
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metric μ on A such that μ = μ\A , where μ is the spherical Riemannian
metric of M induced by dev. Let d' be the distance metric on A induced
from μ .

Suppose that dev\A is an imbedding with a positive constant c such
that if x, y e A, then

c'ιά\x, y) < d(dev(x), de?(y)) < cά\x, y).

Thus we claim that dev| Cl(A) is an imbedding onto Cl(άe\(A)). Let us
prove this. The inequalities imply that de\\A extends to a continuous
map dev': A —• S 2 that is an imbedding onto Cl(dev(^4)). Since M is
complete, and the inclusion map i: A —• M is distance decreasing with
respect to d' and d, ί extends to a continuous map ϊ: A —• G(Λ). Since
Λί is compact, and 4̂ is dense in Cl(A), ϊ is a map onto Cl(^). From
dev' = dev o ϊ, it follows that ί is injective and therefore an imbedding
onto Cl(^4). Hence the claim is proved.

4.4. Suppose that dev|Λ is an imbedding onto S 2 - B(-p, r), 0 <
r < π/2. Since the above inequalities hold for a positive c, dev| Cl(A) is
an imbedding onto Cl(dev(Λl)), which equals S2 - B(x, r)° .

4.5. The proof of Theorem 4.1 is completed by showing that ε > 0
is absurd. By lifting to a finite cover Mχ of M, if necessary, so that its
universal covering map px: M —• Mχ imbeds H, we may assume without
loss of generality that p\H is an imbedding; that is, H does not intersect
any of its images under deck transformations of M.

Let F = Cl(P). By §4.4, F is a disk such that dev|jF is an imbedding
onto the complement of the open disk B(-p, ε)° , 0 < ε < π/2. Since P
is maximal, δFf)(MooUδM) φ 0 . By Lemma 3.4, δFDM^ Φ 0 . Hence,
F includes a great disk Hχ such that δHχnMoo = {q} and Hχ-{q} c F°
hold for a point q contained in M^ΠδF . Let a = δHχ - {q} (see Figure
5, next page).

4.6. Lemma. Hχ is concave.
Proof. Since Hχ satisfies the concavity conditions (a) and (b), we need

to show that it satisfies condition (c). First, we slide H in F. Choose an
imbedding i: H x [0, 1] —> F x [0, 1] c M x [0, 1] having the properties

ι(H x {0}) = Hx{0}, ι(H x {1}) = Hχ x {1},

when t e[0, 1], ι\H x {ί} is an imbedding onto a great disk H(t) x {ί} ,
and H{t) c F° whenever 0 < t < 1. Clearly, 77(0° c F° whenever
0 < t < 1. Thus there is a continuous function / : M x [0, 1] -> R
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FIGURE 5. F AND Hχ.

satisfying

f\ι(H°x[0, 1 ] ) > 1 , f\ι(δHx[0, 1 ] ) = 1 ,

and

Suppose that p\H(t0) is not an imbedding for some t0 such that 0 <
t0 < 1 that is, H(t0) intersects ϋ(H(tQ)) for a deck transformation ϋ.
So, ϋ(H(t0)) includes a point x such that /(jt, /0) > 1. Hence the
function / : [0, 1] -> R defined by

f(t) = sup{/ o ( ί x Id) o I(JC , 01* eH}9 0 < t < 1,

is continuous. Since / ( 0 ) < 1 and f(tQ) > 1, it follows that / ( ^ ) = 1
for a real number t{ such that 0 < t{ < 1. Therefore H(t{) intersects
ϋ(H(t{)) tangentially at a common boundary point. For being imbed-
ded closed geodesies of the spherical metric μ on M , both δH(t{) and
δϋ(H{t{)) are identical. Thus, H(tχ) U ϋ(H(t{)) is a great sphere in M
including P. This yields the contradiction that P is not maximal. Hence
V\H{t) is an imbedding as long as t e [0, 1).

Suppose that inl(Hι ΠM)Π ϋ(H{) Φ 0 for a deck transformation ϋ.
Then i/j° Π ϋ(Hx) Φ 0 , and therefore the great disk H contains a point
x such that / o (d x Id) o /(JC, 1) > 1. Since (ϋ x Id) is continuous, the
interval [0, 1) contains a real number t satisfying /o(ι?xld)o/(χ, t) > 1
that is, H(t)° n ϋ(H(ή) φ 0 , which contradicts the above claim. Hence,
H{ is concave.

4.7. By the concavity lemma and Lemma 4.6, a is simplistic; thus, an
infinite cyclic subgroup generated by a deck transformation acts freely on
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a . However, this is contradicted by the geometry of a that a = S1 - {q}
where S1 is a great circle in M. For an arbitrary action on a of a
subgroup of the deck transformation group, since q is a fixed point of the
action, the unique point of a corresponding to -dev(#) under dev is a
fixed point also. Hence the proof of Theorem 4.1 is completed.

4.8. Let us state the consequences of the Theorem 4.1. Suppose that
χ(M) < 0. This condition implies that each geodesic in M does not
self-intersect, so that at most one geodesic connects two given points of
M if their developing^images are not antipodal^* identical. By these two
facts, a geodesic in M imbeds onto a lines in M. (Thus, lines in M are
topologically imbedded whenever χ(M) < 0.)

Let a be a line in M. A priori, Cl(α) may be very complicated.
However, if the d-length of a is finite and is not Inn for every positive
integer n , then Cl(α) is a segment such that Cl(α) - a0 is the set of two
points. If the d-length of a is 2nπ for a positive integer n, then Cl(α)
is as stated above or is a closed curve such that Cl(α) - a0 is the set of a
point. Consequently, in these cases, there can be at most two endpoints,
i.e., the elements of Cl(α) - a0 .

5. The existence of crescents

Let Σ be a compact nonconvex projective surface with negative Euler
characteristic; let (dev, h) bean S2-development pair of Σ. Let Σ be the
universal cover of Σ, and let Σ be the projective completion of Σ let Σ ^
be the ideal boundary of Σ. Let μ and d be the spherical Riemannian
metric and the spherical metric associated with dev respectively; let d
be an original metric on Σ. In this section, we obtain a crescent in Σ,
completing the first step (I).

Recall that a closed nonconvex projective surface Σ' can be constructed
by grafting a projective annulus including a π-annulus into a closed con-
vex projective surface. Call the π-annulus Af. Then a component of
( p ' ) " 1 ^ ' ) for the universal covering map p': Σ' —• Σ' equals B° U (a0 -
{x}) for a lune or a great disk B in a projective completion Σ' of Σ',
and an edge a of B , and a point x of a0 . The closure of B° , i.e., B, is
a crescent. Hence, for each nonconvex surface constructed this way, step
(I) can be carried out.

Let us sketch the process of the first step (I). The author is indebted to
Peter Doyle in some parts of this intuitive description. The nonconvexity
implies that Σ includes a triangle R intersecting ideal points at the interior
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of an edge v and only at v°. Choose a maximal line a in v n Σ that
starts from an endpoint of v . Let us imagine that we live in Σ and that
we are walking toward an ideal point along a. Let ξ = δR - v° . We
find that the arc ξ gets further and further away from us, but the visual
angle of ξ is always π . Thus, it never looks small. (This corresponds to
Lemma 5.4.) We claim that a sequence of these images of ζ tends to a
subset of Σ ^ , giving rise to an arc in Σ ^ , and that the corresponding
sequence of images of R tends to a crescent. More precisely, we do as
follows: We choose a monotone sequence on a converging to an ideal
point and choose a compact neighborhood K of a fundamental domain
of Σ. Now, we pull back points of the sequence by deck transformations to
points inside K along with the triangle, extract the convergent sequences
{/?,} and {i?J respectively from the image points and image triangles,
and employ techniques of the appendix and Lemma 5.4 and Lemma 5.5
to show that {Rt} converges to a crescent.

An example illustrating this is as follows: Let R be a triangle in Σ 4 such

that only one of its edges v intersects ex in v° where R - {eχ} c Σ 4 .

Choose a point p of / - {eχ} . Then apply T\ 1 / 2 1 / 2 , i = 1, 2, 3, . . . ,

to p to produce a monotone sequence {p j converging to eχ. Now,

apply Tϊ\ι2 1 / 2 to p. and R for each i. It follows that {T^\.2 1 / 2 W }

converges to a crescent (see §1.2).
This is a generalization of Fried's work on similarity manifolds [7].

It was not clear that attempting to generalize his work was a good idea.
Initially, I believed that any suitable sequence of the image triangles de-
generates and abandoned this approach quickly. But on the second time
that I thought about this, I realized that the subsequence never degenerates
because of the fact stated in Lemma 5.4.

5.1. We begin the proof. A triangle is a simply convex disk in a projec-
tive completion bounded by three segments. The criterion for convexity
can be stated as an extension problem. Let R be a triangle in S2 let
Rf = R-v° for an edge v of R. Then a projective surface M is convex
if and only if every projective map η: Rf —> M extends to a projective
map η': R—> M. Fried [7] was first to use this in his classification of sim-
ilarity manifolds. Recently, Carriere [3] used this to study affine manifolds
of discompacite one.

Since Σ is a nonconvex projective surface, by the above criterion, £
includes a triangle R with edges v, κχ, and κ2 such that R n Σ ^ =
/ π Σ ^ / O , Let vχ, v2, and v3 be the vertices of R such that vχ,
v2, and υ3 are opposite to κχ, κ2, and v respectively. Let ζ be the
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V2,i

'2.Ϊ+1

FIGURE 6. PULLBACK SEQUENCES

compact arc κχ U κ2, which together with v bounds R.

5.2. We make choices. Let a be the component of v Π Σ containing a
point of Kj. The subset a is a half-open line with an endpoint in Σ ^ . Let
δ+a denote the endpoint, which is the unique point of the set Cl(α) — a.
Let us choose an arbitrary monotone sequence {q^ on a converging to
δ^a with respect to d. Let us choose a fundamental domain in Σ, and
let K be a compact neighborhood of the fundamental domain such that
K c Σ holds. For each positive integer /, we choose a deck transformation
ϋt and a point p. of K such that #,(/?;) = qi.

For convenience of notation, let υ. ., κk ., ξt, IΛ , and i?., / =

1 , 2 , 3 , . . . , j = 1 , 2 , 3 , k = 1, 2, be the images under ϋ~ι of v ,
κk, <!;, Ϊ/ , and i?, respectively. Let n. be the outer-normal vector to v{

at pf. with respect to the spherical Riemannian metric μ for each /.
Since pt e K for each positive integer /, the compact subset K in-

cludes a point p that is an accumulation point of {p^ . By choosing subse-
quences, if necessary, we may assume without loss of generality that {/?•},
{**(Vjti)} , {**(κk,i)} , {dev(^ )} , {dev(i?.)} , and {nj , for j = 1, 2, 3
and k = 1, 2, converge to points /?, vjtOθ9 compact subsets κkoo, v^ ,
i ? ^ , and a vector in UTp(Σ) respectively. We have thus chosen our

{sequences {p.}, {υJ9i}9

k=l,2 (see Figure 6).

{^ }, a n d {R.} for j = 1 , 2 , 3 a n d
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5.3. We will now obtain a crescent. First, we prove the nondegeneracy
of {i? } : Let B(p) be a tiny disk of p . By Lemma 5.4, there is a positive
integer N such that B{p) Πξi = 0 whenever i > N. By Lemma 3
of the appendix, there is an integer Nχ greater than N such that Ri

includes a common open disk whenever i > Nχ. Since dev(i?/) includes
the developing image of the common open disk whenever i > N{, the
subset R^ is a convex disk.

Second, we show that R^ is a triangle, a lune, or a great disk. Part 2
of the appendix shows that each of κγ ^ , κ2 ^ , and i/^ is a segment
or a set consisting of a point and that δR^ = κχ ^ U κ2 ^ U i/^ holds.
Given the collection of segments among /ct ^ , JC2 ̂  , and i/^, their
manifold interiors can be shown to be mutually disjoint. Therefore, R^
is a triangle, a lune, or a great disk.

Additionally, {dev^)} converges to a compact arc ξ^ , which equals
κ i ex) u ^2 oo Hence, i?^ is a disk bounded by compact arcs ξ^ and

Lastly, we show that R^ corresponds to a crescent: By the convergence

theorem in Part 4 of the appendix, Σ includes a convex disk Ru , a segment

vu in i?M , and a compact arc <!;" in Ru such that dev restricted to them

are imbeddings to R^ , i/^ , and ^ respectively. Let us observe

• ζu c Σ ^ by Lemma 5.4 and Theorem 4 of the appendix.

• / π Σ / 0 since Σ is not convex.
• ξu and i/" bound R.

These facts and Lemma 5.5 imply that Ru is a crescent. Thus the first
step (I) is complete.

5.4. Lemma. We have d(p, ξ.) —> oo as / -> oo, and, equivalently,
there is a positive integer N for each compact subset G of Σ such that
Gnξi = 0 whenever i > N.

Proof This follows from the facts that ξ. is a compact arc in Σ, and

#j~ is an isometry of Σ with respect to d.
5.5. Lemma, v^ is a great segment, and R^ is a lune or a great disk.
Proof Recall that B{p) is a tiny disk of p . Let c = d(p, bd B(p)).

There is a positive integer JV such that d(p, p.) < c/2 whenever i > N.
Hence, d(p.9 bdB(p)) > c/2 whenever i > N. Since a is a semi-infinite
with respect to d, it properly includes another semi-infinite, half-open,
line a with respect to d. There is a positive integer N{ such that for
each positive integer i greater than Nχ, the line a includes a closed
interval ωt that contains q. and such that the rf-length of the path on
ω{ from q. to each endpoint of ωi is c/2. Hence {ω.} satisfies the
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following properties:
(i) Since {#J is monotone, it follows that d-length (ω.) —> 0 as / —• oo.

(ii) Since ωz c a whenever i > Nχ, there is a positive constant c

such that inf{d(x, δv)\x € ω j > c whenever i> Nχ.

(iii) Since &~ι(ωi) c B(p) whenever i > N, N{, there is a positive

constant C (see §1.11) such that d-length ( ^ ( ω )) > C " 1 whenever

i>N, Nx.

The above properties imply easily that i/^ is a great segment, and,
hence, R is a lune or a great disk.

6. Obtaining a simplistic crescent

Now, a simplistic crescent in Σ will be found from the crescent ob-
tained in the previous section. This will complete the second step (II).
Recall from the introduction the two possible situations. The first case is
elementary. The second case is the one where every crescent is a lune cres-
cent. We define special subsets K(3l), δ^SXβ), and Kχ(3l) of Σ given
a crescent 31. A major portion of this section (§§6.2-6.4) is devoted to
finding properties of these subsets. For example, we show that δ^Affl)
is locally a line, Aχ{βί) UΣ° is a projective surface, and h(3l) n Σ is
a closed subset of Σ. One of the principal results of this section is the
proper concavity of K{3ί) (see §3.1), from which we obtain a simplistic
crescent.

6.1. Let us start with the easier case that there is a great-disk crescent
in Σ. Call it & . The crescent &, itself, is properly concave. The two
concavity conditions (a) and (b;) are obviously true. Condition (c) follows
from §2.4. Clearly, Σ may or may not be a subset of 31. Suppose that
Σ </L 31. Then b d ^ ΠΣ Φ 0 . By the concavity lemma, 31 is a simplistic
crescent. Suppose that Σ c J . If δΣ = 0 , then δ3ί — Σ ^ , a contra-
diction to the definition of crescents. Hence, δΣ φ 0 . Since a boundary
component of Σ is a subset of δ3ί, the crescent 31 is simplistic.

6.2. Now, we consider the case where there is no great-disk crescent.
Two crescents in Σ are said to be simply equivalent if they overlap. This
relation generates an equivalence relation for the collection of crescents
in Σ. Given a crescents 3ί , let us define the following nonempty subsets
(see Figure 7):
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FIGURE 7. A PICTURE OF

= U
= (J

For example, in Σz , for each / = 2, 3, 4, 5 (see §1.2), Λ ( ^ ) , given a
crescent 31, is identical with Σ f . In Σ 4 , we have for a crescent ^

1 {β) = 2?2° U ^ u -e3e2-e2°,

In Σ 5 , we have for a crescent c^

= Σ 5 - {[0, 0]}, ^

= -e3e2-e2°

R}.

The subsets h{β), δ^Kiβ), and Λj {β) for a crescent ^ in Σ have
many properties. By definition, Λ(^) and Aχ(^) are path connected.
Since a^ c Σ^ for every crescent S?, it follows that δ^hiβl) c Σ ^ .
By Theorem 2.6, δ^hiβt) is locally a line; hence, a unique great circle S1

includes dev^^Λ^)) . By the same theorem, there exists a component
A# of S2 - S1 such that

c Cl(AΛ) and dev(Λ(^) - C l ^ Λ ^ ) ) ) c Aa

hold. For every deck transformation ϋ preserving kiβί), the projective
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automorphism h(ϋ) preserves A^, where h: πγ(Σ) —• Aut(S2) is the
holonomy homomorphism.

For a crescent S? equivalent to 3ί, the subset S? -v^ is open and is a
disk with boundary a^ included in δooA{3ί). Thus, the subset Aχ(3l) is
a connected differentiable surface with boundary δooA{3ί). Since S^-Vy,
has a projective structure compatible with the projective structure of Σ,
also so the surface Aχ(β) has. Consequently, Aγ(3l)\St? is a projective
surface with boundary δQQA{3ί) and with the projective structure extend-
ing the projective structure on Σ° .

Next, let us suppose that x e hάA(3l) n Σ. A sequence {x(} of points
of A{3ί) converges to x. A lune crescent 3H{ equivalent to 31 contains
x{ for each /. Now, let us apply the results of the appendix as in §5 to
obtain a crescent containing x and equivalent to 31. Hence, x e A{3ί).
Therefore, b d Λ ( ^ ) n Σ c A[β), and A{β) n Σ is a closed subset of Σ.

Furthermore, b d Λ ( ^ ) ΠΣ c Σ° . Suppose not. Let x e b d Λ ( ^ ) ΠδΣ.
Then x e S? for a crescent S? equivalent to 31. Since the component
of δΣ containing x is a subset of v^ by Lemma 3.4, x e int J?7. Thus,
x e i n t Λ ( ^ ) . This is a contradiction.

Next, K(3ί) satisfies the maximum property, i.e., if given a segment
a c Σ, and δa is a subset of K{β), then a c Λ(«#). This is not
proved in this paper although this is a straightforward consequence of the
properties of lines (§4.8) and the fact that \(3l) U Γ is a projective
surface with geodesic boundary δooK{3ί).

Perhaps the most important property of K{3ί) is its proper concavity.
The first concavity condition (a) follows from Lemma 6.3. Next, let a be
an arbitrary component of bάK(3l) Π Σ. Choose an arbitrary point on
a. Then it belongs to a crescent S? where S? ~ 31. It is straightforward
to show that a c v^, ΠΣ, so that the second concavity condition (b;) is
satisfied. Suppose that int(Λ(«$?) ΓΊ Σ) n ϋ(A(3ί)) Φ 0 holds for a deck
transformation ϋ. Since by Lemma 6.4(2), A(&) n Aχ(ϋ(&)) φ 0 , by
the same lemma A(β) = A{ϋ(3l)) = ϋ{A(3ί)). Hence we have proved
the last concavity condition (c).

6.3. The following lemma is a consequence of the dipping intersection
property and the maximum property. Let x e b d Λ ( ^ ) π Σ . Since x eΣ° ,
we let B(x) to be a tiny disk of x included in Σ° .

Lemma. b d Λ ( ^ ) n B(x)° is a connected open line passing through x
with endpoints in δB(x).

Proof. Let O = B{x)° - A{β). Since B(x)° qL A(β), we have O φ
0 . Suppose that S? Π B(x)° Φ 0 for a crescent S? equivalent to 31.
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Since B(x) £ S*, it follows that B(x) is dipped into (S*, v$?) nicely.
This shows that O and, hence, Cl(O) are nonempty convex subsets. Since
B(x)° is convex, the maximum property of A(β) yields the convexity of
Λ ( J ) ί l ί ( i f . Since B{x)° is open,

b d Λ ( ^ ) Π B(x)° = (A{β) n J5(JC)°) Π (Cl(<9) n JΪ(JC)0) .

Due to the convexity of A[β) Π B(x)° and C1(O) Π 5(JC)° , b d Λ ( ^ ) n
5(JC)° is a separating convex line with two endpoints in δB(x).

6.4. Lemma. Lef ϋ be a deck transformation.
(1)

(2) // int(A(^?) Π Σ) Π d(Λ(^P)) φ 0 , *Ae/i Λ ( ^ ) n Aχ (#(.#)) 7̂  0
(3) // Λ ( ^ ) Π Aj (d(^?)) ^ 0 , ίAβ/i ^ - d ( ^ ) .
Proof. (1) This is implied by the fact that S? ~ ^ if and only if

d(«$?) given a crescent ^ .
(2) Let x be a point belonging to

int(A(^P) Π Σ) Π d(A(^P)) = int(A(«5P) Π Σ) n Λ(d(^?)).

The open subset int(Λ(^) Π Σ) includes a tiny disk B(x) of x , and a
crescent ^ equivalent to ϋ{3l) contains x. Recall (§2.4) that B(x) is
either a subset of 5? or dipped into [S?, v^) nicely. Since B(x) n<5*0 Φ
0 in each of the cases, we have

Mβ) Π^0 φ 0 and A(&) n Ax(ϋ(&)) φ0.

(3) Since A{β) nA{(ϋ(^)) Φ 0 , there are two crescents 5? and F
such that

and <9> n(<T - Vcr) φ 0.

Since S?° is dense in S?, the openness of !Γ - v^ implies that S?° Π
j φ 0 . Hence, c5* - y and «$

6.5. We now complete the second step (II). A simplistic crescent can
be obtained from A{βί) in a very similar manner to §6.1 unless we have
Σ c A{βί) and δΣ - 0 . We show that this cannot happen. Recall what
Aφ denotes from §6.2. Since Σ is invariant under deck transformations,
we have

and

for every deck transformation ϋ on Σ and the holonomy homomorphism
h of Σ. The component A^, an open great disk, has a natural affine
structure (see §1.3), and h(ϋ) restricts to an affine automorphism on A^
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with respect to the affine structure for every deck transformation ϋ. Thus
Σ has an affine structure. The corollary to Theorem 1 [19] implies χ(Σ) =
0 which is a contradiction.

7. π-Annulus

Finally, we obtain a π-annulus with a projective map to Σ from the
previously obtained simplistic crescent using a single technique whether
the crescent is a great disk or a lune. This completes the third step (III)
and, hence, the proof of the main theorem.

7.1. Let us go over some properties of simplistic crescents. Let 3ί be
a simplistic crescent. Choose a simplistic line τ of 3ί . Let ϋ be the deck
transformation corresponding to τ . The relation

τ = fl(τ) c ϋ(v#) = vϋm

and the orientability of Σ imply that 3ί° Π ϋ{β) Φ 0 . By Theorem 2.6,
we have

31 = ϋ{3ί), v^ = d(ι/Λ), and a# = ϋ(aa).

Since 31 is tame, there is the inverse map of Aε\\3l denoted by
1 : dev(^) -> Σ. Thus

h(ϋ)\de\{3?) = dev o ϋ o (d

Since (ϋ) acts on ^ and properly discontinuously and freely on 3ί n Σ,
the subgroup (Λ(t?)> acts on dev(^) and properly discontinuously and
freely on dev(^ n Σ).

Finally, at least one endpoint of each simplistic line of 3ί is an endpoint
of v^ . This can be seen from the following discussion: Suppose that Σ
includes a convex segment a invariant under a deck transformation φ.
Then φ has at most three fixed points on a unless the function φ : α —• a
obtained from φ by restricting the domain and the range is the identity
map.

7.2. The process of obtaining a π-annulus starts now. Let τ be a sim-
plistic line of a simplistic crescent 3ί let ϋ be the deck transformation
corresponding to τ . Let τ = v% - Cl(τ). It follows that τ is a con-
nected open line ending at an endpoint of vm or is the empty set since an
endpoint of τ is an endpoint of v# . There are the following possibilities:

( i ) τ ' c Σ β 0 .

(ii) τ V Σ ^ a n d τ'nΣoo = 0.

(iii) τ ' ί Z Σ . a n d τ ' n ί / 0 .
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We deduce by elimination that only (ii) is possible and that (ii) implies
the existence of a π-annulus.

(i) Since a component 31° of Σ - τ is convex, the following lemma
contradicts the nonconvexity of Σ.

Lemma. Let M be a compact projective surface with negative^Euler
characteristic, and let a beji simplistic line in the universal cover M such
that a component M{ of M - a is a convex. Then M is convex.

Proof. Let d! be an original metric of M (see §1.Π) s i n c e X(M) <
0, for every positive real number R and a point x of M, there is a deck
transformation φ that maps x to φ(x) in Mχ such that d'(φ(x), a) >
R. (To see this, use hyperbolic geometry.)

Let x and y be two arbitrary points belonging to M then a deck trans-
formation φ maps x into M{ such that d'(φ(x)9 a) > 2d'(x, y). Thus,
φ{y) belongs to Mχ. Since Mχ is convex, Mχ includes a convex segment
φ(x)φ(y) connecting φ(x) and φ(y) thus, the segment φ~l(φ(x)φ(y))
connects x and y . Hence, M is convex. (Compare this argument to one
in Chapter 2 of Benzέcri [1].)

(ii) Since Σ is orientable, h(ϋ) is orientation preserving. Let

Ω = dev(^°) U dev(τ) U dev(τ').

Then (/*(#)) acts properly discontinuously and freely on Ω. By definition,
the quotient projective surface Λ of Ω under the action of {h(φ)) is a π-
annulus. The projective map Φ: Ω —• Σ defined by Φ = p o ( d e v ^ ) " 1 ^
induces a projective map Φ: Λ —• Σ here p: Σ —• Σ is the universal
covering map.

(iii) There is a component a of i/ĵ  Π Σ with both endpoints in v0^ .
By Lemma 7.3, similarly to 6.1, the component a is simplistic. This
contradicts a result of §7.1 since a has both endpoints in v0^ .

7.3. Suppose that we are in case (iii). Let p and q be two endpoints
of v^ so that p is an endpoint of τ as well. Since (ϋ) acts freely on
τ, (ϋ) acts on τ . Since τ ' π Σ ^ / 0 , any neighborhood of q intersects
τ Π Σ ^ thus, q is a boundary point of τ Π Σ ^ .

Lemma. & is concave.
Proof. Clearly, 31 satisfies the first two concavity conditions (a) and

(b). The third condition (c) follows from the statement that if 3ί and
φ(β) overlap for a deck transformation φ, then 31 = φ{β). Recall
(§2.4) that this statement is true if 31 is a great disk. Hence, we need to
prove this statement when 3ί is a lune.

So, suppose that 31 is a lune. Suppose, to the contrary, that there is
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a deck transformation φ such that 31° n φ{β) φ 0 and 31 Φ φ(3l).

Condition (iii) and a result of §2.4 show that 31 (jL φ{β) and φ{β) <£ 31.

Thus, 3ί and φ(β) intersect transversally by Theorem 2.6. Let x be the

transversal intersection point of v^ and φ{y^). Either p or q is a point

of θLφi^m) either #?(/?) or φ(q) is a point of am . Suppose that # e <* ^ .

Then i/^ includes a relative segment neighborhood a oϊ q that is the

closure of a component of i/^ - {x} . Here, α° c φ{3ί°). Since ^ is a

boundary point of Σ^nv 0 ^ , it follows that a°πΣooφ0; this contradicts

φ{3ί°) c Σ. Therefore, p G α^(^) and, similarly, φ(p) e a^ .

Both dev(^) and dev($?(^)) are lunes such that a common great circle

S1 includes άev(a^) and dev(α ^ ) , and these lunes are included in

a great disk bounded by S 1 . However, since p € a

φ(&) a n c ^ ψ{p) €
α ^ , the projective automorphism h(φ) is orientation reversing; this is a
contradiction.

Appendix: Sequences of convex disks

First, we discuss for S2 the convergence of a sequence of convex disks,
the limit of a convergent sequence, and the boundary and the interior of
the limit. Next, we consider sequences of convex disks in a projective com-
pletion. Subsequences may not converge since the projective completion is
not compact in general. However, when a sequence has a common convex
open disk in every sequence element, a subsequence will have a "limit."
So, a certain criterion assuring the existence of a common convex open
disk is presented first. Finally, certain sequences are shown to "converge."

1. We need to use the following fact from spherical geometry: Given
a great circle S1 in S 2 and a point x belonging to S 2 - S 1 , if aline from
x to S1 is perpendicular to S 1 , and its d-length is less than or equal
to π/2, then its d-length equals d(;c, S 1 ) . (Recall that d is the standard
metric of the standard sphere S2 .) Another fact which we use is as follows:
Suppose that x e B for a convex disk B. Then ά(x, δB) < π/2. We
have d(x, δB) = π/2 if and only if B is the great disk of which x is the
center.

Let άH be the Hausdorff distance of compact subsets of S 2 . Given
any two compact disks in S2 arbitrarily close to each other, there may
be a point which is "deep" in the interior of one of the disk but is not in
the other. The following lemma shows that this cannot happen for two
convex disks. More precisely, given two convex disks A and B in S if
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άH(A, B) < ε for a positive constant ε, then A0 - B° and B° - A° lie
inside 2ε-neighborhoods of δA and δB respectively.

Lemma. Let A and B be two convex disks in S 2 . Suppose that A°-B°
contains a point x such that ά(x, δA) > ε for a positive constant ε. Then
άH(A,B)>ε/2.

Proof. Since x £ B°, a great disk H contains x and satisfies B n
H° = 0 (see §1.3). The proof is reduced to the claim that AnH contains
a point y such that ά(y, S2 - i/°) > ε/2. Let α be the diameter of
H passing through x. Let β = aΠ A. The subset β is a connected
segment in the convex disk AnH, and the endpoints of β are contained
in δ(AΓ)H). Since β 3 x, and at least one of the endpoints of β belongs
to δA, it follows that d-length (β) > ε. Thus β c a and ε < π imply
that the segment β includes a point y such that ε/2 < d(y, <$α) < π/2.
Since α is perpendicular to δH, ά(y, S2 - H°) > ε/2.

2. A sequence of compact convex subsets of S2 always has a conver-
gent subsequence {Zλ} with respect to d^, the limit is always a compact
convex subset, and the dimension of the limit is less than or equal to
liminf^^ dim(Zλ). We deduce from this that the limit of a convergent
sequence of convex segments is either a convex segment or a set of con-
sisting of a point; however, the limit cannot be a great circle. We may also
deduce that the limit of a convergent sequence of convex disks is a great
disk, a lune, a simply convex disk, a convex segment, or a set consisting
of a point; the limit cannot be S2 itself or a great circle.

Now, interesting questions arise: what are the properties of the bound-
ary and the interior of the limit? Suppose that a sequence of convex disks
{/).} converges to a convex disk D. Then the following statements con-
cerning the boundary and the interior hold: δD is the limit of

The boundary statement is an easy consequence of the following state-
ment: given two convex disks A and B, if άH(A, B) < ε for a positive
real number ε, then άH(δA, δB) < 2ε. This statement is proved. Sup-
pose that d {δA, δH) > 2ε. Then either δA contains a point x such
that d(jc, δB) > 2ε or δB contains a point y such that ά(δA, y) > 2ε.
Let us assume the former without loss of generality. If x £ B, then
d(x, B) > 2ε and, hence, dH(A, B) > 2ε. If x € B, then x e B°
and, by Lemma I, άH(A9 B) > e. These are contradictions. Thus, the
statement is proved.

The proof of the interior statement is as follows: Let x e D° . Then
, δD) > ε for a positive constant ε. Let N be a positive integer such
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that dH(D, Dt) < ε/2 whenever i > N. By Lemma 1, x e D° whenever

i>N. Thus [JZιD° DD° -
3. As in §1 of the main text, let M be a projective surface, which may

or may not be compact, and let M be its universal cover. Let dev be the
developing map; let M be the projective completion. Let μ and d be
the spherical Riemannian and the spherical metrics associated with dev
respectively. We study sequences of convex disks in M.

Lemma. Let {Z> } be a sequence of convex disks in M. Let x e M,
and let B(x) be a tiny disk of x. * Suppose that the following properties
hold:

(1) There is a segment IΛ in δDt for each i.
(2) B{x) n (δDi - v°) = 0 for each i.
(3) A sequence {x.} converges to x where xt e vt for each i.
(4) The sequence {nj converges where ni is the outer-normal vector to

v. at x. with respect to μ for each i.
Then there exist a positive integer N and a convex open disk & in

B(x) such that & c Zλ whenever i> N.
Proof We may suppose without loss of generality that B(x) (JL Dt and

that x. e intB(x) for each i. This means that B(x) is dipped into
(Di, IΛ) nicely for each / by Corollary 1.9.

Now, we show that D Π B(x) includes a common convex d-ball of
a fixed radius for sufficiently large /. Let c be a number satisfying
d(jc, bd-B(jc)) > c, 0 < c < π/2. There exists a positive integer Nx

such that ά(x, xt) < c/4 whenever i > N{. Thus, ά(xi9bdB(x)) > c/2
whenever i > Nχ. For each i, the convex disk DiΓ\B{x) includes a max-
imal segment JC that is inward normal to v. Π B(x) at x. with respect
to μ. Let i > Nχ. Since κi ends at a point of bdB(x), it follows that
d-length (JC ) > c/2. Let y. be the point of κ such that d(xi, y.) = c/4.
Then y. satisfies the following properties:

ά(yi,uiΠB(x)) = c/4 (by§l),

and
ά(y., bdB(x)) > ά{Xi, bdB(x)) - d(x , y.) > c/4.

Since
δ{Di Π JΪ(JC)) C (u. Π B(x)) U bdB(x),

it follows that

d(y f, δ{Di Π B{x))) > min{d(>;., i/. Π B(x)), d ^ , bdB(x))} > c/S.

Thus, the d-ball B(y., c/S) with radius c/8 around yt satisfies

t, c/8) C {Dt Π 5(x))° = D° °
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We conclude that D° includes the convex open disk B(y 9 c/&)° whenever

i>Nx.

Since {n.} converges to an element of UTχ(M), the sequence {yt}
converges to a point y of B(x). Let TV be a positive integer greater than
Nx such that

d(y, yt) < c/16 whenever i > N.

Then £(>;., c/8) D 5 ( J ; , C/16) whenever / > N. Let ^ be 5(y, c/\6)°,
which is a convex open disk. This completes the proof.

4. We say that a compact subset Z)^ of S2 is the resulting set of a
sequence {Z>J of compact subsets of M if {dev(Z>z)} converges to D^.
Let {£>.} and {5 } be sequences of convex disks in M with resulting
sets D^ and B^ respectively; let {K^ be a sequence of compact subsets
in M with the resulting set K^. We say that {Z> } subjugates {K^ if
Zλ D Λ̂  for each / and that {5.} dominates {DJ if B^Γ\Di Φ 0 for each
/ and 5 ^ D D ^ . Moreover, \K^\ is /β?̂ α/ if there is a positive integer N
for each compact subset F of M such that FnKt = 0 whenever i > N.

Convergence Theorem. Suppose that {DJ is a sequence with a common
convex open disk £P, that {Z>J subjugates {K(} and that {Bt} dominates
{Zλ}. Then M includes two convex disks Du and Bu and a compact
subset Ku with the following properties:

(1) Du D &>, and dev(Z>") = D^ .
(2) BUDDU, and dev(5w) = B^ .
(3) DUDKU, and dev(tfM) = K^.

(4) // {K.} is ideal then Ku c M^ .
Proof (1) Since dev(Zλ) D dev(<^) for each /, it follows that D^ D

dev(^). Hence, D^ is a convex disk. By §2, U^i devίD.)0 D D0^ .
By Lemma 1.6, devHJ^jZ)^ is an imbedding onto IJ^j dev(Z>/)° . Thus,
U/Ξi ^ includes a convex disk Z)* such that dev|Z>* is an imbedding
onto D0^ . If we let Du = Cl(D*), then (1) follows.

(2) Clearly, B^ D dev(^). Let &' be a compact convex disk in &°
let &" = {β6')0. Then, for each point x of dev(^>"), d(;c, δB^) > ε
for a small positive constant ε. By Lemma 1, there is a positive integer
iV such that dev(Z?.) D dev(<^") whenever i> N. Since dev^U/),. is an
imbedding onto dev(.S.) U devί^ ) and DtD^ , it follows that 5f. D c^/;

whenever i > N. (2) follows from (1).
(3) Since K. c Z). for each i, K^cD^. Let

Then (3) follows.
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(4) We show that Ku c M^ . To the contrary, suppose that x e KunM.
Suppose further that x e M° thus, there is a tiny disk B(x) satisfying
x e B(x)° and such that de\(B(x))° u D^ is star-shaped from a point
y of dev(^). (A star-shaped subset of S2 from a point is a subset such
that each of its elements can be connected by a simply convex segment
in it from the point.) Since B(x)° nfl* / 0 , Lemma 1.6 shows that
de\\B(x)° u D* is an imbedding onto de\(B(x))° u D ^ . For each i, the
following statements hold:

(i) Both D] and B(x)°uD* include &.

(ii) Both dwiDf and dev(5(jc))0UZ)^ are star-shaped from the point
y of dev(^).

By Lemma 1.6 dev|Z>* u B(x)° U D* is an imbedding onto d e v ^ ) 0 u
dev(2?(jc))° U Z)^ for each /.

Since {dev(A^)} converges to K^, and dw(B(x))° is an open neigh-
borhood of dev(x), there is a positive integer TV such that

dev(iς) Π dev(B(x))° φ 0 whenever i> N.

Let / be an integer greater than N. The open disk B(x)° includes a
nonempty subset δt defined by

a. = {d^s\B{x)°)~\dty{Ki) ndev(B{x))°).

We claim that δt c A ẑ. Let p be a point belonging to δt. There is a

sequence {#,} of points of dev(Zλ)0 converging to dev(/?), and a positive

integer N{ such that q. e de\(B(x)) whenever j > Nχ. Let p. —

(άev\D°)~ι(q.) for each j . The final statement of the above paragraph

shows that p. e B(x)° whenever j > Nχ. Since devID^ is an isometry,

the Cauchy sequence {/7z} converges to a point pu belonging to B(x)Γ\Di,

where de\(pu) = de\(p). By the injectivity of de\\B(x), pu = p . Since

<J c Z) , δ( c Kt by the injectivity of dev|Dz. However, since by definition

a. C B(x) whenever / > N, this contradicts the ideal property of {K(}.

Thus, x i M°. _ _
Finally, suppose that x e δM. Let us extend M by attaching a small

open disk in S2 around x by a projective map. We take out few points to
make it into a manifold. The resulting projective surface still has a convex
boundary. Now the previous argument applies and yields a contradiction
again.
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