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CONFORMAL DEFORMATIONS OF COMPLETE
MANIFOLDS WITH NEGATIVE CURVATURE

PATRICK) AVILES & ROBERT McOWEN

Introduction

A basic problem in Riemannian geometry is that of studying the set of
curvature functions that a manifold possesses. In this generality there has been
such a great deal of work that we cannot here record the different contribu-
tions. (For a fairly complete account, see [23].) However, in this paper we shall
be concerned with the special case of ("pointwise") conformal deformations of
metrics which we shall call problem (K):

Let M be an w-dimensional Riemannian manifold with metric
g. If we are given a real-valued function on M, does there
exist a metric g on M, conformal to g, with the given function
as its curvature (i.e., Gaussian curvature if n = 2, and scalar
curvature if n ^ 3)?

This problem has been extensively studied for compact manifolds with or
without boundary (see [6], [7], [9], [13], [14], [15], and [18]). However there are
still some unsettled questions, even for M = S2 with the standard metric (see
[18]), or on more general manifolds. The special case of deforming to constant
scalar curvature is known as the Yamabe Problem and has recently been
completely resolved for compact manifolds by R. Schoen [21] (see also [6]).

On the other hand, if M is a complete but noncompact Riemannian
manifold, very little is known. In the special case M = Rn with Euclidean
metric g, problem (/c) has been studied in [4], [16], [17], [19], and [20]. The
purpose of this paper is to study (/c) for simply-connected manifolds with
negative curvature. The model case is Hn(-1), the ^-dimensional space form of
curvature - 1 , and Kazdan has posed (K) for Hn{-\) and more general
manifolds of negative curvature as an open problem in [12].
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This type of manifold has recently been the object of study by many

authors: see [2], [3] and [22]. The basic topics they considered are the existence

of bounded harmonic functions and some aspects of function theory on these

spaces. In particular, they proved that if (M, g) has sectional curvatures

bounded between two finite negative constants, then there are bounded

harmonic functions.

The problem (/c) however is studied by means of a partial differential

equation. For two-dimensional manifolds {M, g) with Gaussian curvature K,

the Gaussian curvature K of the conformal metric g = e2ug satisfies

(1) ^gu + Ke2u = K.

If n > 3, let S denote the scalar curvature of (M, g); then g = u4Λ"~2)g (where

u(x) > 0) has scalar curvature S satisfying

(2) 4(n2)*gU + Su

Hence (K) is equivalent to solving (1) or (2) for u. We shall consider the

existence of C 2 solutions of (1) and (2) which are bounded on M (and bounded

away from zero in (2)). This guarantees that the conformal metrics g and g are

uniformly equivalent (CιgiJ < g/y < C2g / y); in particular g is also complete.

In dimension two, because of the uniformization theorem as well as the

Ahlfors-Schwarz Lemma [1], it is enough to consider the model space H2(-l)

which we take to be the unit disk D with the Poincare metric. We analyze this

case in §1, and obtain the following result.

Theorem A. Let K e C°°(D) satisfy K(x) < 0 for x <= D and -a2 < K(x)

< -b2 < 0 for x e D\DQy where Do is compact and a > b are positive con-

stants. Then there is a unique complete metric g which is conformal and uniformly

equivalent to the Poincare metric, having K as its Gaussian curvature.

In higher dimensions we must consider the general case which includes

Hn{-\)\ this is done in §2 and yields the following.

Theorem B. Let (M, g) be a simply-connected, complete Riemannian mani-

fold with sectional curvatures K satisfying -A2 < K(x) < -B2 for x e M, where

the positive constants A&B satisfy 1 < A2B~2 < (n - l)2/n(n - 2). // S e

C°°(M) satisfies S(x) < 0 for x e M and -a2 < S(x) < -b2 < 0 for x e

M \ M o, where Mo is a compact set and a > b are positive constants, then there is

a unique complete metric g which is conformal and uniformly equivalent to g,

having S as its scalar curvature.

In these theorems we have assumed that g, K, and S are all C°°. By local

regularity, the function u and hence the metric g are also C 0 0. It is clear from

the analysis in §§1 and 2, however, how to proceed with less regularity.



CONFORMAL DEFORMATIONS OF COMPLETE MANIFOLDS 271

It is of interest to inquire when additional regularity at infinity can be
concluded for the solution. To formulate this, let p(x) denote the distance of x
to a fixed point 0 and write

(3) lim u(x) = «„,
ρ(x)->oo

where u^ is a constant, if for every ε > 0 there is a compact set Mε such that
l w ( * ) - " o o l < ε whenever x e M\Mε. In §§1 and 2 we find conditions on K
and S under which the solutions u of (1) and (2) satisfy (3) for some constant
u^ (cf. Theorems 3 and 5).

We prove all these theorems using the method of upper and lower solutions.
One technical difficulty comes from the fact that (1) and (2) are not uniformly
elliptic equations, in fact degenerate along the "boundary of M" (see [3]); this
difficulty of course does not occur when Mis a compact manifold. Another
difficulty arises when S vanishes inside M (if S ^ -b2 < 0 throughout M then
a constant could serve as an upper solution and no restriction on the sectional
curvature ratio A/B need be made). In fact, the results of §§1 and 2 show that
we can still solve (1) and (2) when a certain amount of positivity of K or S is
allowed inside of M. This phenomenon is explored in greater detail for H2(-l)
in §1 where a necessary (but not sufficient) solvability condition is found to be
/K(x) dx < 0. Thus the prescribed curvature functions cannot be "too posi-
tive in M ". A condition on K or S which is both necessary and sufficient for
solvability is probably very difficult to find; note that this is not even
well-understood when M is compact (cf. [15]).

Finally, we should mention that we have also studied the special case of
deforming to constant negative scalar curvature (as in the Yamabe Problem) on
a complete noncompact Riemannian manifold. This will appear in a separate
publication [5].

1. Dimension 2: Poincare disk

If M is complete with Gaussian curvature K(x) < -b2 < 0 then M is
conformally equivalent to the Poincare disk by the Ahlfors-Schwarz Lemma
[1]. Thus we may restrict our attention t o M = D = { x G R 2 : r = |*| < 1}
with the metric gr = 4(1 - r 2 )" 2 δ / y which has constant Gaussian curvature
K = - 1 . If K(x) is a function on D then the prescribed curvature equation (1)
is

(1.1) LLlJΪl/iu + κ(x)e*"=-l9

where Δ is the ordinary Euclidean Laplacian. Notice that (1.1) is a degenerate
elliptic equation in D which we shall show admits bounded solutions provided
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K is negative at infinity and "not too positive inside Z>". Let Do be a compact

subset of D.

Theorem 1. Suppose K is a Holder continuous function on D satisfying

-a2 < K(x) < -b2forx e D\D0.

(a) If K(x) < 0 for x ε i ) , then there exists a unique bounded C2-solution of

(1.1).

(b) // K(x0) > 0 for some x0 e D, let D± = {x e Z>0: ±A"(JC) > 0} am/

suppose there exists a > 0 jι/cλ /λflί:

(i) α ^ sup{(ΛΓ(.x) + 1)(1 - r 2 ) " 2 : JC e Z>~);

(ii) ^ ( x ) f e - 2 ^ 2 a ( 1 " r 2 ) < -1 + a( l - r 2 ) 2 / 0 r JC e D+.

Then there exists a bounded C2-solution 0/(1.1).

Proof. We shall construct an upper solution u+ and a lower solution u_ (i.e.,

functions satisfying the differential inequalities obtained by replacing = in

(1.1) by < and ̂  respectively) which are bounded on D and satisfy w+> u_ in

D. If (1.1) were uniformly elliptic we could apply the Monotone Iteration

Scheme to conclude the existence of a C2-solution u satisfying w_< u < u+.

Instead, however, we must take a sequence of open sets Dj with Dj c DJ+1

whose infinite union is Z>; then obtain a C2-solution wy on each Dj with

w_< wy < w+. The uniform bounds on Z^ enable us to select a subsequence ujλ

converging to a solution on Dl9 and a further refinement yields a subsequence

converging to a solution on D 2, etc. Hence the function u(x) = limk_O0ukk(x)

gives the desired solution on all of D (cf. [19], Proof of Theorem 2.10).

Let w_= -log a. Then Ke2u-^ -a2e~2loga = -1 so u_ is a lower solution for

both (a) and (b).

For (a) let w+= α(l — r2) + q where cx = -log & > 0 since we may assume

0 < b < 1, and a > 0 is chosen so that α ^ {(K(x) 4- 1)(1 - r 2 ) " 2 : x e D o } .

On Z)o use Ke2u+^ K and Δ M + = -4α to check upper solution:

Δ g W + + ^ 2 " ^ < Δ g W + + ^ = -(1 - r 2 ) 2 α + K(x) < - 1 .

On D \ Do use J& 2 c i = Kb'2 < -1 to check upper solution:

Δ g w + + Ke2u+^ - α ( l — r 2 ) — e 2 α ( 1 ~ r ^ < - 1 .

For (b) again let w+= α(l - r2) + cx where cx - log Z> > 0 and a satisfies (i)

and (ii). It is easy to verify u+ is an upper solution by using (i) in D~ and (ii) in

Finally, we can show that the solution in (a) is unique by invoking the

generalized maximum principle (see [6]). Namely, suppose u and υ are two

bounded solutions so that w = u - v is bounded and satisfies

Δgw = -K[e2u- e2v].
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Notice that w cannot attain a negative minimum at x0 e D. (}f W(JC0) < 0 is a

minimum then w < 0 in a neighborhood Uoϊ x0. But then Δgw < 0 in U; since

w(x0) is a minimum we must have w constant in U. Enlarging U we find w

must be a negative constant in D. But this would require K = 0, a contradic-

tion.) However the generalized maximum principle implies the existence of

points jcy e D with M X ) -> inf{w(x): x e D} and limΔH^jc,) ^ 0. Taking a

subsequence, we may assume either jcf -> JC0 e Z> or jcf approach dD. If

x,. -> x0 then w(x 0) > 0 by the above argument, so w > 0 in D. If xt approach

dD we may assume K(xt) < -Z?2. If inf{w(^): j ί e D } < 0 then there exists a

subsequence x\ with w(x-) < -ε < 0 so e 2 w ( x ί ) - g2ϋ^ί> < -η < 0. But then

Δgw(jcί) < -ηZ?2 < 0, contradicting limΔwίjc,.) > 0. Thus w > 0 in D. Simi-

larly, we can show w < 0 in Z>, so w = ϋ in Z>.

Remark. The consideration of bounded solutions in Theorem 1 is not at all

restrictive since the hypothesis -a2 < K(x) < -b2 < 0 for x e Z) \ D o implies

by the local Schwarz lemma that every solution of (1.1) is bounded (cf. [8]).

Thus K < 0 is a sufficient condition for the existence of bounded solutions

of (1.1), but not a necessary condition: it is easy to construct functions K with

ΛΓ(O) > 0 which satisfy (ϋ). Nevertheless, it seems that K cannot be too positive

in D: for example, if AΓ(O) > 0 then (ii) can only be satisfied if K(0) < b2/(2e3)

since this is the maximum value of h(a) = b2(a - l)e~2a. We now prove an

integral condition which expresses the restriction on the positivity of K.

Theorem 2. A necessary condition for the existence of a bounded solution of

(1.1) is

(1.2) f K{x)dx <0.
JnD

-2M _ (Λ __ «2\2/Proof. (1.1) implies 4K(x) = -4e~2u - (1 - r 2 ) 2 (Δw)e" 2 u . We integrate

this equation and use integration by parts to get

f K(x)dx = -4( e~2udx- ί (1 -r2)\Hu)e-ludx
JD JD JD

= -4( e-2udx-4f (1 -r2)e-2u(x- Vu) dx
JD JD

(1.3) -if (\-r2)2e-2u\vu\2dx
JD

+ l i m | (1 -r2fe-2uVU' ds.

The last term is zero by

(1.4) \vu{x)\ = θ ( ( l - r 2 )" 1 ) as r = \x\ -> 1
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which follows from formula (3.16) in [11] (use Ω = the disk of radius (1 - \x\)/2

centered at x e D). Using

we find (1.3) becomes

A( K(x)dx < -A( e~2udx + 2( e~2u\x\ dx.
JD JD JD

Using |JC|2 < 1 we obtain (1.2).

We shall use the following proposition to construct an example showing that

the necessary condition in Theorem 2 is not a sufficient condition.

Proposition 1.5. // there exists a bounded solution u of (1.1) and if there

exists a solution φ of the inequalities

(1.6) ^ ~ r ' Δφ - 2φ < 2K in D,

(1.7) φ>e~2u neardD,

then φ > 0 in D.

Proof. Let υ = e~2u which satisfies

^ ~ 4

r ^ Av -2υ = e~2u(\ - r2f\vu\2 + 2K > 2K.

Combining with (1.6) we have

ί l - r2)2

1 — — A ( φ - υ) - 2(φ - v) < 0 in D.

For 0 < R < 1, let DR = (JC e D: |JC| < R}. For .R close to 1 we have

φ ^> e~2u = v on dDR by (1.7), so the maximum principle implies φ > v > 0 in

D Λ . Letting Λ ^ l w e have φ > 0 in D.

Example 1.8. Let φb(r) = -ln(Z?2 - r2) where Z) > 1. A calculation shows

( 1 ~4

r ) Δφ, - 2φ, = 2 ^ , ,

where

Notice that Ih = JKb(x) dx -» -oo as ί> -* 1, so choose 60 such that Ibo < 0

and let K = ^ Λ o . For fixed x we claim that Kh(x) is an increasing function of

b:
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since (1 - r 2 ) 2 > 0 => 1 + r2 + r4 > 3r2 =* b\\ + r2) + r4 > 3r2 =>
- r 2 ) > (1 - r2)(Z>2 + r2) =* 2(b2 - r2)2 > (1 - r2)2(Z>2 4- r2). Thus

- 2φb

for all b0 > 6 > 1. Now suppose there is a bounded solution u of (1.1). Since
Φh(l) -> oo as Z> -> 1 we can choose Z?x such that Φ = φh > e ~ 2 w o n 3D. But
φ(0) = -ln(Z>2) < 0 contradicting Proposition 1.5. Thus (1.1) admits no
bounded solutions even though fDK(x) dx < 0.

Remark. In fact the example shows that any condition of the form

f K{x)dx< -c2 (c>0)
JD

cannot be a sufficient condition for solvability of (1.1).
Theorem 1 only asserts the existence of bounded solutions but says little

about their behavior as |JC| -> 1: For example, does the solution u admit a
continuous extension to the boundary? The following example shows that
additional regularity assumptions on K as |JC| -> 1 are required in order to
conclude regularity of the solution as |x| -> 1.

Example 1.9. The function u(x) = \ sin(ln(l - \x\2)) is bounded but oscil-
latory as |x| -> 1 so does not extend continuously to 3D. A calculation shows
that u solves (1.1) with

K(x) = LJ- sin(ln(l — \x\2)) + ~z cosίln(l - |JC| )] -

which is bounded between negative constants, but of course also oscillatory as
\x\ - 1.

On the other hand, if K(x) < 0 and approaches a negative constant as
\x\ -> 1, then we can solve (1.1) with u(x) approaching a certain constant as

Theorem 3. Suppose K(x) < 0 for x e D and K(x) = -c2 4- H(x) where

c > 0 and

(1.10) sup{(l - r)~βH(x): x e D} < oo

for some 0 < jβ < 1, rAe« rΛere w a unique bounded solution 0/(1.1) satisfying

(1.11) lim w( c) = -Inc.

In fact, u(x) = -lnc + t (jc) wΛ̂ re sup{(l - r)'βυ{x)\ x <Ξ D} < co for the

same β as in (1.10).
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Proof. Let w + = α(l — r2)β — lnc where α, β > 0. A calculation shows

so w+ is an upper solution provided

(1.12) aβ(βr2 - l) + i/(x)c" 2 (l - r 2 ) ^ < 0.

Since β < 1, we may take a sufficiently large to achieve (1.12).
Similarly, u_ = -a(l — r2)β - lnc is a lower solution if a is large enough

that

-aβ{βr2 - l) + H(x)c-2(l - r2)'P > 0.

As in the proof of Theorem 1 we conclude there is a solution u of (1.1) with
w_< u < u + in Zλ From the definition of w± we find w = -lnc + υ(x) with
(1 — r)~βv(x) bounded on D, so in particular (1.11) holds.

2. Higher dimensions

In this section we shall prove the results stated in the introduction in a
slightly stronger version.

The following facts will be used in the proofs. Let (M, g) be a simply
connected complete Riemannian manifold of dimension n ^ 3 with sectional
curvatures K satisfying -A2 < K < -B2. Let p denote the distance function in
M to a fixed point 0. Then

(2.1) B(coth Bp)H < D2p < Λ(cothΛp)#,

where H = g — dp ® dp and D2ρ denotes the covariant Hessian of p. This
estimate is well known (see [3]). Also we have

(2.2) |vp | 2 = l;

from (2.1) we get

(2.3) Δ g P > B(n - 1),

where Δ g is the Laplace-Beltrami operator in M; and if S(x) denotes the scalar
curvature associated to (M, g) then

(2.4) -A2n(n - 1) < S(x) < -B2n(n - 1).

Theorem 4. Let (M, g) be as above with positive constants A & B satisfying
1 < A2B~2 < (n - l)2/n(n - 2) and let S(x) be a Holder continuous function
defined on M such that -a2 < S(x) < -b2 < 0 for x e M\M0, where Mo is a
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compact set and a ^ b are positive constants. Then there exists ε > 0 such that

there is a C2-solution of (2) which is bounded between two positive constants

provided S(x) < ε for all x e M. If S(x) < 0 for all x e M, then the solution is

unique.

Proof. As in §1 we use the method of lower and upper solutions. Without

loss of generality we may assume that M is connected. Let

(2.5) u + (x) = α(l + e~8^)β

with α, β, δ > 0 to be chosen. A calculation shows (using (2.2))

ύ>gu + = αj8(l + e-8p)β~2[(l + e-
8p)e-8p(δ2 - δΔ g P ) +(β - l )*- 2 *>δ 2 ] .

If we fix βδ = B(n - 1) and then choose δ > 0 small enough we have

Δgw + < 0. Choosing p0 so that S(x) < -b2 for p0 < p(x), we can choose α

large so that

(2.6) cnAgu + + S(x)u»^Su+ forp>p0,

where cn = 4(n - l)/(/ι - 2) and TV = (/i 4- 2)/(n - 2). We shall now show

that δ, ε > 0 can be chosen small so that

(2.7) c n Δ g ί i + + ε « ί < S«+ forO < p < p 0 .

Using the fact that 5 ( x ) < ε w e find u+ is an upper solution.

To prove (2.7) we need to show

cnβδ——- [ P l ) \ δ + δ - Δ g P
n 1 + e'8f) [ 1 + e~8p 8

Using (2.3) and (2.4) it suffices to prove

(β-l)e^
f.pu — | —

(2.8) l + e-8pL 1 + e

cnβ8— KH ίf\ 8 + 8-B(n-l)
n^ Λ , -fin I -i . y-δp v '

Since βδ = B(n - 1), letting δ -» 0 we find

c"β8\T7'i

Thus to prove (2.8) it is enough to show

(2-9) - ^ f * 2

 + e«V<»-2>C<-^(W-l),

where C = 24β/("~2). This follows by selecting ε sufficiently small, since

A2B2 < (it - l)2/n(n - 2).
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Since S is bounded below on M, it is enough to choose a small positive
constant as a lower solution. This establishes the existence of the desired
solution. (Since w+ is not C1 at 0 we technically should consider our solution u
on M\ {0}, or weakly on M. But local regularity then shows u is C2 at 0.)

To prove uniqueness we invoke the generalized maximum principle as in the
proof of Theorem 1. (The function φx(y) = \f(pl(y)\ where ρx(y) denotes the
distance from x toy, and \p(t) is a C°°-function with \p(t) = 1 for / < 1/2 and
ψ(r) = 0 for t ^ 1, satisfies the hypotheses of Theorem 3.76 in [6] since φx and
I Vφx\ are bounded independently of x and (2.1) and (2.2) may be used to verify
φ* > -Cgu with constant C independent of x.) Indeed, letting u = In u, the
equation (2) becomes

If this equation has two bounded solutions v1 and υ2, let w = t^ — υ2. Then

Δgw = I W2\
2 - I VϋJ2 - c^Sίέ?4"1*11-^ - e4θ2Λn-2)).

Applying the generalized maximum principle we have

since

( f ) ) .) -> 0,

and we can proceed as in the proof of Theorem 1.
Remark. The restriction A2B~2 < (n — l)2/n(n — 2) is only necessary to

allow S to be positive inside Mo; if S < 0 on M, then we can allow A2B~2 =
(n - l)2/n(n - 2). As mentioned in the introduction, if -a2 < S(x) < -b2

for all x e M, constants may be used as upper and lower solutions and no
restriction on the ratio A/B is needed.

Next, we shall show the equivalent of Theorem 3.
Theorem 5. Let M be as in Theorem 4 and let S(x) = S(x) + H(x) where

sup{e8oP(x)H(x): x e M) < oo for some 80 > 0. If S(x) < 0, then there exists
a unique solution u of (2) such that l i m ^ ^ ^ u(x) = 1.

Proof. As in Theorem 4 we shall assume that M is connected. Also as in the
proof of Theorem 4 it suffices to construct lower and upper solutions. Let

tt + (jc) = ( 1 + *-•'<*>)*.

Since u+(x) > 1 and S(x) < 0, we have w+ ̂  u+ and

crtΔgW + + 5(x)wΐ< cwΔgM + + 5(JC)W++ H(x)u+.

Therefore, to show that w+ is an upper solution it is enough to have

(2.10) c w Δ g W + +//(;c) W + < 0 .
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We first observe that (2.10) holds if

cnβδ \(β-l)δe-8p

 | &

1 + e'8p
(2.11) e8pH{x) < 0.

1 + e~ι

Letting βδ = B(n - 1) with β - 1 > 0, and using e~8p(l -h e~8p)~ι < 1/2
and (1 + e~8p) < 2, we can choose δx < min(δ0, 5(« — l)/2) and observe that
to obtain (2.11) it is enough to have

(2.12) e8pH(x) < 0

for some δ satisfying 0 < δ < δv But e8°p(x)H(x) being bounded implies there
exists p0 such that (2.12) holds for all p > ρ0 and all δ with 0 < δ < δv To
prove (2.10) for p < p0 we proceed as in the proof of Theorem 4. Indeed we
use the fact that S(x) < 0 to obtain -H(x) ^ S(x) > -A2n(n - 1), then we
write (2.10) as (2.8) (with ε = 0) and let δ -+ 0.

As lower solution we consider

A calculation shows

- ϊ)e

Since 0 < w_< 1 and 5(JC) < 0 it suffices to prove

(2.13) C A M - + H w - ^ °
Calculations show that to have (2.13) it suffices to show

(2J4) (Γ^)h- 1 ) - s + < "- 1 ) (ΓT
H(x)e8

0.

But

(1 - ae-8pγl > 1.

Thus choosing βδ = Λ(n - 1), δx < min(δ0, ̂
observe that to have (2.14) it is enough to obtain

- 1)), and (β - 1) > 0, we

0

for some δ satisfying 0 < δ < δv Since a^ \ there exists p0 such that for
p > ρ0 and 0 < δ < δ l 9 (2.13) is satisfied, independent of the choice of a. To
prove (2.13) for p < p0, let δ -> 0: the left-hand side of (2.14) converges to
cna{\ - a)~ιB2(n - I) 2 , so it suffices to decrease δ and to take a close to 1.
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Remark. It is interesting to observe that we may weaken the hypothesis on

the ratio A/B if S is strictly negative. In fact, if S(x) < -I2 for x e M then

Theorem 5 holds provided:

For / = 0 this reduces to the case of Theorem 5.

Corollary. If M = Hn(-1) realized as the unit ball in Rn with Poincare

metric, and S(x) = -n(n — 1) 4- H(x) where

sup{(l -\x\)~'°H(x): x e Hn(-Ϊ)} < oo

for some δ0 > 0, then the conclusions of the theorem hold.

The proof of this corollary follows from the facts that if we choose 0 to be

the origin, then ρ(x) in Hn(-\) is given by

p(x) = log _r r=\x\;

and also because the scalar curvature is given by -n(n — 1).
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