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ISOPARAMETRIC SUBMANIFOLDS AND THEIR
COXETER GROUPS

CHUU-LIAN TERNG

0. Introduction

In the later 1930's Elie Cartan defined the notion of isoparametric functions
on a space form TV and began their study [4]-[7]. A smooth function/: N -> R
(N = ^ " + 1 , Sn+ι or Hn+ι\ is isoparametric, if Δ/and | v/ | 2 are functions of
/. Among other things Cartan showed that the level hypersurfaces of / are
parallel, and each has constant principal curvatures. And conversely, he
showed that if M is a hypersurface of N with constant principal curvatures,
then there is at least a local isoparametric function having M as a level. Cartan
called such a hypersurface isoparametric. In the last ten years, many people
carried forward this research [19, 25]. Finally around 1980, Mύnzner [18]
completed the beautiful structure theory of isoparametric hypersurfaces in the
spheres, and thereby reduced their classification to a (difficult!) algebraic
problem. Many people subsequently made contributions to this classification
problem including U. Abresch [1], D. Ferus, H. Karcher, H. F. Mύnzner [15],
et al. While there has been considerable recent progress, it seems much remains
to be done. By and large, the theory of isoparametric hypersurfaces has been a
special subject by itself; however in recent years there have been applications
to the theory of harmonic maps [12], and minimal submanifolds [14, 19, 23].
Recently, Eells [12] gave a definition of isoparametric maps for the purpose of
constructing harmonic maps. S. Carter and A. West [3] gave a stronger
definition of isoparametric maps from Nn+m to Rm; their purpose being to
generalize Cartan's work to higher codimension. Using their definitions, they
were able to show that there is a Coxeter group (i.e., a finite group generated
by reflections) associated to each isoparametric map/: Nn+2 -> R2. However,
they did not obtain a similar result for larger m. They were also unable to
construct a global isoparametric map for a given isoparametric submanifold.
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However, this work of Mϋnzner and Carter-West was instrumental in suggest-
ing to me many of the ideas in this paper, whose main goal is to generalize
Cartan's theory of isoparametric functions and hypersurfaces to a general
theory of isoparametric maps and submanifolds.

In this paper, we make the following definitions:
Definition 1. A complete, connected, smooth ^-dimensional submanifold

M of Nn+m (N = R"+m, Sn+m or Hn+m) is called isoparametric if the normal

bundle is flat and the principal curvatures of M in the directions of any
parallel normal vector field are constant.

Definition 2. A smooth map / = (fn + ι, 'Jn+m): N" + m -* Rm i s c a l l e d

isoparametric if

(0)/has a regular point,
(1) v/α Vfβ and Δ/α are functions of/, for all a, β,
(2) [ V/α, Vfβ] is a linear combination of V/Λ + i, , V/w+m with coefficients

being functions of/, for all α, β.

Our definition of isoparametric map is stronger than Eells' and weaker than
Carter-West's. All three definitions agree with Cartan's when m = 1. We will
show that a compact isoparametric submanifold M" of Rn + m is isoparametric
in Rn + m if and only if Mn is contained and isoparametric in a standard sphere
of R"*m. We also show that a noncompact complete isoparametric submani-
fold Mn of Rn + m is always a product Rmι X M^~m\ where Mx is a compact
isoparametric submanifold of Rn+m~mι for some mv Therefore, in the follow-
ing discussion, we will assume N = Rn+m and Mn is a compact isoparametric
submanifold of Rn + m. Since the set of all isoparametric hypersurfaces of Sn+ι

is the "same" as the set of all compact isoparametric submanifolds of Rn+2 of
codimension 2, Mϋnzner's results gave a complete structure theory for them.
There are many homogeneous and non-homogeneous codimension 2 isopara-
metric submanifolds in Rn+2 [15, 20, 25]. There are also many examples from
transformation group theory for higher codimension [22]. For example, a
principal orbit of the adjoint action of a compact Lie group G on its Lie
algebra © is always isoparametric. More generally, if G acts on Rn orthogo-
nally with a section [22], i.e. there is a submanifold F of Rn which meets every
principal orbit orthogonally, then the principal orbit is isoparametric in Rn. In
particular, these representations include the isotropy representations of sym-
metric spaces. Conversely, suppose G acts on Rn orthogonally and M is an
orbit of G such that M is full and isoparametric in Rn. Then this section admits
a section and M is a principal orbit of G [22]. Therefore all homogeneous
isoparametric submanifolds are obtained from the principal orbits of linear
orthogonal actions with sections. A simple example of a linear action with
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section is the action of O(n) on the space S of real symmetric trace zero n X n

matrices via conjugation. Then the canonical form in linear algebra for

symmetric matrices implies that F = {a e S\a'ιs diagonal} is a section for this

action. F is also the normal plane of the principal orbit at diagίλ^ , λ j ,

where λ/s are distinct. The O(«)-invariant polynomial map /: S -> Rn~}

defined by f(a) — (tr^ 2,- , t rα") is an isoparametric map. The principal

orbit type is O(n)/H, where H = 0 /

/ ί

= 1 Z 2 . The "Weyl group" N(H)/H = Sn

is a Coxeter group on Rn~ι. One main conclusion of this paper is that these

results still hold even if we replace the principal orbit by an arbitrary, not

necessarily homogeneous, isoparametric submanifold M, and replace the orbit

foliation by the family of all parallel submanifolds of M. Therefore, this

example can be thought as a concrete model for the theory of isoparametric

submanifolds.

A submanifold Mn of Rn + m is called full if M is not contained in any

hyperplane of Rn + m. The proof of the following theorem is rather straight

forward, and it will be given in §2.

Theorem A. ///: Nn + m -> Rm is isoparametric, then connected components

off~ι(c) are isoparametric for regular value c, and all regular submanifolds off

are parallel.

Conversely, given an isoparametric submanifold Mn of Rn + m, we can

construct an isoparametric map / with M being a regular level of /. And there

are many interesting facts that turn up in our proof of the converse.

Let Mn be full and isoparametric in Rn + m. We show that the holonomy

group of v(M) is trivial, in particular there is a global orthonormal parallel

normal frame field ea(n + I ^ a *^ n + m) on M. And there exist/? distribu-

tions Ei such that TM = θ ^ i ? , , and the second fundamental form in the

direction of ea restricted to Et has only one eigenvalue nf of multiplicity mi9

and ni• = (n" + ι,- ,«Jί + m ) are p distinct vectors in Rm. In §1, we prove that

the group W generated by the p reflections Rt of Rm along « l 5 -,np is an

effective Coxeter group. We call W the Coxeter group associated to M. We also

show that Et is integrable, with leaf being an mΓdimensional sphere of radius

1/|Λ, |. And the focal set of M at q is the union of/? hyperplanes /,(#) in the

affine normal plane q + v(M)q. Each /,(#) is perpendicular to the leaf of £,

through q at its center. Moreover, we show that the group generated by the p

reflections of the affine normal plane at q in lt(q) is isomorphic to W.

Therefore, we have

Theorem B. Let Mn be a full compact isoparametric submanifold of Rn + m,

W the associated effective Coxeter group on Rm. Then

(i) W acts on M via diffeomorphisms; R^ corresponds to a diffeomorphism φ7,
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where φj(q) is the antipodal point of q on the leaf (sphere) ofEf through q.

(ii) W acts on the affine normal plane q + v(M)q via rigid motions, # ,

corresponds to the reflection Ttof q + v(M)qin lt(q). Moreover, Tt(q) = φ ;(#).

If M is the principal orbit of the isotropy representation of a symetric space

G/K, then the associated Coxeter group in Theorem B for M is the Weyl

group (hence is crystallographic) [16], q + v(M)q is a maximal Lie triple

system, ni is always proportional to some root, and mi is the number of roots

proportional to nt. Geometrically, mt is the difference of dimensions of the

principal orbit and the subprincipal orbits [22]. So the following theorem can

be thought as a generalization of Chevalley Restriction Theorem [26] to

isoparametric submanifolds.

Theorem C. Let Mn be full and isoparametric in R" + m, W the associated

Coxeter group, q ^ M a given point on M, and V the affine normal plane

q 4- v(M)q. If u: V -* R is a W-invariant homogeneous polynomial of degree k,

then u can be extended uniquely to a homogeneous degree k polynomial f on

Rn + m, which is constant on M.

Now we only need to use another theorem of Chevalley to obtain the

converse of Theorem A.

Theorem (Chevalley [9]). // W is an effective Coxeter group on Rm, then the

ring of W-invariant polynomials on Rm is a polynomial ring on m generators

Applying Theorem C to these generators ux, , um, we obtain

Theorem D. Let M, W, q, and V be as in Theorem C, and let uλ, - - ,umbe a

set of generators of the W-invariant polynomials on V. Then u = (w1?- ,wm)

extends uniquely to an isoparametric polynomial map f: Rn + m -> Rm having M

as a regular level set. Moreover,

(1) each regular level set of f is connected,

(2) the focal set of M is the set of all critical points off,

(3) V Π M = Wq,

(4)f(R" + ™) = u(V),

(5) for v G V,f(v) is a regular value if and only if v is W-regular. We call f the

Cart an polynomial map for M corresponding to the w,.

The proof of Theorem C and D are given in §3.

We also obtain a structure theory for isoparametric submanifolds. An

isoparametric submanifold M" of R"+m is called irreducible if M cannot be

written as a product of two lower dimensional isoparametric submanifolds. We

show that every isoparametric submanifold can be written uniquely up to

permutation as a product of irreducible ones. Moreover, M is irreducible if and

only if the associated Coxeter group is irreducible. Therefore it suffices to



ISOPARAMETRIC SUBMANIFOLDS 83

classify all irreducible ones. It is obvious that if /: Rn+m -> Rm i s isoparametric

and φ: Rm -> Rm is a diffeomorphism, then φ ° / i s also isoparametric. How-

ever, if we fix a set of generators for each Coxeter group, then the polynomial

isoparametric map obtained in Theorem D is unique. The proof of Theorem D

also provides an algebraic system of equations (completely determined by the

Coxeter group Wand the multiplicities my), of which/is a solution. Moreover,

given any irreducible Coxeter group W on Rm with the positive root system

Δ + = {rl9 -,rp) and positive integers mi associated to each positive root η

(such that mi = mj if η and η are in the same orbit of W) the solutions of the

algebraic system associated to Wand mi are isoparametric maps from Rn + m to

Rn\ where n = Σf = 1 m, .

Let q0 be a fixed point in an isoparametric submanifold Mn of Rn + m, and

q = q0 + v e q0 + v{M)^. Then there is a unique parallel normal field V on

M such that F(# o ) = υ, and the parallel set through q, Mq = {x + F(JC)|JC G

M } , is tf/wtfjtf a smooth submanifold. Moreover, {M^} defines a singular

foliation of Rn + m, which has M as one regular leaf, and all other regular leaves

are also isoparametric. If M is a principal orbit of a linear action p with a

section on Rn + m, then this singular foliation is the orbit foliation of p. To

describe the general case in more detail, let U be the fundamental region of the

Coxeter group W action on q0 + v(M)qo. Then Uis a simplicial cone, and Uis

the leaf space. If q e Int(σ), where σ is a /:-dimensional simplex of U and σ is

open in Πy = 1 /,, then the leaf Mq through q has dimension n — Σr

j=ι mι;.. Since

we construct this singular foliation of Rn+m from M by a purely geometric

construction, the geometry of this foliation is part of the geometry of M. There

are also applications to the theory of harmonic maps and minimal submani-

folds just as in the homogeneous case [14,17, 21], even though in general there

is no Lie group action around. We show in §4 that the Gauss map for each leaf

is harmonic. We also prove that for each A>dimensional simplex σ as above,

there is a point qk e σ Π Sm~ι such that the leaf through qk is a minimal

submanifold of S" + m~1 of dimension n - Σr

J=ι m^.

So it is rather clear that isoparametric submanifolds and their singular

foliations can be viewed as geometric generalizations of the principal orbits

and the orbit foliations of linear actions with section. By studying the geometry

of isoparametric submanifolds, we obtain a more clear geometric picture of

these homogeneous spaces and their actions. It seems that Riemannian geome-

try also gives a different method to study invariant theory. For example, as a

consequence of Theorem C, we see that if G acts on Rn orthogonally with a

section then the ring of G-invariant polynomials on Rn is a polynomial ring.

The author would like to thank Richard Palais for many useful discussions,

especially in the theory of transformation groups.
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Added in revision. Professor G. Schwartz showed us a preprint of a paper by
J. Dadok titled "polar coordinates induced by actions of compact Lie groups"
[11], and pointed out to us that Dadok's definition of polar representation is
equivalent to our definition of a linear action with a section. Moreover, Dadok
classified polar representations in this paper and using his classification he
showed that given any polar representation p: G -> O(n) there is a symmetric
space G/K and an isometry A: Rn -> T(G/K)eK such that the orbits of p are
mapped under A to the orbits of Ad(K). We have also since noted a paper by
L. Conlon [10], which has many of Dadok's results. Therefore, all the homoge-
neous isoparametric submanifolds are obtained from the principal orbits of the
isotropy representations of symmetric spaces.

Some further progress has been made in understanding the nature of
isoparametric submanifolds. For example, we have shown that the associated
Coxeter group W for an isoparametric submanifold must be crystallographic,
i.e. W is a Weyl group, and that in each irreducible example at most two
distinct integers occur as multiplicities. Moreover, the homology and cohomol-
ogy of isoparametric submanifolds can be computed from their Dynkin
diagrams and multiplicities. These results will be reported in a separate paper
by W. Y. Hsiang, R. S. Palais, and the author. It is also shown by the author in
another paper that the convexity theorem of Kostant can be generalized to
isoparametric submanifold Mn in Rn+m, namely the image by orthogonal
projection of M to a fixed normal plane v(M)x is the convex hull of the orbit
of xQ under the Weyl group of M.

1. Isoparametric submanifolds

In this section, we will study the geometry of isoparametric submanifolds
and associate to such manifolds Coxeter groups.

To set notations, we will review briefly the local geometry of submanifolds
of Euclidean space. Let M be an ̂ -dimensional submanifold of Rn+m. We
choose a local orthonormal frame field ev- -,en+m on Rn+m such that
e l 5 ,ew are tangent to M. Let X be the position vector of M, i.e., X is the
inclusion map from M to Rn + m. Let wl9- ,vvπ+m be the dual coframe. We can
write

(1.1) dX^Σ^i^i, deA=ΣwABeB.

i B

Henceforth, we shall agree on the index ranges

1 < /, j , k < w, n + 1 < α, /?, γ < n + m, 1 < A, B,C < n + m.
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The structure equations of Rn+m are

(1.2) dwA = ΣwABΛwB, ^ +
B

Restricting these forms to M, we have

(1.3) dwi = Σ w /yΛ wj9 wl7 + wyι = 0,
7

έΛv/y. - J>,.* Λ w*y = - Ω / 7 = - Σ > / α Λ w,α,
k a

where (u>/7) is the Levi-Civita connection and Ω is the Riemann tensor of M.

There is also an induced connection on the normal bundle v(M), namely

Dea = Σ^ waβeβ. Then dwaβ + Σ γ waγ A wyβ = -Qaβ, where ttaβ = Σ, wia A

wiβ is the normal curvature of M. We say that v{M) is flat if the normal

curvature is zero. A normal vector field v is parallel if Dv = 0.

Suppose v(M) is flat, then locally we can choose a normal orthonormal

frame field ea on M such that waβ = 0. The two fundamental forms are

α

The eigenvalues of II α with respect to I are called the principal curvatures of M

in the directions of ea. And H = Σ α Haea is the mean curvature vector, where

Ha = Σ, Λ" is the mean curvature in the direction ea.

1.1. Proposition. Suppose M" c Rn + m has flat normal bundle, then locally

there exists an orthonormal frame field eA such that ea is parallel and the II a are

diagonalizedsimultaneously, i.e., waβ = 0 andwia = λ^w,.

Proof. We have noted that there is a local orthonormal normal frame ea

such that waβ = 0. Then

k

= " Σ (hiXj-hijh^AWj.
k, / <j

So ΛaAβ = AβAa, where Aa = (Λ?7 ). Hence there is an orthonormal local

tangent frame field el9 - ,en such that Λα is diagonal for all α, i.e. h^ = λ"δ/7,

or equivalently wia = λ'Jw,. q.e.d.

It follows from Definition 1 that if Mn is isoparametric in Sn+m, then M" is

also isoparametric in Rn+m+ι

m Later in this section we will show that a

compact isoparametric submanifold of Rn+m is contained and isoparametric in

a suitable standard sphere. So we will concentrate on isoparametric submani-

folds of Euclidean space.
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We will derive in the following some geometric properties of an isoparamet-

ric submanifolds M in Rn + m. Since v(M) is flat, Proposition 1 gives a frame

field eΛ such that waβ = 0 and wia = λ^w,, where λ" are constant on M. So

there exist uniquely eigen-distributions Ex,-,Ep for II with dimensions

mι,'' ,mp respectively, such that UJEj has only one eigenvalue «? with

multiplicity m,, and ni = ( Λ " + 1 , -,n" + m) are p distinct vectors in Rm. We

arrange our indices so that {ek\Σ,{zl mi < k <, Σ/ = 1 mι} is a base for Ej. Next,

we consider the following normal vectors υt = Σanfea. The i /s are indepen-

dent of the choice of the parallel frame ea. To see this, let e * = Σ^ ̂ ^ be

another local parallel normal frame. Then (saβ) is a constant m X m orthogo-

nal matrix, and

So it follows that

We call these i /s the curvature normal vectors of A/. If M" is isoparametric in

R" + n\ then M is obviously also isoparametric in Rn + m+ι. χ o avoid this

redundancy, we make the following definition:

1.2. Definition. A submanifold Mn of Rn + m is full if M is not contained in

any hyperplane of R" + m.

1.3. Proposition. Art isoparametric submanifold Mn in Rn + m is full if and

only if the curvature normals υl9- -,vpspan v{M). In particular, if Mn is full and

isoparametric in R"+m, then m < n.

Proof. It is obvious that υl9 , vp span v(M) if and only if the rank of the

m X p matrix iV = (w1? ,np) is m. Suppose M is contained in a hyperplane

normal to (1,0, ,0) in Rn+m. Then we can choose en + λ = (1,0, ,0) e

R" + m, so λ^ + 1 = 0 for all /, and V3Lnk(nv- -,np) < m - 1. Conversely, if

r a n k ^ , - - -,np) < m, then there is a nonzero vector c e Γ such that c Λ,

= 0 for all 1 < / < / ? . We claim Σ α cαeα is a constant vector Z> in Rn+m. To see

this, we calculate the differential of the map Σ α caea on M:

ΣCadea = " Σ^aλ>iei = ~ Σ^ ' * & E,

Then it follows that

Hence X b = a constant c0, i.e. M is contained in a hyperplane. q.e.d.

Next, we study the holonomy of v{M).
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1.4. Proposition. Let Mn be full and isoparametric in Rn+m^ and υx, ,f its

curvature normal vectors. Then the holonomy group G of v{M) is a subgroup of

the permutation group Sp. Moreover, if vl9—-,up have distinct length, then

G = {id}.

Proof. Let r: [0,1] -> M be a closed curve in M with r(0) = r{\) = q.

Suppose parallel translation of ea(q) along r is given by Σβaaβeβ(q% i.e.

A = (aaβ) is in G. From the definition of isoparametric, there exists a

permutation σ of 1,2, ,p such that

Let nv- - -,np be as before, then we have Ant = «σ(/), i.e. G c S .̂ If nl9- - j ^

have distinct length, then since A is orthogonal we conclude that A = id.

q.e.d.

Remark. In the end of §3, we will show that the holonomy of v(M) is

always trivial.

For the remainder of this paper until 3.5, we will make the following

standing assumptions:

(1) Mn is always assumed to be full and isoparametric in Rn + m with the

inclusion map X: M -> Rn + m, and the holonomy of v(M) is trivial.

(2) ei is a local orthonormal tangent frame field and ea is a global orthonor-

mal parallel normal frame field on M. Such that

(1.4) wα/ϊ = 0, wia = λyi9

where λ" are constant.

(3) Let El9 - - ,Ep be the unique eigendistributions on M for II. We let ra7 be

the rank of Et, and arrange our indices so that £, is spanned by {ek\Σfĵ \ m} <

k < Σ y = 1 w 7 } . Obviously Σ J = 1 w 7 = n.

(4) Let

p-1

Then nv- - ^ ^ are /? distinct vectors in Λm. The vectors υ = Σ α «fe α are the

curvature normal vectors of M.

For a given global orthonormal parallel normal frame ea9 we define a

normal bundle map

Y: MnxRm -> / r + w , y(ήf, z) = ̂
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Geometrically, Y(q + Rm) = q 4- v{M)q is the affine normal plane at q, we

denote it by Nq\ and Y(M X {z}) is an w-dimensional submanifold parallel to

M in Rn + m for almost all z. The differential of Y is

(1.5)

So we have

1.5. Proposition. The critical point set of Y is M X Λ, where Λ w ίλe union

ofp hyperplanes /, in Rm defined by the linear equations 1 = nx, z/or / = 1, ,/?.

1.6. Definition. The focal set Σ of M in Λ w + m is the set of all critical values

of the normal bundle map Y.

Focal set is well defined and independent of the choice of ea. To see this, we

let 7r: v(M) - > M b e the normal bundle, and Ϋ: v(M) -> Rn + m the map

defined by Ϋ(v) = π(υ) + v. Then we have a canonical isomorphism φ:

M X # m -> ?(M) with φ(x, z) = Σazaea(x), and 7 = y o φ. Then the focal

set of M is the set of all critical values of 7, i.e. the focal variety of M in the

classical sense.

It is obvious that we have

1.7. Proposition. Σ = Uq€ΞMΣq, when Σg is the union of the p hyperplanes

h(9) = γ(4 x li)in Ng = 9 + V(M\ where lt is the hyperplane of Rm defined by

z-ni = 1.

In order to understand the eigendistributions, we need some formulas for the

Riemannian connection of M in terms of £,. Using (1.4) and the structure

equations, we have

dwia -diXy,) = λ«<Λv, = λ « I > , 7 Λ wj

wja

so

Suppose

then we have

7 . *
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SO

Therefore we have

1.8. Proposition. Let wfj = Σk riJkwk. If ei9 ek e EiχJ ej e Ei2, and iλ Φ i 2 ,

then rijk = 0.

Using this proposition, we can obtain the following results for the eigendis-

tributions:

1.9. Theorem. Suppose Mn is full and isoparametric in Rn+m

9 then for all

1 < / < p, we have

(i) Ei is integrable.

(ii) // ni Φ 0, then the leaf L, of Ei through q e M is an m --dimensional

standard sphere of radius l/|flz | with center c,. Moreover q + ^(^)/ | «/ | 2 = cjor

all q e L/? and lt{q) intersects the (mi + \)-dimensional plane spanned by Li

orthogonally at ct.

(iii) Ifnf = 0, then L, is an m rdimensional plane ofRn+m.

(iv) If M is compact, then nt Φ 0 for all I ^ / < p.

(v) Let Tj denote the reflection of Nq = q + v{M)qin the hyperplane lt(q) if

nt Φ 0, and 7]. = id ifni = 0. Then Tt(q) e M.

Proof. For simplicity, we assume / = 1. Eλ is defined by the following

1-form equations on M:

wk = 0, mλ < k < n.

Using the structure equations and Proposition 1.8, we have

dwk = £ wki A wt = Σ rkij™j Λ wf = 0.

By Frobenius theorem, Eλ is integrable.

Let L x be the leaf of Eλ through q. Then the above calculation also shows

that wik = 0 for / < mv k > mv To compute the curvature of L 1 ? we use (1.3)

0,7 = Σ Wik Λ Wkj + Σw, a Λ ŷα = l«ll *i Λ ^

So L x has constant sectional curvature \nλ\
2. If nλ = 0, then we have wik = 0,

w . α = o for k > m1, n < a < « 4- m; i.e. L x is totally geodesic in JR
W + W. So if

nx = 0, then Lx is an m^dimensional plane of Rn + m, which proves (iii) and

(iv). To obtain (ii), we divide the proof into four steps.

Step 1. The map X + ( l / K | 2 ) Σ α < e α maps Lx to a constant vector cλ in

/ Γ + " \ In particular, cλ = q + ^i(^)/|«χ|2 for all £ e L x.
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This can be seen directly from the differential of this map. We have

which vanishes on Ev

Step 2. £x = Eλ + v{M)\Lλ is a fixed linear (mι 4- w)-subspace of Rn + m.

We define a map g: Lλ -> Gr(w x 4- w, « 4- m) by g(x) = the (m1 4- m)-

plane Eλ(M)x θ ^ ( M ) x . Then locally, we can write

g = ex A Λ e m Λ βrt + 1 Λ en + m.

Using (1.1), we have

ί/g = 2I wi/t^i ^ '' * A ek A - - - A em Λ e π + 1 Λ Λ en + m

+ ^ wakei Λ ' ' ' A em A e w + 1 Λ ' ' ' A e.' m m A en + m .

k>mλ a
a

But w/A = 0, u;α^ = 0 on L x for / < w l 5 A: > m^ So rfg = 0.

Ste/? 3. Lx is contained in the {mλ 4- w)-plane Vx = cλ + ξv This follows

from Steps 1 and 2.

Ste/? 4. The second fundamental form II of Lx in Vx is (ΣJ"1 w?)vv

We have w/λ = 0 on Lλ for k > mv so II ek = 0. Suppose Σazaea is

peφendicular to ι;x = Σ α nxea, i.e., z nλ = 0 , then II Σ α zaea =

ΣΓJi(«i * z)w} = 0. Similarly

Finally to prove (v), we note that Tx(q) e Lx c M. q.e.d.

Because 7](g) is the antipode of q in the sphere Lf , q goes to 7](^r) gives a

well-defined involution on M, i.e. we have

1.10. Corollary. Suppose «, Φ 0, flw<ί φ^ M -+ M maps q to the antipodal

point of q in L, , where Lt is the leaf of Ei through q. Then φf = id. In particular,

we have

is a diffeomorphism.
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If nι: = 0, we let φ, = id.

Next we study the general parallel submanifold of M given by the normal

bundle map Y of M.

1.11. Proposition. Let X* be the map from M to Rn+m given by X* = Y\M

X {z}, i.e. X* = X + Σazaea. Then M* = X*(M) is an n-dimensional im-

mersed isoparametric submanifold of Rn+m if and only if 1 - z nt Φ 0 for all

1 < / < / ? . Moreover, if q* = X*(q), then M* and M have the same normal

plane and focal sets at q and q* respectively.

Proof. Using (1.5), we have

p

dX*= £ ( 1 - z-nj id Er

/ = 1

So dX* has rank n if and only if 1 - z ni,Φ 0 for all 1 < / < p.

We may choose the following local frame on M *:

Then

<β = de* - el = waβ = 0,

w,α = λ > , =

which implies that M * is isoparametric, e* is a global parallel normal frame on

M*, and

Since we have

the focal sets at q and q* are the same, q.e.d.

We call an M * as in Proposition 1.11 a parallel submanifold of M. Using

Corollary 1.10 and Proposition 1.11 we have

1.12. Proposition. Ifni Φ 0, then 1 - 2(ni Πj)/^^2 never vanishes for any

1 < j < p.
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By examining more carefully the involutive diffeomorphism φ, , we obtain
1.13. Theorem. Suppose ni Φ 0. Let φt(q) = q + 2i;/(^)/|«,|2 be th

morphism associated to the distribution Et. Then the following hold:

(i) There exists a permutation σ, of 1,2, •••,/?, swc/z that ot{i)= /,

Ejiφjiq)) = Eσ(j)(q)for all q e Λf. In particular, we have mj = mai{jγ

(ii) Leί eα denote the normal frame field defined by ej^φ^q)) = ea(q). Then e

is again a global parallel normal frame on Λf, and

<"« = L ^ - 2 — - \eβ,
β \ni\ I

i.e., ea = Sjβa, where S, is the reflection ofv(M)q along vf(q).
(iii)

(iv)

S,(o, (9)) = «,(«,(?)) for all

(v) Lei /?, 6e ί/ie reflection of Rm along «,. ΓΛen

- 1

»
ι«,ι2 ' ""(Λ

Proof. We will assume / = 1, and ^' = φχ(#). It follows from Proposition
1.11 that ΓΛf̂  = TMqf, and Eλ{q),- ,Ep(q) are eigenspaces of the second
fundamental form II of Λf at qf. Hence there is a permutation σ (which may
depend on q) of 1,2, ,/? such that Eσ(J)(q) = Ej(q'). It follows from
Proposition 1.11 that ea = eα ° φx is a global parallel normal frame on Λf, so
ea, ea, differ by a constant O(m) matrix. To determine this matrix, we
compare ea(q') and ea{q'). Note that ea(q') is the parallel translation of ea(q)
on Λf along a path γ joining q and q' with respect to the normal connection of
v(M). But parallel translation in p(Λf) is independent of the path, so we can
choose γ to lie in the leaf Lx of Ex through q. From Theorem 1.9, there is an
(mλ + m)-dimensional plane Vλ such that Lx c Vλ, and the normal bundle of
Lx in Vλ is equal to v(M)\Lι. Therefore, parallel translation of ea(q) to qf

along γ with respect to the normal connection of *>(Λf) is the same as with
respect to the normal connection of Lx in Vv Then it is easily seen that ea{q')
is the reflection of ea(q) in v{M)q along vλ{q), i.e.,

κι2
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So we have

ι\ Kl2

For the corresponding curvature normal vectors we have

= » , ( < ? ) -

On the other hand, £,(<?') = Eσ(n(q) and (1.8) imply that

1 2n1

Therefore we obtain (v). This also proves that σ is independent of q. The rest of

the theorem follows, q.e.d.

According to (v) of Theorem 1.3 the p reflections Rl9- ,Rp permute the

corresponding p reflection hyperplanes, so the root system of the group W

generated by Rv- ,Rp is finite. Then it follows from the basic theory of

Coxeter groups [2, Proposition 4.1.3, p. 37] that Wis a Coxeter group.

1.14. Theorem. Let Mn be full and isoparametric in Rn + m, ea a global

parallel normal frame, and vt = Σ,an
(fea the curvature normal vectors. Then the

group W generated by the p reflections Rv-
 m

9Rp along nt in Rm is an effective

Coxeter group. We call W the Coxeter group associated to M.

1.15. Corollary. Let Mn be full and isoparametric in Rn+m, M* parallel to

M. Then the Coxeter groups of M and M * are the same.

Proof. Using (1.8), W* and Whave the same root system, q.e.d.

Now we are ready to prove Theorem B.

1.16. Proof of Theorem B. The group generated by Sl9- —,Sp is obviously

isomorphic to W. So to prove (ii), it suffices to prove that St St = id is

equivalent to Tiχ Tt = id. We proceed as follows: Let q' = Tiχ T^q).

Applying Theorem 1.13(iii) and (iv) repeatedly, we obtain

ϋj(q') = Stι '•' Sir( Vj(q)), Vj(q') is proportional to vσ(j) (q),

where σ = σ^ σ,v Let z e Rm such that q' - q = Σazaea. Define X* = X

+ Σazaea. Then X* is a diffeomorphism, because X* is the composition of

diffeomorphisms <>,</>, φf . The calculation in Proposition 1.11 shows that
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Suppose Tiχ •" Tir = id, then q' = q, ϋj(q') = Vj(q) = Siχ Sir(Vj(q)).

Hence 5,- S^ = id. Conversely, if 5^ Sir = id, then

which implies that wy z = 0 for all 1 <./</?. Because ΛΓ is full, Proposition

1.3 implies that z = 0, so Tiχ Tir(q) = #. From Proposition 1.11 we have an

open ball B centered at q in the affine normal plane q+ v(M)qso that for any

q = q + Σazaea(q) 6 5, X = X + Σ α z α e α defines a full isoparametric sub-

manifold M = JT(Λf) of / T + m . Moreover, q + K ^ % = ? + ^(M)^, /,(^) =

/,(#), and «, is proportional to nt. So ̂  in the above argument can be replaced

by q G 5. Therefore we have proved that the affine transformation Tiχ 7]

is the identity on B and hence everywhere. Since </>,(#) = 7] (?), (i) is a

consequence of (ii).

1.17. Corollary. There exists a vector a ^ Rm such that a Λ, = 1 /or α//

Λ ; * 0.

Proof. The group G generated by 7\, ,Tp on the affine normal plane

Nq = q 4- v(M)q is isomorphic to Ŵ , so in particular the order |G| of G is

finite. For a finite subgroup G of the affine group Nq, c = l/\G\Σg€ΞG g(q) is a

fixed point of G. Suppose c = q + Σα0αeα(<?). Then 7](c) = c, i.e. c Ξ ^(ζjr),

which implies that α Λ, = 1 for all w, ̂  0. q.e.d.

Now suppose H7 =£ 0 for all 1 < / < / ? , and α nι; = 1 for all /. We claim that

the map X + Σ α ααeα is a constant vector c ε i ? " + m o n M , because

i - l

In particular, we have | J f- c | 2 = |α | 2 , i.e., M is contained in the sphere of

radius \a\ and center c in Rn+m. Therefore we have proved

1.18. Theorem. Suppose Mn is full isoparametric in Rn+m, andni Φ 0 for all

1 < / < / ? . Then there exist vectors a Ξ Rm, c e Rn+m, such that M is contained

in the sphere of radius \a\ and center at c. In particular M is compact and

1.19. Corollary. Suppose Mn is contained in a sphere of Rn + m centered at the

origin, and M is full and isoparametric. Then there exists a vector a e Rm such

that

(ii) All the affine normal planes q + v{M)qpass through the origin ofRn+m.

Theorems 1.9 and 1.18 imply that a full isoparametric submanifold is

compact if and only if ni Φ 0 for all 1 < / < p. Next, we will discuss the case

when some «, is zero.
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If M" is full and isoparametric in Rn+m, then Mn X Rι is also full and

isoparametric in Rn+m+ι with one of the curvature normal vectors being zero.

The following theorem states the converse is also true.

1.20. Theorem. // Mn is full and isoparametric in Rn+m, and nx = 0, then

there is a full isoparametric submanifold Mλ of Rn+m~mι s u c n that M = Mx X

Rm\

Proof. B y C o r o l l a r y 1.17, a nt = 1 for all 2 < / < / ? . C o n s i d e r

X* = X + Σaaea.
a

Then Proposition 1.11 implies that

and M * = X*(M) is a flat totally geodesic submanifold of Rn+m. So M * is an

w-dimensional plane and X*\ M-* M* is a submersion. We claim that

θ / l 2 Ei is integrable. For if X*(q) = q* then ΛΓ*(L/(^)) = q* for all i > 2,

i.e.', Lf(q) c (Λ r *)" 1 (9*). Hence ( ^ * ) ~ 1 ( ^ * ) is the integral submanifold of

e / l 2 £,-. Note that © £ 2 £, is also defined by

w, = 0, i < m l 5

so

0 = dwt = Σ wik Awk=z Σ riki^ι Λ "V
k>mι k,l>mλ

Hence

(1.9) r/Ar/ = rl7Λ for / < w l 5 /c, / > mx.

From (1.6), we have

(1.10) Krikl=Krilk-
If ek, ef G Ej for some j > 2, then Proposition 1.8 implies that rιkl = 0. If ek

and e7 belong to two different eigenspaces, then (1.9) and (1.10) imply that

rikl = 0. Therefore we have that

Wik = °» Wia = °» ' < W l » * > W l

on M. Then the fundamental theorem for submanifolds of Euclidean space

implies that M = Rmχ X M, where M = X * ~ 1 ( g * ) i s a compact isoparametric

submanifold of J R r t + m " m i . q.e.d.

Next we discuss the irreducibility of the associated Coxeter group of an

isoparametric submanifold, which leads to a decomposition theorem for iso-

parametric submanifolds.

If M/1'" is isoparametric in R"i + li with Coxeter group Wt on R'% for i = 1,2,

then Mx X M 2 is isoparametric in R"i + "2+/i + /2 w i t h Coxeter group Wx X ίT2

on R'1 + /2. The converse is also true.
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1.21. Theorem. Let Mn be a compact full isoparametric submanifold ofRn + m,

W the associated Coxeter group. Suppose Rm = R*1 X R*2, and W = WλX W2,

where Wt is a Coxeter group on Rki for i = 1,2. Then there exist two lower-

dimensional isoparametric submanifolds Mv M2, such that M = Mλ X M2.

Proof. We may assume that «, e R*1 X 0, Rι; e Wx for i < px, and nj e 0

X R*2, Rj e W2 for; > pv Let a ^ Rkι X 0 such that a- n{=\ for all / < pv

Consider X* = X + Σaaaea, then dX* = Σp

j>PιΊάE. So a similar argument as

in Theorem 1.20 will show that Θ f< Et is integrable, and M is the product of

the leaf of 0 ^ Ex^ and X*(M). "q.e.d.

Therefore we make the following:

1.22. Definition. An isoparametric submanifold Mn of Rn + m is called

irreducible if M is not the product of two lower-dimensional isoparametric

submanifolds.

As a consequence of Theorem 1.20 and 1.21, we have

1.23. Proposition. An isoparametric submanifold of Euclidean space is irre-

ducible if and only if the associated Coxeter group is irreducible.

1.24. Theorem. Every isoparametric submanifold of Euclidean space can be

written as the product of irreducible ones, and such decomposition is unique up to

permutation.

2. Isoparametric map

In this section, we will prove Theorem A.

If m = 1, Definition 2 reduces to that of an isoparametric function given by

E. Cartan [4]. For m < n, S. Carter and A. West [3] gave another definition of

isoparametric map as follows: /: Nn+m -> Rm is isoparametric if A U (* A) is

closed under exterior differentiation and wedge product, where * is the

•-operator for the Riemannian metric on Nn + m and A =f*(Λ*Rm). They

show that when m = 2, their definition is equivalent to ours. However, for

general m, their definitions seem to require stronger conditions than necessary,

because of the following standard equalities:

*</*(<//,. Λ dfj) = (Δ/,) dfj - (Δ/y) df + dual of [ v/,, Vfj].

Suppose /: Nn+m -+ Rm is isoparametric, then we may assume that at any

regular point of /, there is a local orthonormal frame field el9--,en,
en,+ i>'' '>en + m w ^ dual coframe wl9- -,wn + m, such that

(2-1) dfa = Σcaβ»>β
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with mnk(caβ) = m, and caβ are functions of/, so

dcaβ = 0

Hereafter we agree on the same indices notion as in §1. It is obvious that

wa = 0 defines the level submanifolds of /. Condition (2) implies that the

normal distribution defined by w, = 0 is completely integrable.

2.1. Proposition. Let f: N"+m -> Rm be isoparametric, c = f{q) a regular

value, M = f~ι(c), and F the leaf of the normal distribution through q. Then

(i) F is totally geodesic.

(ii) v(M) is flat and has trivial holonomy group.

Proof. Take the exterior differential of (2.1), and using the structure

equations, we obtain

(2.2) ΣdCaβ Λ Wβ + ΣCaβWβi A Wi + ΣCaβWβΎ A Wγ = 0.

Because dcaβ = 0 (modww + 1, ,wM + m ) and the coefficient of wi A wy of (2.2)

is zero, we obtain

Σcaβ{-^βι(eΎ)^-wβΎ(eι)) = 0.
β

But rank(cα / 8) = m, hence

(2.3) w^(^) = wβi(eγ).

From condition (2) of Definition 2, we have

[ea^β] = Σuaβyey = Veaeβ ~ Veea

y

i y

Hence vvg,(ea) = wai(eβ). Using (2.3) and (2.4), we have

So

(2.4) wβ/,(ef.) = 0 and wai(eβ) = 0,

i.e.,

wα)8 = 0 on M, w/α = 0 on F.

We note that eα on M can be obtained by applying the Gram-Schmidt

process to V/w + 1, , V/M + m , so eα is a global parallel normal frame on M,

hence the holonomy of v{ M) is trivial, q.e.d.
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If v(M) is flat, then Proposition 1.1 states that there is a local orthonormal

tangent frame such that II α are diagonalized simultaneously for all a.

2.2. Proposition. The same notation as in Proposition 2.1. Then we have

(i) The mean curvature vector H = Σ α Haea on M is parallel.

(ii) The principal curvatures of M in the direction of ea are constant for all a.

Proof. We choose a local frame field eA as in Proposition 1.1 such that
wia = λ > f , and wα/l ΞΞ 0(modw n + 1 , ,w π + m ).

For a smooth function φ on TV, the gradient, the Hessian, and the Laplacian

of φ are given by

Then a direct computation using the given frame gives us

4fa = ΣCaβWβ' Δ/«
β β β

where Hβ is the mean curvature of level submanifolds in the direction of eβ.

Since Δ/α, caβ9 are functions of /, ΣβCaβHβ is a function of /. However

rank(ca ) 8) = m, so i/α's are functions of/, i.e. Ha

9s are constant on M. eA is

chosen so that waβ = 0, so (i) is proved.

To prove (ii), we use the same method as used by Nomizu [13] for

codimension one. We assume N = Rn + m, the other two cases are similar. Let X

be the position vector of M in Rn + m, then dX = Σ x w^y. For given ea9 and

constant t e R, we define a map on an open neighborhood U of M:

then

Therefore X*(U) = U* is an open neighborhood of a level submanifold of/

for small /. Moreover, using the same calculation as in Proposition 1.11, we

have
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The left-hand side of (2.5) depends on / alone because of (i). Therefore

Σi(λa

i)
k + ι is a function of t for all k, i.e. λ"'s are constant on M. q.e.d.

As a consequence of Propositions 2.1 and 2.2 we obtain Theorem A.

3. Construction of polynomial isoparametric maps

In this section, given an isoparametric submanifold Mn of R" + m, we will

construct a polynomial isoparametric map on Rn+m which has M as a level

submanifold. This construction is a generalization of the Chevalley Restriction

Theorem [26]. We also obtain a structure theory for all isoparametric submani-

folds.

Because of the decomposition Theorem 1.24, we may assume Mn is a

compact, full, and irreducible isoparametric submanifold of Rn+m

9 and W is

the associated irreducible Coxeter group on Rm. We will use the same nota-

tions as in §1.

Let Y: Mn X Rm -> Rn+m be the normal bundle map associated to the

global parallel normal frame ea as in §1. Then there is a small ball B centered

at the origin of Rm such that Y\M X B is a local coordinate system for Rn + m.

In particular, z nx < 1 for all z e JB, 1 < / < p. We denote Y(M X B) by Θ.

In fact, 0 is a tubular neighborhood of M in / ? w + w . From Theorem 1.18 and

Corollary 1.19, we may assume that M is contained in a sphere centered at the

origin in Rn + m, and that there is a vector a <Ξ Rm such that X = - Σ α f l α e α .

Then

We let j = z — α. Then ya is a smooth function defined on the tubular

neighborhood 0 of Rn+m.

3.1. Proposition. Let u: Rm -> R be a W-invariant smooth function, where W

is the Coxeter group associated to a full isoparametric compact submanifold M of

Rn + m. Then the map f:Θ^>R defined by f(Y(q, z)) = u(z - a) is a smooth

function, and f\M is constant. We call this f the extension of the W-invariant

function u.

In order to construct a global isoparametric map for M, we need the

following lemmas.

3.2. Lemma. Suppose u: Rm —> R is a W-invariant homogeneous polynomial

of degree k, then the function

Σ ,
/ = l * '

is a W-invariant homogeneous polynomial of degree k - 2.
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Proof. Since M(Λ,>>) = u(y), V M ( Λ , J ) = Λ,.(Vu(y)). We claim that

Vu(y) nt = 0 Ίi y ni = 0. For if y • n,: = 0, then R,(y) = y, so VM( j ) =

/?,( V M ( J ) ) , i.e. Vu(y) • nt = 0. Therefore φ(y) is a homogeneous polynomial

of degree k — 2. To check that φ is ff-invariant, we calculate

Using Theorem 1.13(i) and (v), we are done.

3.3. Lemma. Let u: Rm -> R be a W-inυariant homogeneous polynomial of

degree k,f: Θ —> R its extension. Then

(i) Δ/ is the extension of a W-inυariant homogeneous polynomial of degree

(k - 2) on Rm.

(ii) IV/12 is the extension of a W-inυariant homogeneous polynomial of degree

2(k - l)onRm.

Proof. Using (1.5), we may choose a local frame field e% = eA on Θ a Rn + m

9

and the dual coframe is

i - l i

w* = (1 — z n^Wj, for ^ w i r + l < j < £ mr, wα* = dza.

r=\ r=l

The Levi-Civita connection 1-form on (Pis w^B = wAB. Then we have

V n P a

Since/= u(yn+1, • -,yn+k), we have

Vu

where Δ, v , are the standard Laplacian and gradient on Rm. (i) follows from

Lemma 3.2. To prove (ii), we note that v « ( ^ j ) = Rf(V^/(j>)), s o IVw|2 is a

W-invariant polynomial of degree 2(k — 1) on Rm.
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3.4. Proof of Theorem C. We prove this theorem on Θ by using induction

on the degree k of u. The theorem is obvious for k = 0. Suppose it is true for

all I < k. Given a degree k W-invariant homogeneous polynomial u on Rm,

using Lemma 3.3(ii), \df\2 is again the extension of a W-invariant homoge-

neous polynomial of degree 2k - 2 on Rm. Applying Lemma 3.3(i) repeatedly,

we have A^~ x ( | ^ | 2 ) is the extension of a degree zero W-invariant polynomial

on Rm, hence it is a constant. Therefore

0 = A«(\df\2)

k

= Σ Σ
/ , / J •••/•/

where cι are constants depending on / and/?. We claim that

(ΔV),,,I...,,(Δ*-'-^/),,,i...,,, p' = k - l - p ,

is zero if / < k. For we may assume that p > k - I - p, so p > I. By Lemmas

3.3(i), Δ^/is the extension of a degree k — 2p W-invariant polynomial on Rm.

By the induction hypothesis, Δpf is a homogeneous polynomial on 0 c Rn + m

of degree k — 2p, hence all the partial derivatives of order bigger than k — 2p

will be zero. We have / + 1 > k — 2p by assumption, so we obtain

o = Σ /,2

il...,v
i J i •••ik

i.e., Z>α/= 0 in O for |α| = A: + 1. This proves that / is a homogeneous

polynomial of degree k in O. There is a unique polynomial extension to Rn+m,

which we still denote by/.

3.5. Proof of Theorem D. By a theorem of Chevalley [9] the ring of

H^-invariant polynomials on Rm is a polynomial ring with m generators

uv ,wm. Let/^ ,/m be their extended polynomials on Rn + m. Then because

ul9- ",um are generators,/= (fv- ,/m) will automatically satisfy conditions

(0) and (1) of Definition 2. Since [ Vjα, Vj^] = 0 and / is a function of y,

condition (2) of Definition 2 is also satisfied. The rest of the theorem follows

from the fact that uv- -,um separate orbits of W and regular points of the

map u = (u l 9 , u m ) are the ^-regular points, q.e.d.

The above proof also gives us a constructive method for finding all compact

irreducible isoparametric submanifolds of Euclidean space. To be specific,

given an irreducible Coxeter group W on Rm, we denote the root system by Δ,

i.e.,

Δ = { a\ a is a unit vector in Rm such that the

reflection in Rm along a is in W}.
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Choose t e Rm with t a Φ 0 for all a e Δ, and let Δ + denote the set of

positive roots relative to t, i.e. Δ + = {a e Δ|(α, 0 > 0). Suppose Δ + =

{#!,• *>#;,}• Next associate a positive integer m/ to each at so that mz = rrij if

«/ and cij are in the same W orbit. Set « = Σf mim Let wl9 , um be a fixed set

of generators for the ring of W'-invariant polynomials oni? f f l , which can be

chosen to be homogeneous of degree kt. Then there are W-invariant poly-

nomials Vi9 Φ,, Uij9 and ψ/yA: such that

Διι,.= F (w), VMf- VMy= ί//7(w),

Σ> ! / () [J
j J

Then any polynomial solution / = (/1? , / m ) : Rn + m ^ Rm, with /, being

homogeneous of degree fc/5 of the following system is an isoparametric map:

Δ/ =

(3 i) vy; vfj = u,j(f),

Moreover, if M is any regular level submanifold of such an /, then the

associated Coxeter group of M is W and the rank of the eigendistributions

Eλ, ,Ep of M are mv , m p , respectively.

Since ux can be chosen to be Σ™xf, the extension^ is ΣAx%. So (3.1) is a

system of equations for (m - 1) functions. Because both the coefficients and

the admissible solutions for the system (3.1) are homogeneous polynomials, the

problem of classifying isoparametric submanifolds becomes a purely algebraic

one.

However, it is still not known for which irreducible Coxeter group W and

multiplicities mi9 (3.1) has polynomial solutions. By a remarkable result of

Mϊmzner [18] (that/? = 1, 2, 3, 4, 6) Wmust be crystallographic if m = 2, and

it is natural to conjecture that the two remaining noncrystallographic irreduci-

ble Coxeter groups do not arise from nonhomogeneous isoparametric submani-

folds.

Similar results can be proved for the hyperbolic space H" c Rnl. Moreover

because of the algebraic nature of this problem, the author believes that the

study of isoparametric submanifolds in the flat pseudo-Riemannian space RkJ

will yield to techniques similar to those we have used for the Euclidean case.

So far, the results in §§1 and 3 are proved under the assumption that the

holonomy of v(M) is trivial. Now we will show that this assumption is

automatically satisfied.
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3.6. Proposition. If Mn is full and isoparametric in Rn + m^ then the holonomy

ofv(M)is trivial.

Proof. Given a nonzero vector υ0 e v(M)qo, let M * denote the set of all

points in Rn~* m of the form q + υ, where v is the parallel translation of vQ along

some path in M, joining q0 to q. If ι;0 is small enough, then M * is an immersed

submanifold. By Proposition 1.4, M * is a finite cover of M. Note that

Proposition 1.11 is a local result, hence M* is isoparametric with n* =

wf / ( l — z «,), and 1 — z wf # 0 for all z. Moreover,

for some / Φ j and nt Φ 0, «y =£0.}

is the union of finitely many hyperplanes of Rm. So there is a small z £ S. Let

v0 = Σazaea(q0), then «*,•••,«* are distinct. Proposition 1.4 implies that

v(M*) has trivial holonomy. By Theorem D, there is a Cartan polynomial map

/ having M * as a regular level. However, from the construction of /, we see

that M is an open subset of regular level of/. But M is also compact, hence M

is a regular level of/. This proves that the holonomy of v{M) is trivial, and

M * is diffeomorphic to M. q.e.d.

3.7. Corollary. Let Mn be full and isoparametric in Rn + m, eaa global parallel

normal frame, and υ = q0 + Σazaea(q0) a W-regular point. Then X = X +

Σ α z / α maps M diffeomorphically onto the parallel submanifold M * o/ M

through υ.

Remark. The author would like to thank S. Carter and A. West for

pointing out a gap in the original proof of Proposition 3.6.

Next, we give an example to demonstrate that the theory of isoparametric

submanifolds in an arbitrary flat manifold can be rather different. Let TV be the

flat 2-dimensional Mobius strip:

N = {(*, y)/x e [0, l]9y e Λ}/(0, y) - (1, -y).

Then/(jc, y) = y2 is isoparametric on N (i.e., Δ/and | V/| 2 are functions of/),

and 0 is the only singular value of/. Let Mt = f~ι(t). Then the holonomy of

v(Mt) is {id} for t > 0, and Z 2 for / = 0; Mt is isoparametric; Mt, t > 0, is a

double cover of Mo; and the normal bundle map has no focal points.

4. Applications to variational problems

Isoparametric submanifolds provide many solutions to natural variational

problems in Riemannian geometry. In particular, we are interested in the

following well-known functional:

(1) The energy functional E for maps/: M -> N [10], i.e.

= f \df\2dvol(M).
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Critical points of E are by definition harmonic maps.

(2) The area functional Ak for immersions /: Mk -> N, i.e. Ak(f) = k-

dimensional volume of M with respect to the metric on M induced by /. A

critical point of Ak is called a minimal immersion. The gradient of Ak at /is the

mean curvature vector of/(M) in N [8].

In this section, we will make the following assumptions:

Let X: Mn -> i £ " + w be a full and isoparametric submanifold, Wthe Coxeter

group associated to M with multiplicities mt. Suppose M is contained in the

unit sphere of Rn + m, then by Corollary 1.19 there is a unit vector a e Rm such

that X = — Σaaaea. Moreover, the affine normal plane Nq = q + v(M)gis a.

linear m-plane of Rn+m and W acts on Nq orthogonally. Let U be the

fundamental region of W on Nq containing q. Then U is a simplicial cone with

m-faces [2, Chapter 4]. Using notation as in §1, we have

z nt< 1 for all 1 < / < / > > ,

y = z - a is a linear coordinate system on JV̂ , and >> «, = z H, - 1.

4.1. Theorem. Suppose z nt = 1 for i = iv- ,/s z nx < 1 otherwise. Let

X' = X+ Σazaea, M' = Λ^XM). 77κ?>ί the following hold'.

(0) M' is a submanifold of Rn+m with dimension n — Σ ^ = 1 λw7.

(i) If z = n /ln,]2, then M is a Smi sphere bundle over M'.

(ii) Let q'= X'(q). Then v(M')q, = v(M)q ®s

r=ιEir(q\ and the mean

curvature vector of M' at q' is

H'{q) =

where

H' = y
J . 1 - * - " /

(iii) H'{q') t;, (̂ f) = Ofor all! < r < s. In particular, we have the identities
mM n:

^ = 0 foralll ^r ^s.
\ - z - n:

J

Proof. dX' = Σf = 1 ( l - z ni)iάE implies that dXf has constant rank n —

Σ * = 1 m,r, and X'iL^q)) = X\q) for all i = iv- ,/r, which prove (0), (i) and

the first part of (ii). It follows from the calculation in Proposition 1.11 that

1 — z n '

m y • s

H'{q')-ei{q)= Σ !_V V for β /(9) e φ ^,(ί).

where w.
,y
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By Proposition 1.8, we have γ^. = 0, which proves the second part of (ii). It

remains only to show that H'(q') vir(q) = 0. It suffices to show that H\q')- v

is a constant for all unit vector υ e £,(#) θ Rv^q). To prove this, we note

that from Theorem 1.9 υif/\nir\ defines a diffeomorphism from the leaf L, of

Eir to the unit sphere of Eir(q) θ Rυir(q), and the principal curvatures of M' in

these directions can be calculated as follows:

vi \ ( Vj \ ni nk

' I I

(̂ ) ^ r r = πr7 L i , q e d

Applying the above theorem (ii) to the harmonic maps, we obtain

4.2. Theorem. Let f: R"+m -» Rm be a full and isoparametric map, c e Rk,

then

(i)f~\c) is always a submanifold ofRn+m.

(ii) The Gauss map of M = f~ι{c) is a harmonic map from M to the

appropriate Grassmann manifold.

Proof. A theorem of Ruh and Vilms [24] states that if the mean curvature

vector of a submanifold Mk of Rn is parallel, then the Gauss map g:

M -> Gr(A:, n) is harmonic. So to prove our theorem, it suffices to prove that

the mean curvature vector of Mf in Theorem 4.1 is parallel with respect to the

normal connection of v(M'). To see this, we note that H' = Σ H£e'a9 where H'a
is constant, and waJ = 0 on M' for ey e θ r

5

= 1 J£/jr, so ifr is parallel, q.e.d.

Using Theorem 4.1(iii), we also find many minimal submanifolds from

isoparametric maps.

4.3. Theorem. Let X: M" -> Rn+m be full and isoparametric, W the Coxeter

group of M on Rm, and U = {y e Rm\y nt < 0} the fundamental region of W

on Rm. Suppose M is contained in the unit sphere of Rn + m, i.e., there is a unit

vector a such that X = - Σ α aaea. Then the following hold:

(i) Γ = U C\ Sm~ι is a polyhedron of m faces in Sm~ι, and each face is

totally geodesic. In fact, Sm~ι is invariant under W, and Γ is the closure of the

fundamental region of the induced W-action on Sm~ι.

(ii) // σi is the interior of an i-dimensional simplex of Γ, then there exist

nt,- - -,ni such thaty e σ^fandonlyify «, = Qforr = 1, -,s andy ni < 0

otherwise. In particular, M/ = Y(M X {z}) are diffeomorphic for all z e a 4- σ,-

w/7A dim M/ = ^ , wAere ^ = « — Σ * = 1 mir.

(iii) Ler Pf : σ, -> R be defined by Pt(y) = Av^M'aJry). If y{ G σ, w a critical

point ofPi9 then M^ + a is minimal in Sn + m~\
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(iv) Pi assumes a maximum in σ, . So there exists a v^dimensional minimal

submanifold of Sn+m~ι. In particular, if σ0 = {y0} is a vertex ofΓ, then MyQ+a

is minimal.

Proof, (i) and (ii) are obvious. Suppose^ e σ, is a critical point of Pt. Let

y(t) be a curve in σ, through^ at t = 0, and (dy/dt)(0) = 6. Then

/ = 0

where i / ' denotes the mean curvature vector of My+a in Rn + m. (4.1) is true for

all b <Ξ Rm such that b-y^O and 6 n, = 0 for 1 < r < s. By Theorem 4.1,

we also have H' vt• = 0 for all 1 ^ r < 5, and H' = ΣaH^ea. Hence //' is

proportional to

which is the position vector of Λfy'+fl. So M v ' + a is minimal in sn + m~ι, which

proves (iii). Now Pf. is continuous in σ,-, positive on σi and zero on the boundary

of σ,, hence P7 assumes a maximum in the interior, q.e.d.

Note that i f M " c i r + m i s a principal orbit of a G-action on Rn + m with a

section, then Theorems 4.2 and 4.3 are just applications of the symmetric

criticality principal [21]. In particular, Theorem 4.3(ii) was proved by W. Y.

Hsiang [17] for the homogeneous case. For general isoparametric submanifold

M, even though there does not exist a group of isometries acting on M

transitively, we still obtain the same results.
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