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ISOPARAMETRIC SUBMANIFOLDS AND THEIR
COXETER GROUPS

CHUU-LIAN TERNG

0. Introduction

In the later 1930’s Elie Cartan defined the notion of isoparametric functions
on a space form N and began their study [4]-[7]. A smooth function f: N - R
(N = "1, §"*1 or H"*1), is isoparametric, if Af and | vf|? are functions of
f. Among other things Cartan showed that the level hypersurfaces of f are
parallel, and each has constant principal curvatures. And conversely, he
showed that if M is a hypersurface of N with constant principal curvatures,
then there is at least a local isoparametric function having M as a level. Cartan
called such a hypersurface isoparametric. In the last ten years, many people
carried forward this research [19, 25]. Finally around 1980, Miunzner [18]
completed the beautiful structure theory of isoparametric hypersurfaces in the
spheres, and thereby reduced their classification to a (difficult!) algebraic
problem. Many people subsequently made contributions to this classification
problem including U. Abresch [1], D. Ferus, H. Karcher, H. F. Miinzner [15],
et al. While there has been considerable recent progress, it seems much remains
to be done. By and large, the theory of isoparametric hypersurfaces has been a
special subject by itself; however in recent years there have been applications
to the theory of harmonic maps [12], and minimal submanifolds [14, 19, 23].
Recently, Eells [12] gave a definition of isoparametric maps for the purpose of
constructing harmonic maps. S. Carter and A. West [3] gave a stronger
definition of isoparametric maps from N"*™ to R™; their purpose being to
generalize Cartan’s work to higher codimension. Using their definitions, they
were able to show that there is a Coxeter group (i.e., a finite group generated
by reflections) associated to each isoparametric map f: N"*? — R2 However,
they did not obtain a similar result for larger m. They were also unable to
construct a global isoparametric map for a given isoparametric submanifold.
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However, this work of Miinzner and Carter-West was instrumental in suggest-
ing to me many of the ideas in this paper, whose main goal is to generalize
Cartan’s theory of isoparametric functions and hypersurfaces to a general
theory of isoparametric maps and submanifolds.

In this paper, we make the following definitions:

Definition 1. A complete, connected, smooth n-dimensional submanifold
M of N*tm (N = R"™ ™ §"+m or H"*™) is called isoparametric if the normal
bundle is flat and the principal curvatures of M in the directions of any
paraliel normal vector field are constant.

Definition 2. A smooth map f = (f,.1," " sfysm): N"7™ = R™ is called
isoparametric if

(0) f has a regular point,

(1) vf, - Vfgand Af, are functions of f, for all e, B,

(2) [Vf,> V] is a linear combination of Vf, .y, -, Vf,.,,, with coefficients
being functions of f, for all a, B.

Our definition of isoparametric map is stronger than Eells’ and weaker than
Carter-West’s. All three definitions agree with Cartan’s when m = 1. We will
show that a compact isoparametric submanifold M” of R"*™ is isoparametric
in R"*™ if and only if M " is contained and isoparametric in a standard sphere
of R"*™. We also show that a noncompact complete isoparametric submani-
fold M" of R"*™ is always a product R™ X M]"~™, where M, is a compact
isoparametric submanifold of R"*”~" for some m;. Therefore, in the follow-
ing discussion, we will assume N = R"*” and M" is a compact isoparametric
submanifold of R”*™. Since the set of all isoparametric hypersurfaces of $"*?
is the “same” as the set of all compact isoparametric submanifolds of R"*? of
codimension 2, Miuinzner’s results gave a complete structure theory for them.
There are many homogeneous and non-homogeneous codimension 2 isopara-
metric submanifolds in R"*2 [15, 20, 25]. There are also many examples from
transformation group theory for higher codimension [22]. For example, a
principal orbit of the adjoint action of a compact Lie group G on its Lie
algebra & is always isoparametric. More generally, if G acts on R" orthogo-
nally with a section [22], i.e. there is a submanifold F of R” which meets every
principal orbit orthogonally, then the principal orbit is isoparametric in R”. In
particular, these representations include the isotropy representations of sym-
metric spaces. Conversely, suppose G acts on R” orthogonally and M is an
orbit of G such that M is full and isoparametric in R". Then this section admits
a section and M is a principal orbit of G [22]. Therefore all homogeneous
isoparametric submanifolds are obtained from the principal orbits of linear
orthogonal actions with sections. A simple example of a linear action with
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section is the action of O(n) on the space S of real symmetric trace zero n X n
matrices via conjugation. Then the canonical form in linear algebra for
symmetric matrices implies that F = {a € S| a is diagonal} is a section for this
action. F is also the normal plane of the principal orbit at diag(A,---,A,),
where A;’s are distinct. The O(n)-invariant polynomial map f: § » R"~!
defined by f(a) = (tra?,---,tra") is an isoparametric map. The principal
orbit type is O(n)/H, where H = @ | Z,. The “Weyl group” N(H)/H = S,
is a Coxeter group on R"~!. One main conclusion of this paper is that these
results still hold even if we replace the principal orbit by an arbitrary, not
necessarily homogeneous, isoparametric submanifold M, and replace the orbit
foliation by the family of all parallel submanifolds of M. Therefore, this
example can be thought as a concrete model for the theory of isoparametric
submanifolds.

A submanifold M" of R"*™ is called full if M is not contained in any
hyperplane of R"*™. The proof of the following theorem is rather straight
forward, and it will be given in §2.

Theorem A. If f: N"*™ — R™ is isoparametric, then connected components
of f~Y(c) are isoparametric for regular value c, and all regular submanifolds of f
are parallel.

Conversely, given an isoparametric submanifold M" of R"*™, we can
construct an isoparametric map f with M being a regular level of f. And there
are many interesting facts that turn up in our proof of the converse.

Let M" be full and isoparametric in R"*™. We show that the holonomy
group of »(M) is trivial, in particular there is a global orthonormal parallel
normal frame field e, (n + 1 < @ < n + m) on M. And there exist p distribu-
tions E, such that TM = @7 E,;, and the second fundamental form in the
direction of e, restricted to E; has only one eigenvalue n{ of multiplicity m,,
and n, = (n"*1,--- ,n?*™) are p distinct vectors in R™. In §1, we prove that
the group W generated by the p reflections R; of R™ along ny,---,n, is an
effective Coxeter group. We call W the Coxeter group associated to M. We also
show that E, is integrable, with leaf being an m -dimensional sphere of radius
1/|n,. And the focal set of M at g is the union of p hyperplanes /,(¢) in the
affine normal plane g + »(M),. Each /,(q) is perpendicular to the leaf of E,;
through ¢ at its center. Moreover, we show that the group generated by the p
reflections of the affine normal plane at g in /,(g) is isomorphic to W.
Therefore, we have

n+m

Theorem B. Let M" be a full compact isoparametric submanifold of R"™"™,
W the associated effective Coxeter group on R™. Then
(1) W acts on M via diffeomorphisms; R, corresponds to a diffeomorphism ¢,,
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where ¢,(q) is the antipodal point of q on the leaf (sphere) of E, through q.

(ii) W acts on the affine normal plane q + v(M), via rigid motions, R;
corresponds to the reflection T, of ¢ + v(M) , in 1,(q). Moreover, T(q) = ¢,(q).

If M is the principal orbit of the isotropy representation of a symetric space
G/K, then the associated Coxeter group in Theorem B for M is the Weyl
group (hence is crystallographic) [16], ¢ + »(M), is a maximal Lie triple
system, n; is always proportional to some root, and m, is the number of roots
proportional to n,. Geometrically, m, is the difference of dimensions of the
principal orbit and the subprincipal orbits [22]. So the following theorem can
be thought as a generalization of Chevalley Restriction Theorem [26] to
isoparametric submanifolds.

Theorem C. Let M" be full and isoparametric in R"*™, W the associated
Coxeter group, q € M a given point on M, and V the affine normal plane
q+v(M), If u: V > R is a W-invariant homogeneous polynomial of degree k,
then u can be extended uniquely to a homogeneous degree k polynomial f on
R"*™ which is constant on M.

Now we only need to use another theorem of Chevalley to obtain the
converse of Theorem A.

Theorem (Chevalley [9])). If W is an effective Coxeter group on R™, then the
ring of W-invariant polynomials on R™ is a polynomial ring on m generators

ul, LN um.
Applying Theorem C to these generators u,,- - -,u,,, we obtain
Theorem D. Let M, W, q, and V be as in Theorem C, and let u,,- - -,u,, be a
set of generators of the W-invariant polynomials on V. Then u = (uy," - -,u,,)

extends uniquely to an isoparametric polynomial map f: R"*™ — R™ having M
as a regular level set. Moreover,

(1) each regular level set of f is connected,

(2) the focal set of M is the set of all critical points of f,

B VnM= Wy,

@ F(R™™) = u(V),

(5) forv € V, f(v) is a regular value if and only if v is W-regular. We call f the
Cartan polynomial map for M corresponding to the u,.

The proof of Theorem C and D are given in §3.

We also obtain a structure theory for isoparametric submanifolds. An
isoparametric submanifold M" of R"*™ is called irreducible if M cannot be
written as a product of two lower dimensional isoparametric submanifolds. We
show that every isoparametric submanifold can be written uniquely up to
permutation as a product of irreducible ones. Moreover, M is irreducible if and
only if the associated Coxeter group is irreducible. Therefore it suffices to
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classify all irreducible ones. It is obvious that if f: R"*"™ — R™ is isoparametric
and ¢: R™ — R™ is a diffeomorphism, then ¢ o f is also isoparametric. How-
ever, if we fix a set of generators for each Coxeter group, then the polynomial
isoparametric map obtained in Theorem D is unique. The proof of Theorem D
also provides an algebraic system of equations (completely determined by the
Coxeter group W and the multiplicities m,), of which fis a solution. Moreover,
given any irreducible Coxeter group W on R”™ with the positive root system
A,={r, --,r,} and positive integers m, associated to each positive root
(such that m; = m if r, and r, are in the same orbit of W) the solutions of the
algebraic system associated to W and m, are isoparametric maps from R" " to
R™ wheren = XF_ m,.

Let g, be a fixed point in an isoparametric submanifold M" of R"*™, and
g =qo+ v Eqy+ v(M),. Then there is a unique parallel normal field V on
M such that V(q,) = v, and the parallel set through g, M, = {x + V(x)|x €
M}, is always a smooth submanifold. Moreover, { M } defines a singular
foliation of R”*™, which has M as one regular leaf, and all other regular leaves
are also isoparametric. If M is a principal orbit of a linear action p with a
section on R"*™, then this singular foliation is the orbit foliation of p. To
describe the general case in more detail, let U be the fundamental region of the
Coxeter group W action on g, + (M), . Then U is a simplicial cone, and U is
the leaf space. If ¢ € Int(o), where o is a k-dimensional simplex of U and o is
open in N}_;/ i then the leaf M, through g has dimension n — ¥’ _, m . Since
we construct this singular foliation of R"*™ from M by a purely geometric
construction, the geometry of this foliation is part of the geometry of M. There
are also applications to the theory of harmonic maps and minimal submani-
folds just as in the homogeneous case [14, 17, 21], even though in general there
is no Lie group action around. We show in §4 that the Gauss map for each leaf
is harmonic. We also prove that for each k-dimensional simplex o as above,
there is a point g, € 0 N S™~! such that the leaf through g, is a minimal
submanifold of S”*”~! of dimensionn — Lj_;m, .

So it is rather clear that isoparametric submanifolds and their singular
foliations can be viewed as geometric generalizations of the principal orbits
and the orbit foliations of linear actions with section. By studying the geometry
of isoparametric submanifolds, we obtain a more clear geometric picture of
these homogeneous spaces and their actions. It seems that Riemannian geome-
try also gives a different method to study invariant theory. For example, as a
consequence of Theorem C, we see that if G acts on R” orthogonally with a
section then the ring of G-invariant polynomials on R” is a polynomial ring.

The author would like to thank Richard Palais for many useful discussions,
especially in the theory of transformation groups.
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Added in revision. Professor G. Schwartz showed us a preprint of a paper by
J. Dadok titled “polar coordinates induced by actions of compact Lie groups”
[11], and pointed out to us that Dadok’s definition of polar representation is
equivalent to our definition of a linear action with a section. Moreover, Dadok
classified polar representations in this paper and using his classification he
showed that given any polar representation p: G — O(n) there is a symmetric
space G/K and an isometry 4: R" - T(G/K),x such that the orbits of p are
mapped under A4 to the orbits of Ad(K ). We have also since noted a paper by
L. Conlon [10], which has many of Dadok’s results. Therefore, all the homoge-
neous isoparametric submanifolds are obtained from the principal orbits of the
isotropy representations of symmetric spaces.

Some further progress has been made in understanding the nature of
isoparametric submanifolds. For example, we have shown that the associated
Coxeter group W for an isoparametric submanifold must be crystallographic,
i.e. Wis a Weyl group, and that in each irreducible example at most two
distinct integers occur as multiplicities. Moreover, the homology and cohomol-
ogy of isoparametric submanifolds can be computed from their Dynkin
diagrams and multiplicities. These results will be reported in a separate paper
by W. Y. Hsiang, R. S. Palais, and the author. It is also shown by the author in
another paper that the convexity theorem of Kostant can be generalized to
isoparametric submanifold M” in R"*™ namely the image by orthogonal
projection of M to a fixed normal plane »(M), is the convex hull of the orbit
of x, under the Weyl group of M.

1. Isoparametric submanifolds

In this section, we will study the geometry of isoparametric submanifolds
and associate to such manifolds Coxeter groups.

To set notations, we will review briefly the local geometry of submanifolds
of Euclidean space. Let M be an n-dimensional submanifold of R"*”. We
choose a local orthonormal frame field e,,---,e,,, on R"*™ such that
e, - -,e, are tangent to M. Let X be the position vector of M, i.e., X is the
inclusion map from M to R"*™. Let w,,- - -,w,,, be the dual coframe. We can
write

(1.1) dX =Y we, de,=Y wep.
i B

Henceforth, we shall agree on the index ranges

1<i,j,k<n, n+l<apfB,y<n+m, 1<A,B,C<n+m.
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The structure equations of R"*"™ are

(12) dwy=2YwigAwg, weg+wg =0, dw= 2 Wae A Wep.
B c

Restricting these forms to M, we have

p— — a (s — o
We =0, w,= Zhijwj’ hij = h,‘i,
J

(1.3) dw,=Low; Aw, Wyt w, =0,
Jj
dwij - Zwik ANw= —Qij = - Zwia A Wi,
k a

where (w,;) is the Levi-Civita connection and { is the Riemann tensor of M.
There is also an induced connection on the normal bundle »(M), namely
De, = Lgwygeg. Then dw,g + X, w,, A wg= —Q,, where Q5 =%, w, A
w,g is the normal curvature of M. We say that »(M) is flat if the normal
curvature is zero. A normal vector field » is parallel if Dy = 0.

Suppose »(M) is flat, then locally we can choose a normal orthonormal

frame field e, on M such that w,; = 0. The two fundamental forms are
I=Yw? I=Yhiwwe,=) Ile,.
)] a
a
The eigenvalues of 11, with respect to I are called the principal curvatures of M
in the directions of e,. And H = ¥ H e, is the mean curvature vector, where
H, = ¥, h{;is the mean curvature in the direction e,.

1.1. Proposition. Suppose M" C R"*™ has flat normal bundle, then locally
there exists an orthonormal frame field e , such that e is parallel and the 11, are
diagonalized simultaneously, i.e., w,g = 0 and w;, = Ajw;.

Proof. We have noted that there is a local orthonormal normal frame e,
such that w,z = 0. Then

0=dw,= Y W A Wip
k

- Z ( zihfj—hzjhfi)wi/\ w;.

k,i<j
So A,Ag = ApA,, where A, = (h{;). Hence there is an orthonormal local
tangent frame field e,,- - -, e, such that 4, is diagonal for all , i.e. hf; = A5, ,

or equivalently w;, = AJw;. q.e.d.

It follows from Definition 1 that if M " is isoparametric in """, then M" is
also isoparametric in R"*™*!1. Later in this section we will show that a
compact isoparametric submanifold of R"*™ is contained and isoparametric in
a suitable standard sphere. So we will concentrate on isoparametric submani-
folds of Euclidean space.
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We will derive in the following some geometric properties of an isoparamet-
ric submanifolds M in R"*™. Since »(M) is flat, Proposition 1 gives a frame
field e, such that w,z = 0 and w,, = Ajw,, where X} are constant on M. So
there exist uniquely eigen-distributions E;,---,E, for II with dimensions
my,- - -,m, respectively, such that II,|E; has only one eigenvalue ni with
multiplicity m,, and n, = (n**',--- ,n?*™) are p distinct vectors in R”. We
arrange our indices so that {e,|X/2m, < k < X/_;m,} is a base for E;. Next,
we consider the following normal vectors v; = ¥ nfe,. The v,’s are indepen-
dent of the choice of the parallel frame e,. To see this, let e} = 25,455 be
another local parallel normal frame. Then (s,) is a constant m X m orthogo-

nal matrix, and
}\Ta = ZSGBAE.
B

So it follows that
L% = ) Ne,.

We call these v,’s the curvature normal vectors of M. If M" is isoparametric in
R"*™ then M is obviously also isoparametric in R"*"*! To avoid this
redundancy, we make the following definition:

1.2. Definition. A submanifold M " of R"*™ is full if M is not contained in
any hyperplane of R"*"™.

1.3. Proposition. An isoparametric submanifold M" in R"*™ is full if and
only if the curvature normals vy, - -,v, span v(M). In particular, if M" is full and
isoparametric in R"*™ then m < n.

Proof. 1t is obvious that v;,- - -,u, span (M) if and only if the rank of the
m X p matrix N = (ny,---,n,) is m. Suppose M is contained in a hyperplane
normal to (1,0,---,0) in R"*™ Then we can choose e,,; = (1,0,---,0) €
R"*™ so N*1 =0 for all i, and rank(n,, - -,n,) < m — 1. Conversely, if
rank(n,,- - -,n,) < m, then there is a nonzero vector ¢ € R™ such that ¢ - n,
=0foralll <i<p. WeclaimX,c.e, is a constant vector b in R"*™. To see
this, we calculate the differential of the map X, ¢ e, on M:

d(anea) =Y c,de, = — Y c,Nwe, = — Y c-nid; = 0.
Then it follows that

d(X-b)=dX-b=Y we,-b=0.

Hence X - b = a constant ¢, i.e. M is contained in a hyperplane. gq.e.d.
Next, we study the holonomy of »v(M).
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1.4. Proposition. Let M" be full and isoparametric in R"*"™, and v, - U, its
curvature normal vectors. Then the holonomy group G of v(M) is a subgroup of
the permutation group S,. Moreover, if v,,---,v, have distinct length, then
G = {id}.

Proof. Let r: [0,1] > M be a closed curve in M with r(0) = r(1) = q.
Suppose parallel translation of e,(q) along r is given by Yza,ze4(q), ie.
A = (a,g) is in G. From the definition of isoparametric, there exists a
permutation o of 1,2, - -, p such that

Ac:,(’) = %aaBA’B.

Let ny,---,n, be as before, then we have An;, = n ), ie. GC S, If ny,---,n,
have distinct length, then since A is orthogonal we conclude that 4 = id.
q.e.d.

Remark. In the end of §3, we will show that the holonomy of »(M) is
always trivial.

For the remainder of this paper until 3.5, we will make the following
standing assumptions:

(1) M" is always assumed to be full and isoparametric in R"*™ with the
inclusion map X: M — R"*™, and the holonomy of »( M) is trivial.

(2) e, is a local orthonormal tangent frame field and e, is a global orthonor-
mal parallel normal frame field on M. Such that

(1.4) W, B = O’ Wia = Aa"'vi’

Qa 1

where A9 are constant.

(3) Let Ey,- - -, E, be the unique eigendistributions on M for II. We let m, be
the rank of E,, and arrange our indices so that E, is spanned by {e,|Z/_m, <
k <X_ym;}. Obviously Lr_;m; = n.

(4) Let

=A==,
p—1

na=N = =N, op,=1+4 Zlmj.
J=

Then ny,- - -,n, are p distinct vectors in R™. The vectors v = ¥, nfe, are the
curvature normal vectors of M.

For a given global orthonormal parallel normal frame e,, we define a
normal bundle map

Y:M"XR™" > R™"™  Y(q,z)=q+ Yz.e.(q).
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Geometrically, Y(q + R™) = g + »(M),, is the affine normal plane at g, we
denote it by N,; and Y(M X {z})is an n-dimensional submanifold parallel to
M in R"*™ for almost all z. The differential of Y is

dy = d(X + Ez,,ea) =dX + Y, z,de, + Y. dz e,
(1.5) , o a a
=Y (1-z-n)idg + Ydze,
i=1 a

So we have

1.5. Proposition. The critical point set of Y is M X A, where A is the union
of p hyperplanes 1, in R" defined by the linear equations1 = n, - z fori = 1,---,p.

1.6. Definition. The focal set = of M in R"*™ is the set of all critical values
of the normal bundle map Y.

Focal set is well defined and independent of the choice of e,,. To see this, we
let #: »(M)— M be the normal bundle, and ¥: »(M)— R"*” the map
defined by ¥(v) = m(v) +v. Then we have a canonical isomorphism ¢:
M X R™ > (M) with ¢(x, z) = L, z.e,(x), and Y = Vo ¢. Then the focal
set of M is the set of all critical values of Y, i.e. the focal variety of M in the
classical sense.

It is obvious that we have

1.7. Proposition. 2 =U, _, 2 , when 2 is the union of the p hyperplanes
l,(q) = Y(q X I,)in N, = q + v(M), where I, is the hyperplane of R™ defined by
z-n;=1

In order to understand the eigendistributions, we need some formulas for the
Riemannian connection of M in terms of E,. Using (1.4) and the structure
equations, we have

dwi, = d(Now;) = Nsdw, = N 2w, A w,
J

= Zw‘j AW, = ZX;WU Aw,
J J

so
(A% = X)w, A w=0.
Suppose J
W, = ‘?rijkwk,

then we have
2 (- N;)rijkwk A w; =0,
Jok
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SO
(1.6) (}‘7 - X;’)rijk = (}‘7 - o/‘()"ikj-

Therefore we have

1.8. Proposition. Let w,; =X, r,,w,. If e;,e, €E,, e, € E,, and i, # i,
thenr, = 0.

Using this proposition, we can obtain the following results for the eigendis-
tributions:

1.9. Theorem. Suppose M" is full and isoparametric in R"*™, then for all
1 < i < p, we have

(i) E, is integrable.

(i) If n, # 0, then the leaf L, of E, through q € M is an mdimensional
standard sphere of radius 1/|n;| with center c,. Moreover § + v,(g)/|n,|* = c, for
all g € L, and 1,(q) intersects the (m; + 1)-dimensional plane spanned by L,
orthogonally at c,.

(iii) If n, = O, then L, is an m ~dimensional plane of R"* ™.

(iv) If M is compact, then n; # 0 forall1 < i < p.

(v) Let T, denote the reflection of N, = q + v(M), in the hyperplane 1,(q) if
n;#0,and T;=id ifn;, = 0. Then T(q) € M.

Proof. For simplicity, we assume i = 1. E; is defined by the following
1-form equations on M:

w, =0, m; <k <n.

Using the structure equations and Proposition 1.8, we have

my my
dw, = Y w, Aw, = Y TeiW A W, = 0.
i=1 ij=1

By Frobenius theorem, E is integrable.
Let L, be the leaf of E; through g. Then the above calculation also shows
that w,, = 0 for i < my, k > m,. To compute the curvature of L,, we use (1.3)

2
Q= 2w A Wy T 2 Wia A Wia = 11| w; A w;.

k>my a

So L, has constant sectional curvature |n,|%. If n, = 0, then we have w,, = 0,
w,, = 0 for k > my, n < a <n+ m;ie. L, is totally geodesic in R""". So if
n, = 0, then L, is an m,-dimensional plane of R”*", which proves (iii) and
(iv). To obtain (ii), we divide the proof into four steps.

Step 1. The map X + (1/|n,|*)L, nfe, maps L, to a constant vector c; in
R"*™.In particular, ¢, = § + v,(g)/|n,|* forallg € L,.
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This can be seen directly from the differential of this map. We have

X+Z:—£—‘e—) ax + Y =

Inll a nll

d

a

l2 A‘7”}lel

ny
=Lwe — Z

? n\.
"% ( m? )ld’f"’
which vanishes on E;.
Step 2. &, = E, + v(M)|L, is a fixed linear (m, + m)-subspace of R"*".
We define a map g: L, = Gr(m; + m, n + m) by g(x) = the (m, + m)-
plane E; (M), ® v(M),. Then locally, we can write
g=e A - /\eml/\en+l AR T
Using (1 l) we have

= Y wee A Ae AN Ae, Ne, A Ae,,
i<sm i
k>m,
+ z Wor1 N o Ney Ne, g N s Nes Ny
k>m a
a

Butw,, =0,w,, =0onL, fori <m;,k>m,.Sodg=0.

Step 3. L, is contained in the (m, + m)-plane V; = ¢; + §,. This follows
from Steps 1 and 2.

Step 4. The second fundamental form Il of L, in V; is (X" w?)v;.

We have w,, =0 on L, for kK > m,, so II-e, = 0. Suppose L, z.e, is
perpendicular to v, = X nfe, ie, z-n =0, then II - X ze, =

+Xm oz W W = 7’;1(n1 - z)w? = 0. Similarly
m
II- (n ) n w;
= 2\ g '1'2

Finally to prove (v), we note that T;(¢) € L, C M. q.e.d.
Because T;(q) is the antipode of g in the sphere L;, g goes to T;(g) gives a
well-defined involution on M, i.e. we have
1.10. Corollary. Suppose n; # 0, and ¢;: M — M maps q to the antipodal
point of q in L,, where L, is the leaf of E, through q. Then ¢? = id. In particular,
we have
2
4’1’ = X +— En;xea
|n; 2

is a diffeomorphism.
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If n, =0, welet ¢, = id.

Next we study the general parallel submanifold of M given by the normal
bundle map Y of M.

1.11. Proposition. Let X* be the map from M to R"*" given by X* = Y|M
X {z},ie. X*=X+X,z.e, Then M* = X*(M) is an n-dimensional im-
mersed isoparametric submanifold of R"*™ if and only if 1 — z - n, # 0 for all
1 < i < p. Moreover, if g* = X*(q), then M* and M have the same normal
plane and focal sets at q and g* respectively.

Proof. Using (1.5), we have

14
dx*=3 (1-z-n,)idg.
i=1

SodX*hasrank nifandonlyif1 — z-n,+# Oforalll <i < p.
We may choose the following local frame on M *:

e

R %
I

* —
€as e = ei’
1-

(.7) EzaX’})w,».

*
w;

Then
wag =dey - ef = w5 =0,

(43
A&
w* =de*.e*=w_=Nw =—"" " —p*
1a 1 a la 1 1 _ szBAlﬁ 1

which implies that M * is isoparametric, e* is a global parallel normal frame on
M*, and
n

* —
(1.8) nf =7 .

Since we have
X*+ Tyer = (X + L) + L,
=X+ Y (y+1).e,

the focal sets at g and g* are the same. g.e.d.

We call an M* as in Proposition 1.11 a parallel submanifold of M. Using
Corollary 1.10 and Proposition 1.11 we have

1.12. Proposition. Ifn, # 0, then 1 — 2(n;- n;)/|n ;|? never vanishes for any
1<j<p.
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By examining more carefully the involutive diffeomorphism ¢;, we obtain

1.13. Theorem. Suppose n; # 0. Let $,(q) = q + 20v,(q)/|n;|* be the diffeo-
morphism associated to the distribution E;. Then the following hold:

(i) There exists a permutation o; of 1,2,---,p, such that o,(i) =i, and
E($,(q)) = E, ;)(q) for all g € M. In particular, we have m; = m, ;).

(i) Let &, denote the normal frame field defined by & ($,(q)) = e, (q). Then e,
is again a global parallel normal frame on M, and

_ ninf
ea=2(8aﬁ—2 2)eﬁ,
B [nl

where S, is the reflection of v(M) , along v,(q).

ie.,e,= Se,
(iii)
i Mo
vo,(j)(‘l) =11- 27 Uj(¢i(4))'
(iv)
Si(v,(9)) = v)(6:(q)) foralll <j<p.
(v) Let R, be the reflection of R™ along n,. Then

it Mgy
Ri(n)) = (1 - 2W) Ny ()

Proof. We will assume i = 1, and ¢’ = ¢,(g). It follows from Proposition
1.11 that TM, = TM,, and E(q), - -,E,(q) are eigenspaces of the second
fundamental form II of M at ¢’. Hence there is a permutation o (which may
depend on g) of 1,2,---,p such that E,;,(q) = E;(¢). It follows from
Proposition 1.11 that &, = e, o ¢, is a global parallel normal frame on M, so
e, e, differ by a constant O(m) matrix. To determine this matrix, we
compare €,(q’) and e, (q"). Note that e (q’) is the parallel translation of e,(q)
on M along a path y joining ¢ and ¢’ with respect to the normal connection of
v(M). But parallel translation in »( M) is independent of the path, so we can
choose v to lie in the leaf L, of E; through ¢g. From Theorem 1.9, there is an
(m; + m)-dimensional plane V] such that L; C V|, and the normal bundle of
L, in V] is equal to v(M)|L,. Therefore, parallel translation of e, (gq) to g’
along y with respect to the normal connection of »(M) is the same as with
respect to the normal connection of L, in V;. Then it is easily seen that e (q")
is the reflection of e,(q) in (M) , along v,(q), i.e.,

B
v, e ninyg
=2 2°‘vl=2 8,5 — 2 eg.
|4 B

e, =S, =e
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So we have

B _ o nyon;
|"1|2

i i ny,

un B

=X1|8 n'

B |”1|
;= Ry(n,).

For the corresponding curvature normal vectors we have

vl9) = Lae.(q') = Lrten(q)

= 0,(g) -2

1(‘1)-

|n 1|2
On the other hand, E,(¢") = E,;,(q) and (1.8) imply that

1 2n,
=—n_ ., z= .
! ]. -2 no(i) o(i) |n1l2

Therefore we obtain (v). This also proves that o is independent of g. The rest of
the theorem follows. q.e.d.

According to (v) of Theorem 1.3 the p reflections Ry, - -,R, permute the
corresponding p reflection hyperplanes, so the root system of the group W
generated by R;,---,R, is finite. Then it follows from the basic theory of
Coxeter groups [2, Proposition 4.1.3, p. 37] that W is a Coxeter group.

1.14. Theorem. Let M" be full and isoparametric in R"*™, e, a global
parallel normal frame, and v; = ¥ nle, the curvature normal vectors. Then the
group W generated by the p reflections R,,- - -,R , along n, in R™ is an effective
Coxeter group. We call W the Coxeter group associated to M.

1.15. Corollary. Let M" be full and isoparametric in R"*™, M * parallel to
M. Then the Coxeter groups of M and M * are the same.

Proof. Using (1.8), W* and W have the same root system. q.e.d.

Now we are ready to prove Theorem B. ,

1.16. Proof of Theorem B. The group generated by S;,- - -, S, is obviously
isomorphic to W. So to prove (ii), it suffices to prove that S, --- §; =id is
equivalent to 7; --- T, = id. We proceed as follows: Let ¢' =T, --- T,(q).
Applying Theorem 1. 13(111) and (iv) repeatedly, we obtain

vj(q’) =S, S,.’(vj(q)), vj(q’) is proportional to vo(j)(q),

where 0 = ¢, --- 0;. Let z € R" such that ¢’ — ¢ = £, z.¢,. Define X* = X
+ X,z Then X* is a diffeomorphism, because X* is the composition of
diffeomorphisms ¢, ¢, - - ¢; . The calculation in Proposition 1.11 shows that
, Vs () (9)
v,(q") = ———.
i 1= n,,-2
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Suppose T, --- T, = id, then ¢’ =g, Uj(q,) =v(q)=S; - S, (v,(q))
Hence S; --- §; = id. Conversely,if S, --- §; = id, then
, v,(q)
v(q) = v,(q) = l—_j—m,
J

which implies that n; - z = 0 for all 1 <j < p. Because M is full, Proposition
1.3 implies that z = 0,s0 T; --- T,(q) = g. From Proposition 1.11 we have an
open ball B centered at g in the affine normal plane g + »(M),, so that for any
Gg=q+X,ze(9)€EB, X=X+L,z.e, defines a full isoparametric sub-
manifold M = X(M) of R"*™. Moreover, g + u(Jl_l)‘7 =q+v(M), (3=
1,(q), and 7, is proportional to n,. So g in the above argument can be replaced
by g € B. Therefore we have proved that the affine transformation 7, --- T,
is the identity on B and hence everywhere. Since ¢,(¢) = T(g), (i) is a
consequence of (ii).

1.17. Corollary. There exists a vector a € R™ such that a - n; =1 for all
n; # 0.

Proof. The group G generated by T;,---,T, on the affine normal plane
N, = q + v(M), is isomorphic to W, so in particular the order |G| of G is
finite. For a finite subgroup G of the affine group N, ¢ = 1/|G|Z,c; 8(q) is a
fixed point of G. Suppose ¢ = g + X, a,e,(q)- Then T;(c) = ¢, i.e. c € [,(q),
which implies thata - n; = 1 foralln, # 0. q.e.d.

Now suppose n; # 0 foralll < i < p,and a - n; = 1 for all i. We claim that
the map X + ¥ _a e, is a constant vector c € R"*™ on M, because

7

d(X+ Zaae,,) =Y (1-a-n)idg =0.
a i=1

In particular, we have |X — ¢|?> = |a|?, i.e., M is contained in the sphere of

radius |a| and center ¢ in R"*™. Therefore we have proved

1.18. Theorem. Suppose M" is full isoparametric in R"*™, and n; # 0 for all
1 < i < p. Then there exist vectors a € R™, ¢ € R"*™, such that M is contained
in the sphere of radius |a| and center at c. In particular M is compact and
r.]i. q Il(q) = {C}

1.19. Corollary. Suppose M" is contained in a sphere of R"*™ centered at the
origin, and M is full and isoparametric. Then there exists a vector a € R™ such
that

) X=-%,a.e,

(ii) All the affine normal planes q + v(M) , pass through the origin of R"* ™.

Theorems 1.9 and 1.18 imply that a full isoparametric submanifold is
compact if and only if n, # 0 for all 1 < i < p. Next, we will discuss the case
when some n, is zero.
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If M” is full and isoparametric in R"*”, then M” X R’ is also full and
isoparametric in R"*™*/ with one of the curvature normal vectors being zero.
The following theorem states the converse is also true.

1.20. Theorem. If M" is full and isoparametric in R"*™, and n, = 0, then
there is a full isoparametric submanifold M, of R"*™~™ such that M = M, X
R™,

Proof. By Corollary 1.17,a - n; = 1 for all 2 < i < p. Consider

X*=X+Yae,
a

Then Proposition 1.11 implies that
dX* =3 (1~n,-a)id; =id,

and M* = X*(M)is a flat totally geodesic submanifold of R"*™. So M * is an
m-dimensional plane and X*: M — M* is a submersion. We claim that
@7 , E, is integrable. For if X*(q) = ¢* then X*(L,(q)) = ¢* for all i > 2,
ie, Li(q) C (X*) '(g*). Hence (X*) !(g*) is the integral submanifold of
@/ , E,. Note that @7 _, E, is also defined by

w; =0, i< my,
)
0=dw, = Z Wiy A w = Z FieWi N Wy,
k>m; k., 1>m
Hence
(1.9) F="ry fori<myk,1>m.

From (1.6), we have
(1.10) NeTiet = Nk
If e,, e, € E; for some j > 2, then Proposition 1.8 implies that r;,, = 0. If e,
and e, belong to two different eigenspaces, then (1.9) and (1.10) imply that
ri; = 0. Therefore we have that

wy, =0, w,=0, i<m,k>m
on M. Then the fundamental theorem for submanifolds of Euclidean space
implies that M = R™ X M, where M = X*~!(g*) is a compact isoparametric
submanifold of R"*”~™. q.e.d.

Next we discuss the irreducibility of the associated Coxeter group of an
isoparametric submanifold, which leads to a decomposition theorem for iso-
parametric submanifolds.

If M/ is isoparametric in R"*" with Coxeter group W, on R, for i = 1,2,
then M, X M, is isoparametric in R"*"2*1*%2 with Coxeter group W, X W,
on R4 */2 The converse is also true.
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1.21. Theorem. Let M" be a compact full isoparametric submanifold of R"* ",
W the associated Coxeter group. Suppose R™ = R X R¥2 and W = W X W,,
where W, is a Coxeter group on R*: for i = 1,2. Then there exist two lower-
dimensional isoparametric submanifolds M,, M,, such that M = M; X M,.

Proof. We may assume that n, € R“ X 0, R, € W, fori <p;,andn, €0

X R¥2, R, € W, forj>p,. Leta € R“ X O such thata - n; = 1 foralli < p;.
Consider X *=X+1L,a., thendX*=Yr  id g-Soa 31m11ar argument as
in Theorem 1.20 will show that @, < E;is 1ntegrable and M is the product of
the leaf of @, <p E;. and X*(M). qed

Therefore we make the following:

1.22. Definition. An isoparametric submanifold M” of R"*” is called
irreducible if M is not the product of two lower-dimensional isoparametric
submanifolds.

As a consequence of Theorem 1.20 and 1.21, we have

1.23. Propeosition. An isoparametric submanifold of Euclidean space is irre-
ducible if and only if the associated Coxeter group is irreducible.

1.24. Theorem. Every isoparametric submanifold of Euclidean space can be
written as the product of irreducible ones, and such decomposition is unique up to
permutation.

2. Isoparametric map

In this section, we will prove Theorem A.

If m = 1, Definition 2 reduces to that of an isoparametric function given by
E. Cartan [4]. For m < n, S. Carter and A. West [3] gave another definition of
isoparametric map as follows: f: N"*™ — R™ is isoparametric if 4 U (x 4) is
closed under exterior differentiation and wedge product, where * is the
x-operator for the Riemannian metric on N"*™ and 4 = f*(A*R™). They
show that when m = 2, their definition is equivalent to ours. However, for
general m, their definitions seem to require stronger conditions than necessary,
because of the following standard equalities:

xdx(df,) = £Af,, *(df, A *dj;) = (V. V),
sdx(df, A df;) = (Af,) df; —(Af;) df, + dual of [ Vf,, Vf)].
Suppose f: N"*™ — R™ is isoparametric, then we may assume that at any

regular point of f, there is a local orthonormal frame field e,,-:-,e
€,4+1>" " "»€,4,, With dual coframe w;,- - -,w, ., such that

(2.1) dfy = Y. CogWs
B

n°
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with rank(c,g) = m, and ¢,z are functions of f, so

deog=0 (modw,, , --,W,,,,).

> "n+m

Hereafter we agree on the same indices notion as in §1. It is obvious that
w, = 0 defines the level submanifolds of f. Condition (2) implies that the
normal distribution defined by w; = 0 is completely integrable.

2.1. Proposition. Let f: N"*™ — R™ be isoparametric, ¢ = f(q) a regular
value, M = f~Y(c), and F the leaf of the normal distribution through q. Then

(i) F is totally geodesic.

(ii) v(M) is flat and has trivial holonomy group.

Proof. Take the exterior differential of (2.1), and using the structure
equations, we obtain

(2.2) Yo deyg A wg+ Y CogWpi AW+ D Cogwp, A w, =0,
B Bi Y
Because dc,g = 0 (mod w1, - -, W, ,,) and the coefficient of w; A w, of (2.2)

is zero, we obtain
anﬂ(—wﬁi(ey) + wﬂy(ei)) =0.
B

But rank(c,z) = m, hence
(2.3) W,By(ei) = wBi(ey)'

From condition (2) of Definition 2, we have

[ea’ eﬂ] = Zuaﬁyey = veaeB - veﬂea
Y

L (wai(en) = waieg))e; + L (wgy(ea) = war(ep)) e,

i

Hence wg,(e,) = w,;(ep). Using (2.3) and (2.4), we have

wBi(eu) = wﬁa(ei)

= wai(eﬁ) = Waﬁ(ei) = —wﬁa(ei)‘
So
(2.4) waﬁ(e,.) =0 and w,(eg) =0,
i.e.,

W, =0 onM, w,=0 onF.

We note that e, on M can be obtained by applying the Gram-Schmidt
process to Vf, .1, s Vf,.m» SO €, is a global parallel normal frame on M,
hence the holonomy of »( M) is trivial. q.e.d.
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If (M) is flat, then Proposition 1.1 states that there is a local orthonormal
tangent frame such that II  are diagonalized simultaneously for all a.

2.2. Proposition. The same notation as in Proposition 2.1. Then we have

(i) The mean curvature vector H = ¥ H e, on M is parallel.

(ii) The principal curvatures of M in the direction of e, are constant for all a.

Proof. We choose a local frame field e, as in Proposition 1.1 such that
Wie = Niw;, and w,p = 0 (mod w, 1, *, W, )

For a smooth function ¢ on N, the gradient, the Hessian, and the Laplacian
of ¢ are given by

dp = Z¢AWA’

A
Y bagwp = doby + 2 dgwpy,
B B

A¢p = E¢AA'
A

Then a direct computation using the given frame gives us

dfa = Ecaﬂwﬁ’ Afa = chaﬁ(eﬁ) - anﬁHB’
B B B

where Hj is the mean curvature of level submanifolds in the direction of eg.
Since Af,, c,g, are functions of f, Xzc,zHg is a function of f. However
rank(c,g) = m, so H,’s are functions of f, i.e. H,’s are constant on M. e, is
chosen so that w,z = 0, so (i) is proved.

To prove (i), we use the same method as used by Nomizu [13] for
codimension one. We assume N = R"*™, the other two cases are similar. Let X
be the position vector of M in R"*™, then dX = ¥, w,e,. For given e,, and
constant ¢ € R, we define a map on an open neighborhood U of M:

X*=X+te,,
then

dxX* =Y (1 — t\Y)we,.

Therefore X*(U) = U* is an open neighborhood of a level submanifold of f
for small ¢. Moreover, using the same calculation as in Proposition 1.11, we
have
(25) M=o, HP=Eioms= X (Z0n)

' S B U « 1 — 1) ! '

i k=0"‘ i
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The left-hand side of (2.5) depends on ¢ alone because of (i). Therefore
Y. (A%)**1is a function of ¢ for all k, i.e. A*’s are constant on M. q.e.d.
As a consequence of Propositions 2.1 and 2.2 we obtain Theorem A.

3. Construction of polynomial isoparametric maps

In this section, given an isoparametric submanifold M" of R*"*™ we will
construct a polynomial isoparametric map on R"*™ which has M as a level
submanifold. This construction is a generalization of the Chevalley Restriction
Theorem [26]. We also obtain a structure theory for all isoparametric submani-
folds.

Because of the decomposition Theorem 1.24, we may assume M” is a
compact, full, and irreducible isoparametric submanifold of R"*™, and W is
the associated irreducible Coxeter group on R™. We will use the same nota-
tions as in §1.

Let Y: M" X R™ —> R"*™ be the normal bundle map associated to the
global parallel normal frame e, as in §1. Then there is a small ball B centered
at the origin of R™ such that Y|M X B is a local coordinate system for R"*"™.
In particular, z - n, < 1 forall z € B, 1 < i < p. We denote Y(M X B) by 0.
In fact, 0 is a tubular neighborhood of M in R"*™. From Theorem 1.18 and
Corollary 1.19, we may assume that M is contained in a sphere centered at the
origin in R"*™, and that there is a vector a € R™ such that X = —Y¥_ae,.
Then

Y=X+Yze, =Y (z,—a,)e,.
a o

We let y = z — a. Then y, is a smooth function defined on the tubular
neighborhood @ of R"*™.

3.1. Proposition. Let u: R™ — R be a W-invariant smooth function, where W
is the Coxeter group associated to a full isoparametric compact submanifold M of
R"*™ Then the map f: O — R defined by f(Y(q, z)) = u(z — a) is a smooth
function, and f|M is constant. We call this f the extension of the W-invariant
function u.

In order to construct a global isoparametric map for M, we need the
following lemmas.

3.2. Lemma. Suppose u: R™ — R is a W-invariant homogeneous polynomial
of degree k, then the function

P
6(y)=Y m M

1

i=1 y'ni

is a W-invariant homogeneous polynomial of degree k — 2.
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Proof. Since u(R,y)=u(y), Vu(R;y)= R,(Vu(y)). We claim that
vu(y)-n;=0if y-n,=0. Forif y-n,=0, then R,(y) =y, so Vu(y)=
R, (vu(y)),ie. vu(y)-n,= 0. Therefore ¢(y) is a homogeneous polynomial
of degree k — 2. To check that ¢ is W-invariant, we calculate

Vu(R,y) - n,
¢(R’y)_zj:mfltiy—-;1j

R,-(Vu(y)) “h;
=sz Riy-nj

Using Theorem 1.13(i) and (v), we are done.

3.3. Lemma. Let u: R™ — R be a W-invariant homogeneous polynomial of
degree k, f: O — R its extension. Then

(1) Af is the extension of a W-invariant homogeneous polynomial of degree
(k —2)onR™.

(ii) | Vf|? is the extension of a W-invariant homogeneous polynomial of degree
2(k — 1)on R™.

Proof. Using (1.5), we may choose a local frame field e = e, on & C R"*"™,
and the dual coframe is

i-1 i
wr=(1-z-n)w, for m +1<j< Y m, wr=dz,

r=1 r=1
The Levi-Civita connection 1-form on 0is wfz = w, . Then we have
P
P * l
« = Wa > Z Z

1=z om0

dy,

Since f = u(y, 1, " *>Vo+ ), We have
2 — 2
df = Zua we Vf =1l

Af = Au+Zm Vyu n’

n.

1

where A, v, are the standard Laplacian and gradient on R™. (i) follows from
Lemma 3.2. To prove (ii), we note that Vu(R,y) = R,(Vu(y)), so |Vu|*is a
W-invariant polynomial of degree 2(k — 1) on R™.
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3.4. Proof of Theorem C. We prove this theorem on ¢ by using induction
on the degree k of u. The theorem is obvious for k = 0. Suppose it is true for
all / < k. Given a degree k W-invariant homogeneous polynomial u on R",
using Lemma 3.3(ii), |df|? is again the extension of a W-invariant homoge-
neous polynomial of degree 2k — 2 on R™. Applying Lemma 3.3(i) repeatedly,
we have A ~1(|df|?) is the extension of a degree zero W-invariant polynomial
on R™, hence it is a constant. Therefore

0= &(jas’)
K
=Y X Cl,p(Apf)i‘if'"-/(Ap‘/f)i‘,‘lu.i,y
=0 pt+p'=k-1
iy -y
where ¢, , are constants depending on / and p. We claim that
(Apf)i.il~--i,(Ak—I_pf)i,i1~-i1’ p=k-1-p,
is zero if / < k. For we may assume that p > k — / — p, so p > 1. By Lemmas
3.3(i), APf is the extension of a degree k — 2 p W-invariant polynomial on R™.
By the induction hypothesis, A?f is a homogeneous polynomial on & C R"*"™
of degree k — 2 p, hence all the partial derivatives of order bigger than k — 2p
will be zero. We have / + 1 > k — 2 p by assumption, so we obtain

0= T 7
[
iy iy

ie, D=0 in O for |a|= k + 1. This proves that f is a homogeneous
polynomial of degree k in O. There is a unique polynomial extension to R"*"™,
which we still denote by f.

3.5. Proof of Theorem D. By a theorem of Chevalley [9] the ring of
W-invariant polynomials on R™ is a polynomial ring with m generators
uy,- - -,u,,. Letf,---.f,, be their extended polynomials on R"*™. Then because
u,,- - -,u,, are generators, f = (f},- - -.f,,) will automatically satisfy conditions
(0) and (1) of Definition 2. Since [Vy,, Vyg] = 0 and f is a function of y,
condition (2) of Definition 2 is also satisfied. The rest of the theorem follows
from the fact that u,,---,u,, separate orbits of W and regular points of the
map u = (u,," - -,u,,) are the W-regular points. q.e.d.

The above proof also gives us a constructive method for finding all compact
irreducible isoparametric submanifolds of Euclidean space. To be specific,
given an irreducible Coxeter group W on R™, we denote the root system by A,
ie.,

A = { a] a s a unit vector in R™ such that the
reflection in R” along a isin W }.
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Choose t € R™ with ¢t-a # 0 for all a € A, and let A* denote the set of
positive roots relative to ¢, ie. A*={a € A|(a,7) > 0}. Suppose A*=
{a,,---,a,}. Next associate a positive integer m, to each a; so that m; = m  if
a, and a; are in the same W orbit. Set n = L/ m,. Let uy,- - -,u,, be a fixed set
of generators for the ring of W-invariant polynomials on R™, which can be
chosen to be homogeneous of degree k,. Then there are W-invariant poly-
nomials V;, ®,, U, , and ¥, such that

Au; = Vi(u),  vu;- vu; = Uy(u),
Vu,- a;
2m :

o
j Y4,

=<I),.(u), [Vui,vuj] =§'4’1‘jk(u)vuk'

Then any polynomial solution f= (f,---,f,): R"*™ — R™, with f, being
homogeneous of degree k;, of the following system is an isoparametric map:

Af,=V(f)+,(f),
(3.1) vf - Vf;=U(f),

[Vfi. V] = Zbiu(£) Ve
k

Moreover, if M is any regular level submanifold of such an f, then the
associated Coxeter group of M is W and the rank of the eigendistributions
E,,---,E,of M are m,,- - -,m, respectively.

Since u, can be chosen to be ¥["x7, the extension f, is ¥ ,x3. So (3.1) is a
system of equations for (m — 1) functions. Because both the coefficients and
the admissible solutions for the system (3.1) are homogeneous polynomials, the
problem of classifying isoparametric submanifolds becomes a purely algebraic
one.

However, it is still not known for which irreducible Coxeter group W and
multiplicities m;, (3.1) has polynomial solutions. By a remarkable result of
Miunzner [18] (that p = 1, 2, 3, 4, 6) W must be crystallographic if m = 2, and
it is natural to conjecture that the two remaining noncrystallographic irreduci-
ble Coxeter groups do not arise from nonhomogeneous isoparametric submani-
folds.

Similar results can be proved for the hyperbolic space H” € R™!. Moreover
because of the algebraic nature of this problem, the author believes that the
study of isoparametric submanifolds in the flat pseudo-Riemannian space R/
will yield to techniques similar to those we have used for the Euclidean case.

So far, the results in §§1 and 3 are proved under the assumption that the
holonomy of »(M) is trivial. Now we will show that this assumption is
automatically satisfied.
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3.6. Proposition. If M" is full and isoparametric in R"*™, then the holonomy
of v(M) is trivial.

Proof. Given a nonzero vector v, € »(M),, let M* denote the set of all
points in R"" ™ of the form q + v, where v is the parallel translation of v, along
some path in M, joining g, to gq. If v, is small enough, then M * is an immersed
submanifold. By Proposition 1.4, M* is a finite cover of M. Note that
Proposition 1.11 is a local result, hence M* is isoparametric with n¥ =
n,/(1 —z-n;),and1 — z - n, # 0 for all i. Moreover,

S = { z€R"1-z-nl/|n|=[1-z- nj|/|nj|
for somei # jand n, # 0, n; #* 0.}

is the union of finitely many hyperplanes of R™. So there is a small z & S. Let
Vo = LoZ248a(qo), then nf,---,ny are distinct. Proposition 1.4 implies that
v( M *) has trivial holonomy. By Theorem D, there is a Cartan polynomial map
f having M * as a regular level. However, from the construction of f, we see
that M is an open subset of regular level of f. But M is also compact, hence M
is a regular level of f. This proves that the holonomy of »(M) is trivial, and
M * is diffeomorphic to M. q.e.d.

3.7. Corollary. Let M" be full and isoparametric in R"*™, e a global parallel
normal frame, and v = q, + X, z.e,(q,) a W-regular point. Then X = X +
Y u24q Mmaps M diffeomorphically onto the parallel submanifold M* of M
through v.

Remark. The author would like to thank S. Carter and A. West for
pointing out a gap in the original proof of Proposition 3.6.

Next, we give an example to demonstrate that the theory of isoparametric
submanifolds in an arbitrary flat manifold can be rather different. Let N be the
flat 2-dimensional Mobius strip:

N={(x,y)/x€[0,1],y € R}/(0, y) ~ (1, -y).
Then f(x, y) = y?is isoparametric on N (i.e., Af and | vf|? are functions of f),
and O is the only singular value of f. Let M, = f~(¢). Then the holonomy of
v(M,) is {id} for ¢t > 0, and Z, for ¢t = 0; M, is isoparametric; M,, t > 0,is a
double cover of M;; and the normal bundle map has no focal points.

4. Applications to variational problems
Isoparametric submanifolds provide many solutions to natural variational
problems in Riemannian geometry. In particular, we are interested in the
following well-known functionals:
(1) The energy functional E for maps f: M — N [10], i.e.

E(f)=[ ldffdvol().
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Critical points of E are by definition harmonic maps.

(2) The area functionals A, for immersions f: M* — N, i.e. A,(f) = k-
dimensional volume of M with respect to the metric on M induced by f. A
critical point of A, is called a minimal immersion. The gradient of 4, at f1is the
mean curvature vector of f(M) in N [8].

In this section, we will make the following assumptions:

Let X: M" — R"*™ be a full and isoparametric submanifold, W the Coxeter
group associated to M with multiplicities m,. Suppose M is contained in the
unit sphere of R”*™, then by Corollary 1.19 there is a unit vector a € R™ such
that X = —X, ae,. Moreover, the affine normal plane N, = g + »(M), is a
linear m-plane of R"*™ and W acts on N, , orthogonally. Let U be the
fundamental region of W on N, containing g. Then U is a simplicial cone with
m-faces [2, Chapter 4]. Using notation as in §1, we have

U={q+Zzaea(q)z-n,-<1f0r3111<i<P}’

Yy =z — ais a linear coordinate systemon N ,,and y - n,=z-n;, — 1.

4.1. Theorem. Suppose z - n; =1 for i =i, --,i; z - n; <1 otherwise. Let
X' =X+ZX,z.., M = X'(M). Then the following hold:

(0) M’ is a submanifold of R"*™ with dimensionn — ¥.;_, m, .

(i) Ifz = n,/|n;|% then M is a S™: sphere bundle over M.

(i) Let q' = X'(q). Then v(M"), =v»(M), ®°_,E.(q), and the mean
curvature vector of M’ at q' is

H'(q) = Y. Hle,(q),

where N
mn,

Hy= %

JEi i 1-z-n

(ii) H'(q’) - v;(q) = O for all 1 < r < s. In particular, we have the identities
mn; - n
Y ——————==0 foralll<r<s.
. 1—-z-n;
JFEI J
Proof. dX’=YF (1 - z-n,)idg implies that dX” has constant rank n —
Y;_1m,,and X'(L,(q)) = X'(q) for all i = i}, - -,i,, which prove (0), (i) and
the first part of (ii). It follows from the calculation in Proposition 1.11 that

m.n¢
H'(q) e9)=H;= Y 17
JFEh g J
o _ Y s £
(@)-e(q)= X =57 fore(q)e @ E(q),
J*Eiy kg J r=1

where w,; = ¥, v, Wi
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By Proposition 1.8, we have y;;; = 0, which proves the second part of (ii). It
remains only to show that H'(q") - v; (q) = 0. It suffices to show that H'(¢’) - v
is a constant for all unit vector v € E;(q) ® Ru,(g). To prove this, we note
that from Theorem 1.9 v, /|n, | defines a diffeomorphism from the leaf L, of
E, to the unit sphere of E, (q) ® Ru,(q), and the principal curvatures of M’ in
these directions can be calculated as follows:

de’ U‘-’ de Ui, nir s h,
L— | = 0w | = w
v |n; | ’ In; | ;| ko

1
“ L

k#iy,- i

T-nk . q.e.d.

r s

Applying the above theorem (ii) to the harmonic maps, we obtain

4.2. Theorem. Let f: R"*™ — R™ be a full and isoparametric map, ¢ € R*,
then

() £~ ¢) is always a submanifold of R"*™.

(ii) The Gauss map of M = f~Y(c) is a harmonic map from M to the
appropriate Grassmann manifold.

Proof. A theorem of Ruh and Vilms [24] states that if the mean curvature
vector of a submanifold M* of R" is parallel, then the Gauss map g:
M — Gr(k, n) is harmonic. So to prove our theorem, it suffices to prove that
the mean curvature vector of M’ in Theorem 4.1 is parallel with respect to the
normal connection of »(M"). To see this, we note that H' = ¥ H e, where H,,
is constant, and w,; = O on M’ fore; € @’_ E,,so H'is parallel. q.e.d.

Using Theorem 4.1(iii), we also find many minimal submanifolds from
1soparametric maps.

4.3. Theorem. Let X: M" — R"*™ be full and isoparametric, W the Coxeter
group of M on R™, and U = {y € R™|y - n; < 0} the fundamental region of W
on R™. Suppose M is contained in the unit sphere of R"*"™, i.e., there is a unit
vector a such that X = —¥ ae,. Then the following hold:

(i) T = Un S™ ' is a polyhedron of m faces in S™ ', and each face is
totally geodesic. In fact, S™ ' is invariant under W, and T is the closure of the
fundamental region of the induced W-action on S™ 1.

(ii) If o, is the interior of an i-dimensional simplex of T', then there exist
n,, --,n, suchthaty € o;ifandonlyify -n, =0forr=1,---,sandy - n; < 0
otherwise. In particular, M! = Y(M X {z}) are diffeomorphic for all z € a + ¢;
with dim M, = v,, wherev,=n —¥;_m,.

(iii) Let P: a, — R be defined by P(y)=A,(M,.,). If y; € o, is a critical

. . . . . + . 1
point of P,, then M, , , is minimal in "™~ ",
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(iv) P, assumes a maximum in o,. So there exists a v-dimensional minimal
submanifold of S"*™~'. In particular, if 6, = { y,} is a vertex of T, then M .,
is minimal.

Proof. (i) and (ii) are obvious. Suppose y; € o; is a critical point of P,. Let
y(t) be a curve in g, through y; at t = 0, and (dy/dt)(0) = b. Then

(@) = GOW)|_ =H(The),

=0

where H' denotes the mean curvature vector of M , , in R"*™ (4.1) is true for
allb € R™such thatb -y, =0and b-n;, =0 for1 < r <s. By Theorem 4.1,
we also have H'-v;, =0 forall 1 <r<s, and H' =X, Hze, Hence H’ is

proportional to

Y(V)aea=2(—a+y +a),e,=q+ 2 (y+a).e.q),

a

which is the position vector of M, ,,. So M, , , is minimal in $"*™~!, which

proves (iii). Now P, is continuous in §;, positive on o; and zero on the boundary
of o;, hence P, assumes a maximum in the interior. q.e.d.

Note that if M" C R"*™ is a principal orbit of a G-action on R"*™ with a
section, then Theorems 4.2 and 4.3 are just applications of the symmetric
criticality principal [21]. In particular, Theorem 4.3(ii) was proved by W. Y.
Hsiang [17] for the homogeneous case. For general isoparametric submanifold
M, even though there does not exist a group of isometries acting on M
transitively, we still obtain the same results.
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