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A DEGENERATION OF THE MODULI SPACE
OF STABLE BUNDLES
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1. Let k be an algebraically closed field and let d be an odd integer. Let
g = 2 be an integer and suppose Y is a smooth projective curve of genus g. Let
Uy be the set of isomorphism classes of stable bundles E of rank two and
degree d. (Note: we do not fix /\ 2E) Following Mumford and Seshadri, we
know that U, is in a natural way the set of (closed) points of a smooth
projective variety again denoted by Uy. Our aim in this paper is to develop a
method of studying the topology of U, by degeneration methods. Our main
application is the proof of the following theorem conjectured by Newstead and
Ramanan.

Theorem 1.1 (k = C). The kth Chern class of the tangent bundle of U, is
zero in the deRham cohomology of Uy if k > 2g — 2.

We hope that degeneration methods may be useful in other contexts. For
instance, one can hope that the theory can be generalized to bundles of
arbitrary degree and rank. One should also be able to compute the lower Chern
classes of 2, .

The following is a brief outline of this paper: Let X, be an irreducible curve
of genus g which is smooth except of one ordinary node N. We let X be the
normalization of X, and let P, and P, be the inverse image of N. Our object is
to find a (singular) projective variety Uy which will play the role to Uy when Y
is smooth. In particular, if {Y,} is a family of smooth curves degenerating to
Xy, then we desire that Uy, generates to Uy .

The first difficulty in constructing Uy is that one cannot hope that all the
points of Uy will correspond to actual bundles on X,. There are two methods
to resolve this difficulty. One is to consider certain torsion-free sheaves on X
to obtain a candidate for Uy [3]. However, such a Uy does not appear to have
(analytic) normal crossings. The second method, which we will follow, is to
consider certain bundles on certain semistable models of X|, as is suggested by
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the theory developed in [1]. The construction of Uy, and the examination of its
local properties occupy §§3 and 4. (§2 consists of definitions and elementary
results on stable bundles on smooth curves.)

Let U be the set of all bundles E on X, so that the pullback £ of E to X is
stable. We will see U is a smoc_>th open subvariety of Uy, . Letting Uxo be the
normalization of Uy, we see Uy is a smooth compactification of U. On the
other hand, U is a fiber bundle with fiber GL(2) over S, the moduli space of
stable bundles on X. The main object of the paper is to embed U into a certain
projective fiber bundle S; over U, and then to obtain UXO by blowing up and
then blowing down S; in a fairly explicit way. The main result is Theorem 13.1.
§811 and 12 are independent of the rest of the paper. §11 gives conditions
which insure a birational map between projective varieties is obtained by
blowing up the target. §12 consists of a Chern class computation which
together with Theorem 13.1 proves Theorem 1.1.

Since d is odd, we letd = 2a + 1.

I wish to thank Jim Carlson, Herb Clemens and Steve Zucker for their help
on mixed Hodge structures.

2. We begin with some terminology. Let S be a scheme of finite type over k
and let Z be a closed subscheme. Let E be a bundle on S.

Definition 1.1. A Z quotient of E is a locally free sheaf of O, modules Q
and a surjection ¢: E - Q.

Two Z quotients E - Q and E — Q' are equal if Ker(E, Q) = Ker(E, Q).
We call E’ = Ker(E, Q) the modification of E at Q. Let F = Ker(E, Q). Then
F is a sheaf of locally free 0, modules and F is a Z quotient of E’. We call F
the canonical Z quotient of the modification of E at Q. If §,, the ideal sheaf of
Z in §, is invertible, then E’ is a bundle.

If Z’ C Z, we call Q ® 0, the Z’ quotient induced from Q. If Z” is another
closed subscheme of S, and Q” is a Z” quotient of E and W C Z N Z”, then
we say Q and Q" coincide over W if the induced W quotients are equal.

Remark 2.2. Suppose S is smooth, Z, and Z, are two divisors intersecting
transversally, and Q is a Z, quotient of E. Let Q' be the induced Z, N Z,
quotient of E; , E' = Ker(E, Q) and E” = Ker(Ez, Q). Then (E'),, = E",
and the canonical quotients coincide over Z, N Z,.

Now let C be a smooth projective curve, E a bundle of rank r over C and Q
a locally free quotient of E.

Definition 2.3. Q is destabilizing (resp. semistabilizing) if

degQ<gﬂ ( degQ:__degE)
k Q tk E "1k Q tk E |’
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Now if C is rational, then E is a direct sum of line bundles L,.

Definition 2.4. E is standard on a rational curve if deg L, is either zero or
one for each i.

If E is standard, there is a unique quotient Q so that Q is a direct sum of
Oc’s and Ker(E, Q) is a direct sum of O(1)’s. We call Q the standard quotient of
E.

X will be a fixed nonsingular curve of genus g — 1 for the rest of the paper and
P, and P, will be fixed distinct points on X. Let E be a bundle of rank two on X
and let L, be P, quotients of E of rank one. We suppose E is stable of odd
degreed = 2a + 1.

Lemma 2.5. (i) E’ = Ker(E — L)) is semistable. Further there is no semi-
stabilizing quotient M of E’ which coincides with the canonical P, quotient of E’.

(ii)) E” = Ker(E —» L, ® L,) is stable unless there is an invertible quotient L
of E of degree a + 1 which coincides with L, and L,.

Proof. Consider case (i). Let M be a quotient of E’ of degree e < a and let
M’ = Ker(E’, M). If e<a, then deg M’ > a so the subline bundle of E
containing M’ is destabilizing. If e = a and M coincides with the canonical
quotient of E’ at P,, then the map from M’ to E vanishes at P, and so M’(P)
maps to E. Then M'( P) is destabilizing for E.

Consider case (ii). Then E” has a quotient M of degree e < a — 1 and hence
a subbundle M’ of degree = a. But M’ must be a subbundle of degree a of E,
since otherwise E would have a subbundle of degree > a. On the other hand,
M’ maps to zero in L, and L,, so E/M’ is a quotient of degree a + 1 which
coincides with L, and Lp,.

Lemma 2.6. Suppose deg E = 2a + 1 and that E has a quotient Q of degree
a. Further, suppose the L, do not coincide with Q over P,. Then:

(i) Ker(E, L,) = E’ is semistable. Further, Q is a quotient of E’ and the
canonical P, quotient of E' is glued to Q over P,.

(ii) Ker(E, L, ® L,) is stable unless there is a quotient Q" of E of degree
a + 1 which coincides with L; over P,.

The proof of Lemma 2.6 is similar to that of Lemma 2.5.

3. Recall that X is a fixed nonsingular curve of genus g — 1. We let X, be
the stable curve obtained by identifying P, with P,. Now for each n = 1, we
can define a semistable curve X, whose components are X and nonsingular
rational curves R,,- - -,R, with R, meeting R;,_, and R, and R, meeting P,
and R, meeting P,.
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Now we say a bundle E of degree 2a + 1 on X is slightly unstable if it has a
destabilizing quotient of degree a.

Now if E is a bundle of rank 2 on X,, we let E denote the pullback of E to
X.If E is a bundle on X,, we let £ = E ® O,. We say E on X, is weakly stable
if it has no quotient line bundles Q which are destabilizing, i.e.,

2degy, Q <degy E.

We now consider certain types of bundles defined on X,,, X, and X,. We will
assume all types are weakly stable of degree 2a + 1.

Type 1: E defined on X, and E is stable.

Type I,: E defined on X, and E is slightly unstable.

Type 11,: E defined on X, E is semistable, and Ep, is standard of degree 1,
ie, Ep =0(1) ® 0. )

Type I1,: E is defined on X, E is stable and Ej is standard of degree 2, i.e.,
Eg, =0(1) ® 0(1). )

Type III: E is defined on X,, E is stable, E, is standard of degree 1, and the
standard quotients of Ex and Ex_ do not coincide over R, N R,.

Bundles of any of the above types will be called potentially stable. Now recall
the setup of [1]. Weletd = 2a + 1 andn =d + 2 — 2g. We let W be a vector
space of dimension n, G be the grassmannian of all codimension two subspaces
of W and & be the universal bundle on G. We let S, , be the Hilbert scheme of
curves of degree d and genus g on G. We can then consider the stability of the
m-Hilbert point of C € S, , for m > 0. Our first main result was that there was
a d and an m so that if C is smooth, then C is m-Hilbert stable if and only if &
is stable. Our second main result was that if C is m-Hilbert semistable, then C
is semistable as a curve and H'(C, &) = 0. Further, if C is isomorphic to X,
then & is potentially stable. We fix such a d and m.
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Proposition 3.1.  Any potentially stable bundle on X, is m-Hilbert semistable.

Proof. Let U be the set of m-Hilbert stable points. First notice that if & is
potentially stable, then C € U. Indeed, we can deform any semistable curve to
a smooth curve, and we can then lift our bundle to this deformation. On the
other hand, on a smooth curve any bundle can be deformed to a stable bundle.
Indeed, we can write our bundle and a stable bundle as an extension of the
same two line bundles. Since stability is an open condition, our claim follows.

Consequently, if C = X,, we can find a smooth curve S, a family of
semistable curves 7: Y — S, and a bundle F on Y so that for some R € S, Fy
on Y, = 7~ !(R) is our potentially stable bundle and for Q # R, Y, is smooth
and F is stable. After replacing S by a cover possible ramified over R, we can
assume there is a family #’: Y’ - S and a bundle F’ on Y’ so that (Y’, F’) is
isomorphic to (Y, F) over S — R and so that Fj is m-Hilbert semistable. Now
let Y” be the smooth surface which is the minimum model obtained by a
resolution of singularities of Y. By uniqueness of minimum models, Y” is also
a minimum model of Y’. We will denote the pullbacks of F and F’ to Y” by F
and F’ again. We have an isomorphism ¢ of F with F’ over S — R. Now locally
around R, we can choose a uniformizing parameter ¢ of S at R and we can find
a map ¢: F —» F’ which is not identically zero on Yy. Indeed, we just take
@ = t*y for some suitable k. Now let E and E’ be Fg and Fyon Yy = Y,. Y, is
isomorphic to X, for some n. We let R be the union of the R,’s. We have
nonzero maps ¢ and ¢’ from E to E’ and from E’ to E, and both E and E’ are
the pullbacks of potentially stable bundles. Our main claim is that if deg E >
deg E’, then @ is an isomorphism. Our proof of this claim will only use the fact
that E and E’ are the pullbacks of potentially stable bundles, so Proposition
3.1 follows by reversing the roles of E and E’ if necessary.

We first claim that if ¢ vanishes at P, and P,, then ¢ vanishes on R. Indeed,
we can write Ex =L, ® L, and Ex = M, © M, where each L, and M, has
degree zero on all components of R except perhaps for one on which it has
degree one. Now

Homo,(Eg, Ex) = @ (L' ® M)).
i)
Our assumption means that the components ¢, of ¢ vanish at P, and P,. But
L'® M, has nonpositive degree on all components except perhaps for one R,.
Thus ¢,; vanish on all components except R, and hence vanish on R,, since
@;; vanishes at two points of R,.

Second, we claim that if ¢ is an isomorphism at P, and P, and deg Ep =
deg E}, then g is an isomorphism over R. Consider L = (/\ >Ez)"' ® N2 E;.
L has degree zero. First consider the case deg Ex < 1. Then L is either trivial
on all components, or has degree one on some component R; and degree —1 on
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R;. If L is trivial, then A2 ¢ is nowhere zero and so ¢ is an isomorphism.
Othcrwme, A\ % @ vanishes on R; and hence on all components above or below
R; depending on whether R, is below or above R;. So A2 g is zero at P, or P,.

Next consider the case deg Er = 2. The arguments given above eliminate all
cases except if L has degree one on R, and R, and has degree zero on R, if
m < k or m > [. In this case, let R’ be the chain R, ,, U - -- UR,_,. Then Eg/
has no sections since it is a direct sum (L;' ® L3'); where L, and L, both
have degree one on some component of R’. Since E’. is trivial, ¢ is identically
zero on R’. Thus /\ %p vanishes to order two at R, N R, ., and hence vanishes
on R,. Thus /\ %p vanishes at P,.

Third, we claim that if deg E; <1 and ¢ has rank one at P, and P,, then
there is quotient line bundle L of Ej so that ¢( Ex) maps to zero in L. Indeed,
A\ % must be zero since /\ ’E & has positive degree on at most one component
R, and its degree on that component is one. Since /\ %p vanishes at P, and P,,
we see /\%p =0. Now ¢ factors through a subline bundle of E & unless @
vanishes at some node R; N R, . But then the components ¢,, vanish at this
node. We may assume / < i. Then E ,’QJ is trivial for j = i so @,, vanishes at P,
and hence ¢ vanishes at P,. This contradicts our assumption.

Fourthly, if £ and E’ have the same degree, we claim ¢ cannot vanish at P,
and P,. Suppose not. Our claim is clear if £ and E’ are semistable. We have a
nonzero homomorphism ¢ from E to E'(-P, — P,). Now /\ %§ vanishes, since
degE > deg E'(-P, — P,). Hence ¢ factors through a subline bundle L of
E'(-P, — P,). But L must have degree at least a, since E is at most slightly
unstable. But deg L < a — 1, since £’ is at most slightly unstable. Hence ¢ is
zero and hence ¢ is zero by the first claim.

Fifthly, we claim that if deg £ > deg E’ then E is slightly unstable and E’ is
strictly semistable. Further, ¢ has rank one at P, and P,. In fact, ¢ must factor
through the destabilizing quotient of £, which must be a subbundle of E".

We lastly claim ¢ is an isomorphism. Indeed suppose first that deg E >
deg E’. Then from our fifth claim we see deg Er = 0 and deg E; = 1. Our
third claim shows there is quotient line bundle of E; which coincides with
coker ¢ over P, and P,. Hence there is a quotient line bundle L of E’ so that
¢(E) maps to zero in L. Let M = Ker(E’, L). Then deg M < a, since E’ is
weakly stable. But the map of E to M factors through the destabilizing
quotient of £, so deg M > a. Since g has rank one on all the R, N R, , and
Er = 0p ® Og, we see deg My = 0. Hence deg M, = 0 and deg M = a. Fur-
ther M is a quotient of E, so deg M = a + 1 since E is weakly stable.

Thus we may assume deg E = deg £’. Now A% = 0, since if /\*§ # 0,
then ¢ is an isomorphism since deg £ = deg E’. Hence ¢ would be an isomor-
phism. Now if A % = 0, either E or E’ must be unstable, since any nonzero
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map between two stable bundles of the same degree and rank is an isomor-
phism. Hence deg E; < 1. If deg E; = 1, then E and E’ are semistable and ¢
has rank one at P, and P,. One sees as above that ¢ factors through a
subbundle M of E’ which is a quotient of E. This contradicts the weak stability
of E and E’. Finally, suppose deg Ex = 0. If ¢, vanished at P,, it would also
vanish at P, and vice versa, since E; and Ej, are trivial. Hence ¢ has rank one
at P, and P,. This again contradicts the weak stability of E and E’.

Corollary of proof 3.2. If E is potentially stable on X, then Hom(E, E) =
k.

4. Let C be a smooth curve and let P € C. Let m: X — C be a flat family
of curves with X smooth over k and 7~'(P) = X, = X,, where X, is our nodal
curve. We assume 7 has a section and that 7 is smooth away from P. Now let
F(T) be the set of closed subschemes Y C (X X~ T) X,G which have the
following properties:

(i) Y is a flat family of curves of genus g over T.
(i1) The induced map from Y to T X, G is an embedding and for each
closed t € T, the corresponding curve in G is Hilbert semistable.

(iii) Locally on T, there is an isomorphism between the relative dualizing
sheaf wy,r and the pullback of wy /(.

We will see (iii) is an open condition. Assuming this, we see F is an open
subfunctor of the relative Hilbert scheme of %X X G, and so F is representable
by a scheme p: Y — C. First notice that a closed point of % lying over P
consists of a curve X’ C G which is m-Hilbert semistable and a map ¢ of X’ to
X, so that the pullback of wy is wy.. Since the genus of X, and X are the same,
one sees that X’ is X, 0 < n < 2, and the map from X" to X, is the map which
collapses the R; to the unique node of X,.

Proposition 4.1. Y is smooth over k and %, is a reduced divisor with normal
crossings. Further SL(W ) operates freely on %Y.

Before proving the proposition, we need to study deformations of X, . Let 4
be an artinian k algebra. Then Schessingers’s theory shows that given a flat
deformation Z of X, over Spec A4, there are a,,---,a, € 4 so that at the ith
node N, = R; N R;;,, we have @)Z,Ni = A[[x, y]l/(xy — a;). The a; are de-
termined up to a unit, so we refer to @; = 0 as the equation of the ith node. If
Z' is another deformation of X, so that a; is the equation of the ith node of Z’,
then Z and Z’ are locally isomorphic in the Zariski topology.

Now let W = Spec k[[?,, - -,2,]]. We choose ¢ to be a uniformizing parame-
terin O », and we map Wto Csothatz =1, ---1,.

Lemma 4.2. There is a deformation Z of X, over W and a morphism .
Z > X X W so that *(ws; /) = wz,y and so that t; = 0 is the equation for
the ith node of X,,.
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Proof. Consider the case n = 1. There is an étale cover g: Y, » X, so that
Y, consists of two copies of X with P, on copy one glued to P, on copy two
and vice versa. Let X be the completion of % at X;- Then we can find an étale
cover ¢: ¥ - X reducing to Y, — X, over P. Now let Q, and Q, be the two
nodes of Y;,. We can find local parameters x and y at Q, so t = xy. Thus in
some neighborhood of Q, € ¥ X 2 W, we have xy = t,¢,. Let 9, be the ideal
generated by x and 7,. One checks 9, is a Cartier divisor away from Q,. Let
§, = i*(9,), where i is the involution on ¥. Now blow up ¥ at §, around Q,
and 9, around Q, to obtain Y’. Since §, and 9, are Cartier away from Q, and
Q,, this operation is well defined. Now i still acts on Y’ as a fixed point free
automorphism, so we can form the quotient Z by dividing ¥’ by the action of .

We can check the local behavior of Y’ Let

R=k[[x, y,1,,1,]]/ (xy — 1,1,)

and consider R, = R[x/t,] and R, = R[t,/x]. Let m be a maximal ideal in
R,. Let a be the residue class of x in R,;/m and let x" = x/¢,. If a #+ 0, then
x’ — a, t, and 1, generate m since y = t,/x’. Thus R, is regular at such a point
and the equations ¢, = ¢, = 0 define a smooth curve. If x" € m, then we have
the relation ¢, = x"y, so x’, y and ¢, generate m. Thus R, is regular at such a
point and ¢, is the equation for the node. Now since ¢,/x = y/t, we see
R, = R[y/t,] and so ¢, is the equation for the node y /1, = x = ¢; = 0. So the
two nodes of Z have equation ¢, = 0 and ¢, = 0. Similarly, one can check
locally y*(wy ,c) = wz, -

The case of n > 1 is handled similarly.

Now let 7: X, — X, be the standard map. There is a map from 7*Q}_to Q)
and hence a map

P: Hom(SZ}", (‘)) - Hom(w*ﬂ'xo, @).

Let E be the union of the R,’s in X,,.

Lemma4.3. Kerp=@U0;, Cokerp C Oy(-P)) ® Opx(-P,).

Proof. We have a (nonexact) sequence of maps over some étale neighbor-
hood of E,

(4.3.1) 00057, -0 - QL.
To define g,, we let the node of X be given by xy = 0. Then @,( f, g) = fdx
+ g dy. Dualizing @5, we obtain a map
¥;: Hom(7*Q',0) - 0 © 0.
Let
7:080-0,00,



DEGENERATION OF STABLE BUNDLES 181

be the natural map and let {3 = 3’ o ;. Then dualizing (4.3.1), we have
¥ ¥
(4.32) 0 - Hom(},0) >Hom(€} ,0) > Hom(7*Q}, 0) Vii@E 0,.

We claim (4.3.2) is exact and that im §; C Og(-P,) ® Og(-P,). Our claim is
readily verified except at P, and P,. So consider P, € X,. We can introduce a
local parameter y” at P, so that X, is defined by xy’ = 0 near P,. Further,
y =0 near P,. Now let e, = 7*(dx) and e, = n*(dy). Near P, 'rr*SZ‘X0 is
generated by e, and e, subject to xe, = 0. Near P,, Q‘X is generated by e, and
dy’ subject to xdy’ + y’e, = 0. Further, e, maps to zero in @ at P,. Let us
check the image of 5 is contained in O(-P,) ® O(-P,). Let A € Hom(vr*Q'XO, 0)
be defined near P,. Then xA(dy) =0, so A(dy) must vanish on the curve
y" = 0. Hence A(dy) vanishes at P,. Thus the image of ¥, is contained in
Og(-P,) ® O near P,. Near P,, the image is contained in O ® O (~P,). Our
other assertions may be similarly verified. Further, Hom(g}, 0) = @©0 R,
Corollary 4.4. The natural map

e H'(Hom(ﬂ}n, (‘))) - H'(Hom(vr*(ﬂ'xo), (‘)))

is injective.

Proof. H](@(C)R,) = 0and H(Og(-P,) ® O (-P,)) = 0.

Let A be an artin local k algebra, let T = Spec A and suppose T is a C
scheme with the closed point of T going to R. Let ¢t be a uniformizing
parameter in O .

Proposition 4.5. Suppose Z' is a flat deformation of X, over T and that there
is a T morphism ' of Z' to X X - T which reduces to the standard morphism of
X, to X,. Then there is a map of T to W so that Z' and Y’ are isomorphic to the
pullbacks of the Z and  of Lemma 4.2. Further, if a, = 0 is the equation of the
ith node of Z', then 11, a, generates the ideal (t) in A.

Proof. We may assume that 4 has a principal ideal (&) of k-dimension 1
and that the proposition is true for 4, = A4 /(¢). Let T, = Spec 4.

We can find a map ¢, of T to W so that the pullback (Z7, §1’) of (Z, ¢) is
isomorphic to (Z’, ¢’) over T; and so that the equations for the ith nodes of Z}
and Z’ agree. Thus Z’ and Z{ are locally isomorphic over T. Choose an affine
open cover U, of X, and let U and U be the corresponding open covers of Z’
and Z”. We may assume there are isomorphisms ®;: 0,, —» 0, which agree
over Ty = Spec A,. Now on U/ N U/, we have

?(f)= (I)j(f) + 8)‘ij(df)

for all f € T(U/, 0) and some A,; € T(U; N U, Hom(QY , 0)). As usual, A, is a
cocycle and Z’ and Z{ are isomorphic over C if and only if {A;} is a
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coboundary. Let p,; be the image of A, in I'(U; N U, Hom(vr*SZ‘Xo, 0)), and let
1 be the corresponding cohomology class in H'(Hom( W*QIXO, 0)). But p is just
the obstruction to extending the map from Z{ to X X T; to a C morphism
from Z’ to X X . T. Corollary 4.5 shows A, ; is a coboundary.

Next we study the action of SL(W) on the Hilbert scheme of G.

Lemma 4.6. Suppose A: X,, - G is an embedding with n = 1 and \(X,)) is a
potentially stable curve. Suppose 0 € SL(W) fixes N(X,,) and is the identity on
X C X,. Then o is a multiple of the identity.

Proof. Let E = A*(&). The map A is given by choosing a basis {s;} of
H°(X,, E) and o ° A is obtained by a basis {s/} of H°(X,, E). Since o induces
the identity on X, we have that 5, = s/ on X up to a scalar multiple. But
HY(X,, E) » H(X, E) is injective since E is potentially stable. Further, since
W = H°(X, E), we see o is the identity up to a scalar multiple.

With the same notation as in Lemma 4.6, we have

Lemma 4.7. Let D be a vector field on G which is tangent to N( X,)). Then D
is zero.

Proof. Let k[e] = k[x]/(x?). If V is a scheme over k, we let V[e]=V
X, Spec k[e]. Now D induces a k[e] map from G[e] to G[e]. Note that D is
zero on A(P,) and A(P,) since D is tangent to A(X,). Further, D actually
induces a map of A(X,)[e], and hence we may regard D: X,[¢] - X, [e]. Now
there are no vector fields on X vanishing at P, and P,, so D vanishes on
X C X,. Now the map from G[¢] to G[e] is just given by a new basis S7,- - -, S,
of HG, &)[¢] which coincides with the old basis S,,- - -,S, mod e. Since D is
zero on X C X, we have that S; = S/ on X[¢] up to a scalar multiple. We may
assume S; = S/ on X[e). But the map from H%( X [e], &) to H°(X[e], &) is
injective, so the S; = S/ in H%( X, [¢e], &). Hence S; = S/ in H%(G[e], &) and so
D=0

With the notation of Lemma 4.6 again, we have

Lemma 4.8. Let 9 be the ideal sheaf of N( X,,). Then the natural map

p: H(G, T;) ~ Hom( $/9, 0, ., )
is injective.
Proof. Identify A(X,) and X,,. First note that the map from H(G, T) to

HYX,T;®0 x,) 1s injective. Indeed on G, we have a tautological exact
sequence

0-594-0">6-0,

where we denote dim W by r instead of by n as above. Now T; = Hom($, &),
so we have an exact sequence

0 -» Hom(6,6) » & > T; - 0.
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Thus we have the commutative diagram with exact rows:

0— H%(G,Hom(6, 6)) —— H%G, §) —— HY(G, T;) —— 0
la B Ly
0— H(X,,Hom(&, &)y ) — H(X,, 6y ) — H(X,,(T;)x,)

Now a is an isomorphism, since Hom(&6, , & ) = k. Further, 8 is an isomor-
phism. So vy is injective. Lemma 4.8 shows (imy) N H%( X, Ty) = 0. On the
other hand, from the exact sequence

0-9/9>>(QL)x, - Q% >0
we see that the following is exact:
0 - H%(X,, Ty,) » H%(X,, T;) - Hom($/9%,0, ).

So our claim follows.

Proof of Proposition 4.1. Suppose A4 is an artinian local k algebra with an
ideal (&) of dimension one. Let A, = 4/(¢), T = Spec A and T, = Spec A,. To
show ¥ is smooth, it suffices to show that F(T') surjects to F(Ty). Let
Y, C(X X4 T,) X, G be an element of F(A,). Consider Y, as an abstract
deformation of X, mapping to X X - T;. Then by Proposition 4.5 there is an
extension Y of Y, over T and a map of T to C so that Y maps to X X T.
Further, &, = &, can be extended to a bundle § on Y, since the obstructlon to
lifting &, lies in ‘H (Hom(&, &) x,)- Finally, the sections of &, defining the
given map of ¥ to G can be extended to ¢, since H'(X,, & x,) = 0. Thus Y is
smooth over k.

Consider %, as a Cartier divisor defined by 7 = 0. Let R be a closed point of
%,. Now over T = Spec (9@ r there is a universal family of curves Y C
(% XcT) X, G. Letz; € (9@ z be the equation for the ith node of Y. Then I z;
gencrates t (Proposmon 4.5). On the other hand, for each i if T, =
Spec k[el/(¢*), we can find Y; € F(T;) mapping to R, so that if a,; is the
equation for the jth node on Y, then a;; = §;,. Hence the dz; are independent,
and %, has normal crossings on %Y.

Let S, , be the Hilbert scheme of curves of genus g and degree d in G and let
U C S, , be the set of semistable points. Since g = 2, there are at most finitely
many maps o of a semistable curve to its stable model. Thus the induced map

:Y->UX,C
is quasifinite. We claim ¢ is finite. Suppose not. Then we can find a smooth
curve S, a R € S and a map ¢: S — R — % which induces a map ¢’ of S to

U X C. We consider first the case when S — R maps to C — P and R maps to
P. Using an argument similar to that used in Proposition 3.1, we see that the
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family of semistable curves induced by ¥’ over S maps to the family of stable
curves X X S. But then ¢ can be defined at R. The other cases can be
similarly handled, so ¢ is finite.

SL(W) acts on U X C and on % over k. We can cover U by invariant affines
U on which SL(W) acts properly and so cover Y by invariant affines
V, = ¢ (U, X C) on which SL(W), acts properly. We claim SL(W) acts freely.
Lemma 4.6 shows that SL(W) has no fixed points. Indeed, if SL(W) fixed a
closed point of %, it would induce a nontrivial automorphism of X C X,. But
then if p is a standard map of X, to X, we would have o o p # p. Thus ¢ has
no fixed points. Further, Lemma 4.8 shows the map of the Lie algebra of
SL(W) to the tangent space of the Hilbert scheme at a given closed point is
injective. So our claim is established.

So a geometric quotient U of Y by SL(W) exists [3, Proposition 3.12].
Further, % is a principal SL(W) bundle over °lf [1, Proposition 0.9]. Since ¥ is
smooth, U is also smooth. Further, U, has normal crossings on . We finally
claim that 9 is projective over C. If °Uf is not proper over C, we can find a C
curve S and a morphism ¢ of S — R to AW. By passing to a ramified cover of S,
we can assume y can be lifted to a map ¢’ of S — R to % so that ¢’ induces a
map of S to S, ;. We may further assume that y’(R) is a semistable point Q of
S, 4 and that if Q is strictly semistable, then the automorphism group of Q as a
curve on G is infinite. By the results of [1], Q as an abstract curve is semistable
and hence is either smooth or one of the X,. By Corollary 3.2, Q has no
continuous families of automorphisms as a curve in G. Thus Q € U and ¢’
factors through U. Since g is finite, ¢’ factors through %.

Now let T be a C scheme and let G(T') consist of triples (Y, E, g) where Y is
a semistable family of curves, of genus g over T, q: Y — %X X T satisfies (iii)
above, and E is potentially stable on all the fibers of p: Y —» T. Then any
element of G(T') can be lifted locally to F(T). We thus get a map of the
functor G to U which is bijective on closed points.

5. Let S be a smooth curve and let R € S be fixed. Let E’ and E” be
bundles on S. We define a rational isomorphism ¢ of E’ to E” to be an
isomorphism of E” with E” over the generic point of S. There is a unique
r € Z such that ¢ induces a map

¢ E'(rR) > E”
which is defined (i.e., holomorphic) and nonzero at R. There is a unique s so
that (coker @), = Op/m’, where we define m® = 0. We say (r, s) is the type
of ¢ with respect to E and E’.

Suppose E is a vector bundle on X X S and ¢ is an isomorphism of (Ep, ),
with (Ep ), where U = § — R. We can use ¢ as descent data to form a bundle
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E, on X, X U. Our aim in this section is to define a semistable family of curves
X’ and a bundle E’ on X" extending X, X U and E, for certain types of ¢. The
resulting family will be called the geometric realization of ¢.

First, if @ has type (r, 5), then ¢! has type (—r — s, 5). Indeed, notice that
Q, = coker ¢’ is an Op/m’ quotient of Ep. We will, in general, feel free to
localize around R without comment. Thus we can assume that Ep is a direct
sum M, ® M, where M, coincides with 0, over Spec O /m*. Thus

Ker(Ep — Q,) = M, ® My(-sR).

Let N, ® N, be a direct sum decomposition of E, which corresponds to
M, & M)(-sR) under the isomorphism of Ep(rR) with Ker(Ep, Q,). Thus we
have isomorphisms

¢,: Ni(rR) - M,, 9,1 Ny(rR) » My(—sR).
Thus M,((~s — r)R) maps to N, and this map is nonzero at R for i = 2.
Further, N, /@, (M,((-r — s)R)) = Or/m", so ¢! has type (-r — s, s).

Case (0,1). We suppose ¢ has type (0,1). This means that ¢: E, —
Ker(Ep, L,), where L, is an R quotient of Ep. We let L, be the R quotient of
Ep corresponding to the canonical quotient of Ker(Ep, L,). On X X S blow
up the point P, X R to obtain a surface p: X, - X X S. Call the exceptional
divisor D,, and let the proper transform of P, X S be H,. Denote the proper
transform of X X R by X.

X

H, /P,

Now let E@ = p*(E). Note that p*(L,) is a D, quotient of rank one. Let
E’ = Ker(E®, p*(L,)). The map ¢ from Ej to Ker(Ep, L,) is an isomor-
phism. To obtain the geometric realization of ¢, we glue H, to H, and use ¢ as
an isomorphism of Ej; to Ej; . We have

(5.1.1) Ejp, is standard of type 1.

(5.1.2) Ejis the modification of Ey,p at L,.

(5.1.3) At Py, the standard quotient O of Ej, is glued to L, the P, X R
quotient of E; = Ep.

(5.14) At P,, the standard quotient O of Ej, is glued to the canonical
quotient of E} from (5.1.2).
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Indeed, (5.1.1) follows, since Ej, is O, @0, and Ej, is O, @ 9, /97
Since D; = -1, E;, =0 ® 0(+1).

(5.1.2) and (5.1.4) follow from Remark 2.2. For (5.1.3), the standard quotient
of Ej, is the canonical quotient, and L, is the quotient of E, which is glued to
the canonical quotient of Ker(Ep , L,).

Case (1,0). If @ has type (1, 0), we use the same surface X, as in Case (0, 1).
This time we have ¢: E, — Ep(-R). Letting E® be the pullback of E to %X,
we define

3) 2) Q@
E® =Ker(E®, ER).
We see that

(5.2.1) EY = E(-R).
(522) ER is 0(1) ® 0(1).
(52.3) ES = Ep(-R).

Case (1,1). We have a quotient L, of E,(-R) and
9: Ep > Ker(E,,z(—R), L,).
First, we proceed as in Case (1, 0). This time, however, we have
¢: EQ >Ker(EP), L,).

So we blow up to D, N H, to obtain a new surface %X,. Thus D, is the new
exceptional divisor, and D, and H, are the proper transforms of D, and H,
from X,. We let E® be the pullback of E® and let E® = Ker(E®, p*(L,)),
where p: X, -» X,.

H, /

Now E },52’ is isomorphic to Ker(Ep(-R), L,) so ¢ extends to an isomorphism
of E },SI’ to E ,‘L,Sz) Thus we can obtain our geometric realization by using ¢ as
glueing data for E®. We claim:

(5.3.1) Ef and Ef) are standard of degree 1. Further, their standard quo-
tients do not coincide at D, N D;.
(532) EY = Eyy (-R).
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Indeed, Ef) is 0, ® O, which we modify at a quotient O, . Hence Ef) is
Op, ® 903/933 = 0 @ O(1). Further, the canonical quotient E,‘,i’ at D, N Dy is
just the standard quotient of Ef). On the other hand, E§ is Ker(O(1) ®
O(1), Lp np,)- Thus ES) is © ® O(1), but the standard quotient does not
coincide with the canonical quotient at D, N D;. Thus the standard quotients
of Ef) and E§? do not coincide.

Case (-1, 2). If ¢ has type (-1, 2), then
¢: Ep SKer(Ep, L,)(+R).

Let L, be the quotient of E, corresponding to the canonical quotient of
Ker(Ep, L,)(+R). Let Q; = L; ® kg, where kp is O5 r/m. We claim there is
an isomorphism extending ¢

y: Ker(Ep, Q) >Ker(Ep, Q,).

Furthermore, ¢ does not identify the canonical quotients of the two sides. We
call Q, and Q, the quotients induced by ¢. Indeed, using the notation
developed earlier in this section, ¢ induces an isomorphism

@: N,(-R) ® N,(-R) S5 M, & M,(-2R).

Now Ker(Ep, Q,) is M; ® My(-R) and Ker(Ep, Q) is N\(-R) © N,. Further,
(MV,)g is the canonical quotient of Ker(Ep, Q) and (M) is the canonical
quotient of Ker(Ep , Q). Our claim follows.

Now form %X, by blowing up %X, at P, = X N H, to obtain a new excep-
tional divisor D, (see the diagram). Let E® be the pullback of E to %, and let
ED be the modification of E© at p*(Q,) ® p*(Q,), where p denotes the
projection of %, to X X S.

H, .
DZ

x
H, by
/

Then v is an isomorphism of E },? toE },72) and so we can use ¥ as descent data
after identifying H, and H,. We claim:

(5:4.1) EQ =Ker(Ey, 0, ® Q,).
(54.2) Ef) is standard to type 1 and the ¢ does not identify the standard
quotients.
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These can be verified using the above techniques.

Now suppose E is a family of stable bundles on X of degree 2a + 1 over S
and let 7: X’ - S be the geometric realization of ¢. In Case (0, 1), Xz = X,
and Ej is of type II,. Indeed, by Lemma 2.5, there is no semistabilizing
quotient of E{ which is identified with the standard D, quotient of E.

If ¢ is of type (-1,0), then X} is X, and Ejy is of Type II,. If ¢ is of type
(1,1), then X3 is X,, and Ey is of Type IIL. Finally, if ¢ is of type (-1,2),
Lemma 2.5(ii) shows that X} is X,, and Ej is of Type III unless there is an
invertible quotient L of degree a + 1 of E . coinciding with Q, and Q, over
P, and P,.

6. We continue with the same notation as §5. We suppose that ¢ has type
(-2,4). Let L, be the cokernel of the map from E,(-2R) to Ep, and let L, be
the quotient of Ep, corresponding to the canonical quotient of Ker(Ep, L,).
We suppose that there is an X X R quotient L of E which coincides with L,
and L, at R X P, and R X P,. Let E’ = Ker(E, L). Notice first that ¢ has
type (-1,2) as a map of E;, to E; . Indeed, ¢ induces an isomorphism

®: N, ® N, > M,(+2R) ® M,(-2R).
Further, L, = M,/M,(-4R) and L, = N,/N(-4R). Thus
Ep = N,(-R) ® N,, E;, = M, ® My(-R).

Thus E;(-R) = Ny(-2R) ® Ny(-R) and
Coker(Ep(-R), Ep,) = My(-R)/9(Ny(-R)),

which is isomorphic to O, /m?. So ¢ has type (-1, 2) as a map from E; 0 Ep.
Further, let Q] and Q) be the quotients of E; and Ej induced by ¢, and let L’
be the canonical X X R quotient of E’ = Ker(E, L). Then Q{ and Q} do not
coincide with L’ over P, and P,. Indeed, Q; and Q3 correspond to N,(—R) and
M,(-R) at P, and P, and L corresponds to N, and M, at P, and P,. Let
S, = Spec O g/m>.

Lemma 6.1. Suppose there is a X X R quotient Q' of E’ so that Q' coincides
with Q| and Q' over P, and P, and so that E’ p is the direct sum of Q' and L’.
Then there is an X X S, quotient of E which coincides with L, and L, over
P, X S, and P, X S, and with L on X X R.

Proof. Let E” = Ker(E’, Q). We claim E/E"” is the desired quotient.
First, we must show E/E” is an X X S, quotient. Since the problem is local,
we may assume there is an isomorphism ¢: E - M’ @ M and that M coincides
with L over X X R. Then E' = M’ ® M(-D) where D is the divisor X X R.
Mjp, is the canonical quotient of E’, so the map from M(-D) to Q' is an
isomorphism. Locally, we can modify { so that the quotient M(-D) of
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M’ ® M(-D) coincides with Q’. Then E” = M’ ® M(-2D), so E/E" =
M/M(-2D). Now at P, and P,, (M,(-R))z and (N,(—R))x coincide with the
quotients induced by ¢ on E; and E;. Thus E; = M, ® M,(-R) and
Ep, = N\(-2R) ® N,. Thus the E, /E} coincides with L; over S,.

7. We wish to give a more global version of the construction of geometric
realization of §5. Let T be a smooth variety and C,, C,, F, and F, are smooth
divisors meeting transversally (see the diagram). We assume there are no triple
intersections, and that C, meets only F,, F, meets only C, and F, and C,
meets only F,. Suppose that E is a bundle on X X T and suppose we are given
an isomoprhism

\
CZ
FZ
Fy
C, /
(7.1) 9: Ep, :’KCT(EPZ» L)(G+ F - (),

where L, is an F, + F, quotient of Ep. We let L, be the quotient of Ep
corresponding to the canonical F; + F, quotient corresponding to the right-
hand side of (7.1).

Let S be a smooth curve on T and suppose R € S. We suppose S is
transversal at R to any C; or F; containing R. We let E be the restriction of E to
S X X, and ¢ the induced rational map from E, to Ep . In the following list,
the first column represents the position of R and the second the type of @.
Thus, if R € C, — F,, ¢ has type (-1,0):

G- F (-1,0)
C,NE (-2,1)
H-G-F (-11)
ENF (-12)
F—FK—-C (0,1)
F, N C (1,1)
F, — D, (1,0)

Our aim in this section is to construct a family of curves ¢: Y — T and a

bundle F on Y so that for any S as above, the geometric realization of @ is just

the pullback of Y and F to S. First, on T X X blow up C;, X P, and C, X P, to
obtain a variety W, mapping to T X X. Let H, and H, be the proper
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transforms of T X P, and T X P,, and let V; and ¥, be the exceptional
divisors. Then H; maps isomorphically to T, and ¥V, N H, maps to C,. Now
denoting the pullback of E by E again,

¢: Ey - Ker(Ey, , L,)(C, + F,— C)).
Now on W, let
E'=Kerl(E,E, ®E,).
Then ¢ induces an isomorphism

¢: Ej; - Ker(Ej,, Ly)(+F),

where L) is the F, + F, quotient of Ej, given by L; = L,(-C, + C;). Now let
L) be the F, + F, quotient of Ej; corresponding to the canonical quotient of
Ker(Ef;, Ly). Then ¢ induces an isomorphism

@, Ker(Efy, (L)) r,) > Ker( Efy, (L) 7).

Indeed, it is easy to check that ¢, is an isomorphism over F; — F, and over
F, — F,. @, is therefore an isomorphism since /\ %p, does not vanish except
possibly on F; N F, and hence does not vanish on F; N F,.

Next in H,, we have the smooth variety F; corresponding to F, under the
projection of H, to T. We can similarly define F]. Now blow up F; and Fj in
W, to obtain W,. Let H; denote the proper transform of H; in W, and let G,
and G, be the new exceptional divisors. We will let E” denote the pullback of
E’ to W, and M, and M, be the pullbacks (L), and (L})g, Then M, and M,
are G, and G, quotients of E’ on W,. Let

E” = Ker(E', M, ® M,).

Then ¢ induces an isomorphism of Ey with Ey . We glue H, to H, in W, to
form our family of curves ¢: Y — T and use ¢ as descent data for E”. One
checks that if S C T is a curve as above, then the geometric realization of ¢ is
just the pullback of Y and F.

8. Let S, be the moduli space of stable bundles of degree2a + 1 on X and
let E be the Poincaré bundle on X X §,. Our object is to construct the
normalization of U, from S, and E, where U is the variety introduced at the
end of §4. We first consider

S, = P(Hom(E, , E; ))
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as a projective bundle over S,. Let M, be the tautological bundle of ,:
S| — Sp. We will denote the pullback of E to S, X X by EV. Now on S, there
is the usual exact sequence

Hom(Ef), Ef)) > M, - 0

and thus a map
.0 Ef) - Ef) ® M,.

One checks locally that ¢, is nowhere zero and that /\ %p, vanishes simply on
a smooth divisor D which is a bundle of quadrics over ;.
-1
(8.1.1) O(D) =M ® NZED ® (AEP) .
There is a D quotient L of Ef) so that
(8.1.2) @12 ES SKer(EQ ® My, L) ® M,).

We let L{" be the quotient of Ef corresponding to the canonical quotient of
the left-hand side of (8.1.2).
Consider
S,=P(0® M,)

as a projective bundle over S,.

Let M, be the tautological line bundle for m,: S, > S,. Let E® be the
pullback of E™V to X X S,, and M{? be the pullback of M,. We have the exact
sequence on S,

08O M® - M, 0.
There are divisors H, and H, which are sections of =, so that the map from O
to M, vanishes on H, and the map from M{® vanishes on H,. So we have
isomorphisms O > M,(-H,) and M{® 5 M,(-H,). We obtain an isomorphism

¥: O(H, — H)) > MP.
Thus we have a morphism
;- El(’?) - E1(>22)(H2 — H,).
We have the following schematic picture of S, where D® = 7;'(D):

H,

D@
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Consider U= S, — H, — H, — D®, and let ¥, C U, be the open set of
bundles of Type I,. Note ¢, is an isomorphism over U and we can use ¢, as
descent data to produce a bundle E’ on X, X U. E’ is a family of bundle of
Type I, on X, and so we get a map y, of U to V,. We claim v, is an
isomorphism. Suppose T is a k scheme and E” is a family of bundles on
T X X, of Type I,. By pullback, we obtain a family of stable bundles E on
T'X X together with an isomorphism ¢: E [ E p, There is a morphism F; of
T to S, so that E is the pullback of E up to tensoring by line bundles on T.
From the universal property of P(Hom(E, , Ep )), there is lifting P, of F; to S,
and an isomorphism A: Ff(M,) - O so that ¢ is the pullback of ¢, when we
use h to identify O with FY¥(M,). But h determines the lifting F, of F, to
S, = P(O ® M,) so that h is given as p;'p,, where p, is the map of O to F}(M,)
and p, is the isomorphism of F(M,) » F}(M,). Thus ¢ is just the pullback of
@,. Hence, we obtain a map of T'to U. Let ¥ C % be the open set consisting of
curves of Type I,. Then we have a map of ¥ to U which is SL(W) invariant.
Thus, we get a map y, of ¥, to U. We leave it to the reader to check that
and ¢, are inverse maps.

It is impossible to extend y;, to a map of S, to UW,. So we must blow up S,.
First, blow up H, N D@ to obtain S;:

Here H, is the proper transform of H,, D, is the new exceptional divisor, and
D, is the proper transform of D®. Thus, the total transform of D® is D, + D,
and the total transform of H, is H, + D,. Let E® be the pullback of E® to S,
and let LY be the pullback of L. LY is a D, + D, quotient of Ef) and we
have an isomorphism

(8.1.3) ¢;: EQ ~ Ker(ES), LY )[H, + D, — H|]

extending ¢, on U. Thus, we are in the situation of §7. Let LY be the D, + D,
quotient of E ,‘,?’ corresponding to the canonical quotient of the right-hand side
of (8.1.3). Let Z’ be the subset of D, N D, consisting of points s € S, so that
E, has a quotient of degree a + 1 which coincides with L in (E,), . From the
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discussion at the end of §§5 and 7, one sees that the family of curves and
bundle obtained as the geometric realization of @, is stable except over Z'.

9. Our purpose in this section is to understand Z’. Let J, be the Picard
variety of line bundles of degree d on X and let £, be the Poincaré bundle on
X X J;. We will denote the pullbacks of £, and £,,, to X X J, X J | by £,
and £,,,. Let m be the projection of X X J, X J ,, onto J, X J,,,. First
consider the sheaf onJ, X J_,

o.L1) 5= Rm.(E}, @ ,).

First, note that ¥, is locally free of rank g — 1 since if L is a line bundle of
degree -1 on X, h'(L) = g — 1. (The genus of X is g — 1.) Let Z = P(%,").
We will construct an isomorphism of Z with Z’. Note dim Z = 3g — 4.

Again denoting the pullbacks of £,,, and £, to Z X X by £, and £, , and
letting 7, be the projection of Z X X to Z, we have a canonical section s of
M ® R'mu(L7, ® £,), where O is the tautological bundle on Z over J, X
‘Ia+l‘

Now s defines an extension

0-L,0M->6-C .,
For each z € Z, the corresponding extension
0 _)(Ba ® %)z - gz —)(Baﬂ)z -0

is nontrivial. We claim &, is stable. Indeed, if Q, is a destabilizing quotient of
&,, the induced map f from (£, ® O ), to Q, is nontrivial. But if f is zero at
any point, deg Q, > a so Q, is not destabilizing. But the extension is trivial if f
is an isomorphism.

Let T be a k-scheme. Let G(T) be the set of extensions (modulo equivalence)
(9.1.2) 0-L,»F-L,. ,~0

on X X T, where L, and L, , have degree a and « + 1 on X X {¢} and where
F is a family of stable bundles on X over T. Using the universal properties of
the Picard group and P(¥,™"), one sees that Z represents G.

We wish to define another functor G’. An element of G’(T") will consist of a
family F of stable bundles on X X T together with T X P, quotients £, of F
(modulo equivalence). Recall the divisor D C S, from §8 and the D quotients
L of Ef. We claim D represents the functor G'. Indeed, given (F, £, £,) €
G'(T), we can locally on T find a ¢: Fp — Fp so that coker ¢ = £, and
Fp /Kerg = £,. Further, @ is uniquely determmed up to a unit on 7. Using
the universal properties of S and S, one obtains a well-defined map from T to
D so that (F, £, £,) is the pullback of (E™, L{", L") modulo isomorphism.
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There is a map
¥(T): G(T) - G'(T)

obtained by letting £, = (L, )p. We claim ¥ is injective for any T. Indeed,
suppose Q is a quotient of degree a + 1 of F in (9.1.2) which agrees with L,
at P, X T. Consider the map f of L, to Q. This is actually a map of L, to
Q(-P, — P,). Since deg L, > deg Q(-P, — P,), f is zero. Thus ¥(T) is injec-
tive.

Proposition 9.2. The induced map of Z to D is an embedding.

Amplification 9.3. Let T = Spec k[¢]/(¢?) and let R be the closed point of
T.Let(F, £,,£,) € G(T). Then the induced map of T to D factors through Z

if and only if there is a T quotient L, , of F degree a + 1 coinciding with £,
and £,.

10. We retain the notation of §8. Using the map of Z to D and the
isomorphism of D, N D, with D, we can identify Z with Z’. We form a new
variety S, by blowing up Z C S,. We will call the new exceptional divisor Z
and denote the proper transforms of the D, by D,.

H, \

Our main result of this section is

Proposition 10.1. Y, extends to a morphism of S, to .

Let E® be the pullback of E® and L$” the pullback of L. Then L is a
D, + D, + 2Z quotient of ES? and there is an isomorphism

(10.1.1) @s: EfY - Ker( E?, LO)[H, + D, + Z — H)].
L{® will denote the quotient of Ef corresponding to the canonical quotient of
the right side of (10.1.1). Now let £, be the invertible quotient of ES of

degree a + 1 which coincides with LO® over P,. Let £_,, be the pullback of
£,+ to Z. Further, let

(10.12) E'=Ker(E®, 2 ).
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Now let Ly = L ® 0, , ,(-Z). Note that L; is a D, + D, quotient of Ej.
We claim there is an isomorphism

¢': Ej - Ker(E;, Ly)(H, + D, — H,)

which coincides with @, away from Z and so that L coincides with the
canonical quotient of Ker(E; , L;) under ¢’. Our main object in this section is
to show that the geometric realization of ¢’ is stable over all points of S,.

To show that the isomorphism ¢’ exists, it suffices to work locally around a
point of Z. Thus we may assume that

EP =L, 0M,, EP=¢,0M,,

where £, coincides with L over D, + D, + 2Z and so that ¢, = ¢, ® ¢,
where @, is an isomorphism of £, with M,(D, + Z) and ¢, is an isomorphism
of 9, with £,(-D, — Z). Now E,;I =L(Z)® M, and E; = L,(-Z) ® I,
and hence

Ker(El,’z’ Ly)(D,) = (Bz(—z - D, - Dz) ® 6-)]Lz)(l-)z)
=£,(-Z — D;) ® My(D,).

Thus ¢’ exists, since E; = £,(-Z) ® M.

Let Q be the canonical Z quotient of E from (10.1.2). Qp and Qp, are just
(9Mp,)z and o p,)z- S0 Qp is actually a quotient of Ker(Ep, L5). Further,
Qp is never glued to Qp(D,) under ¢’ and Qp never coincides with L] as a
quotient of E;, . Let N, be the quotient of (Ep ) which corresponds to Q»(D,)
under ¢". Qp, is a quotient of Ker(Ep,, L) wmch coincides with the canomcal
quotient of Ker( Ep, Ly)over (D, + D) N Z. Thus N, corresponds to L} over
(D, + D) N Z.

Since L} corresponds to the canonical quotient of Ker(E;, L)) D,), one
sees there is an isomorphism near Z

y': E; — Ker(Ejp, L})(+D))

which is the inverse of ¢’ except over D, + D,. One defines N, analogously to
N,.
Now we have an exact sequence
0-M->EZ - Q0-0,

where M is a line bundle on Z X X. Since the map ¢’ never identifies Q p, With
Qp(+D,), the map from M, to Qp(+D;) is an isomorphism. So we get a
map 6, € Hom(Qp, Mp ) which vanishes on D,. Similarly, using y’ one
defines 6, € Hom(Qp , Mp,) which vanishes on D,.
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Finally, let
E” = Ker(E5yy, N, ® N,).

Note that Q is a quotient of E” and that the kernel of E” — Q is just
M(-P, — P,). Thus we obtain an extension on Z X X

0->M(-P,—P)->E"-Q-0
and so a section

0, € HO(Z, Rz, (M®Q7'(-P, - Pz)))’

where = is the projection of Z X X to Z.

Now suppose R € Z. We wish to examine the stability of the geometric
realization ( X, Fg) of ¢’ over R. First, suppose that R &€ D, + D,. Then ¢g:
(Ep)r = (Ep,)g 1s an isomorphism and we have an exact sequence

(10.1.3) 0> Mg—Ejp—Qg—0

on X X R=X. Now we have observed that Qp and Qp are not identified
under ¢;. Thus Fg on X, is of Type I, since deg Qr = a + 1 and deg My = a.
Suppose P is another point of Z — D, — D,.

Lemma 10.2. Suppose M, and My are isomorphic and that Qp and Qy are
isomorphic. Suppose that under these isomorphisms we have 8,(R) = N§,(P) for
i=1,2,3and \ € k*. Then Fy is isomorphic to Fp.

Proof. We may first assume that A = 1 by multiplying the isomorphism of
M, with My by a suitable constant. Since 6;(R) = 65(P), we can find an
isomorphism ¥ of the extensions:

MR(-PI—PZ)_)EI’Z’_)QR_)O
0 Mp(-P, — P,) > E; > Qp > 0.

Now
Ep=Ker(E{,Qp ® Qp )(P, + Py).

Thus there is an isomorphism of the extension (10.1.3) with the analogous
extension over P so that (N,); corresponds to (N;)p. But (N)) is just the
quotient of (Ej, ), corresponding to (Qp, )g. Further, ,(R) just gives the map
from (Mp )g to (Qp,)r- Using the corresponding statements for (N, )g and for
P, our lemma follows from the following observation: Suppose ¥, and V, are
two two-dimensional vector spaces given as extensions

0> U-V,» W -0,

and that ¢ and ¢’ are isomorphisms of ¥, with ¥,. Suppose Y(U,) = ¢’(U,),

Y7 '(Uy) = (¥')"'(U}) and the induced maps of U, to W, and U, to W, are
equal. Then ¢ = .
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Next suppose R € (Z N D)) — D,. The quotient (L}) does not coincide
with (Qp, )g. Let E” = Ker(Eg, Lg). Thus we have an exact sequence

0 > Mg(-P,) > E” > Qg ~ 0.

Thus E” is semistable and (Q)p, is the canonical P, quotient of E”. On the
other hand, (N))g # (Qg)p. From (5.1.1)-(5.1.4), we see that Fy is on X,
(Fr)x = E”, (Qr)p, is glued to the standard quotient of (Fg)g, = O ® O(1)
and (Qg)p, is not glued to the standard quotient of (Fg)g,. Thus FR is of Type
II,.

Finally, suppose R € Z N D, N D,. Let C be a curve passing through R
transversal to Z, D, and D,. We claim we cannot write
(10.2.1) Ep = Mg ® Qp
where the quotient My, coincides with (L]), over P,. Now ¢ has type (-2, 4) as
a map from (E¢)p, to (Ec)p,. If (10.2.1) holds, Lemma 6.1 shows there is a
X X C, quotient of E® which coincides with £ w+1 ON X X R and which
coincides with L over P, X C,. But from Amplification 9.3, we see that the
map from C, to S, factors through Z, i.e., the image of C in Sj is tangent to Z.
But C meets Z transversally, and hence the image of C meets Z transversally.
Thus our claim is established.

Fy is a bundle on X, and (Fy)y = Ker(Eg, (L} ® L})g). The L] coincide
with N, over R, and the N, do not coincide with the Q,. Lemma 2.6(ii) shows
that (Fg)y is stable, and hence Fy is of Type III. Thus we have completed the
proof of Proposition 10.1.

Lemma 10.3. For any point R € Z, at least one of the 8,’s is nonzero.

Proof. 6, and 6, vanish only on D, and D, respectively so we may assume
R € D, N D,. If 6;(R) = 0, we could find a splitting of

O’_)M(—PI—-PZ)R—)EI,?l—)QR—)O'

But such a splitting would give a splitting of (10.2.1) so that My would coincide
with (N,)z over P.. But (N,)z = (L;)x and so we contradict our previous claim.
Let 6 = (6,, 0,, 6,) be the section of the bundle on Z defined by

G = Hom(Q,.,, M, ) ® Hom(Q,, M) ® R'r, (M ® Q7'(-P, — P,)).

Now Q =R, ® 9’ and M = £, ® 97/%3, where O’ is the pullback of the
tautological bundle O for Z - J,,, X J,. Consider the bundle ¥ on J, X J, 1,
defined by

= Hom((ﬁa)r*., (Ea+1)P2) ® Hom((Ba),,z, (Ba+l)i’;)
®Rlﬂ*(ea+l ® L' (-P — Pz))-
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Let % be the pullback of % to Z. Then

G=p*(F) ® 9/t @M,
where p is the projection from Z to Z. Now using 8: O — G, we have a
surjection

P((F) ®M) - 95/9% -0
and hence applying p,, we see there is a surjective map
n: M® (F)" > p,(93/92) = 9,/92

on Z. Now by Riemann-Roch, the rank of % is g + 1. On the other hand,
dimS,=4+dimS, =4g—3 and dimZ =2g—4 so 1k ¥ = codimg, Z.
Thus 7 is an isomorphism since it is a surjective map between two bundles of
the same rank. Since 8, vanishes on D, N Z, we see that Hom((2,),, (£, )P
® M corresponds to (9, ), C 9,/97.

Thus Z = P(%,") X P(F '), where %, is defined by (9.1.1). Let p’ be the
projection of Z to P(F ). Then Lemma 10.2 shows that ¢ is constant on the
fibers of p’, at least over Z — D, — D,. Now D, maps to a divisor in P(F "), so
Y is constant on all the fibers, since the pullback of any very ample bundle on
€U, is trivial on the fibers of p’. One sees that y restricted to Z factors through
P(F ).

We claim ¢ maps H, — D, onto the set of bundles U(Il,) of Type II,.
Indeed, given a bundle FR on X; of Type II,, we can find a bundle F on the
surface X, of §5 and an isomorphism ¢ of FH, with I:",,2 so that using ¢ as
glueing data produces Fy over R. Now F(+D,) is the pullback of a family of
stable bundles F, on X X S and we have

P: (Fl)P. :’(Fl)Pz(—R)-

The geometric realization of ¢ over R is just Fg. The data of ¢ and F define a
map of S to S, which passes transversally through H, — D® at R. Since the
map of S, to S, is a local isomorphism at any point of H, — D®, we get a map
¢’ of S to S, so that { o ¢’(R) is Fg. Similarly, H; — D, maps onto bundles of
Type I1,.

We claim H, N D, maps onto the set U(III) of bundles of Type III. Indeed,
U(III) € U(11,), so U(II) is in the (closed) image of H,. But no element of
H, — D, maps to U(III), so H, N D, maps onto U(III). Next notice that D,
maps onto U(I1,). Indeed, Y(D,) is strictly larger than U(III) since no element
of D, — H, — H, maps to U(III). Since U(III) is a divisor in U(II,), we see D,
maps onto U(I1,). Similarly, D, maps onto U(II,).
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Lemma 10.5. If D is a divisor on S, D # Z, then y(D) is a divisor. Further,
Y restricted to Z factors through P(F ™).

11. Suppose that § and S’ are smooth projective varieties and that ¢:
§ — S’ is a birational morphism. Suppose Z is smooth variety and that ¥ is a
bundle on Z. Suppose Z is a division on $ and that we can identify Z with
P(F ") in such a way that 97/92 is the tautological bundle on P(5 '). [In our
application, § = S,, §” = °lf,, the normalization of Up.]

Lemma 11.1.  Suppose that if D C S is any divisor with D # Z, then (D) is
a divisor. Suppose further that the induced map of Z to S’ factors through Z.
Then the map of Z to S’ is an inclusion, and S is the blow up of S’ at Z.

Proof. Let §: *(R2) —» Q¢ be the induced map. Let U be the set of points
over which ¢ is an isomorphism. Then D = § — U is a divisor given by
det ¢ = 0. By Zariski’s main theorem, we see that ¢~'(@(U)) = U and that for
each P € D, ¢”'(¢(P)) is connected and has dimension = 1. Thus D = Z. Let
7 be projection of Z to Z.

Now consider £, = Ker(£g, 7 ,,). The image of y is contained in &, since
locally any function on S’ is constant on the fibers of 7. Now 0(1) = §;/ gzz‘
We first claim that det Q, is trivial on the fibers of . Indeed, we have the
following exact sequences:

0-0(1) »(85); - 27 -0,
0 —)W*QZ - QZ”—) QZ"/Z—-) 0,
0-Q;,,(+1) >7*F " > 0(1) - 0,
0-95,2(+1) > (R) 2~ (2); > 23,2~ 0.

So in K(Z), we have

[(2)7] = [70,] + [#*5"].
Hence det Q,, is trivial on the fibers of 7. Now the map from det ¢*Qg to
det &, is an isomorphism outside Z, so
But O(-nZ) is nontrivial on the fibers of 7 if n # 0. So n = 0 and det ¢*(2)
= det Q. Thus ¢*(2g) = Q. i

The map ¢, from Z to S’ has connected fibers since the map from Z to §’

has connected fibers. On the other hand, the map from ¢3(Qg) to £, is

surjective, since 7*Q, is a quotient of @, and hence of ¢*{;. Thus ¢, is an
embedding. We identify Z with its image. There is an exact sequence on S’

0-9%/%7~(Qs)z > 9~ 0.
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Now Ker((2,)7, 9*Q,) surjects to 97/92%, and hence p*(9,/97) maps surjec-
tively to 95/%2 Thus, *(9,) = $;. Let S’ be the blow up of S at Z and let E
be the exceptional divisor. By the universal property of blowing up, S maps to
S’ and Z maps onto E and is therefore generically finite. As before, the map
from the pullback of £¢ is an isomorphism, and hence S=9.

12. Let S be a smooth projective variety and suppose D,,---,D, are
smooth divisors which intersect transversally. Suppose ZC D, N D, is a
smooth subvariety and Z N D, = @ for k > 2. Further, suppose E and F are
bundles on a smooth variety J and let Z = P(E). Let m: Z —>J be the
projection and let O(1) be the tautological bundle for 7. Suppose 9,/92 =
7*(F)(+1) and there are line bundles L, C F so that 9, ® O, corresponds to
a*(L)(+1). '

Blow up Z on S to obtain § with new exceptional divisor Z. Let D, be the
proper transforms of D,. Note that Z = P(E) X, P(F). We will assume there
is a map ¢ from S to another smooth variety so that ¢ factors through
P(F) = Z’ and so that @(D) is a divisor on S if D # Z. From §11, we see that
Z' C 8’ and that S is the blow up of S’ at Z’. Let D/ be the images of D, in S’.
First, notice that the D/ intersect transversally. Indeed, D N Z’ and D; N Z’
are the divisors on Z’ = P(F) corresponding to the subbundles L, and L, of
F.

Now let k = dim J, let m = dim S and let D = ¥ D,. Our main goal in this
section is

Proposition 12.1. If ¢, (Rs3(log D)) =0 for i=zm — k — 1 and c(2,) =0
fori >0, then c(Rs(log D)) =0fori=m— k — 1.

The Chern classes may be taken in any convenient cohomology theory.

We begin with the following well-known consequence of Grothendieck’s
Riemann-Roch Theorem. Let X be a smooth projective variety and let H be a
smooth divisor on X. Let E be a bundle of rank » on H and let ¢(E) =
II (1 + a,) be the Chern polynomial of E on H, where the product is the usual

formal device. Let h be the divisor class of O g(H) on H and let i be the
inclusion of H into X.
Lemma 12.2.

c(i*E) - i*( 1—1((1 + a,-)h/(l +a,— h)) )

Proof. Let n3 be the operator on 4( X) which multiplies a class of degree i
by (=1)'"' - (i = 1)!. Then

c(i,E) = exp(n}(‘ . ch(i*E)).
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From Grothendieck’s Riemann-Roch formula for i, we know

ch(i E) = i*(ch E- . _h"_h )

Now in general
e *=1+i,((1—e*")/n).

Hence

(i E) exp(n}l(i*(chE' ! —he"' ))) = exp i*( ti{ch E ‘}fl - e-h)))

, ( 1+1((1+a;)/ (1 +a,-—h)))
1+,
h
since ch E = 3 e“.
Suppose F is a bundle on X and that we have an exact sequence
O—)FI—)FH_)F()"')O
of bundles on H. Let F” = Ker(F, F,). Let r, be the rank of F, and r be the
rank of F.
Lemma 12.3. Suppose c,(F\) =0 as a Chern class on H for i =r, — k,
where k is some positive integer. Then c(F) = c(FYon Xfori=r, +r — k.
Proof. On H, we write formally c¢(Fy) = II"(1 + a;). Then
o(Fp) = c(F) -1(1 + a; — h),
since there is an exact sequence
0- Fy(-H) > F;; > F, > 0.
Now ¢(F) = ¢(F") - (i, F). Thus

o(F) = o(F) = o(F) - (e(in(R)) — 1)

:C(F,)i*( 1-10 +a,.)h/(1 +a,.—h))

:j*

%{(ﬁ(l +a—h)-T( +a,-))c(F1)}

We see the expression in the braces has no components in degrees greater than
r+r —k

Next we remark that if f is a rational function on P*, and if the divisor of f is
H, — H, where H, and H,, are hyperplanes, then dlog f is a nowhere zero
section of Q(log(H, + H,)). Indeed, if { X;} are homogeneous coordinates with
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H,={X,=0} for i=0,1, then if P &€ H U H,, then f is a coordinate
function and so df # 0 at P. On the other hand, if P € H,, then the residue of
faround H, is nonzero.

We will next construct a canonical section s of @7, ,(log(D; + Dj)), where
D’ = D N Z. Now consider z € Z and let w be the projection of z in J. Now
(9 D, ®E’; )z =m*(L, ® L3'). Let (f,, f,) be a pair of functions defined in a
neighborliood of z with f; vanishing simply on D,. We say (f,, f,) is good if
fi ® ;" as a section of (9, ® 95!), is the pullback of a section of L, ® L;'.
Note that if f{ and f, are another good pair, then

z, _ 7

5 %
where f is a unit and f restricted to Z is the pullback of a function on J. Thus
dlog(z,/z,) gives a section s of Q7 , ;(log(D; + Dj)) which is independent of
the good pair. The above remark shows that s projects to a nowhere zero
section of Q /Z(log(D’ + D2 )). On the other hand, let § denote the projection
of s in &5 , (log(D; + Dz)) We claim § = 0. Indeed, Q7 ;. is a negative
bundle on the fibers of #’: Z - Z’, so § vanishes on Z — (7’)"'(D} + Dj).
Hence § vanishes. Now let F C Q5(log(D, + D,)) be the subsheaf generated
locally by 2, and dlog(z,/z,). Then we have an exact sequence

0-7*Q, > F-0;-0.
Also, let L C Q7 /Z(log(ﬁ{ + D3)) be the subline bundle generated by s, so
L=0;.
CO?‘IZSidCI' on Q the sheaf defined by
0 - 7*Qg(log D) - Qz(log(D + Z)) - Q ~ 0.
Lemma 124. Q = Q; ,(log(D; + Dj}))/L.
Proof. Consider the following diagram:

0 0
l . [ .
0——> (7*Qs)(log D) ———— 5(log D) ——— Q7 ,,(log D) —— 0
! ! Ly
0 —— 7*(Qs(log D)) —— Q;(log(D + Z)) 0 0
'] !
0z
1
0

We will show that $(L) = 0 and the induced map ¢ of 25 -, z(log _ﬁ) /Lto Qis
the required isomorphism. We first claim that ¢ is onto. Let 7 € Z and let z be
projection of Z in Z. Let ( f;, f,) be a good pair defined in a neighborhood of z.
If 7 & D,, then f, is a local equation for Z, so dlog f, generates O at these
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points. If 7 € D,, then f, = #’ where ¢ and ¢’ are local equations for D, and Z.
Thus dlog ¢ is a section of Q(log D), so since dlogt’ = dlog f, — dlogt, we
see that ¢ is onto. We further claim that any local section s of Q¢(log(D))
which is also a section of 7*({s(log D)) maps to L C @7, ,(log D). Indeed,
note that if ¢(h,d(log f;) — h,d(log f,)) = 0, then we must have 4, = h, on
Z. Since all the sections of 7*Qg map to zero in Qz,,(log D), our claim
follows. Finally, note that Y(L) = 0 since dlog(f,/f,) € 7*(2s(log D)). It
follows that i is an isomorphism.
Proof of Proposition 12.1.  First note that

0 93/93 ~[Q3(10g B)] , > [2(10g(D + 2))] , ~ 0 — 0

is exact and that the image of A is €(log(D, + D,)). Thus, F is a subbundle of
Qs(og(D + Z));. Further, F maps to zero in Q. Applying Lemma 12.3, and
using the fact that ¢,(F) = 0 for j > 0, we see that

0 = 7*(c,(®s(log D)) = ¢,(7*@(log D)) = ¢,(25(log( B + Z)))
fori=m — k — 1, since tk F = k + 1. Now F maps to zero in the quotient O;

of Q5(log(D + Z)) since dlog f,/f, does not have a pole on Z. Using a similar
argument, we have

0=¢(25(D + 2)) = c/(25(D))
fori = m — k — 1. Now we also have an exact sequence
0 — 7'*(Qs(log D)) - s(log D) - Q3,7 (log (D)) - 0.

Now F C [2(log D)] 7 maps to zero in @ /z/(log D) by the above remark that
§ = 0. Now applying Lemma 12.3 again, we see that

0= Ci(ﬂs(k’g D~)) = c,-(v‘r*(ﬂsl(log D"))) = ¢(Q(log D))
forizm—k—1.

13. Continuing with the notation of §10, let Z’ = P(F ') and let W, be
the normalization of ?U,. The map ¢ from S, to U, factors U, since S, is
normal. Let  be the induced map of S, to .

Theorem 13.1. Z’ is a subvariety of a1y p> and S, is the blow up of oW, patZ'.
Further, if D’ C Gilf,, is the divisor which maps to the singular locus of Up, then
H, + H, + D, + D, is the inverse image of D".

Corollary 13.2. If c(Qs(log(H, + H, + D, + D,))) =0 for i>2g — 2,
then c(S4;(log D)) = 0 fori > 2g — 2.

Theorem 13.1 follows from §11 and Corollary 13.2 from §12.

Proposition 13.3. ¢;(Q4(log(D)) =0ifi>2g— 2 if ¢i(Rs,) = 0 for i >
20g—1)—2
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Proof. We will show first that
c3(Qs‘/so(log D)) =0.

We will work in the Chow ring modulo algebraic equivalence. First, notice that
Ep and Ep are algebraically equivalent by letting P move from P, to P,.
Hence, we may formally write

C(Ep,) =(1+a)Q +ay).

Let « = a, — a, and let § be the divisor class of M, on S,. Thus D = 2§, since
N?Ep and N\’E,_ are algebraically equivalent. Let F = E;! ® Ej, . Then we
have the following exact sequences on S:

0~ Qs./s - at(F)(-¢)-0-0,
0- 9 - QSI/S(log D)-0,-0,
0-0(-D)-0-0,-0.
Further, £2(¢2 — a?) = 0 s0
c(F(-£)) = (1= &)*((1 — ¢) — &?).
Thus

(85 st0g ) = LA )

= =5 (1= 20((1 - 9 = @) + €01 - 26) + (8 - )]

=((1—¢)"—a?) + ¢

Thus cy(85, /5 (log D)) = 0.

We next note that @ s (log(H, + H,)) = 0. Indeed, we can find a cover U
of S, so that there are rational functions z; on «, '(U,) with a simple pole on H,
and a simple zero on H,. On =; '(U; N U)),

Z; =2z Jij»
where the f;; are units on U; N U,. Hence dz, give a well-defined and nowhere
zero section of &g s (log(H, + H,)).

Now Qsz(log(D‘z) + H, + H,)) has a filtration whose successive quotients

are Qg /s (log(H, + H,)), m(s, /s (log D)) and m¥w (s, ). Hence

c/(2s(log(D® + H, + H,))) =0
if i >2g — 2.
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Now letting E be the divisor D, + D, + H, + H, on S;, a local computation
shows that

7*Qg (log(D® + H, + H,)) = 5 (log E).

Applying Corollary 13.2 establishes Proposition 13.3.

Proof of Theorem 1.1. From Atyiah’s classification of stable bundles on
elliptic curves, the moduli space Uy is just X if X is an elliptic curve. Thus,
Theorem 1.1 is true for g = 1.

Assume that the theorem is true for genus g — 1. There is a vector bundle
qg,c(log D’) so that for R € C, R # P, (q5,(log D))y is just the sheaf of
one forms on the moduli space of stable vector bundles of degree 2a + 1 on
X r- Now U, is a deformation retract of U, so to show c,(fqg,-(log D)) = 0,
it suffices to show c,(£qg(log D’)) = 0. Once this is done for i >2g — 2,
Theorem 1.1 will be established for X ;. But once Theorem 1.1 is established
for one smooth curve, it is established for any smooth curve.

Thus Theorem 1.1 will follow from

Lemma 134. Let X be a projective scheme over C with normal crossings and
let E be the bundle X. Suppose the X; are the normalizations of the irreducible
components of X. Then if E; is the pullback of E to X;, and ¢(E;) = 0 for all j,
then c,(E) = 0.

Proof. Let 2i = n. Recall that there is functorial mixed Hodge structure on
H"( X, C). Thus, there is a weight filtration

‘- CW,_, CW,=H"(X,Q)
and a Hodge filtration
OCF"CF"'Cc---CcF°=H"(X,C).
Now the natural map of H"(X, Q) to H"( X, Q) induces an injective map from
W.,/W,_, to H"(X,Q). Thus ¢,(E)€E W,_,, since c,(E) goes to zero in
H"(X, Q). .

On the other hand, we claim c,(E) € F'. Indeed, let L be a very ample line
bundle on X. Then we can find a map of X to a grassmannian G so that
E ® L" is the pullback of the universal bundle for some n. We can find a map
of X into PV so that L" is the pullback of O(1). Now let & be the universal
bundle on G, and consider &(-1) on G X PY. Then we can map X to G X PV
so that E is the pullback of &(-1). Since ¢;(&(-1)) is in the ith level of the
Hodge filtration and since the map of H"(G X P",Q) to H"(X,Q) is a
morphism of Hodge structures, ¢,(E) € F'.

Let EX | be the induced Hodge filtration on W, _,/W, ,. Then FF | is a
pure Hodge structure of weight n — 1. In particular,-F; | N F,_, = 0. Thus
¢,(E) € W,_,. Continuing this line of reasoning, we see that ¢,(E) = 0.
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