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1. Let k be an algebraically closed field and let d be an odd integer. Let

g > 2 be an integer and suppose Y is a smooth projective curve of genus g. Let

Uγ be the set of isomorphism classes of stable bundles E of rank two and

degree d. (Note: we do not fix Λ 2 E.) Following Mumford and Seshadri, we

know that Uγ is in a natural way the set of (closed) points of a smooth

projective variety again denoted by Uγ. Our aim in this paper is to develop a

method of studying the topology of Uγ by degeneration methods. Our main

application is the proof of the following theorem conjectured by Newstead and

Ramanan.

Theorem 1.1 (k — C). The kth Chern class of the tangent bundle of Uγ is

zero in the deRham cohomology of Uγifk > 2g — 2.

We hope that degeneration methods may be useful in other contexts. For

instance, one can hope that the theory can be generalized to bundles of

arbitrary degree and rank. One should also be able to compute the lower Chern

classes of Ωl, .uY

The following is a brief outline of this paper: Let Xo be an irreducible curve

of genus g which is smooth except of one ordinary node N. We let X be the

normalization of Xo and let Px and P2 be the inverse image of N. Our object is

to find a (singular) projective variety UXQ which will play the role to Uγ when Y

is smooth. In particular, if {Yt} is a family of smooth curves degenerating to

XQ, then we desire that t/ y generates to UXQ.

The first difficulty in constructing UXo is that one cannot hope that all the

points of Ux will correspond to actual bundles on Xo. There are two methods

to resolve this difficulty. One is to consider certain torsion-free sheaves on Xo

to obtain a candidate for UXQ [3]. However, such a UXQ does not appear to have

(analytic) normal crossings. The second method, which we will follow, is to

consider certain bundles on certain semistable models of Xo as is suggested by
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the theory developed in [1]. The construction of Ux and the examination of its
local properties occupy §§3 and 4. (§2 consists of definitions and elementary
results on stable bundles on smooth curves.)

Let U be the set of all bundles E on Xo so that the pullback E of E to X is
stable. We will see U is a smooth open subvariety of UXQ. Letting UXo be the
normalization of UXQ, we see UXQ is a smooth compactification of U. On the
other hand, U is a fiber bundle with fiber GL(2) over SQ9 the moduli space of
stable bundles on X. The main object of the paper is to embed U into a certain
projective fiber bundle S3 over ί/0 and then to obtain UXQ by blowing up and
then blowing down 53 in a fairly explicit way. The main result is Theorem 13.1.
§§11 and 12 are independent of the rest of the paper. §11 gives conditions
which insure a birational map between projective varieties is obtained by
blowing up the target. §12 consists of a Chern class computation which
together with Theorem 13.1 proves Theorem 1.1.

Since d is odd, we let d — 2a + 1.
I wish to thank Jim Carlson, Herb Clemens and Steve Zucker for their help

on mixed Hodge structures.

2. We begin with some terminology. Let S be a scheme of finite type over k
and let Z be a closed subscheme. Let E be a bundle on S.

Definition 1.1. A Z quotient of E is a locally free sheaf of 0Z modules Q
and a surjection φ: E -> g.

Two Z quotients E -» Q and E -* Q' are equal if Ker(£, Q) = Ker(£, Qf\
We call E' = Ker(£, Q) the modification of E at Q. Let F = Ker(£z, Q). Then
F is a sheaf of locally free 6Z modules and F is a Z quotient of Ef. We call F
the canonical Z quotient of the modification of E at Q. If ίz, the ideal sheaf of
Z in 5, is invertible, then E' is a bundle.

If Z' c Z, we call Q ® 0Z, the Z' quotient ίWwm/ from Q. If Z" is another
closed subscheme of 5, and Q" is a Z" quotient of E and W c Z Π Z", then
we say Q and Q" coincide over Wif the induced W quotients are equal.

Remark 2.2. Suppose 5 is smooth, Zλ and Z2 are two divisors intersecting
transversally, and Q is a Z, quotient of £. Let (?' be the induced Zj Π Z2

quotient of £ Z 2 , E' = Ker(£, (?) and £ " = Ker(£Z2, β') Then (£')z2 = £">
and the canonical quotients coincide over Zx Π Z2.

Now let C be a smooth projective curve, E a bundle of rank r over C and Q
a locally free quotient of E.

Definition 2.3. Q is destabilizing (resp. semistabilizing) if

degg deg£ /
r k £ \ p'rkρ rk£ \ p' rkβ rk E
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Now if C is rational, then E is a direct sum of line bundles L,.

Definition 2.4. E is standard on a rational curve if deg L, is either zero or

one for each i.

If E is standard, there is a unique quotient Q so that Q is a direct sum of

6c's and Ker(£, Q) is a direct sum of 6(1 )'s. We call Q the standard quotient of

A" w/7/ fee α fixed nonsingular curve of genus g — 1 for the rest of the paper and

Px and P2 will be fixed distinct points on X. Let E be a bundle of rank two on X

and let L, be Pt quotients of E of rank one. We suppose E is stable of odd

degree d— 2a + 1.

Lemma 2.5. (i) E' — Ker(£ -> L,) w semistable. Further there is no semi-

stabilizing quotient MofE' which coincides with the canonical Px quotient of Ef.

(ii) E" — Ker(£ -» Lx θ L2) w staWe wtt/e&s ίΛere w aw inυertible quotient L

of E of degree a + 1 vvΛ/cΛ coincides with Lx and L2.

Proof. Consider case (i). Let M be a quotient of £ ' of degree e ^ α and let

Mr - Ker(£', M). If e < α, then deg Mf > a so the subline bundle of £

containing M' is destabilizing. If e = a and M coincides with the canonical

quotient of E* at P,, then the map from Λf to £" vanishes at /^ and so M\P)

maps to £". Then M'{P) is destabilizing for £.

Consider case (ii). Then E" has a quotient M of degree e ^ α — 1 and hence

a subbundle NT of degree ^ α. But M' must be a subbundle of degree a of E,

since otherwise £ would have a subbundle of degree > α. On the other hand,

M' maps to zero in L1 and L2, so E/Mf is a quotient of degree a + 1 which

coincides with LP and L^ .

Lemma 2.6. Suppose deg is = 2α + 1 and that E has a quotient Q of degree

a. Further, suppose the L, do not coincide with Q over Pt. Then:

(i) Ker(£, Lx) — E' is semistable. Further, Q is a quotient of E' and the

canonical Px quotient of E' is glued to Q over Px.

(ii) Ker(£, Lx Θ L 2 ) is stable unless there is a quotient Qf of E of degree

a + 1 which coincides with L, over Pt.

The proof of Lemma 2.6 is similar to that of Lemma 2.5.

3. Recall that A" is a fixed nonsingular curve of genus g - 1. We let Xo be

the stable curve obtained by identifying Px with P2. Now for each n ^ 1, we

can define a semistable curve Xn whose components are X and nonsingular

rational curves Rx,-,Rn with Rt meeting R^x and Ri+X and Rx meeting Px

and Rn meeting P2.
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Now we say a bundle E of degree 2α + 1 on X is slightly unstable if it has a
destabilizing quotient of degree a.

Now if £ is a bundle of rank 2 on I o , we let E denote the pullback of E to
X. If £ is a bundle on Xi9 we let E = E ® Qx. We say E on Xi is weakly stable
if it has no quotient line bundles Q which are destabilizing, i.e.,

We now consider certain types of bundles defined on Xo, Xλ and X2. We will
assume all types are weakly stable of degree 2 a + 1.

Type ϊs: E defined on Xo and E is stable.
Type I u : E defined on Xo and E is slightly unstable.
Type II,: £ defined on X{, E is semistable, and ERχ is standard of degree 1,

Type II 2 : E is defined on Xl9 E is stable and ER is standard of degree 2, i.e.,

Type III: E is defined on X29 E is stable, ERι is standard of degree 1, and the
standard quotients of ERi and ERi do not coincide over R} Π R2.

Bundles of any of the above types will be called potentially stable. Now recall
the setup of [1]. We let d = 2a + 1 and n = d + 2 - 2g. We let Wbt a vector
space of dimension «, G be the grassmannian of all codimension two subspaces
of W and & be the universal bundle on G. We let Sgd be the Hubert scheme of
curves of degree d and genus g on G. We can then consider the stability of the
m-Hilbert point of C E Sgd for m > 0. Our first main result was that there was
a d and an m so that if C is smooth, then C is m-Hilbert stable if and only if &c

is stable. Our second main result was that if C is m-Hilbert semistable, then C
is semistable as a curve and H\C, &) - 0. Further, if C is isomorphic to Xn,
then &c is potentially stable. We fix such a d and m.
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Proposition 3.1. Any potentially stable bundle on Xn is m-Hilbert semistable.
Proof. Let U be the set of w-Hilbert stable points. First notice that if S c is

potentially stable, then C E U. Indeed, we can deform any semistable curve to
a smooth curve, and we can then lift our bundle to this deformation. On the
other hand, on a smooth curve any bundle can be deformed to a stable bundle.
Indeed, we can write our bundle and a stable bundle as an extension of the
same two line bundles. Since stability is an open condition, our claim follows.

Consequently, if C = Xn, we can find a smooth curve S9 a family of
semistable curves π: Y -> S, and a bundle F on Y so that for some R E S, FR

on YR — π~ι(R) is our potentially stable bundle and for Q ψ R, YQ is smooth
and FQ is stable. After replacing S by a cover possible ramified over R, we can
assume there is a family TΓ': Yf -> S and a bundle Ff on Y' so that (Y\ F') is
isomorphic to (Y, F) over 5 - Λ and so that FR is w-Hilbert semistable. Now
let Y" be the smooth surface which is the minimum model obtained by a
resolution of singularities of Y. By uniqueness of minimum models, Y" is also
a minimum model of Y'. We will denote the pullbacks of F and F' to Y" by F
and F again. We have an isomorphism ψ of F with F over S — R. Now locally
around Λ, we can choose a uniformizing parameter t of S at # and we can find
a map φ: F -> i7' which is not identically zero on Y£. Indeed, we just take
φ — tkψ for some suitable A:. Now let E and £ 'bef Λ and /^ on Y'R' = Yo. Yo is
isomorphic to Xn for some «. We let R be the union of the # z 's. We have
nonzero maps φ and φ' from E to £ ' and from E' to £, and both E and £ ' are
the pullbacks of potentially stable bundles. Our main claim is that if deg E >
deg E\ then φ is an isomorphism. Our proof of this claim will only use the fact
that E and E' are the pullbacks of potentially stable bundles, so Proposition
3.1 follows by reversing the roles of E and E' if necessary.

We first claim that if φ vanishes at Px and P2, then φ vanishes on R. Indeed,
we can write ER — Lj θ L2 and ER = Mx θ M2 where each L, and M, has
degree zero on all components of R except perhaps for one on which it has
degree one. Now

Our assumption means that the components φ/y of φ vanish at Px and P2. But
Ljι 0 Mj has nonpositive degree on all components except perhaps for one Rk.
Thus φ/y vanish on all components except Rk, and hence vanish on Rk, since
φ- vanishes at two points of Rk.

Second, we claim that if φ is an isomorphism at Px and P2 and deg ER —
deg ER, then φ is an isomorphism over R. Consider L = (Λ 2 ER)~ι ® Λ 2 ER.
L has degree zero. First consider the case deg ER < 1. Then L is either trivial
on all components, or has degree one on some component Rt and degree -1 on
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Rj. If L is trivial, then Λ 2 φ is nowhere zero and so φ is an isomorphism.
Otherwise, Λ 2 φ vanishes on Rj and hence on all components above or below
Rj depending on whether Rt is below or above Rj. So Λ 2 φ is zero at Px or P2.

Next consider the case deg ER - 2. The arguments given above ehminate all
cases except if L has degree one on Rk and R{ and has degree zero on Rm if
m < k or m > I. In this case, let R' be the chain Rk+X U U/?,_]. Then ER)
has no sections since it is a direct sum (L~x

ι θ L^1)^ where L t and L2 both
have degree one on some component of R'. Since E'R, is trivial, φ is identically
zero on R'. Thus Λ 2φ vanishes to order two at Rk Π Rk+λ and'hence vanishes
onRk. Thus Λ 2φ vanishes at iY

Third, we claim that if deg E'R < 1 and φ has rank one at Px and P2> then
there is quotient line bundle L of ER so that ψ(ER) maps to zero in L. Indeed,
Λ 2φ must be zero since Λ 2ER has positive degree on at most one component
Rj and its degree on that component is one. Since Λ 2φ vanishes at Px and P2,
we see Λ 2φ = 0. Now φ factors through a subline bundle of ER unless φ
vanishes at some node Rt Π Ri+X. But then the components φpq vanish at this
node. We may assume / < /'. Then ER is trivial fory > i so φpq vanishes at P2

and hence φ vanishes at P2. This contradicts our assumption.
Fourthly, if E and E' have the same degree, we claim φ cannot vanish at Px

and P2. Suppose not. Our claim is clear if E and E' are semistable. We have a
nonzero homomoφhism φ from E to E\-Px — P2). Now Λ 2φ vanishes, since
deg E > deg E'(-Px — P2). Hence φ factors through a subline bundle L of
E\-Px — P2). But L must have degree at least α, since E is at most slightly
unstable. But deg L < a — 1, since E' is at most slightly unstable. Hence φ is
zero and hence φ is zero by the first claim.

Fifthly, we claim that if deg E > deg Ef then E is slightly unstable and E' is
strictly semistable. Further, φ has rank one at Px and P2. In fact, φ must factor
through the destabilizing quotient of £, which must be a subbundle of Ef.

We lastly claim φ is an isomorphism. Indeed suppose first that deg E >
deg E'. Then from our fifth claim we see deg ER — Q and deg ER — 1. Our
third claim shows there is quotient line bundle of ER which coincides with
cokerφ over Px and P2. Hence there is a quotient line bundle L of Ef so that
φ(E) maps to zero in L. Let M — Ker(£', L). Then deg M < α, since E' is
weakly stable. But the map of E to M factors through the destabilizing
quotient of E, so deg M > a. Since φR has rank one on all the Ri Π Ri+X and
ER = 6Λ

 Φ βΛ, we see deg MΛ ^ 0. Hence deg MR = 0 and deg M = α. Fur-
ther M is a quotient of E, so deg M > a + 1 since £ is weakly stable.

Thus we may assume deg E = deg E'. Now Λ 2φ = 0, since if Λ 2φ ^ 0,
then φ is an isomoφhism since deg£ = deg .£'. Hence φ would be an isomor-
phism. Now if Λ 2φ = 0, either E or Ef must be unstable, since any nonzero
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map between two stable bundles of the same degree and rank is an isomor-

phism. Hence deg ER ^ 1. If deg E'R= \, then E and E' are semistable and φ

has rank one at ?λ and P 2 . O n e s e e s a s above that φ factors through a

subbundle MoiE' which is a quotient of E. This contradicts the weak stability

of E and E'. Finally, suppose deg E'κ — 0. If φR vanished at P,, it would also

vanish at P 2 and vice versa, since ER and ER are trivial. Hence φ has rank one

at P, and P 2 . This again contradicts the weak stability of E and E'.

Corollary of proof 3.2. If E is potentially stable on Xn, then Hom(£, E) —

k.

4. Let C be a smooth curve and let tP G C. Let TΓ: % -> C be a flat family

of curves with 90 smooth over k and π ' ^ P ) = 9C/> = Xθ9 where A"o is our nodal

curve. We assume π has a section and that π is smooth away from P. Now let

F(Γ) be the set of closed subschemes Y Q(%XcT)XkG which have the

following properties:

(i) Y is a flat family of curves of genus g over T.

(ii) The induced map from Y to TXkG is an embedding and for each

closed t E Γ, the corresponding curve in G is Hubert semistable.

(ϋi) Locally on Γ, there is an isomorphism between the relative dualizing

sheaf ωγ/τ and the pullback of ω%/c.

We will see (iii) is an open condition. Assuming this, we see F is an open

subfunctor of the relative Hubert scheme of % X G, and so F is representable

by a scheme p: ty -» C First notice that a closed point of ty lying over P

consists of a curve Γ C G which is w-Hilbert semistable and a map φ of X' to

Xo so that the pullback of ωx is ωx>. Since the genus of Xo and X' are the same,

one sees that X' is Jfn, 0 < n ^ 2, and the map from X' to Xo is the map which

collapses the Rt to the unique node of Xo.

Proposition 4.1. ^ is smooth over k and typ is a reduced divisor with normal

crossings. Further SL(W) operates freely on 6H.

Before proving the proposition, we need to study deformations of Xn. Let A

be an artinian k algebra. Then Schessingers's theory shows that given a flat

deformation Z of Xn over SpecΛ, there are ax,- —,anEA so that at the ith

node fy = Rt Π Ri+l9 we have ©ZΛr.=A[[x9 y]]/(xy - at). The at are de-

termined up to a unit, so we refer to α ; = 0 as the equation of the ith node. If

Z ' is another deformation of Xn so that at is the equation of the ith node of Z',

then Z and Z ' are locally isomorphic in the Zariski topology.

Now let W = Speck[[tl9- - -,*„]]. We choose t to be a uniformizing parame-

ter in Θc P, and we map Wto C so that t = tx - - tn.

Lemma 4.2. There is a deformation Z of Xn over W and a morphism ψ:

Z -> % Xc W so that ψ*(ω 9 C / c ) = ωz/w and so that tt = 0 is the equation for

the ith node of Xn.
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Proof. Consider the case n = 1. There is an etale cover q: Yo -> Xo so that

Yo consists of two copies of X with Px on copy one glued to P2 on copy two

and vice versa. Let % be the completion of 90 at Xo. Then we can find an etale

cover q: Ϋ -> X reducing to Yo -> Xo over P. Now let Qx and Q 2 ̂ e the two

nodes of Yo. We can find local parameters Λ: and y at Qx so t = xy. Thus in

some neighborhood of (^ E 7 X^ JF, we have xy = ^/ 2 . Let ίx be the ideal

generated by x and ί,. One checks ί, is a Cartier divisor away from β 1 # Let

ί2 = ^ ( ί j ) , where / is the involution on Y. Now blow up Y at ί, around (?j

and 32 around Q 2

 t 0 obtain Ϋ'. Since $λ and ί2 are Cartier away from Qx and

g 2 , this operation is well defined. Now i still acts on Ϋ' as a fixed point free

automorphism, so we can form the quotient Z by dividing Yf by the action of /.

We can check the local behavior of Ϋ. Let

R = k[[x,y,tx,t2]]/(xy-txt2)

and consider Rx = R[x/tx] and Λ2 = R[ίx/x]. Let m be a maximal ideal in

Rx. Let α be the residue class of x in Rx/m and let x' — x/tv If α φ 0, then

x' — α, ̂  and ί2 generate m since7 = t2/x'. Thus Rx is regular at such a point

and the equations tx = t2 — 0 define a smooth curve. If x' E m, then we have

the relation t2 — x'y, so x\ y and tx generate m. Thus ^ ! is regular at such a

point and t2 is the equation for the node. Now since tx/x — y/t2 we see

^2 ~ R[y/h] a n c ^ s o h i s ^ e equation for the node j>//2 = x — tx — 0. So the

two nodes of Z have equation tx — 0 and ί2 = 0. Similarly, one can check

The case of n > 1 is handled similarly.

Now let 7r: Xn -» ̂ ί0 be the standard map. There is a map from ττ*Ωι

Ύo to Ω1^

and hence a map

φ: Hom(ΩVw, 6 ) ^ Hom(w*ΩV0, 6 ) .

Let E be the union of the Λ/s in Xn.

Lemma4.3. Ker φ = ® 0Λ /, Coker φ c QE(-Pλ) ® β ^ - i ^ ) .

Proo/. We have a (nonexact) sequence of maps over some etale neighbor-

hood of E,

(4.3.1) 6 θ θ φj>π*&Xo -* ΩVH - Ω^.

To define φ 3 , we let the node of Xo be given by xy = 0. Then φ 3 (/, g) = fdx

+ g dy. Dualizing φ 3 , we obtain a map

Let
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be the natural map and let ψ3 = ψ3" ° ψ3. Then dualizing (4.3.1), we have

(4.3.2) 0 -> Hom(Ω^ 0) t Hom(ΩVM, θ ) ^Hom(τ7*ΩV0, θ) ̂ 0 £ Θ 6 £ .

We claim (4.3.2) is exact and that imψ 3 c 6 £ (-P,) θ 0 £ (-P 2 ) . Our claim is

readily verified except at P 1 and P 2 . So consider Pj e l n . We can introduce a

local parameter y' at P, so that A), is defined by xy' — 0 near P,. Further,

y = 0 near P1# Now let e1 = π*(dx) and e 2 = ττ*(d?j/). Near P,, ττ*ΩV0 is

generated by e, and e2 subject to xe2 = 0. Near P,, Ω^ is generated by eλ and

rfy' subject to jcφ' + j ^ = 0. Further, e2 maps to zero in Qλ

x at P,. Let us

check the image of ψ3 is contained in 6 (-P,) θ Θ(-P2). LetΛ E Hom(τr*ΩV0, Θ)

be defined near Px. Then xA(dy) = 0, so Λ(rfy) must vanish on the curve

y' — 0. Hence Λ ( φ ) vanishes at P,. Thus the image of ψ3 is contained in

Θ£(-Pi) θ ΘE near P,. Near P 2 , the image is contained in QE θ β £ (-P 2 ) . Our

other assertions may be similarly verified. Further, Hom(Ω^, 0) = Θ 0 Λ . .

Corollary 4.4. 77ze natural map

ψ: 7/ 1 (Hom(Ω^ 0 ) ) - ^ ( H o m j ^ f ί ϊ ^ ) , β ) )

w injective.
Proof. H\®βRι) = 0 and H°(6E(-PX) θ 6£(-P2)) = 0.
Let 4̂ be an artin local A: algebra, let T — Spec^4 and suppose T is a C

scheme with the closed point of T going to /?. Let t be a uniformizing

parameter in 0 C Λ .

Proposition 4.5. Suppose Z' is a flat deformation of Xn over T and that there

is a Tmorphism ψ' of Z ' to %XCT which reduces to the standard morphism of

Xn to Xo. Then there is a map of T to W so that Z' and ψ' are isomorphic to the

pullbacks of the Z and ψ of Lemma 4.2. Further, if at = 0 is the equation of the

ith node of Z', then Π, at generates the ideal (t)inA.

Proof. We may assume that A has a principal ideal (ε) of fc-dimension 1

and that the proposition is true for Ao = A/(e). Let To — Spec^40.

We can find a map φx of T to W so that the pullback ( Z " , ψ(') of (Z, ψ) is

isomoφhic to (Z', ψ') over Γo and so that the equations for the /th nodes of ZJ'

and Z' agree. Thus Z r and Z" are locally isomoφhic over T. Choose an affine

open cover Ut of Xn and let U[ and L̂ /r be the corresponding open covers of Z '

and Z". We may assume there are isomoφhisms Φf : 0 ^ -> © ^ which agree

over Γo = Spec^40. Now on U( Π ί̂ ', we have

for all/ E T(U;, 0) and some λ/y E Γ(ί^ Π ί^,Hom(ΩVw, 6)). As usual, λ/y is a

cocycle and Z' and Z" are isomoφhic over C if and only if {λ/y} is a
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coboundary. Let μu be the image of λ/y in Γ((^ Π Uj9 Hom(7r*Ω^o, 6)), and let

μ be the corresponding cohomology class in //1(Hom(τr*Ω^o, 6)). But μ is just

the obstruction to extending the map from Z'o to % X c Γo to a C morphism

from Z' to % X c T. Corollary 4.5 shows λ/y is a coboundary.

Next we study the action of SL( W) on the Hubert scheme of G.

Lemma 4.6. Suppose λ: Xn -> G is an embedding with n > 1 and λ(Xn) is a

potentially stable curve. Suppose σ E SL{W) fixes \{Xn) and is the identity on

X C Xn. Then σ w a multiple of the identity.

Proof. Let E = λ*(S). The map λ is given by choosing a basis ( j j of

H°(Xn9 E) and σ ° λ is obtained by a basis {sfl of H°(Xn, E). Since σ induces

the identity on X, we have that sέ — s- on I up to a scalar multiple. But

H°(Xn, E) -> H°(X, E)is injective since E is potentially stable. Further, since

W = H°(X9 E\ we see σ is the identity up to a scalar multiple.

With the same notation as in Lemma 4.6, we have

Lemma 4.7. Let D be a vector field on G which is tangent to λ(Xn). Then D

is zero.

Proof. Let A:[ε] = k[x]/(x2). If V is a scheme over A:, we let V[ε] = V

XfcSpec k[ε]. Now D induces a A:[ε] map from G[ε] to G[ε]. Note that D is

zero on λ(Px) and λ(P2) since Z) is tangent to λ(Xn). Further, D actually

induces a map of λ(Xn)[ε], and hence we may regard D: Xn[ε] -> A^[ε]. Now

there are no vector fields on X vanishing at Pλ and P2, so D vanishes on

X C Xn. Now the map from G[ε] to G[ε] is just given by a new basis S[9 , S^

of H°(G, S)[ε] which coincides with the old basis S,, - ^ m o d ε. Since D is

zero on X C Λ^, we have that S, = 5/ on A^ε] up to a scalar multiple. We may

assume S, = 5/ on ^[ε]. But the map from J ϊ ° ( ^ [ e ] , S) to H°(X[e]9 S) is

injective, so the 57 = S;' in H0(Xn[ε]9 &). Hence 5f. = 5/ in i/°(G[ε], &) and so

With the notation of Lemma 4.6 again, we have

Lemma 4.8. Let ί be the ideal sheaf of λ( Xn). Then the natural map

p:H°(G,TG)-

is injective.

Proof. Identify λ(Xn) and Xn. First note that the map from 7/°(G, TG) to

H°(Xn, TG <S> (SXn) is injective. Indeed on G, we have a tautological exact

sequence

where we denote dim W by r instead of by n as above. Now TG = Hom(^, S),

so we have an exact sequence

0 -> Hom(S, S ) ^ S r -* ΓG -» 0.
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Thus we have the commutative diagram with exact rows:

0 • ff°(G>Hom(S, S)) >H°(G, S) r

1« Iβ

Now α is an isomorphism, since Hom(S^, &x.) = k. Further, β is an isomor-
phism. So γ is injective. Lemma 4.8 shows (imγ) Π H°(X, Tx) = 0. On the
other hand, from the exact sequence

o -+ S/s2 ->(Qλ

E)Xιι-> Qι

Xm^> o

we see that the following is exact:

0 - H°(XH9 Tx) -> H°(XH, TG) -> Hom(ί/ί 2 , QXn).

So our claim follows.
Proof of Proposition 4.1. Suppose A is an artinian local k algebra with an

ideal (ε) of dimension one. Let Ao = A/(e), T — SpecΛ and To — Specv40. To
show ^ is smooth, it suffices to show that F(T) surjects to F(T0). Let
Yo C (%XXTO) XkG be an element of F(A0). Consider Yo as an abstract
deformation of Xn mapping to % Xc To. Then by Proposition 4.5 there is an
extension Y of Yo over T and a map of T to C so that Y maps to %XCT.
Further, So = S γ can be extended to a bundle f on 7, since the obstruction to
lifting So lies in //2(Hom(S, &)χn). Finally, the sections of So defining the
given map of Yo to G can be extended to £, since H\Xn, &XJ - 0. Thus Y is
smooth over k.

Consider %p as a Cartier divisor defined by t — 0. Let R be a closed point of
typ. Now over Γ = S p e c 0 ^ Λ there is a universal family of curves YC
(%XcT)XkG. Let z, E 6^ R be the equation for the ίth node of Y. Then Π zt

generates / (Proposition 4.5). On the other hand, for each / if To =
Spec/:[ε]/(ε2), we can find Yt E F(T0) mapping to R, so that if atJ is the
equation for the/th node on Yi9 then ai} — δ/y. Hence the dzi are independent,
and typ has normal crossings on 6H.

Let Sgtd be the Hubert scheme of curves of genus g and degree d in G and let
U C Sg d be the set of semistable points. Since g > 2, there are at most finitely
many maps σ of a semistable curve to its stable model. Thus the induced map

φ : ^ ^ UXkC

is quasifinite. We claim φ is finite. Suppose not. Then we can find a smooth
curve S, a R E S and a map ψ: S - R -> ty which induces a map ψ' of S to
ί/XC.We consider first the case when S - R maps to C — P and R maps to
P. Using an argument similar to that used in Proposition 3.1, we see that the
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family of semistable curves induced by ψ' over S maps to the family of stable
curves %XCS. But then ψ can be defined at R. The other cases can be
similarly handled, so φ is finite.

SL(W) acts o n ί / X C and on % over k. We can cover Uby invariant affines
Ui on which SL(W) acts properly and so cover Y by invariant af fines
y. = φ-\u. x c ) on which SL(W), acts properly. We claim SL(W) acts freely.
Lemma 4.6 shows that SL(W) has no fixed points. Indeed, if SL(W) fixed a
closed point of ^ , it would induce a nontrivial automorphism of X C Xn. But
then if p is a standard map of Xn to Xθ9 we would have σ ° p ¥= p. Thus σ has
no fixed points. Further, Lemma 4.8 shows the map of the Lie algebra of
SL(W) to the tangent space of the Hubert scheme at a given closed point is
injective. So our claim is established.

So a geometric quotient l̂lί of ^ by SL(W) exists [3, Proposition 3.12].
Further, ^ is a principal SL(W) bundle over % [1, Proposition 0.9]. Since ty is
smooth, % is also smooth. Further, %> has normal crossings on ^lί. We finally
claim that % is projective over C. If % is not proper over C, we can find a C
curve S and a morphism ψ of S — R to ^ By passing to a ramified cover of S,
we can assume ψ can be lifted to a map ψ' of S — R to ^ so that ψ' induces a
map of S to 5 g .̂ We may further assume that ψ'(#) is a semistable point (? of
Sgd and that if Q is strictly semistable, then the automorphism group of Q as a
curve on G is infinite. By the results of [1], Q as an abstract curve is semistable
and hence is either smooth or one of the Xn. By Corollary 3.2, Q has no
continuous families of automorphisms as a curve in G. Thus Q E U and ψ'
factors through ίΛ Since φ is finite, ψ' factors through ty.

Now let Tbe a C scheme and let G(T) consist of triples (7, E9 q) where Y is
a semistable family of curves, of genus g over T9 q: Y-> %XCT satisfies (iii)
above, and £ is potentially stable on all the fibers of p: Y -+ T. Then any
element of G(T) can be lifted locally to F(T). We thus get a map of the
functor G to % which is bijective on closed points.

5. Let S be a smooth curve and let R G 5 be fixed. Let E' and E" be
bundles on 5. We define a rational isomorphism φ of Er to /?" to be an
isomorphism of E' with £ " over the generic point of S. There is a unique
r £ Z such that φ induces a map

<p':E'{rR)^E"

which is defined (i.e., holomorphic) and nonzero at R. There is a unique s so
that (cokerφ% = QR/ms, where we define m° = &R. We say (r, 5) is the type
of φ with respect to E and E'.

Suppose E is a vector bundle o n l X S and φ is an isomorphism of (EP ) υ

with (Ep)u where U = S — R. We can use φ as descent data to form a bundle
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Eo on Xo X U. Our aim in this section is to define a semistable family of curves
X' and a bundle Er on Xr extending Xo X U and Eo for certain types of φ. The
resulting family will be called the geometric realization of φ.

First, if φ has type (r, s), then φ"1 has type (-r — s, s). Indeed, notice that
Q2

 = coker φ' is an GR/ms quotient of EPi. We will, in general, feel free to
localize around R without comment. Thus we can assume that EPi is a direct
sum Mx θ M2 where M2 coincides with Q2 over Spec ΘR/ms. Thus

Ker(£P2-> Q2) = Mλ θ M2{-sR).

Let Nx θ N2 be a direct sum decomposition of EP which corresponds to
Mj θ M2{-sR) under the isomorphism of EP(rR) with Ker^p , Q2). Thus we
have isomorphisms

φ,: N}(rR) - M,, φ 2 : N2(rR) - M 2 ( - J Λ ) .

Thus Mt{(-s — r)R) maps to Λ̂  and this map is nonzero at R for / = 2.
Further, Nλ/ψ\\Mλ((-r - .?)#)) = ®/?A*s, so φ"1 has type (-r - J, .y).

(0,1). We suppose φ has type (0,1). This means that φ: EP] ->
^ , L2), where L2 is an JR quotient of EPi. We let Lj be the R quotient of

EP] corresponding to the canonical quotient of Ker(£^, L2). On X X S blow
up the point P2 X R to obtain a surface / ^ ^ Z X S . Call the exceptional
divisor D2, and let the proper transform of Pt X S be //,.. Denote the proper
transform of X X R by X

Now let £:(2) = p*(E). Note that p*(L2) is a D2 quotient of rank one. Let
Ef = Ker(£(2), p*(L2)). The map φ from £^2 to K e r ί ^ , L2) is an isomor-
phism. To obtain the geometric realization of φ, we glue Hx to H2 and use φ as
an isomorphism of E'H to E'Ήi. We have

(5.1.1) Er

Di is standard of type 1.

(5.1.2) E'χ is the modification of £VXΛ at L2.
(5.1.3) At Pj, the standard quotient 0 of E'Di is glued to Lr the P, X R
quotient of EP — EP.
(5.1.4) At P2, the standard quotient 0 of E'D is glued to the canonical
quotient of E'x from (5.1.2).
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Indeed, (5.1.1) follows, since EΌi is ©z>2 ® ΘD2 and E'Dl is 6Di Θ ί ^ / ί ^ .
Since D2

2 = - l , ^ 2 = 0 θ Θ(+1).
(5.1.2) and (5.1.4) follow from Remark 2.2. For (5.1.3), the standard quotient

of E'Di is the canonical quotient, and Lx is the quotient of EPχ which is glued to
the canonical quotient of Keτ(EP2, L2).

Case (1,0). If φ has type (1,0), we use the same surface %λ as in Case (0,1).

This time we have φ: EP] ^EPi(-R). Letting £ ( 2 ) be the pullback of E to 90 p

we define

We see that

(5.2.1)
(5.2.2) E^ is β(\) ® 6(\).
(5.2.3) E$ = EPl(-R).

Case (1,1). We have a quotient L 2 of EP2(-R) and

φ:EPι^Ker(EP2(-R)9L2).

First, we proceed as in Case (1,0). This time, however, we have

So we blow up to D2 Π H2 to obtain a new surface %2. Thus £>3 is the new
exceptional divisor, and D2 and H2 are the proper transforms of D2 and H2

from %,. We let £(4> be the pullback of E(3) and let £ < 5 ) = Ker(£ ( 4 ), p (L2)),
where/>:%2-»%,.

Now £ ^ is isomoφhic to Keτ(EP2(-R), L 2) so φ extends to an isomorphism
of E$ to Eft}. Thus we can obtain our geometric realization by using φ as
glueing data for £ ( 5 ) . We claim:

(5.3.1) E^2 and E^ are standard of degree 1. Further, their standard quo-
tients d
(5.3.2)

tients do not coincide at D2 Π D3.
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Indeed, Eβ* is 6 ^ θ QD^ which we modify at a quotient ΘD . Hence E(^ is
6 D 3

 θ
 $D/$DI=

 6 ® e 0 ) - Further, the canonical quotient E$ at Z)2 Π Z)3 is
just the standard quotient of Zs^. On the other hand, E$ is Ker(θ(l) θ
6(1), LDinD3). Thus E$] is 6 θ 6(1), but the standard quotient does not
coincide with the canonical quotient at D2Π D3. Thus the standard quotients
of Ejf) and E$ do not coincide.

Case (-1,2)'If φ has type (-1,2), then

φ:EPι Ker(EP29L2)(+R).

Let Lx be the quotient of EPχ corresponding to the canonical quotient of
Ker(£"p2, L2)( + R). Let (2, = L, ® A:Λ, where kR is 0s R/m. We claim there is
an isomorphism extending φ

Furthermore, ψ does not identify the canonical quotients of the two sides. We
call 0i and Q2 the quotients induced by <p. Indeed, using the notation
developed earlier in this section, φ induces an isomorphism

φ: Nx(-R) θ N2(-R) M2(-2R).

Now Ker(£?2, Q2) is Mx θ M2(-Λ) and Ker(£P], β,) is ^(-Λ) θ Λ̂ 2. Further,
(N2)R is the canonical quotient of Ker(EPι9Qλ) and (M,)Λ is the canonical
quotient of Ker(£/>2, β 2 ) Our claim follows.

Now form 9C3 by blowing up 9C, at Pj = Λ" Π 7/j to obtain a new excep-
tional divisor Dx (see the diagram). Let E(6) be the pullback of E to 9C3 and let
E(7) be the modification of E(6) at p*(β,) ® p*(Q2)> where /? denotes the
projection of 9C3 to Λ" X S.

Then ψ is an isomorphism of E$ to EJU* and so we can use ψ as descent data
after identifying //̂  and /ί2. We claim:

(5.4.1) E$>
(5.4.2) E$ is standard to type 1 and the ψ does not identify the standard
quotients.
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These can be verified using the above techniques.
Now suppose £ is a family of stable bundles on X of degree 2α + 1 over S

and let 77: X' -> 5 be the geometric realization of φ. In Case (0,1), X'κ — Xx

and ER is of type II,. Indeed, by Lemma 2.5, there is no semistabilizing
quotient of Eψ which is identified with the standard D2 quotient of Ejjy*.

If φ is of type (-1,0), then X'R is Xx and E'R is of Type II 2 . If φ is of type
(1,1), then X'R is X2, and ER is of Type III. Finally, if φ is of type (-1,2),
Lemma 2.5(ii) shows that XR is X2, and ER is of Type III unless there is an
invertible quotient L of degree α + 1 of EXXR coinciding with Qx and Q2 over
Px and P2.

6. We continue with the same notation as §5. We suppose that φ has type
(-2,4). Let L2 be the cokernel of the map from EPχ(-2R) to EPi, and let L, be
the quotient of EPχ corresponding to the canonical quotient of Ker(£p2, L2).
We suppose that there is an X X R quotient L of E which coincides with Lx

and L2 at R X P, and R X P2. Let Ef - Ker(£, L). Notice first that φ has
type (-1,2) as a map of EPχ to EPi. Indeed, φ induces an isomorphism

φ: NX®N2-+ MX{ + 2R) © M2(-2R).

Further, L2 = M2/M2(-4R) and L, = Nλ/Nx(-4R). Thus

£;, = #,(-*) Θ N29 EPi = MXΘ M2(-R).

Thus E'P{-R) = NX(-2R) ® Ai(-/l) and

Coker(£;,(-*), ^ 2 ) = Af2(-Λ)/φ(iV2(-Λ)),

which is isomorphic to QR/m2. So φ has type (-1,2) as a map from EPχ to E'Pi.
Further, let Q\ and Q2 be the quotients of EPχ and EPi induced by φ, and let L'
be the canonical XX R quotient of E' = Ker(£, L).' Then ρj and Q2 do not
coincide with L' over P, and P2. Indeed, Q\ and Q2 correspond to Nx(-R) and
M2(-R) at Pj and P2 and L corresponds to N2 and M, at P, and P2. Let

Lemma 6.1. Suppose there is a X X R quotient Q' of E' so that Q' coincides
with Q\ and Q2 over Px and P2 and so that E'XXR is the direct sum of Qf and L.
Then there is an XX S2 quotient of E which coincides with Lx and L2 over
Px X S2 and P2 X S2 and with LonXXR.

Proof. Let E" = Ker(£r, β'). We claim E/E" is the desired quotient.
First, we must show E/E" is an I X S2 quotient. Since the problem is local,
we may assume there is an isomorphism ψ: E -» Mr θ M and that M coincides
with L over XX R. Then E' = M' θ M(-D) where D is the divisor XX R.
MR is the canonical quotient of E\ so the map from M(-D) to Q' is an
isomoφhism. Locally, we can modify ψ so that the quotient M(-D) of
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W Θ M(-D) coincides with Q'. Then E" = Mr Θ M(-2D% so E/E" =
M/M(-2D). Now at Px and P2, (M2(-R))R and (^(-Λ))Λ coincide with the
quotients induced by φ on E'P and £^. Thus Ep = M, θ M2(-R) and
£/>'2 ~ ^i(~2Λ) © # 2 Thus the Ep/Ep, coincides with Lz over S2.

7. We wish to give a more global version of the construction of geometric
realization of §5. Let Γbe a smooth variety and Q, C2, Fλ and F2 are smooth
divisors meeting transversally (see the diagram). We assume there are no triple
intersections, and that C2 meets only F2, F2 meets only C2 and Fu and C,
meets only Fx. Suppose that E is a bundle on X X T and suppose we are given
an isomoprhism

(7.1) φ: EPχ - K e r ( ^ 2 , L2){C2 + F2 - C,),

where L2 is an ^ + F2 quotient of EPi. We let Lj be the quotient of EPχ

corresponding to the canonical Fλ -f F2 quotient corresponding to the right-
hand side of (7.1).

Let 5 be a smooth curve on T and suppose RES. We suppose S is
transversal at R to any Cέ or Ft containing R. We let E be the restriction of E to
S X X, and φ the induced rational map from EPχ to Ep2. In the following list,
the first column represents the position of R and the second the type of φ.
Thus, if R G C2 - F2, φ has type (-1,0):

c 2
Ci

—

Pi

—

Px

—

n
c 2
n
Pi

n

Pi

Pi

- F ,

F,

-c,

(-1,0)
(-2,0
(-1,1)
(-1,2)

(0,1)
(1,1)

Our aim in this section is to construct a family of curves q: Y -> Γ and a
bundle .F on y so that for any S as above, the geometric realization of φ is just
the pullback of Yand Fto 5. First, o n Γ X I b l o w up Cx X i^ and C2 X P2 to
obtain a variety W, mapping to TX X. Let if, and H2 be the proper



190 D. GIESEKER

transforms of TX Px and TX P2, and let Vx and V2 be the exceptional
divisors. Then Ht maps isomoφhically to Γ, and Vt Π Hi maps to Ct. Now
denoting the pullback of E by E again,

Now on Wv let

Then φ induces an isomoφhism

where L2 is the F, + F2 quotient of £^2 given by L2 = L2(-C2 + C,). Now let
L\ be the F, + F2 quotient of F ^ corresponding to the canonical quotient of
Ker(F^2, L2). Then φ induces an isomorphism

φ 2 : Ker(E'Hι,(L\)F2) - K e r ( ^ 2 , ( L 2 ) F i ) .

Indeed, it is easy to check that φ2 is an isomorphism over F, — F2 and over
F2 — Fλ. ψ2 is therefore an isomorphism since Λ 2φ 2 does not vanish except
possibly on F, Π F2 and hence does not vanish on F, Π F 2 .

Next in /f̂  we have the smooth variety F2 corresponding to F2 under the
projection of Hx to T. We can similarly define F[. Now blow up F2 and F[ in
Wλ to obtain W2, Let Hi denote the proper transform of Ht in W2 and let Gx

and G2 be the new exceptional divisors. We will let E' denote the pullback of
Er to W2 and Mx and M2 be the pullbacks (L'2)Fχ and (LΊ)Fz. Then Mλ and M2

are G{ and G2 quotients of E' on Ŵ 2. Let

F " = Ker(F', M, ΘM 2 ) .

Then φ induces an isomorphism of E^ with £ ^ . We glue Hx to H2 in PΓ2 to
form our family of curves q: Y -» Γ and use φ as descent data for E". One
checks that if 5 C T is a curve as above, then the geometric realization of φ is
just the pullback of Y and F.

8. Let So be the moduli space of stable bundles of degree 2 α + 1 on X and
let E be the Poincare bundle on X X So. Our object is to construct the
normalization of %P from 50 and F, where % is the variety introduced at the
end of §4. We first consider
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as a protective bundle over So. Let Mx be the tautological bundle of πx:
Sx -> So. We will denote the pullback of EtoSxX Xby E{1\ Now on Sθ9 there
is the usual exact sequence

andthusamap ψι: E%-* E% * Mx.

One checks locally that φ, is nowhere zero and that Λ 2φx vanishes simply on
a smooth divisor D which is a bundle of quadrics over So.

(8.1.1) Θ(D) = M? ® Λ2E \

There is a D quotient Lψ of Ej}} so that

(8.1.2) φ

We let L^ be the quotient of E^ corresponding to the canonical quotient of
the left-hand side of (8.1.2).

Consider

as a projective bundle over S,.
Let Λf2 be the tautological line bundle for π2: S2-> Sx. Let E(2) be the

pullback of £ ( 1 ) to X X 52, and Mj(2) be the pullback of M,. We have the exact
sequence on S2

e e M\2) -• M2 ^ o.

There are divisors //j and i/2 which are sections of 7r2 so that the map from Θ
to M2 vanishes on H2 and the map from M,(2) vanishes on Hλ. So we have
isomorphisms 0 ^M2(-H2) and M{2) ^M2{-Hx). We obtain an isomorphism

Thus we have a morphism

We have the following schematic picture of S2 where D{2) =
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Consider ί/ = S2- Hx - H2- D{2\ and lef Vo c %> be the open set of

bundles of Type I 5 . Note φ 2 is an isomorphism over U and we can use <p2 as

descent data to produce a bundle E' on X0X U. E' is a. family of bundle of

Type I 5 on I o and so we get a map ψ0 of U to Vo. We claim ψ0 is an

isomorphism. Suppose T is a k scheme and E" is a family of bundles on

Γ X ΛΌ of Type ls. By pullback, we obtain a family of stable bundles E on

TX X together with an isomorphism φ: EPχ -> £ ? 2 . There is a morphism F o of

Γ to So so that £ is the pullback of E up to tensoring by line bundles on T.

From the universal property of P(Hom(JE/>2, EPJ)9 there is lifting Px of Fo to SΊ

and an isomorphism h: F*(MX) -» θ so that φ is the pullback of φj when we

use h to identify 0 with FX*(MX). But A determines the lifting F2 of F, to

S2 = P(0 θ Mx) so that Λ is given as p'f^* where p 2 is the map of 0 to F£(M2)

and pj is the isomorphism of Ff(Mx) -» F2*(Λf2). Thus φ is just the pullback of

φ 2 . Hence, we obtain a map of Γ to U. Let F C ^ be the open set consisting of

curves of Type \s. Then we have a map of V to (7 which is SL( W) invariant.

Thus, we get a map ψj of Vo to tΛ We leave it to the reader to check that ψ0

and ψ, are inverse maps.

It is impossible to extend ψ0 to a map of 5 2 to %>. So we must blow up S2.

First, blow up H2 Π Z>(2) to obtain S3:

»> 1

Here H2 is the proper transform of H29 D2 is the new exceptional divisor, and

Dλ is the proper transform of D(2). Thus, the total transform of D(2) is Dx + D2

and the total transform of H2 is H2 + D2. Let E(3) be the pullback of E(2) to S3

and let Lψ be the pullback of Lψ. Lψ is a Z>, + D 2 quotient of E$ and we

have an isomoφhism

(8.1.3) φ3: 4 ? - Ker(£g\ 43))[7/2 + D2 - if,]

extending φ 2 on t/. Thus, we are in the situation of §7. Let Lψ be the Dx + D 2

quotient of E^ corresponding to the canonical quotient of the right-hand side

of (8.1.3). Let Z' be the subset of Dx Π D2 consisting of points s E 5 3 so that

E3 has a quotient of degree α + 1 which coincides with L|3 ) in (ES)P. From the
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discussion at the end of §§5 and 7, one sees that the family of curves and
bundle obtained as the geometric realization of φ3 is stable except over Z'.

9. Our purpose in this section is to understand Z'. Let Jd be the Picard
variety of line bundles of degree d on X and let td be the Poincare bundle on
X X Jd. We will denote the pullbacks of £α and £ α + 1 t o I X / α X Ja+ι by £α

and ta+v Let IT, be the projection of XX Ja X Ja+X onto JaXJa+λ. First
consider the sheaf on Ja X Ja+ x

(9.1.1) ff, = /ιv(β;ί.βe.).

First, note that (Sλ is locally free of rank g — 1 since if L is a line bundle of
degree -1 on X, h\L) = g - 1. (The genus of * is g - 1.) Let Z = P ^ ' 1 ) .
We will construct an isomorphism of Z with Z'. Note dim Z = 3g — 4.

Again denoting the pullbacks of £ α + 1 and £ α t o Z X Z b y £α and £ α + 1 and
letting 7r2 be the projection of Z X ̂  to Z, we have a canonical section s of
9H<8> flVί^α+i ® £«)> w h e r e ^ i s t h e tautological bundle on Z over Ja X

•4+1-
Now 5 defines an extension

For each z E Z, the corresponding extension

is nontrivial. We claim &z is stable. Indeed, if Qz is a destabilizing quotient of
S,, the induced map / from (£α <S> 9H)Z to (>z is nontrivial. But if / is zero at
any point, deg Qz > a so Qz is not destabilizing. But the extension is trivial if/
is an isomorphism.

Let Γbe a /c-scheme. Let G(T) be the set of extensions (modulo equivalence)

(9.1.2) 0 - L β ^ F ^ L β + I ^ 0

on X X Γ, where Lα and La+, have degree a and αH-lon^X^} and where
F is a family of stable bundles on X over T. Using the universal properties of
the Picard group and P^," 1 ), one sees that Z represents G.

We wish to define another functor G'. An element of G\T) will consist of a
family F of stable bundles o n l X Γ together with T X Pt quotients £, of F
(modulo equivalence). Recall the divisor D QS} from §8 and the D quotients
L| υ of Eff. We claim D represents the functor G'. Indeed, given (F, £ p £2) G
G'(T), we can locally on T find a φ : FPχ-* FPi so that coker φ = £2 and
Fp/Kerφ = £,. Further, φ is uniquely determined up to a unit on T. Using
the universal properties of S and Sl9 one obtains a well-defined map from T to
D so that (F, £j, £2) is the pullback of (E°\ L\]\ Lψ) modulo isomorphism.
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There is a map

: G(T) -» G'(T)

obtained by letting £f. = (La+ι)Pj. We claim Ψ is injective for any T. Indeed,

suppose Q is a quotient of degree a + 1 of F in (9.1.2) which agrees with La+ x

at P( X Γ. Consider the map / of La to Q. This is actually a map of Lα to

Q{-Px - P2). Since deg La > deg <2(-P, - P2\ f is zero. Thus Ψ(Γ) is injec-

tive.

Proposition 9.2. 7%e induced map ofZtoD is an embedding.

Amplification 9.3. Let T — Spec k[ε]/(e2) and let R be the closed point of

T. Let (i% £,, £ 2 ) E G'(Γ). Then the induced map of T to D factors through Z

if and only if there is a Γ quotient L α + 1 of F degree a + 1 coinciding with £,

and £ 2 .

10. We retain the notation of §8. Using the map of Z to D and the

isomorphism of Dx Π D2 with Z>, we can identify Z with Z'. We form a new

variety 5 4 by blowing up Z C 5 3 . We will call the new exceptional divisor Z

and denote the proper transforms of the Di by Dr

Our main result of this section is

Proposition 10.1. ψ0 extends to a morphism of S4 to %P.

Let £ ( 4 ) be the pullback of £ ( 3 ) and L(

2

4) the pullback of Lψ. Then Lψ is a

D, + D2 + 2Z quotient of £ ^ } and there is an isomorphism

(10.1.1) φ 4 : £<4> - Ker(£<4>, 4 4 ) ) [ ^ 2 + ^2 + Z - Z/^.

L\4) will denote the quotient of EjP corresponding to the canonical quotient of

the right side of (10.1.1). Now let £ ' α + 1 be the invertible quotient of Eψ of

degree α + 1 which coincides with L|3 ) over Pr Let £ α + 1 be the pullback of

£ α + 1 to Z. Further, let

(10.1.2) £ '
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Now let L; = L<4) ® 6D l + ί > 2(-Z). Note that L; is a Z), + D2 quotient of
We claim there is an isomorphism

φ': E'Pχ - Ker(£;2, L2)(//2 + D2 - Hx)

which coincides with φ4 away from Z and so that L\ coincides with the
canonical quotient of Ker(£p2, L2) under φ'. Our main object in this section is
to show that the geometric realization of φ' is stable over all points of S4.

To show that the isomorphism φ' exists, it suffices to work locally around a
point of Z. Thus we may assume that

Eff = £x® 9IL,, E% = e 2 θ 91t2,

where £, coincides with L|4) over Z), + D2 + 2Z and so that φ4 = φ, 0 φ2

where φj is an isomoφhism of £, with 9H2(D2 + Z) and φ2 is an isomoφhism
of 911, with e^-D, - Z). Now ^ = e,(Z) θ 911, and ^ 2 = £2(-Z) θ 9H2

and hence

; 2, L'2){D2) = (£ 2 (-Z - />, - Z)2) Φ 9IL2)(D2)

Thus φ' exists, since E'Pχ = £,(-Z) θ 9IL,.
Let β be the canonical Z quotient of Ef from (10.1.2). QPχ and βp2 are just

(91LP])Z and (91tp2)z. So β ? 2 is actually a quotient of Ker(^, L2). Further,
β^is never glued to QP{D2) under φ' and QP. never coincides with L̂  as a
quotient of £p. Let Nλ be the quotient of (£p,)f which corresponds to QPl(D2)
under φ'. β P z is a quotient of Ker(£p2, L2) which coincides with the canonical
quotient of Ker(£p2, L2) over (Dλ + Z)2) Π Z. Thus JV, corresponds to L, over

(Dλ + D2) n z.
Since L'j corresponds to the canonical quotient of Ker(£p2, L2)(Z)2), one

sees there is an isomoφhism near Z

which is the inverse of φ' except over I>, + D2. One defines iV2 analogously to

Now we have an exact sequence

where Λf is a line bundle o n Z X I Since the map φ' never identifies QPχ with
QP^+DX\ the map from MP to !2/>2(+^i) is a n isomoφhism. So we get a
map 0, E Hom(βp2, MPχ) which vanishes on /),. Similarly, using ψ' one
defines θ2 E Homίβ^, M^2) which vanishes on D2.
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Finally, let

Note that Q is a quotient of E" and that the kernel of E" -> Q is just
M(-Pι — P2). Thus we obtain an extension onZ X X

0 -> M(-Pλ -P2)^E"^Q->0

and so a section

where π is the projection of Z X X to Z.
Now suppose R E Z. We wish to examine the stability of the geometric

realization (XR, FR) of φ' over R. First, suppose that R & Dx + D2. Then φR:
(E'P)R-> (Ep2)R is an isomorphism and we have an exact sequence

(10.1.3) 0-*MR-*E'R^QR->0

on X X R = X. Now we have observed that QPχ and QPj are not identified
under φ^. Thus FR on Xo is of Type I u , since deg QR = α H- 1 and deg MΛ = α.
Suppose P is another point of Z — Dι — D2.

Lemma 10.2. Suppose MP and MR are isomorphic and that QP and QR are
isomorphic. Suppose that under these isomorphisms we have Θ^R) = λθ^P) for
i — 1,2,3 and λ E k*. Then FR is isomorphic to FP.

Proof. We may first assume that λ = 1 by multiplying the isomorphism of
MP with MR by a suitable constant. Since Θ3(R) = ̂ ( i 3 ) , we can find an
isomorphism ψ of the extensions:

0 -> MR(-Pλ- P2) -> EZ -* QR->0

0 - M ^ - P , - P 2) -, E'f -+ QP - 0.

Now

Thus there is an isomorphism of the extension (10.1.3) with the analogous
extension over P so that (A^)Λ corresponds to (Λ^)P. But (NX)R is just the
quotient of (EPi)R corresponding to (Qp2)R. Further, Θ}(R) just gives the map
from (MPι)R to (Qp2)R. Using the corresponding statements for (N2)R and for
P9 our lemma follows from the following observation: Suppose Vλ and V2 are
two two-dimensional vector spaces given as extensions

and that ψ and ψ' are isomorphisms of Vλ with V2. Suppose ψ(ί7j) =
Ψ"](^z) = (ΨΎ\Ui) and the induced maps of Uλ to H 2̂ and U2 to ^ are
equal. Then ψ = ψ'.
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Next suppose R E ( Z Π Dx) — D2. The quotient (L2)R does not coincide

with (QPl)R. Let E" — Ker(£^, L'R). Thus we have an exact sequence

Thus E" is semistable and (QR)Pl is the canonical P2 quotient of E". On the

other hand, (NX)R Φ(QR)Pχ. From (5.1.1)—(5.1.4), we see that FR is on Xu

(FR)X = E", (QR)Pl is glued to the standard quotient of (FR)R] = 0 θ θ(l)

and (QR)P is not glued to the standard quotient of (FR)R . Thus FR is of Type
π i

Finally, suppose R E Z Π Dx Π D2. Let C be a curve passing through R

transversal to Z, Dx and Z>2. We claim we cannot write

(10.2.1) E'R = MRΘ QR

where the quotient MR coincides with (Lf

i)R over Pt. Now ψf

c has type (-2,4) as

a map from (Ec)Pχ to {Ec)Pi. If (10.2.1) holds, Lemma 6.1 shows there is a

I X C2 quotient of E^ which coincides with £ t t + 1 on XX R and which

coincides with Lf-4) over i* X C2. But from Amplification 9.3, we see that the

map from C2 to Sx factors through Z, i.e., the image of C in S3 is tangent to Z.

But C meets Z transversally, and hence the image of C meets Z transversally.

Thus our claim is established.

FR is a bundle on X2 and ( i ^ ) ^ = Ker(£^,(L; θ L2)R). The L\ coincide

with JV, over JR, and the Λ̂  do not coincide with the Qi% Lemma 2.6(ii) shows

that (FR)X is stable, and hence FR is of Type III. Thus we have completed the

proof of Proposition 10.1.

Lemma 10.3. For any point R E Z,at least one of the θ^s is nonzero.

Proof. θx and θ2 vanish only on Dx and D2 respectively so we may assume

R EDX Π D2. If Θ3(R) = 0, we could find a splitting of

But such a splitting would give a splitting of (10.2.1) so that MR would coincide

with (A^)Λ over Pt. But (Ni)R = (L 7 ) Λ and so we contradict our previous claim.

Let θ = (0,, 02, θ3) be the section of the bundle on Z defined by

G = Hom(QPi9 MPχ) θ Homίβ,,,, MPJ θ R^(M ® Q~\-Pλ - P2)).

Now Q = £α ® 9H' and M = E α + 1 <S> ί f / ί | , where 911' is the pullback of the

tautological bundle 9H for Z - / α + 1 X 7α. Consider the bundle ^ o n Ja X Ja+X

defined by

9= H o m ( ( e j F l , ( e α + 1 ) p 2 )
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Let <%' be the pullback of ^\o Z. Then

where p is the projection from Z to Z. Now using θ: Θ -» G, we have a
surjection

and hence applying/?*, we see there is a surjective map

η: 911® ( f Γ I - J p , (

on Z. Now by Riemann-Roch, the rank of <& is g + 1. On the other hand,
dim S4 = 4 + dim So = 4g — 3 and dim Z = 2g — 4 so rk ®i — codim5 Z.
Thus η is an isomorphism since it is a surjective map between two bundles of
the same rank. Since θx vanishes on Dx Π Z, we see that Hom((£α)P, (&a+\))~pl

2

® 9H corresponds to (ί£ ) j ) z C ί z / ί | .
Thus Z = P ^ f 1 ) X P^"" 1 ) , where % is defined by (9.1.1). Let /?' be the

projection of Z to P ^ " 1 ) . Then Lemma 10.2 shows that ψ is constant on the
fibers of/?', at least over Z — Dx — Z>2. Now Dt maps to a divisor in P(^~ι)9 so
ψ is constant on all the fibers, since the pullback of any very ample bundle on
^p is trivial on the fibers of/?'. One sees that ψ restricted to Z factors through

We claim ψ maps H2 — D2 onto the set of bundles ί/(Π2) of Type II 2 .
Indeed, given a bundle FR on Xx of Type II 2 , we can find a bundle F on the
surface %! of §5 and an isomorphism φ of FH] with FHi so that using φ as
glueing data produces FR over R. Now F(+D2) is the pullback of a family of
stable bundles FxonX X S and we have

The geometric realization of φ over Λ is just FR. The data of φ and F define a
map of S to 5 2 which passes transversally through H2 — Z>(2) at R. Since the
map of S4 to S2 is a local isomorphism at any point of H2 — D(2\ we get a map
φ' of S to 5 4 so that ψ o φ'(R) is FR. Similarly, Hλ— Dx maps onto bundles of
TypeII 2.

We claim Hλ Π D, maps onto the set ί/(IΠ) of bundles of Type III. Indeed,
ί/(IΠ) C ί/(Π2), so l/(III) is in the (closed) image of Hλ. But no element of
Hx - Dx maps to ί/(IΠ), so ^ Π Dx maps onto ί/(IΠ). Next notice that Dx

maps onto U{\lx). Indeed, ̂ (Dx) is strictly larger than t/(IH) since no element
of Dx - Hx - H2 maps to ί/(III). Since {/(HI) is a divisor in ί/(Π,), we see Pj
maps onto C/Cllj). Similarly, Dj maps onto (
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Lemma 10.5. IfD is a divisor on S4, D φ Z, then ψ(Z>) is a divisor. Further,
ψ restricted to Z factors through 1

11. Suppose that 5 and S' are smooth projective varieties and that φ:
S -> 5" is a birational moφhism. Suppose Z is smooth variety and that ίFis a
bundle on Z. Suppose Z is a division on S and that we can identify Z with
P ^ " 1 ) in such a way that ί f / ί | is the tautological bundle o n P ί f " 1 ) . [In our
application, S = S4, S' = %>, the normalization of %>.]

Lemma 11.1. Suppose that if D C 5 is any divisor with D Φ Z, then ψ(D) is
a divisor. Suppose further that the induced map of Z to S' factors through Z.
Then the map ofZ to S' is an inclusion, and S is the blow up of S' at Z.

Proof. Let ψ: <p*(ΩS/) -» Ω^ be the induced map. Let U be the set of points
over which ψ is an isomorphism. Then D — S — U is a divisor given by
det ψ = 0. By Zariski's main theorem, we see that ψ~\ψ(U)) = U and that for
each P E D, ψ~\ψ(P)) is connected and has dimension > 1. Thus D — Z. Let
7Γ be projection of Z to Z.

Now consider Ωo = Ker(Ωf, Ωf/ Z). The image of ψ is contained in Ωo since
locally any function on 5' is constant on the fibers of m. Now 0(1) = ίf/ί^
We first claim that det Ωo is trivial on the fibers of TΓ. Indeed, we have the
following exact sequences:

0 -* π*Ωz -> Ωf -> Ωf/Z ^ 0,

0 ^ Of/z( +1) ^ Tr*^"1 ^ 6(1) - 0,

0 - Oz/z( + l) -(Ωo)z - (Ωs)z - Of/z ^ 0.

Soin^Γ(Z), we have

[(O0)J = [**ΩZ] 4- [,•?"'].

Hence det Ωo is trivial on the fibers of π. Now the map from det φ*Ω5, to
det Ωo is an isomorphism outside Z, so

det(φ*Ωs,) = (detΩ0)(-A?Z).

But Θ(-nZ) is nontrivial on the fibers of π if n φ 0. So n — 0 and det φ*(Ω5.)
= det Ωo. Thus φ*(Ω5,) = Ωo.

The map ψz from Z to S' has connected fibers since the map from Z to S'
has connected fibers. On the other hand, the map from φ z(Ω50 to Ωz is
surjective, since ττ*Ωz is a quotient of Ωo and hence of φ*Ω5. Thus φ z is an
embedding. We identify Z with its image. There is an exact sequence on S"
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Now Ker((Ω0)f, φ*Ωz) surjects to ί f/ ί | , and hence φ * ( ί z / ί | ) maps surjec-
tively to ίz/5j\ τ h u s > Ψ*0z) = $z- L e t S' b e t h e b l o w UP of 5 at Z and let E
be the exceptional divisor. By the universal property of blowing up, S maps to
S' and Z maps onto E and is therefore generically finite. As before, the map
from the pullback of Ωf, is an isomorphism, and hence S = S'.

12. Let S be a smooth projective variety and suppose Dx, ,Dn are
smooth divisors which intersect transversally. Suppose Z C ΰ , Π D2 is a
smooth subvariety and Z Π Dk= 0 for k > 2. Further, suppose £ and F are
bundles on a smooth variety / and let Z = P(£). Let TΓ: Z -* / be the
projection and let 0(1) be the tautological bundle for π. Suppose ί z / ί | =
τr*(F)(+1) and there are line bundles L, C F so that ίD. ® Θz corresponds to

Blow up Z on S to obtain 5 with new exceptional divisor Z. Let Dt be the
proper transforms of £>,. Note that Z = P(£) X y P(F). We will assume there
is a map φ from 5 to another smooth variety so that φf factors through
P(F) = Z' and so that φ(ί>) is a divisor on S" if Z) φ Z. From §11, we see that
Zf c S' and that S is the blow up of S" at Z'. Let Ό[ be the images of Di in S".
First, notice that the Ό[ intersect transversally. Indeed, D[ Π Z' and D[ Π Z'
are the divisors on Z' = P(F) corresponding to the subbundles Lλ and L2 of
F.

Now let /: = dim /, let m = dim 5 and let Z) = Σ Z),-. Our main goal in this
section is

Proposition 12.1. // cz(Ωs(log Z))) = 0 for i> m - k - 1 and cz(Ω/) = 0
for i > 0, then c,(Ω5,(log D')) = Ofor i> m - k - 1.

The Chern classes may be taken in any convenient cohomology theory.
We begin with the following well-known consequence of Grothendieck's

Riemann-Roch Theorem. Let X be a smooth projective variety and let H be a
smooth divisor on X. Let £ be a bundle of rankr on H and let c(E) =
Π (1 + fl|) be the Chern polynomial of E on //, where the product is the usual

r

formal device. Let h be the divisor class of QH(H) on H and let / be the
inclusion of H into X.

Lemma 12.2.

Let η~χ be the operator on A(X) which multiplies a class of degree /

• ( / - l)!.Then
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From Grothendieck's Riemann-Roch formula for /, we know

Now in general

e' °= 1 + /*((l -eah)/h).

Hence

l-g '*\\\ . /ifo'(ch£ ( l -e-*) )—-— jj j=exp,^^ ^ ^

since ch £ = Σ ea .
Suppose F is a bundle on X and that we have an exact sequence

0 - F, - F w - Fo - 0

of bundles on # . Let F = Ker(F, Fo). Let r, be the rank of F, and r be the
rank of Fo.

Lemma 12.3. Suppose Cj(Fx) = 0 as a Chern class on H for i> rx — k,
where k is some positive integer. Then ct{F) = ct{F') on Xfor i> rx + r — k.

Proof. On H, we write formally c( Fo) = Πr (1 + a,). Then

c(F0) = c(Fι) ΐL(\+ai-h),

since there is an exact sequence

0 - Fo(-H) - F'H - F, - 0.

Now c(F) = c(F') c(/,,F0). Thus

We see the expression in the braces has no components in degrees greater than
r + rx-k.

Next we remark that if/is a rational function on Pk, and if the divisor of/is
Hλ — Ho where Hλ and Ho are hypeφlanes, then dlogf is a nowhere zero
section of Ω(log(//0 + 7/,)). Indeed, if {Aj } are homogeneous coordinates with
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Hi = {Xi, = 0} for / = 0,1, then if P &HXU H29 then / is a coordinate
function and so df φ 0 at P. On the other hand, if P E H]9 then the residue of
/around Hx is nonzero.

We will next construct a canonical section s of Ωz/7(log(Z)ί + Z)2)), where
D'i = Dj Π Z. Now consider z E Z and let w be the projection of z in /. Now
($Dj ® ̂ ! ) z = 7 Γ*(^i ® ̂ 2 l) Let (/„ /2) be a pair of functions defined in a
neighborhood of z with / vanishing simply on Dr We say (fv /2) is good if
/i ®/2~] a s a section of (ίD ® ί^])z i s Λe pullback of a section of L1 ® Lj1.
Note that if f[ and/2' are another good pair, then

where / is a unit and / restricted to Z is the pullback of a function on /. Thus
dlog(z,/z2) gives a section s of Ωf/y(log(2)ί + i^)) which is independent of
the good pair. The above remark shows that s projects to a nowhere zero
section of Ωf/Z(log(^j + Dj)). On the other hand, let s denote the projection
of s in Ωf/Z,(log(^[ + Di))' We claim s = 0. Indeed, Ωf/Z, is a negative
bundle on the fibers of TΓ': Z -» Z', so s vanishes on Z - (π'y\D[ H- 2^).
Hence »s vanishes. Now let F C Ωf(log(^j + 2)2)) be the subsheaf generated
locally by Ωy and c/log(z,/z2). Then we have an exact sequence

0 -> τr*Ω7 -* F -> Of -> 0.

Also, let L c Ωf/z(log(.Dί + Z)2)) be the subline bundle generated by s, so
L = Θz~.

Consider on Q the sheaf defined by

0 -> ττ*Ω5(logZ>) -̂  Ωf(log(/5 + Z)) -> β -» 0.

Lemma 12.4. β = Ωf/Z(log(^ί -h D^))/L.
Proof. Consider the following diagram:

0 0

0 •(ττ*Ω5)(log D) • Of(log D) • Ωf / Z(log D) • 0

i i I*
0 > τr*(Ωs(log D)) • Os~(log(D + Z)) > Q • 0

φ i

We will show that ψ(L) = 0 and the induced map ψ of Ωf/Z(log D)/L to Q is
the required isomorphism. We first claim that φ is onto. Let z E Z and let z be
projection of z in Z. Let (/,, /2) be a good pair defined in a neighborhood of z.
If z & Dx, then fx is a local equation for Z, so Jlog /, generates 0Z at these
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points. If z E Dx, then/j = tt' where / and t' are local equations for Dx and Z.
Thus rflog t is a section of Ω(log D\ so since d\o%f — dlog /, - ί/log ί, we
see that φ is onto. We further claim that any local section s of Ωf(log(2)))
which is also a section of π*(Ώs(log D)) maps to L C Ωf/z(logZ)). Indeed,
note that if φ(Λ,rf(log/,) - h2d(logf2)) = 0, then we must have Λ, = h2 on
Z. Since all the sections of π*$ts map to zero in Ωf/z(log/5), our claim
follows. Finally, note that ψ(L) = 0 since </log(/,//2) e π*(Ω5(log/>)). It
follows that ψ is an isomoφhism.

/V00/ of Proposition 12.1. First note that

o - $iήl -[QfOog £)] z - [Of(iog(Λ + z))] z -> e - o

is exact and that the image of λ is Ωf(Iog(i51 + D2)). Thus, i7is a subbundle of
Ωf(log(/5 4- Z))f. Further, F maps to zero in Q. Applying Lemma 12.3, and
using the fact that Cj(F) = 0 for; > 0, we see that

0 - * (c,(Ωs(logZ>))) = Ci{π*Qs(lσgD)) - c,(Ωf(log(/5 + Z)))

for / > m — k — 1, since rk F = /: + 1. Now F maps to zero in the quotient 0f
of Ωf(log(P -h Z)) since Jlog /y/2 does not have a pole on Z. Using a similar
argument, we have

φs( )) φs())
for / > m — k — 1. Now we also have an exact sequence

0 - τr'*(Ωs,(logZ)')) - ΩsOog^) - Ω f / Z,(log(£)) - 0.
Now F C [Ω5(log D)]z maps to zero in Ωf/Z,(log D) by the above remark that
s = 0. Now applying Lemma 12.3 again, we see that

0 = c,(05(logl5)) = c,(* (Os,(logZ>'))) = cfa

ίoτ i>m — k — \.

13. Continuing with the notation of §10, let Z' = P ί ^ ' 1 ) and let %> be
the normalization of %p. The map ψ from 54 to ^ factors Φp, since 54 is
normal. Let ψ be the induced map of S4 to Φ p .

Theorem 13.1. Z' w α subυariety of%P, and S4 is the blow up of%P at Z'.
Further, if D' C tffip is the divisor which maps to the singular locus of%P, then
Hλ + H2 + Dx + D2 is the inverse image ofD\

Corollary 13.2. // c^/ log ί i / , +H2 + DX+ D2))) = 0 /or 1 > 2g - 2,
^Ω^/log />')) = 0/or 1 > 2g - 2.

Theorem 13.1 follows from §11 and Corollary 13.2 from §12.
Proposition 13.3. ^(Ω^/logίP'))) = 0ifi>2g-2if c,(Ω5o) - 0 for i >



204 D. GIESEKER

Proof. We will show first that

c3(θS i / S o(log/)))=0.

We will work in the Chow ring modulo algebraic equivalence. First, notice that

EP] and EPi are algebraically equivalent by letting P move from Pλ to P 2

Hence, we may formally write

Let a — ai—a2 and let ξ be the divisor class of M, on S^ Thus D — 2£, since

Λ 2EP and Λ 2EP are algebraically equivalent. Let F — Efι <8> EP. Then we

have the following exact sequences on 5,:

0-Q S l / s -Ω S l / s ( logZ>H© i ) -0,

0 -* Θ(-D) -> θ -» 6 D -» 0.

Further, ^ 2 (ξ 2 - α 2 ) = 0 so

Thus

c(ΩSi/s(log D)) =

Thusc3(ΩSi/So(logD)) = 0.

We next note that ΩS 2 / S i(log(//| + H2)) = β. Indeed, we can find a cover

of S, so that there are rational functions z, on w2"'(t^) with a simple pole on

and a simple zero on //2 On w2"'(i^ Π ί̂  ),

where the ftJ are units on Ut Π ί̂  . Hence ίfe, give a well-defined and nowhere

zero section of QS2/sflog(Hι + H2))

Now ΩS2(log(2)(2) + Hλ + H2J) has a filtration whose successive quotients

are Ω S 2 / S | ( log(#. + H2)), π2*(SlSι/So(log D)) and v}vf(QSo). Hence

if i>2g- 2.
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Now letting E be the divisor Dλ + D2 + H} + H2 on S3, a local computation

shows that

ττ*Ω J l o g ( D™ + ^ + H2)) = ΩS3(log £ ) .

Applying Corollary 13.2 establishes Proposition 13.3.

Proof of Theorem 1.1. From Atyiah's classification of stable bundles on

elliptic curves, the moduli space Ux is just X if X is an elliptic curve. Thus,

Theorem 1.1 is true for g = 1.

Assume that the theorem is true for genus g — 1. There is a vector bundle
Ω<¥/c0°S D') s o t h a t for Λ e C, Λ ^ Λ (Ω^ / C(log D'))R is just the sheaf of

one forms on the moduli space of stable vector bundles of degree la + 1 on

%R. Now ^ is a deformation retract of %, so to show c /(Ω^ / c(log D')) — 0,

it suffices to show cf (Ω^(log D')) = 0. Once this is done for i>2g — 2,

Theorem 1.1 will be established for %R. But once Theorem 1.1 is established

for one smooth curve, it is established for any smooth curve.

Thus Theorem 1.1 will follow from

Lemma 13.4. Let X be a projectiυe scheme over C with normal crossings and

let E be the bundle X. Suppose the Xj are the normalizations of the irreducible

components of X. Then if Ej is the pullback of E to Xj9 and ct{Ej) — 0 for all j ,

then ct(E) = 0.

Proof. Let 2/ = n. Recall that there is functorial mixed Hodge structure on

Hn(X, C). Thus, there is a weight filtration

and a Hodge filtration

0 CF" QFn~x C ••• QF° = Hn(XX).

Now the natural map of Hn{X, Q) to H"(X, Q) induces an injective map from

Wn/Wn_λ to Hn(X,Q). Thus Cj(E)E Wn_x, since ct(E) goes to zero in

H"(X,Q).

On the other hand, we claim ct(E) E F*. Indeed, let L be a very ample line

bundle on X. Then we can find a map of ^ to a grassmannian G so that

E ® Ln is the pullback of the universal bundle for some n. We can find a map

of X into P * so that Ln is the pullback of 0(1). Now let & be the universal

bundle on G, and consider S ( - l ) on G X P* . Then we can map J ί t o G X P ^

so that E is the pullback of δ ( - l ) . Since ς ( S ( - l ) ) is in the /th level of the

Hodge filtration and since the map of Hn(G XPn,Q) to Hn(X,Q) is a

morphism of Hodge structures, ct(E) G Fι.

Let Fn

k_] be the induced Hodge filtration on Wn_λ/Wn_Ί. Then Fn

k_x is a

pure Hodge structure of weight n - 1. In particular, •Fjι_λ n F n ' _ , = 0. Thus

E Wn_.2. Continuing this line of reasoning, we see that ct(E) = 0.
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