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THE GAUSS MAP OF SURFACES IN R”

DAVID A. HOFFMAN & ROBERT OSSERMAN

1. Introduction

Let S be an oriented 2-dimensional surface immersed in a euclidean n-space
R”. We denote by
(1.1) g8:5-G,,
the generalized Gauss map, where G,, is the Grassmannian of oriented
2-planes in R”, and for each point p of S, g( p) is the tangent plane to S at p.
Our object in this paper is to study properties of the map g, particularly those
related to the geometry of S in R” and the conformal structure of S.

The main problems we consider are:

1. Let S, be a Riemann surface, and

(1.2) X:S,~>SCR"
a conformal immersion realizing S. What properties does the map
(1.3) G=g°X:8 -Gy,

possesses by virtue of being defined via (1.1) as the Gauss map of a surface in
R™?
2. Given a map

(1.4) G: S~ G,

defined on a Riemann surface S, when does there exist a conformal immer-
sion X of S, onto a surface S in R” such that G is of the form (1.3), where g is

the Gauss map of S?
3. To what extent is a surface S given by (1.2) determined by its Gauss map

g?
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To set the background for our results we review some known facts about
special classes of Gauss maps.

(a) A surface X: S, —» R" is a minimal surface if and only if G is anti-
holomorphic. The map X is not determined by G. In fact, the same map G:
Sy = G,, arises as the Gauss map of infinitely many different minimal
surfaces (see Chern and Osserman [4, §1]).

(b) The Gauss map g of a surface in R” is holomorphic if and only if the
surface lies on a euclidean 2-sphere in some 3-dimensional subspace of R”
(Hoffman and Osserman [9, Theorem 1.1]).

(c) The Gauss map of a surface in R” is harmonic if and only if the surface
has parallel mean curvature vector field (Ruh and Vilms [17]). By a result of
Kenmotsu [14], if S, is a simply-connected Riemann surface, and G: S; - G,
= $? is a harmonic mapping which is nowhere anti-holomorphic, then G is
given by (1.3) for some conformal immersion X: S, > S C R® where S has
constant nonzero mean curvature; the surface S is uniquely determined up to
homothety and translation.

(d) The work of Kenmotsu referred to above was motivated by the
Weierstrass-Enneper representation theorem for minimal surfaces (see [15, §8]).
Kenmotsu considers the following problem: Given a Riemann surface §,, a
real-valued function H, and a map G: S, > S> = G, 3, when does there exist a
conformal immersion X: S, - R® with mean curvature H such that G can be
written in the form (1.3)? He derives a single second-order equation involving
G and H, which is necessarily satisfied by the Gauss map and mean curvature
of a conformally immersed surface in R®. For nowhere anti-conformal maps G
this condition turns out to be sufficient to guarantee the existence of a
conformal immersion X: S, — R® with the prescribed G and H, provided S, is
simply-connected. (The simple connectivity is required as in the Weierstrass-
Enneper formula because the map X is produced by an integral formula
involving G and H, where the integrals are taken over paths, and there may be
periods over curves not homologous to zero.) The map X is unique up to
homothety and translation.

From the preceding facts it is evident that the situation for minimal surfaces
is quite different from the general case. In fact we shall see that in many ways
minimal surfaces are completely atypical.

Among the results we obtain are the following.

(A) Suppose G: S, - G, , arises in the form (1.3) from the Gauss map g of a
surface in R". Let E be the set of points in S, where dG is complex-linear, and
let E’ = S\ E. On E, G satisfies a system of first-order differential equations
(the Cauchy-Riemann equations), while on E’ a more complicated pair of
integrability conditions must be satisfied:
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(i) From the fact that the mean curvature vector is nonzero on E’ comes a
requirement that a certain complex n-vector field V, constructed from G, be a
real n-vector field times a complex function, say f.

(ii) The argument of f, say a, must satisfy an equation of the form

(1.5) Aa = B,

where B is a first-order differential expression derived from G. Since « can be
explicitly written in terms of the first derivatives of G, (1.5) is a third-order
differential equation satisfied by G (Theorem 2.3).

(B) Existence. Let G be a smooth map of S, into G, ,. We may then define
the subsets E and E’ of S, as in (A) above, since the definition depends only
on the map G. If D is a simply-connected subdomain of S lying in E, then G is
holomorphic on D, and we may define a minimal surface S in R" by a map X:
D - R" such that G = g o X. If D C E’, then there exists a surface defined by
a conformal immersion X: D — R" such that G = g o X, provided that both the
necessary conditions (i) and (ii) described in (A) above are satisfied in D
(Theorem 2.6).

Thus the conditions (i) and (ii) above may be considered as the necessary
and sufficient conditions in the generic case for a given map G to arise as a
Gauss map in the manner described. If the domain D contains points of both
E and E’, then it is more difficult to give explicit conditions to guarantee the
existence of a regular surface with Gauss map G. We can formulate sufficient
conditions in that case, but they are not of the same directly verifiable nature
as those given in (A).

(C) Uniqueness. Suppose X: S, » R" is a conformally immersed surface
with Gauss map G, and suppose the mean curvature vector of X does not
vanish identically. Then X is determined uniquely by G, up to translation and
homothety (Theorem 2.5).

Corollary. Let S, and S, be two surfaces in R", such that at least one of them
has a point where the mean curvature vector is not zero. Let f: S| — S, be a
conformal map. If S| and S, have the same tangent planes at each pair of points p
and f( p), then f is the restriction of a translation and homothety of R". If at some
point p of S, either df, is an isometry, or the mean curvature of S at p and that
of S, at f( p) are equal and nonzero, then f is a translation.

Remarks. 1. This corollary generalizes a result of Abe and Erbacher [1,
Theorem on p. 197, part (D)]. They prove that in the case n = 3, if fis a global
isometry and the mean curvature does not vanish, then fis a translation.

2. The assumption that the mean curvature be not identically zero is
necessary; not only is the conclusion false for minimal surfaces in R”, but in R®
essentially the exact reverse is true. (See the discussion following the proof of
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Theorem 2.5 below.) Also the well-known example of the catenoid and helicoid
(see, for example, [6, p. 213]) shows that there can exist an isometric map
between minimal surfaces, preserving the tangent planes, which is not a
congruence.

(D) A surface in R” with nonvanishing mean curvature may be represented
by its Gauss map (Theorem 2.7). This is essentially a generalization of the
Kenmotsu representation in R* which was mentioned above. In fact specializ-
ing our results to n = 3, we can produce new proofs of the theorems of
Kenmotsu (see [11]). We mention here that our point of view is somewhat
different from his in that we ask what can be determined from the Gauss map
alone, whereas he prescribes both the Gauss map and the mean curvature
function H. However, as we have seen, the Gauss map determines the whole
surface up to similarilty whenever H = 0, and it therefore determines the
function H up to a constant factor.

(E) It is in the case n = 4 that our results provide the most new information.
In that case the Grassmannian G,, is isometrically and biholomorphically
equivalent to the product S, X S, of two 2-spheres, and the map G: S, — G, ,
may be represented by a pair of maps g,, g, of S, into the factors S,, S,. The
two necessary conditions of (A) take a particularly simple form ((3.7) and (3.8)
below) and may be directly applied to a number of geometric problems:

(i) Chern [3] proved that S is minimal if and only if both g, and g, are
anti-holomorphic. It follows from (3.7) that for an arbitrary surface in R* it is
impossible to have one of the g, anti-holomorphic and the other not; i.e., if
either g, or g, is anti-holomorphic, then they both are, and the corresponding
surface is minimal.

(ii) The map G = (g,, g,) is harmonic if and only if each g; is harmonic as a
map into S2. Hence by the theorem of Ruh-Vilms mentioned above, a surface
S has parallel mean curvature if and only if g, and g, are harmonic. Moreover,
either g, and g, are both everywhere anti-conformal (corresponding to S
minimal) or else each g; is nowhere anti-conformal. Conversely, given two
harmonic maps g,, g, from S, into S? which are either everywhere or nowhere
anti-conformal, the necessary and sufficient conditions for G = (g,, g,) tobe a
Gauss map reduce to one equation, (3.7). This equation is not always satisfied
by a pair of harmonic maps and therefore the situation is radically different
from that in R® where, by Kenotsu’s theorem (see (C) above), every nowhere
anti-conformal harmonic map is realizable as the Gauss map of a surface.

(iii) The condition (3.7) on the z-spherical derivatives of g, and g, mentioned
above is a key ingredient in proving the following theorem (Hoffman, Osser-
man and Schoen [12]): Let S be a complete oriented surface in R* with parallel
nonzero mean curvature vector field. Then neither g, nor g, can take values in an
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open hemisphere. If either g,(S) or g,(s) lies in a closed hemisphere, then S must
be either a right circular cylinder in some R* C R*, or else a product of circles.

The following related results will be discussed in a subsequent paper [11].

(a) If we assume that G = (g, g,) is both harmonic and conformal and that
neither g, nor g, is anti-holomorphic, then the existence theorem produces a
minimal surface in some S* C R*. Thus we obtain a representation theorem for
minimal surfaces in S analogous to the classical Weierstrass-Enneper integral
representation theorem for minimal surfaces in R>. Walter Seaman [19, §1.4]
has shown further that to each harmonic map g, corresponds a unique
harmonic g, such that the pair (g, g,) is the Gauss map of a minimal surface
in §°, provided that g, is nowhere anti-conformal.

(b) Certain subsets of the Grassmannian can never occur as the image under
the Gauss map of any surface in R*. An example is any set of the form p X C
where p is a point of S, and C is a curve in S, (or, more generally, C is a subset
of S, which is neither a point nor an open set).

For related results, see Weiner [21, §5].

(c) New proofs of classical theorems of Blaschke [2] and Chern and Spanier
[5] (see also Weiner [21]), concerning the area of the image of the projections
g,> 8, of the Gauss map, are given. Namely, if J, and J, are the Jacobians of g,
and g, respectively, then

K=J +J, KN =UJ, -1,
where K and KV are the Gauss and normal curvatures, respectively, of the
surface in R*. From these formulas it follows that for a compact surface S in
R4
fSKdA = 2a(d, + d,), fSKNdA =2n(d, — d,), d,=deg(g,).

Using the Gauss-Bonnet formula, it follows that
1
x(S) = E/;KdA =d, +d,.

Furthermore, x(S) = 2d, = 2d, if and only if [(K¥dA4 = 0. This last equa-
tion is implied by a variety of geometrically interesting conditions among
which are: S is embedded; S lies on a three-sphere in R?.

We note as one final consequence of our investigation, the emergence of a
certain third-order operator defined on complex functions of a complex
variable, whose properties seem to be of considerable interest. The operator,
denoted here by T( f), is defined at points where f; # 0 by the formula

_ 8 [fe 211,
- -
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The vanishing of the imaginary part of 7( f) is essentially equivalent to f being
the stereographic projection of the Gauss map of a conformally immersed
surface in R®, [11], while the vanishing of the real part is the precise condition
for the validity of a certain formula proved earlier for the special case of
harmonic maps by Schoen and Yau [18]. For other results on the operator
T(f), see Theorem 3.1 and [11].

2. Surfacesin R"
We take as model for the Grassmannian of oriented two-planes in R” the
quadric Q,,_, in CP"~! defined by the equation

(2.1) > z2=0.

For any point P = (z,,---,z,) on Q,_,, if z, = a, + ib,, we obtain a pair of
real vectors 4 = (a,,---,a,) and B = (b,,- - -, b,) which satisfy

(2.2) |4|=|B], A4-B=0,

these equations being equivalent to (2.1). Furthermore, 4 and B cannot be zero
since homogeneous coordinates (z,,- - ,z,) of a point in CP"~! are not all
zero. Hence the pair 4, B form an orthogonal basis of an oriented two-plane
II. Different homogeneous coordinates for P determine the same plane.
Conversely, for any two-plane I1 we may choose an orthogonal basis 4, B of 11
and set z, = a, + ib,, obtaining a point P of Q,_,. (For more details on this,
see Hoffman and Osserman [9].)

We shall use the notation P = [z] to denote the point in CP"~' correspond-
ing to the point z = (z,,- - -,z,) in C"\{0}.

By a surface S in R", we shall mean a pair (S,, X), where S, is a Riemann
surface and X: S, — R” is a locally conformal map. Thus all our surfaces are
oriented. Of course, that is no restriction for local results or for simply-
connected surfaces, and using the standard two-sheeted covering of a non-
orientable surface one can generally translate global results from oriented
surfaces to nonorientable ones. ,

Note also that our surfaces are all immersed, and therefore have a well-
defined tangent plane at each point. If z = £ + in is a local parameter on the
Riemann surface S, and (x,,---,x,) are coordinates in R”, then the map
defining S is given locally in the form

(2.3) X(z), X=(x,---,x,)-
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The conformality of the map is expressed by
ax|_|ax ax ax _
0§ an a¢ 9y
The tangent plane to S, spanned by dX /3¢, 3.X/dn, corresponds as above to
the point

(2.4) #0, 0.

(2.5)

of the quadric Q,_,.
The Gauss map G of S is the map of S, into Q,_, defined locally by (2.5).
Using the complex derivatives

o _1 a_f_'_al) ﬂ_l(ﬂ ﬂ)
(2.6) az_z(ag an ) sz 2\ Tian)
we may write the Gauss map in the form
_[ox
(2.7) G(z) -[ o4 ]
For historical reasons we work with the complex conjugate of this map
s_[3x] _[ax _ ox
(2.8) G_[az]_[ag ’an]’
whose image also lies in Q,_,. From (2.4) we have
2 2 2
2 22gel? with a2 =|3X| =[3X| _ ,|3X
(2.9) ds?> = N*|dz|” with X I T an| =23 |
where
AXP & |ax P 1 ax, ox, |
(210) 9z - kgl 9z - 4 2 ag IW .
We also have the relationship
4 Ay =
(2.11) 2 X,;=AX=2H,

where H is the mean curvature vector field of X, and A is the Laplace-Beltrami
operator on S (see, for example, [15, §4]).

We may now formulate our basic question as follows. Given a Riemann
surface Sy, how can one characterize among all maps of S, into Q,_, those which
arise in the manner described as Gauss maps of surfaces S in R"?

To answer the question, we will start by deriving necessary conditions on
such a map, and then describe the extent to which they are also sufficient. We
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will also discuss uniqueness; that is, the degree to which s is determined by its
Gauss map.

Locally, we may view the problem as simply one of existence and uniqueness
of integrating factors. That is to say, given a map of S, into Q,_,, we may
represent it locally in the form [®], where ®(z) = (¢,,---,9,) € C"\{0}
satisfies

(2.12) élqoi(z) =0.

We then look for X(z) = (x;,---,x,), such that (2.8) is satisfied. But that
means

X
(2.13) P yod
for some function : S, —» C. We note that the surface is regular wherever v
does not vanish. From (2.11) and (2.13) we have
)\2

‘2‘H =X,; = (y@); = ¢ 0; + YD,

Using (2.9) we have +A* =|9X/3z > =|¢ | ® |, whence

(2.14) |@"VH = @: + (1og ¥): @,
wherever y # 0.

Our first results follow from (2.14) by the application of two elementary
lemmas.

Lemma 2.1. Let D be a simply-connected domain in C, and let ®: D — C" be
a C'-mapping. Necessary and sufficient that there exist a mapping X: D —» R"
such that X, = ® is that ® satisfy Im®; = 0.

Remark. Lemma 2.1 holds also with the roles of z and z reversed.

Lemma 2.2. Let W be a vector in C" of the form W = A + iB, where A and
B are nonzero real vectors satisfying (2.2). Let 11 be the plane spanned by A and
B. For any vector C in R, let C™! be the projection of C on I1. For any pair of
vectors C, D inR", let Z = C + iD € C", and define Z" = C" + iD™. Then

ZN=(Z, WY)W/ WP+ (Z,W YW/ W],

where { , ) denotes the usual Hermitian product on C".
We apply Lemma 2.2 with W = ® so that II is the tangent plane to our
surface, and with Z = ®;. We may write (2.12) as ® - & = 0, and hence

0=(® - ®); =20 -0,=2(0, ).
Thus by Lemma 2.2,
(2.15) (@) = o,
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where we denote

(2.16) =0, /D
Further, we denote by ¥ the component of ®; orthogonal to II, so that
(2.17) V==0.— ()" =, — 0.

Since the mean curvature vector H is orthogonal to the tangent plane II, we
obtain two equations by taking the tangent and normal components of (2.14):

(2.18) @ yH =V,
(2.19) (log ¢); = -.
We are now in a position to formulate our first result.
Theorem 2.3. Let S be a surface in R" given locally by a conformal map X:

D - R". Let ® be the Gauss map of S in the sense of (2.7) and (2.13). Form the
quantities 1 and V from ® by (2.16) and (2.17) Then for every z € D, we have

(2.20) V(z) = e®R(2),

where R(z) is a real vector; furthermore, on the set where V(z) # 0, the function
a(z) is uniquely defined modulo m, and satisfies

(221) ;= Im{nz}
Proof. Set p =|{ /|, and write
(2.22) ¥ = pe’?,

where « is uniquely defined modulo 27 when p 5 0. Then (2.18) becomes
V = p|® Pe'*H, which proves (2.20). When V # 0, we must have p # 0, and
substituting (2.22) in (2.19) yields

(2:23) (log p): — ia; = -,
so that
(224) (IOg p)zf = iazz- — M-

Equation (2.21) follows from the fact that (log p),; and «,; are both real. This
proves Theorem 2.3.

There are several remarks to be made concerning the statement of Theorem
2.3.

First, the vanishing of the vector V at a point is equivalent, on the one hand
by (2.18), to the vanishing of the mean curvature vector H, and on the other
hand by (2.17), to the condition that (¢,/¢,); = 0,j = 1,- - -,n, for any k such
that ¢, # 0. This latter condition means that the differential of the map ® is
complex linear at the point. One consequence is the result of Chern [3] that ®
is a holomorphic map if and only if S is minimal. For our purposes, however,
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the equivalence of the three pointwise conditions will be more important. Note
that we may view the vanishing of V as a special case, and consider that
generically V' # 0 and (2.21) must be satisfied.

Second, when V # 0, condition (2.20) is equivalent to

(2.20") Im{v(z)v,(z) } =0, j=1,--,n,j#*k,

for any fixed k with v,(z) # 0, where V' = (v,,- - -,v,). The n — 1 equations of
(2.20’) are not independent, since we know that V- & = V- ® = 0, and hence
V lies in a space spanned by n — 2 independent real vectors. But (2.20) (or
(2.20") requires V' to be a multiple of a single real vector, and hence involves
n — 3 independent conditions. In fact, (2.20) is no constraint in R® (see [11]),
and it reduces to a single equation in R* (equation (3.7)).

A map into G,, consists locally of 2(n —2) functions of a complex
parameter z, while a conformal immersion consists of n real-valued functions
of z which satisfy the two equations in (2.4). As pointed out to us by M.
Gromov, one would therefore expect 2(n — 2) — (n — 2) = n — 2 independent
conditions on a map into G, , in order for it to be a Gauss map. Combining
(2.20) and (2.21) gives precisely n — 2 conditions.

We next note the important fact that the conditions (2.20) and (2.21) are
purely statements about the Gauss map G; that is, they are expressed via (2.16)
and (2.17) in terms of the components of a representation ® of G in homoge-
neous coordinates, but they are independent of the particular representation.
Specifically, one has the following lemma.

Lemma 24. Given a map ®: D - C"\{0}, set & = f® where f is a smooth
nonvanishing complex function. Use (2.16) and (2 17) to defme the quantitiesm, V
in terms of ®, and the corresponding qualities 7, V in terms of ®. Then

(2.25) V=fv,
and on the set where V and V are nonzero, the functions a, & defined by (2.20)
satisfy

(2.26) a,; — Im{i,} = a,; — Im{n.}.

Proof. 1f we set f = re', it follows directly from the definition that
(2.27) fi=n+f/f=n+ (logf);=n+ (logr); +ib;,
while on the set where V' # 0,
(2.28)

[~}
1
R
+
5o

The result follows easily.
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We may note that Lemma 2.4 can be used to give an alternative proof of
Theorem 2.3. Namely, by (2.13) we can let ¢ play the role of fin Lemma 2.4,
and set
(2.29) 3X/9z = ®.

Then by (2.11),

. A2
(2.30) . = 7H .
Since H is a real normal vector, it follows that
(2.31) =0,

o A2
(232) V= 71‘1

Thus @ = 0, so that (2.20) and (2.21) follow trivially for & from (2.31) and
(2.32). But by (2.25) and (2.26) they must also hold for ®.

We next explore the extent to which a conformally immersed surface is
determined by its Gauss map. For minimal surfaces, the answer is well known
(see, for example, Chern and Osserman [4]). Any oriented minimal surface S in
R" may be represented by a conformal map X: S, - R", where X =
Re{(fa}, -+, [a,)}, and a;,- - -,a, are holomorphic differentials on the Rie-
mann surface S;. The Gauss map is determined by ®: S, » Q,_,, where
locally @ = (¢, - -,9,), With a, = @, dz. If Y(z) is a nonvanishing holomor-
phic function on S, then setting b= Y(@,,- - -,¢p,) defines the same Gauss
map and corresponds to the surface X = Re([@&,,- -, [@&,), with a, = ya,.
Thus the set of all minimal surfaces with the same Gauss map as S is in
one-to-one correspondence with the set of nonvanishing holomorphic functions
Y on S;.

It turns out that minimal surfaces are totally idiosyncratic in this respect.
Every other surface is essentially uniquely determined by its Gauss map.

Theorem 2.5. Let a surface S be defined by a conformal immersion X:
So = R" of a Riemann surface S,. If the mean curvature of S is different from
zero at some point, then S is determined up to a similarity transformation of R" by
its Gauss map G; specifically, if Y: Sy = R" is another conformal immersion
inducing the same Gauss map G: Sy, - Q,_,, then there exist a real constant ¢
and a constant vector X, such that X = cY + X,,.

Proof. Given the maps X, Y: §; —» R", set Y, = ®, in terms of a local
conformal parameter z on S,. Setting

a, =@, dz= 9)la'z,

az
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we see that the «, are globally defined differentials of type (1,0) on S,.
Similarly, we may define
By = @pdz = %x—dz

The fact that X and Y induce the same Gauss map is equivalent to the
existence of a nonvanishing complex function ¥ on S, such that 8, = y«a,,
k = 1,---,n. In terms of any local coordinate z, this means dx,/dz = ¢, or
X, = ¢y®. We may define  and V in terms of ® by (2.16) and (2.17). From
(2 19) we have (logy); = —n. But since Y satisfies the equation Y, = \I/(I)
¥ = 1, we also have —y = (log §); = 0. It follows that log ¢ is a holomorphic
function of z, and hence ¢ is a global holomorphic function on S,. Since
X, = yY,, we see that two surfaces with the same Gauss map are always
related by a holomorphic function, just as in the special case of minimal
surfaces, described above. We next note that by (2.18), applied to the two
surfaces, we have

@' VH = v =|o['JA.

Suppose now we have a point z, where H # 0. It then follows that V' 5 0 and
H # 0 at the point, and of course, the same is true in some neighborhood U of
z,. But since Y = 1, Vis a nonzero real vector at each point of U, and hence ¥
is real on U. But a holomorphic function which is real on an open set must be
constant. Hence y = ¢, a real constant, and in each parameter neighborhood,
X, = cY,. It follows that X — cY is a constant vector, which proves the
theorem.

Corollary 1. Let S and S be two surfaces immersed in R", not both minimal.
Suppose there is a conformal map f: S — S which preserves tangent planes:

T,8 = T;,,S forallp €S.

Then f is the restriction to S of a similarity transformation of R".

Corollary 2. Under the hypotheses of Corollary 1, if for some point p € S,
either df, is an isometry, or else the mean curvature of S at p and that of S at
f(p) are equal and nonzero, then f must be a translation; in particular S and S
are congruent.

We note that Corollary 1 is basically a statement of Theorem 2.5. Corollary
2 follows immediately, since each of the further assumptions implies that the
constant ¢ in the theorem must equal 1.

As noted in the introduction, a weaker form of Corollary 2 for surfaces in R?
was proved by Abe and Erbacher [1], who also obtained an analogous result
for hypersurfaces in R” (see also Weiner [20], [21] for other uniqueness results).
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Concerning Corollary 1, we note that not only is the result not true for
minimal surfaces, as remarked earlier, but in a sense the exact opposite is true
for minimal surfaces in R>. Essentially any two minimal surfaces in R’ are
related by a conformal map preserving tangent planes. In fact, let S, S be any
two minimal surfaces immersed in R®, and let p € S, p € S be any pair of
points where the Gauss curvature is different from zero. (Recall that the Gauss
curvature can vanish at most at isolated points on a minimal surface.) Make a
preliminary rotation so that tAhe tangent planes 7, S and Tﬁﬁ coincide. Then the
Gauss maps G: S — 2 and G: S — Z are conformal maps in neighborhoods of
p and p, where = is the unit sphere. It follows that the map f= G™' o G is a
conformal map of some neighborhood of p on S onto a neighborhood of p on
S, and by its definition the map f preserves tangent planes at every point.

We now turn to the question of the extent to which the two necessary
conditions (2.20), (2.21) for a map ® to be a Gauss map are also sufficient. We
note that (2.20) must hold everywhere and is trivial when V' = 0, while (2.21) is
only meaningful on the set where V' # 0, so that « is well defined.

Theorem 2.6. Let S, be a simply-connected Riemann surface, and let G:
So = Q,—, be a map into the complex quadric. Represent G locally by a map ®
into C"\{0} in the sense that

(2.33) G =[®].

Define n and V in terms of ® by (2.16) and (2.17).

Casel. IfV=0onS,, then G is the Gauss map of a minimal surface in R"
provided S, is not compact.

Case 2. If V never vanishes on S, then a sufficient condition for G to be the
Gauss map of a surface S given by a conformal map X: S, — R" is that the
necessary conditions (2.20), (2.21) of Theorem 2.3 be satisfied, where R(z) is a
nonzero real vector for each z.

Remark. By Lemma 2.4, the conditions (2.20), (2.21), as well as the
condition ¥ = 0 of Case 1, even through expressed in terms of ®, depend only
on G (i.e., the projective class of ®).

Proof. In both cases we have to solve both a local problem and a global
problem. The local problem may be stated as follows: let D be a domain on S
parametrized by the disk | z|< 1, such that on D the map G may be represented
asin (2.33) by

(D(Z) = ((p](z),~ ’ ',(pn(Z)).

We want a map X: D — R” and a function §: D — C\{0}, satisfying (2.13).
We have seen that the function ¢ must satisfy (2.19). Note that this last
equation always has a nonvanishing solution. We may first solve for ¥ the
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equation ¥; = —q in the disk |z|<1 (see, for example, [13, Theorem 1.2.2]),
and then set ¢ = e¥. We now treat the two cases separately.

Case 1. The condition ¥ =0 means (by (2.17)) that ®; =7®. Using a
solution ¢ of (2.19), we obtain

(¥2): = ¢ @; + ;@ = Y(P; + (log ¥);: @) = ¢(®; — 7®) =0.
Thus all the components {¢, of the map & = y® are holomorphic in D, and
Case 1 corresponds precisely to the condition that the map G: S, - Q,_, be

anti-holomorphic. Hence it is locally the Gauss map of a minimal surface S
defined by

X=Ref‘i>dz=Refxp<I>dz.

To solve the global problem in Case 1, we note that not all the functions ¢,
can vanish identically; say ¢, Z 0. Then ¢, = Y@, is holomorphic and has well
defined zeros of well-defined orders (independent of the particular representa-
tion ® of G). Assuming S, is not compact, it is conformally either the disk or
the plane. We may then find a globally defined holomorphic function f on S,
whose zeros coincide, in position and order, with those of ¢,; that is, whenever
G is represented locally by ®, f/@, is smooth and nonzero. Furthermore, the
functions ¢, /¢, are globally defined meromorphic functions on S,. It follows
that the map G may be globally represented on S, by

= (Pz <pn

e (f’ f‘Pl ’ ,fq)l )
The surface X = Re [ ® dz, where S, corresponds to |z|< R < oo, solves the
global problem in Case 1.

Case 2. We start again with the local problem. Writing the integration
factor as ¢ = pe’?, (2.19) takes the form

(2.34) -n=(logy); = (logp); + i6;.

By Lemma 2.1 we can solve (2.13) for X in the simply-connected domain D
provided
(2.35) Im{y®}, =0.
But using (2.19), (2.17), and (2.20), we find

Im{y®}; = Im{y®; + Y2} = Im{y(®; — 7®)}

= Im{pe”V} = pIm{e'®* )R,

where R is a real vector. Thus (2.35) is equivalent to
(2.36) 6+a=0 (modw).
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We may therefore write (2.34) as
(2.37) (logp); = < — i6; = — + ia;.

Note that the right-hand side is determined by ® on the set where V # 0.
Again by Lemma 2.1 we can solve (2.37) for p in D provided

0 =Im{(-n + ia;),} = -Im{n,} + a,;,

which is precisely (2.21). Thus the condition V' # 0 allows one to define the
function a by (2.20) which determines @ by (2.36) and p via (2.37) in such a
fashion that the function ¢ = pe'? satisfies (2.34) and the integrability condi-
tion (2.35). Hence the local problem has a solution.

To obtain the global solution in Case 2, we note first that the condition
V # 0 means (by (2.18)) that the surface obtained locally via the argument
above has nonvanishing mean curvature. It then follows from Theorem 2.5 that
the surface so obtained is unique up to similarity transformation. Thus if we
fix any point p, of S, and define a surface S in a neigborhood of p, with the
prescribed Gauss map, then S can be uniquely continued along every path
starting at p, by piecing together local solutions. Finally, since S, is simply
connected, the monodromy theorem guarantees that the resulting surface is
independent of path and is globally well defined over S,. This proves the
theorem.

An obvious question which remains is what can be said concerning ex-
istence, if the vector V constructed from the map ® vanishes somewhere, but
not identically? To answer, we note first that on any connected component of
the set S’ where V' # 0, we have by unique continuation a well-defined surface
if and only if there are no “periods” which arise from multiple connectivity.
Next, this surface must extend smoothly to points where V=0 on the
boundary of S’. Finally, if the complement of S’ has a nonempty interior, one
must be able to choose an integrating factor ¢ in a way that involves finding a
holomorphic function whose boundary values are prescribed in terms of the
given surface on the closure of S’. The desired surface S exists if and only if all
these conditions can be met, but clearly they are not of a directly verifiable
nature as in the two cases of Theorem 2.6.

As a final outcome of our approach, we give a representation theorem for
surfaces in R” whose mean curvature vector is nonzero. This representation
may be viewed as complementing the one we have given earlier [9, Theorem
3.1] for minimal surfaces in R". In a sense, it may also be considered as a
generalization of the representation theorem of Kenmotsu [13] for surfaces in
R, the main difference being that Kenmotsu uses both the Gauss map and the
mean curvature function, whereas, as a consequence of our uniqueness theorem
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above, we may consider the representation to be described totally by the Gauss
map.

Theorem 2.7. Let S be a simply-connected surface in R"* whose mean curva-
ture vector is never zero, and let the Gauss map of S not Q, _, be represented
locally by a map ®(z) into C"\{0} in terms of a conformal parameter z; that is,

(2.38) [®(2)] =[%—f]
If we write (2.38) in the form
(2.39) 2 =y()0(2).

where { is a nonvanishing complex function, then { is determined up to a real
multiplicative constant by ®, and the map X(z) is determined up to homothety
and translation by (2.39); that is, the gradient of each coordinate function x, is
given by (2.39), and hence x, is determined up to an additive constant. We may
write

(2.40) %= [Re(2¢,dz), k=1,

where the integrals are taken from a fixed point to a variable point and are
independent of path. Furthermore, if we start with an arbitrary map of a
simply-connected Riemann surface S, into the Grassmannian, represented by a
map ® into C"\ {0}, and ® satisfies the necessary conditions of Theorem 2.3 for a
Gauss map with V 5 0, then there is a nonvanishing complex function  uniquely
determined by ® up to a multiplicative constant such that the differentials
Re{yo, dz}, k = 1,- - -, n, are all exact, and equations (2.40) define a conformal
immersion of S, into R" as a surface S whose Gauss map is given by ®.

Proof. The principal observation is that given any @ satisfying the condi-
tions (2.20), (2.21) of a Gauss map with ¥V # 0, then there is an essentially
unique function ¢ making the differentials on the right of (2.40) exact, and,
furthermore, Y may be explicitly determined from ®. Namely, from ® we
construct y and ¥ by (2.16) and (2.17). Then v is of the form pe~'®, where a is
the argument of any nonzero component of V, by virtue of (2.20), and log p is
determined up to an additive constant by the fact that its gradient is explicity
given in terms of a and 7 by (2.37). Then the proof of Theorem 2.6 shows that
there is a real vector function X satisfying (2.39), or equivalently (2.40).

There are several remarks to be made concerning the representation (2.40).

First, if the ¢, are holomorphic functions, so that [®] represents a holomor-
phic map into Q,_,, and if { is an arbitrary holomorphic function, then (2.40)
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represents a minimal surface in R”. In that case, we may write it in the more
familiar form

(2.41) x, = Re f 2y, dz,

since the integrals in question are independent of path. In the general case, the
integrals in (2.41) are not path independent, but their real parts are, which
allows for the representation (2.40).

Second, since the surface S in the above theorem is essentially determined by
its Gauss map, one should be able to determine associated geometric quanti-
ties, such as the mean curvature vector H. In fact, H is easily given, since by
(2.18) we have

(2.42) H=V/y|®F,

where ¢ and V are determined by ®. Viewing the same equation in the other
direction, if H is assumed known, or given in advance, then the integrating
factor ¢ can be described explicitly from H and ® (without integrations) by

(2.43) ¥ =v,/h,|OF,

where A, is any nonzero component of H, and v, the corresponding compo-
nent of V. For surfaces in R* we may write H = hN where N is the unit
normal, and 4 the scalar mean curvature function. Then one may write ¢
explicitly from (2.43) in terms of 4 and the Gauss map. That is the approach of
Kenmotsu [13].

3. Surfaces in R*
We begin with some basic facts concerning Q, C CP*. The map ¢ from
C X C given by

(1) @ (w,w) > (1+ wwy, i(1 — wiwy), w, — wy, —i(w; + wy))
has the property that > = 3¢_, ¢2 = 0. Hence [¢] takes values in Q, = {[Z]
€ CP?|Z% = 0}. On ¢(C X C), ¢”' is given by

zytizy —z3+ iz,

(3.2) (21’22,23,24)"’(”’1,”’2): 2, — iz, 2, — iz,
It can be shown that [¢] is a biholomorphic map from C X C into Q, which,
when we consider (w,, w,) € C X C as homogeneous coordinates on CP! X
CP', extends to a biholomorphic map of CP' X CP' onto Q,. If we consider
CP? with the Fubini-Study metric of constant holomorphic curvature 2, the
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induced metric on Q,, expressed in terms of the coordinates (w,, w,), has the
form
2 2|dw, } 2|dw, [
2 2’
(L+1wP) (1 +1wF)

from which we conclude that Q, is the product of two standard spheres of
constant Gauss curvature equal to 2. (For details, see Hoffman and Osserman,
19, §21)

We now use our earlier results to derive explicit necessary conditions on the
Gauss map of an oriented immersed surface in R*. Let S C R* be such a
surface whose Gauss map is given by G: S - Q,. We write Q, as a product of
spheres Q, = S, X S,, where each S, is a standard sphere of radius 1/y2.
Denote by 7, the projection of Q, onto S;, kK = 1,2. Using the (extended)
complex variable w, to parametrize S, , where w, is given in terms of homoge-
neous coordinates on CP? by (3.2), the conjugate G of the Gauss map may be
expressed in terms of a local conformal parameter z on S by the pair of
functions w, = f,(2), w, = £,(z). We may then write

(33) G(z) =[2(2)],
where by (3.1),
@(z) = 9(fi(2), £(2))
(3.4) = (1 + £i(2)£(2), i(l —f](z)fz(z))’fl(z) — f(2),
-i( fi(2) + £(2)))-
In order to state the main theorem of this section, we need to introduce

certain auxiliary functions derived from the functions f, f, describing the
Gauss map:

69) po W s W,
1+ £ L+ 1ff

and on the set {z|( f;); # 0},

(3:6) T =[(fi)zz/(fi)5 - 2];1‘13}]2’ i=12

Theorem 3.1. Let S be an oriented surface immersed in R* whose Gauss map

G is given locally by (3.4) via a pair of functions f(z), f,(z), where z is a local
conformal parameter on S. Then

(3.7) |F\| =I5,
(3.8) Im{T, + T,} =0
wherever ( f;); # 0.
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Remark. By straightforward computations it can be shown that | F, | and T,
are smooth functions, even at points where w, = oo, and also that (3.7) and
(3.8) are independent of the choice of local parameter z. Furthermore, since
our arguments here are all local, we may make a preliminary orthogonal
transformation of R* so that f, and f, are both finite in a given neighborhood.
In such a neighborhood, the conditions ( f;); = 0 is equivalent to F;, = 0, and
by (3.7), (f,); = 0if and only if ( £,); = 0.

Proof. We apply Theorem 2.3. We first express the function

(3.9) 1= ;- 8/|®|’
and the complex vector-valued function
(3.10) V==o,—n0

in terms of the functions /j and 14; Since
(3‘“) o = (fl)z_(fZ’_lf2’ 1»_i) + (fZ)z'(fl’_lfl’_la—i)

and

2 2 2
(3.12) lel” = 2(1 +141) (1 +14),
it follows that
(3.13) n=fF +fF,.

We now define a complex vector-valued function A(z) by

314) A= (Lh—f (L) 1+ AL (1= k),
and verify directly that

(3.15) V=FA-FA.

From (3.14) it is immediate that 4> = 0. Moreover,

(3.16) l41” = 2(1 +141) (1 +157) =12,

so that 4 can never vanish. Letting V' = (V,---,V,) and 4 = (4,,---,4,) we
compute

V;Vk = (FIAj - FzZ/)(FlA_k - FZAk)
) =|F[’ 4,4, +|F|’ 4,4, — 2Re( F, 54,4,
= (IR’ +|E")Re(4,4,) — 2Re( F,F5 4,4, )

+i(|F|” = |F)Im(4,4,).
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It follows from (3.17) and (3.16) (and the fact that 42 = 3!_. 42 = 0) that

VI* = 3 v, = (IE]” +IEL)l4°
(3.18) j=1
=2(|F " +1B) (1 +1A7) (1 +141).

From (3.18) we can conclude that ¥(z) = 0 if and only if F;(z) = F,(z) = 0 or
equivalently ( f,){(z) = (f,){z) = 0. In particular, wherever V(z) = 0, (3.7) is
satisfied. The condition (2.20) of Theorem 2.3, namely that V be equal to a real
vector-valued function multiplied by a nonzero complex function wherever
V(z) # 0, is equivalent to the requirement that the 4 X 4 Hermitian matrix
VTV be a real matrix. The components V;I7k are given in (3.17), and it follows
from (3.17) that V"V is a real matrix if and only if

(3.19) (IES =15 )im(4,4,) =0, jk=1,--,4.

Clearly (3.7) implies (3.19).

We will show that (3.19) implies (3.7). Assume (3.7) fails at some point
zo € D where V(z,) #0. Then at z, (3.19) is equivalent, since V7V is
Hermitian symmetric, to the six equations

(3.20) Im(4,(z0)A(2,)) =0, 1<j<k<4.

We will now use (3.14) to show that (3.20) is not possible. We first have from
(3.19),

— 2 2 — 2,2
(321)  Im(4,4,) =4l —IAl° Im(4,4,) =1 -] IA]
Hence (3.20) implies that

(3.22) |f1(zo)'=|f2(zo)l= 1.

Using (3.22) together with (3.14) we can write the other four equations of
(3.20) in the form

Im(A,L) =2Im(f, +£,) =0,
Im(4,4,) =2Re(f, — f,) =0,
Im(Azf‘i;) =-2Re(f, +£) =0,
Im(A4,4,) =2Im(f, —f,) =0 atz,.

But (3.23) implies f(zy) + f,(20) = f(2o) — fi(z5) = 0. This clearly con-
tradicts (3.22). We conclude that (3.19) implies (3.7), and hence (3.19) is
equivalent to (3.7) wherever ¥(z) # 0. This concludes the proof of the first
part of the theorem.

(3.23)
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In order to establish (3.8) we first derive an expression for the argument of
V. Wherever V(z) # 0 we may write as in (2.20),
(3.24) V(z) = e IR(z),
where R(z) is a real nonzero vector. From (3.15) and (3.7) we deduce

— — 2 = 2 = — 2, = = — 2=

(3.25) FEV=|F| EA—|E| FA=|F| (KA - FA)=-|F|V.
Since we are assuming that V' 7 0, we have some nonzero component V; of V,
which satisfies, by (3.25),

(3.26) REV,=-|F [V,

By (3.24), arg ¥, = a (mod 7). Also we have seen from (3.18), V' # 0 implies
F, # 0 and F, # 0. By (3.9),

(3.27) arg F, = arg(f,);, k=12

Thus (3.26) implies

—(arg f,); — (arg f,); + @ = -a (mod 7),

or
(3.28) a= %[(arg f); + (arg )] (mod -721)
From (3.28) one has
_1 { (f1).z l(fz)zz‘ }
a;==Im{|—Z| +|-—
zz 2 | |
(329) (fl)z z (fZ)z z

= % Im{7, + T,} + Im{(ilﬁl)z' + (fZFZ)z‘}’

where we have used the definition (3.6) of T,, 7,. On the other hand, a
computation shows that

o _ )
(kok)z' - (kok)z :|Fk| ‘IFk|2,
and therefore

(3.30) Im{(f.£);} =Im{(f.F),}, k=12
Finally, from (3.13),
(3.31) Im{n,} = Im{(/,F,), + (ALF),}.

Combining (3.29), (3.30), (3.31), we obtain

1
(3.32) a;—Im{n.} = 5 Im{T, + T,}.
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But our basic integrability condition (2.21) asserts that the left-hand side of
(3.32) vanishes. We now see that for surfaces in R* condition (2.21) reduces to
(3.8). This completes the proof of the theorem.
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