
J. DIFFERENTIAL GEOMETRY
15 (1980) 417-435

THE LAPLACIAN AND THE KOHN LAPLACIAN
FOR THE SPHERE

DARYL GELLER

Introduction

In [2], Folland studied the Cauchy-Riemann (db) complex on the sphere in
CΛ + 1, using the representation theory of the unitary group U(n + 1), hoping
to use the analysis as an approximating model for general strongly pseudo-
convex domains. The work was greatly complicated by the absence of an
explicit formula for the associated Kohn Laplacian Q,, or its fundamental
solution, and soon Folland embarked upon the notion of using the Heisen-
berg group H" instead of the sphere as the model. This work was completed
with Stein in [3].

It turns out that Π* o n «̂ = ^ 2 " + 1 d ° e s indeed have a simple explicit
form. We compute it directly from the definitions in this paper, obtaining the
analogues of the Folland-Stein £α operators; and we show how it can be
applied. Along the way, we shall meet the analogue of Lewy's unsolvable
operator for Sx, and derive necessary and sufficient conditions for its local
solvability, in analogy in [5]. We also prove local analytic hypoellipticity on
(/?, gr)-forms when 0 < q < n; this is now known on general strongly pseudo-
convex manifolds ([7] and [8], independently), but the general proofs are very
complex. At any rate, our main purpose is to show the reader a simple way of
handling analysis on Sn in full analogy to that on H", and we think our
methods have much wider applicability.

The computation of \Zib *s almost identical to that of the ordinary Lapla-
cian on forms on the sphere Sn c RΛ + 1 which does not seem to be in the
literature. It is of lesser interest, being elliptic; but we think the comparison is
instructive, so we include it. Although we do not refer to it, the reader should
first read the first seven sections of [3] since Hn is easier.

Jiri Dadok and Reese Harvey [1] have, independently of us, computed a
"fundamental solution" for Π 6 , without finding our formula for Q,. They
used the work of Henkin and Skoda. We do not compute a fundamental
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solution, but instead show how to solve 9£-closed forms explicitly, then solve
the general case implicitly; this is good enough to deal with any application
we know.

As is customary we restrict to (0, #)-forms on Sn, noting that all results go
over to (p, <7)-forms.

We announced this result in [4]. We would like to thank E. M. Stein and J.
J. Kohn for very valuable discussions. Although we do not refer to it for
proofs, this paper draws heavily on the work of Folland [2], both concretely
and for inspiration.

1. The Computation

On Cπ + 1 (n > 0) we write 9, = d/dzj9 9,- = 9/9z}(0 < j < ή)\ on R r t+1 we
write Dj - d/dxj (0<j< ή). If / = (jv ' ' ' Jq) where 0 < j v Jq < n,

we write
dz(J) = dzJt Λ f\dzu dx(J) = dxjχ Λ Λ ^

If 1 < k < n, we also write

(k, J) = (kjl9 Jq\ dz(k, J) = dz((k, /)), etc.

If B denotes the bundle of anti-holomorphic tangent vectors in C1"1"1, one
defines 9: C°°(Aq(B*)) -* C°°(Λ9+1(5*)) by d(fdz(J)) = Σ£ djdz(k, J) and
extending linearly; similarly for forms defined only locally.

We place the metric on C1 with dl9 - , 9Π, 3^ , 9Λ being orthonormal
(volume element 2~(n+1) times the usual one). On Sn we use the metric < , >
which is the restriction of the metric on Cn (volume element 2~<Λ+1/2) times
the usual one). We put 9 = (91? , 9Π), dz = (dzv , dzn), = dot prod-
uct. Now if X G Γ C a t z 6 S B , ^ 6 TSn iff X(\z\2) - 0, iff X±\(z - 9 + J
9) = 9/9|z|2, iff <d\z\\ X} = 0 (where d\z\2 = z-dz + z dz\ Put σ = z - dz
= 9|z|2. Let T0Λ = CT(Sn) n 5; one defines db: C ^ Λ ^ Γ ^ ) ) -^
C°°(Aq+1(TζΛy) by letting the value of dbω at any point z be the orthogonal
projection of θc^ onto A^+1(7^,) at z, where ωι e C°°(A^(^*)) in a neighbor-
hood of Sn and coj = co on »£„. Since two candidates for ω, differ by
(|z|2 — l)φ, say, where φ is smooth, 9̂  is well-defined. Thus, if / is C°° in a
neighborhood of Sn, then

where ξk = dzk - zkσ. Similar considerations produce d: Cx(Kq(T*Sn))
C00(Λ ί+1(Γ*S'n))with
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where ξk = dxk - \xkdR2, \dR2 = Σ Xjdxr It is obvious that 3^ (resp. d) is
invariant under U(n + 1) (resp. O(n + 1)).

It is already time for the key observation of this paper:

(1-2) 9 J = Σ
0<j<k<n

for/ e C°°(5n), where Mjk = zβk - zk\ ωjk = Zjdzk - zkdzj (0 < j , k < n).
Similarly,

(1-2)' d

/ E C 0 0 ^ ) , where Wjk = ;c,/\ - xkDp wjk = Λ ^ - xkdxr The proof is

trivial from (1.1) and the advantage obvious-the MJk, ωJk are tangential. Only

the motivation must be supplied, and we turn to that now.

The Mjk (0 < j,k < ή) span Txo at each z E Sn, for Σy ZjMjk = 3* -

zk(z θ), the projection of dk onto Tl0(Sn) at z. We also put L = (ι/2)(z 3 -

z 3), orthogonal to Γo j θ Γj 0 at each point and equal to /(3/3|z|2), where J

is the complex structure map: J(dj) = idJ9 J(dj) = -idj.

Now it is easy to see how the Wjk arise from O(n + 1); we have Woιf(x) =

d/dθ f(x0 cos θ - xx sin θ, x0 sin θ + xx cos 0, x2> * * * > JC

Λ)U-o To see the

relation of the Mjk and L to U(n + 1) and O(2AI + 2), we define a variety of

maps. If z e CΛ + 1, put z" = (z2, , zπ), z' = (zv z"\ Define p(0), pol(d),

h0, g0 e ί/(A2 + 1) (for θ E R) by: p(θ) = Λ , P o l (0)(z) - (z 0 cos 0 -

zx sin 0, z0 sin θ + zx cos 0, z"), Λoz = (/z0, z'), g0 = hx

ι. Also define y0 E

O(2n + 2) by70(z) = (z"0, z'). If Γ E O(2AZ + 2) and/ E C°°(SΛ), write TJ -

/ o Γ. Then we simply have Lf = ±(d/dθ)ρ(θyf\θ=0. The MyVt arise in a more

complex way: if Doxf = (d/dθ)pox(θ)'f\θ=o we have Z>01 = ΛΓ01 + Jv01 where

Njk - z,^ - z^,. E Γ(5rt). Also g'oDoxh'o = -i(JV01 - JV01). Thus tf01 -

\(D0X + ig'oDoxh'o). Finally, Λf01 =f0N0Xf0.

There are two significant consequences of this-first, MjkΔ = ΔMJk, etc.,

since elements of O(2n + 2) commute with Δ. Also, if / E C°°, / ^ MJkfdS =

0, etc., since rf5 is invariant under O(2n + 2) and hence, in particular,

/ Poi(#)/is independent of θ.

We hope that this has helped to motivate (1.2). There is probably a better

way to prove (1.2) than to compute from (1.1), but we do not see it.

At any rate, here is what we shall prove in this section. Put ^ = 3£ (formal

adjoint), Q, = db»b + ΰbdb. Then if η = Σjfjdz(J) E C°°(Λ*) is tangential

on Sn (summation over all increasing ^-tuples /-that is, J with / =

0Ό> " >Λ-i)> ° < Jo < * <Λ-i < Λ> w e h a v e

(1.3) DbV - Σ
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where

-\ Σ (MjkMJk + MJkMJk) + iaL + | ( « ~ «)(*

provided a = n - 2q. We shall soon also see explicit formulas for &bη, so

(1.3) is completely explicit. Similarly, if δ = d*, Δ, = rfδ + δrf, and η =

Σ fjdx(J) E C°°(Λ^) is tangential on S"\ we have

(1.3)' Asη = Σ (%fj)d*(J) + ^ 2 Λ ft|,
j

where % = -Σ y < * Wfh + (/ι - α)(w + α - 2)/4, α = Λ -
The similarity with HΛ is striking, except for the special role played here by

#£-closed forms. For the representation-theoretic reason for why these forms

should be special, see Folland [2].

We have

£α = -Δ-+ 2 zjϊ^ + ̂ n + α)z 3 +\(n - ά)z θ

(1.4) '•*
+ \(n + a)(n - α),

where dβ = d2/dzjdzk, Δ = Σj 9^ (in our metric on CΛ+1). Each operator on

the right side is invariant under U{n + 1), so £α is also (as it must be if (1.3)

is true). For example, to check U'D = DIΓ where D = Σ ZjZkdβ, U G

U(n 4- 1), we need only check on second degree polynomials since both

sides are second order differential operators. Put Vx = spa.nJk{zjZk}, V2 =

spsLnM{zjZk, zj, zj9 zj,l}; then D = id on Vl9 D = 0 on F2, U': Vγ --> Vl9 IT:

V2 -> K2, so the result follows. Similarly,

(1.4)' 6Qα = _Δ + 2 ^ik^A: + Λ J C " D + KΛ + « " 2)(n ~ α )

is invariant under O(n + 1).

We begin the proof of (1.3). If J = (j\, - >jq-\) is a ^-tuple, call /

injectiυe if jk = j) imphes k = /. In this case, we write (/; jk) =

C/o> * * Jk-iJk+ι> * Jq-\)> (J'JkJi) = ((^Λ) Λ) KkΦl, (J; m) = 0 if
m & J, dz(J;jk) = dz((J;jk)), etc. If / is a #-tuρle, # > 1, we define the
tangential (q — 1) form ω(/) by

(1.5) <*?(/) = £(/) + σΛω(/).

If 7 is not injective, ω(/) = 0. If / is injective, an expansion of dz(J) using

(1-6) ω(/) = Σ ( - l )

(We put <£(φ) = f(<|>) = ω(φ) = 0.) Now

(1-7) <»(J)
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To see this, suppose / = (0, , q - 1), ω\J) is the right side of (1.7); then

by (1.5) and (1.6), ω\J) = ω(J) + σ Λ ψ, where ψ = Σ(-l)%ω(J; k); but

(i.8) ψ - Σ (-iy+V*«^^ *)+ Σ (-iy+*"W(^ *.Λ - °

The ω(J) are due to Folland [2]. Note ω(j, k) = ωJk. From (1.5), / -> ω(/) is

alternating. We similarly have dx(J) = ξ(J) + \dR2 /\ w(J) with similar

formulas for the tangential form w(/).

Some elementary relations:

(1.9) Σ **£(*,-0-0,
o

(i.io)
0

with obvious analogues for R n + 1 . For (1.9),

2 zks(k9 J) = {Σ zksk) A«/) - {\\z\2) Arco - o.
For (1.10),

σ Λ 2 ^ « ( * . ^) = Σ 2k[(E{k9 J) - ζ(k, / ) ] = σ Λ dz(J) = σ Λ
o

as desired.

Put ω0 = ω(0, , n). Then σ Λ ω0 = </z(0, , n), providing an orien-

tation on Tξtl. In analogy to the Hodge operator, we define •: Aq(Tξ9l)->

An~9(TS,i) by ψ Λ *Φ = <Φ, Ψ>ω0 (Φ, Ψ e Λ*). Similarly, on S"1 we let • be

the Hodge operator, ψ Λ *Φ = <Φ> Ψ>w(0» * * # > Λ ) ^ eo» * * * > e/i i s a n ortho-

normal basis of T& with ^ 0 Λ * * * Aen = ω0, we have

* (ae0 Λ * * Λ v_i) = δ ^ Λ Λ^Λ> Λ e C.
This property defines *, so * * = (- l) 9 ( / l " 9 ) . With this preparation, we can

compute &b.

Lemma 1.1. (a)#6 = -(-1)Λ(^+1>_* 96 *.

(b) (Fo/ώAzJ) / / / » aj-tuple, dbω(J) = jζ{J\ ΰbζ(J) = (n

^ W ) = ^ω(/) = 0.

(c) IfJ is aj-tuple, f (Ξ C "(SJ, then

Σ Zj

IfJ = (0,- - J - I), then

*b(MJ)) - Σ (-lAJMiX/; m).

(Similarly, with d, δ, £, w, 5"1, ^/c. in place ofdb, &b, ξ, ω, SH, etc..)
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Proof. First we prove all the formulas for \. By (1.1), ξk = dbzk so

\ξ(J) = 0 for all / by the derivation formula. That dbω(J) =j£(J) follows

from (1.6) and the derivation formula. Thus finally

k<l

Now

o/\ωkl/\ω(J) = -ωkl A (dz(J) - ζ(J))

= ztdzik, J) - zkdz{U J) - z£{K J) + zkζ(l, J)

(expanding ωM by (1.6) then (1.7))

^ a /\[z^{KJ) - zkω{hJ)\

Thus

s = Σ hMkMK J) - Σ

producing the formula of (c) when one interchanges k and / in the second
sum.

For (a), put λ = σ - σ, a global section of ( Γ o l Θ T^. Then if γ = ω0

Λ λ, either γ Λ ω 0

 O Γ ~Y Λ ω0 is the volume form on Sn. Indeed,
d\z\2 Λ λ = ̂ (σ + σ) Λ (σ - σ) = σ Λ σ; so

< Φ | 2 Λ γ Λ ω 0 = ( - l ) ' I ω 0 Λ σ Λ σ Λ ω 0 = dz(0, - , n) Λ dz(09 , n),

as desired. It suffices then to show that fs Ύ A db7! = 0 for any η E
C<*>(A»-ι(T*Λ)). For we would then have that "if ? > l , φ G C°°(Aq(TSΛ)),
and ψ G C °°(Λ«- \T*Λ))9 then

as desired. Now by (1.10) we may assume η = /ω(/) for some Λ-tuple /. We
may also assume / = (1, , n). Then

dbη = Σ

Since ζ(J) = zoωo by (1.10), we have

/ γ Λ 3*i? = / ( Σ ZiMJ + nzoήdS = Σ f M^z^dS = 0,

proving (a).
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Problem. Prove an analogue of (a) on general compact C7?-manifolds.

For (b), we must show that

(•) 9bζ(J) = (n + I - JMJ).

(•) is equivalent to

s \ if α G sρan{dϋF7|/ tuples /} and a = ax + σ Λ «2>αi> α2

tangential, then 9baγ = (n + 1 — y)α2.

(**) is unitarily invariant, so it suffices to prove &bζ(J) = (Λ + 1 — j)o>(J) at

the north pole N = (1, 0, , 0).

First suppose 0 ί / . We may then assume / = (1, ,y), and must show

Φbξ(j) _ 0 at N. Let & = {/ G C°°(C/) for some open £/ C C + 1 with

N G £/ such that/(#) = 9/(JV) = d/(N) = 0 for ally}. An easy computa-

tion shows <ffc, ζj} = δ^ + aJk, aJk G S, 1 < y, /c < n. By the Gram-Schmidt

process, we can find an orthonormal basis {βj\l < j < n) of 7^! in a

neighborhood of N in Sn with βj = (1 + 67)(f7 - Σi~ \ c^f^) with all bJ9 cjk E

S. Thus

f(/) - *(i + */)/5(/) - ± (l + e,)i8(yc) - ±f(/c) + 2 &«/),
/

where / c = (7 + 1, , n), Σ 7 is sum over all (n -7>tuples / and ej9 all

foGS.So #6f(/) = 0 at Nby (1.1) and (a), if 0 £ / .

Now it follows from &b = 3£ and the derivation law that

(1.11)

where φJ: Λ^ -+ Aq~ι is the adjoint of φ Λ Λ* -» Λ*+1 if φ is a 1-form. (If

^0, , en is an orthonormal basis, / injective, a G C, then aetAe(J) =

± αe(/; 1) for / G /, 0 otherwise, the sign being chosen according to whether

eέ A e(J; i) = ± e(J).) So if / G C 0 0 ,7 = (1, - J),

(1.12) ^(/r(/))--Σ(-l) f c'13*/r0';*) atΛΓ.

Now suppose / is injective, / = (0, K); we need to show

at JV.

We may assume ^ = (1, J - 1). By (1.9), ζ(J) - - z ^

so the result and (b) follow from (1.12).

Finally, for (c) we have

- Σ
Now if φ is a tangential 1-form and <p_Γ is defined to be the adjoint of

φ Λ acting on <7-forms on CΛ, then it is obvious that φJψ = φJ'ψ if ψ is
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tangential. Hence

ωimAω{J) = zi(EmAω{J) -

= zX-lΓ-y/; m) - zm(-\γ-ιω(J; i)

as can be seen readily from (1.7), and we are done.
Proof of (1.3). It suffices to prove (1.3) at N. For (1.3) is equivalent to the

following:
Suppose F1? , F M e sρan{rfz(/)|>tuples /} and η = Σ f fkVk is

tangential. Then Π ^ = Σ ( £ α A ) ^ + σ Λ ^ This latter statement is
clearly unitarily invariant.

Now {ω(K)\0 £ K,Kdi(q + l)-tuρle} spans A^T^) in a neighborhood of
N. Indeed, by (1.10) it suffices to show that if / is a (q + l)-tuρle, 0 ί / , then
ω(I) is in the span near N. This follows from an application of (1.8) to
j = (0, /). Thus we may assume η = fω(J), J = (0, , q). By (1.10) it is
clear we have only to use Lemma l.l(c); we begin this chore now.

(1.13) = Σ ' ( - l

); m)

+ (q >+ [ Σ '"z.M^

where Σ' denotes sum over k > q, m < q and all i, /; Σ" over k > q, m < q,
all /; Σ//r over k > q, all /, /; Σiv over A: > q, all /. Also

Σ (-1)^^^/(0(7; m)\

(-l)mzkziMimfω(k, (J; m))

where Σ" denotes sum over k < q, all i, I; Σ r a over k < q, all i. We might as
well write (k, J; m) = ((k, J); m) = (k, (J; m)) in Σ' and Σ".

Now one can unscramble all the commutators and arrive at (1.3), but it is
far easier to recall that we are at N. At N, ω(k, J; m) (k > q, m < q) is zero if
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m = 0; if m φ 0, Mim = δ/09m. Thus at N the coefficient of ω(A:, / ; m)

(k >j,0 <m < q) in the sum of the right sides of (1.13) and (1.14) is

(-iΓ"![ Σ 9m(zξMj) + θw(zj) - 2 K X ^ J O + o

f- Σ a-(fclV) + Σ
We must have / = / = 0 for nonvanishing terms, whence the coefficient is
zero.

The coefficient of ω(J) is

*k(*kf) - Σ dk&Mj) = Sx + S2 + 53.
i

\<k<q

Now Sj = Σ \{zιZkdJ) - Σ θ^lz^θj). If / = k in the first sum, the term
vanishes; so / φ k, I = 0 and

Si- Σ **(*Λ/)- Σ 3*a^-(«-i)30/- Σ a*3*Λ
k>q

- -Σ 3*(k,lV) + Σ 3*(*,W) = - Σ

Altogether at iV

ΠbV - [(-Δ + 9oδ + (« - q% + ?90 + (q+ 1)(« - ί ) ) / ] ? ^ / ; 0)

( L 1 5 ) =

since (̂ r + l)(n — q) — (n — q) = q(n — q). At N the right side of (1.3) is

l)%(βk)dz(J; k)
m>0

Now σ Λ ω(/; m) = dz(J; m) - ζ(/; w) = ί/z(/; w) at ΛΓ if w φ 0. We are

left to check that ta(βk) + dj = 0 at JV if k > 0. But at JV, £ α ( / ^ ) =

-Δ(βk) and we are done.

For (1.3)' everything is the same until we reach (1.15) which is replaced by

Asη = [ ( - Δ + Ax) + nDo + (9 + 1)(* " ?) )/]*o^(/; 0)

= ebΛfxJdxV, 0),
since (# + l)(n - r̂) - n = r̂(n - q - 1). (1.3)' then comes down to a check

that tya(fxk) + 2 i y = 0 at N if A: = 0, which is true.

We shall need to extend this result to S^, the conjugate dual of %q =

C^Λ^ΓQ!(£„) ) ) . Denote the sesquilinear pairing by (Ω|φ)(Ω E ^ , φ 6 %q,

linear in φ). Let &' = ©ό, and β 9 = {all forms (not necessarily tangential)
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φ = Σfjdz(J) with fj G C°°(Sn)}. If Ω is a formal sum Σfjdz(J) (sum over
all increasing ^-tuples /, each Fj G ©ό), φ £ ( ? a s above, let us put [Ω|φ] =
Σ(Fj\fj). Then we can view S i G ^ . Now &'q is in bijective correspondence
with the set of all such Ω satisfying [Ω|σ Λ <p'] = 0 for all φ' G &~x (we set
(Ω|φ) = [Ω|φ] if φ G %q). We call such Ω tangential For clearly a tangential
Ω defines an element of &q. If Ω = 0 in &q, it follows that [Ω|φ] = 0 for all
φ G ( ? , whence all Fj = 0. Conversely, if Γ G S^ is supported in a small
enough open set U that there exists a set of smooth #-forms {e(K)}κ on U
such that the forms are an orthogonal basis at each point of t/, we surely have
Γ = Σ Gκe(K) = Σ Fjdz(I) for certain Gκ, Fj G S' supported in £/. Here
Σ Gκe(K) has the obvious meaning. This latter consideration shows that each
Ω G &q can be written in the form Σ * Hκξ(K) = Σ 7 //«(/) (certain HK9

Now db, db can be extended to maps from &q to S^+1, &'q-\ respectively
through duality (i.e., the relations (96Ω|φ) = (Ω|^φ), (^Ω|φ) = (Ω|3^φ)). If
Ω = fω(J), we have Lemma 1.1 (c) if / is smooth and hence if / G S' since
C 0 0 is dense in &'. Thus if fm -»/in S', all/^ G C0 0, Ωm = /mω(/), we have
h®m -> 9 ^ Ω ώ S^-i a n d ' u s i n δ (1-10), that &bdbΩm -+ ΰbdbΩ; also &bΩm -+ &bΩ
and Πz,Ωm^Π^Ω. We must then have (1.3) for η = Ω, whence for any
η G S9' (η expressed in tangential form). Further, the right side of (1.3) is
tangential.

We shall of course write F(f) =(F\f) if F G S',/ G C 0 0.
Remark. We indicate the interaction of £α, 6Dα with spherical harmonics;

we shall not be needing these facts later.
If P is a spherical harmonic in RΛ + 1 of degree k (a harmonic polynomial,

homogeneous of degree k\

as can be computed readily from (1.4)', the case a = n being well known. If P
is a bigraded spherical harmonic of type (/?, ^) on C + l (a harmonic poly-
nomial which is a linear combination of terms of the form zpzΎ, p, γ
multi-indices with |p| = />, |γ| = q), then

which agrees with formulas in [2]. Since the restrictions of bigraded spherical
harmonics to Sn span a dense subspace of L2(Sn), one conjectures that £α is
invertible if and only if ± a Φ n, n + 2, as on H"; we shall see this next.

Since MJkΔ = ΔMJk, Mjk maps (/?, ^-harmonics to (p - 1, q + 1)-
haπnonics; this observation was what led the author to (1.2).
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2. Solving eα, ^)α

In this section we determine fundamental solutions for £α, fya; it is not

immediately apparent how this helps to solve Πa> Δ,, but we show how it does

in the next section. We have no more use for the forms ξ(/), ξ(J) and free the

letters ξ, ξ for other purposes.

It will help to remember Gauss's hypergeometric equation:

(2.1) s(l - s)f" +[c-(a + b+ \)s]f - abf = 0,

where J 6 C , / = f(s), a, b, c G C. Put (a)0 = 1, (ά)m = a(a + 1) (a + m

- 1) for m G N, then F(a, b, c\ s) = Σc^mκOpmsm is a solution of (2.1) in

{\s\ < 1} ifpm = (a)m(Z>)m/[(c)mm!] and c « Z = {0, - 1 , -2, }. If also

α, 6 £ Z~, we have, for example (a)m = T(a + m)/Γ(α). From this,

(2.2) Pm = T(c)T(άΓιT{brιm'-\l + O^"1)),

where ί/ = a + 6 - c, since pm = pmT(mf/T(m)2 and, e.g., Γ(α + m)/T(m)

= mα(l + Oίw"1)) (from the Stirling series for log Γ). (For real a this is easy:

from the convexity of log Γ, (m + a - \)a < T(a + m)/T(m) < ma if 0 < a

< 1, m G N. log Γ is convex because (log Γ)"(Λ;) = Σ~»o(* + Ό~2 ) Now if

/ G R, / « Z- put ?m/ = (/)m/ni!, then Σ <7m/*
m - (1 - *)"'. If / - 0, put

qml = l//w, then Σ qnUsm = log(l - s). Suppose d > 0 and put qm = qmd.

Then qm = Γ ί r f ^ m ^ l + ^ m " 1 ) ) . Put B = ΓC^ΓίέOΓία)"1^)-1; then />m

= Λ & ί l + Oίm"1)). UdΦ\9 qm4_x = qm(d - \)/{d + m - 1); if d - 1,

m̂,o = ?m/ w τ h u s O(qmm-1) = O(qmd_λ). Finally,

(2.3) lim(l - s)*F(α, >̂, c; j) = B.
l

This will be useful. If d = 0, we have directly from (2.2) that F(a, b, c; s) =

C log(l — j) + g(^), where g is continuous in {|.s| < 1}; while if d < 0,

|F(α, Z>, c; s)\ is continuous in \s\ < 1. Put G(α, 6, c; ̂ ) = F(α, b, c;

(1 + j)/2), β = (π + α)/2, γ - (#i - α)/2, andy^(x) = G()8 - 1, γ; #i/2; x

• β, φβ/z) = (1 - z ί ) Λ l V ? ) " Y f o r x ' ξ G ^ z ' f G 5« W r i t e ψ« =

ψα Λr, φα = φα ̂ . (Here 1 — z f always lies in the right half plane, and we use

the principal branch of the power functions.)

Theorem 2.1. Θ α ψ α | = baδξ, £aφatζ = ca8ζ where

ba = 2%n/2T{n/2)V{β - \TxT(χT\ca - 2-*+ 1/V

PAΌO/. We may assume ξ or f = ΛΓ and just write ψα, φα. Now if g =

g(x0), then -<ϊ>αg = (1 - ^)g / r - nxog' - (β - l)γg. (By the way, this

equation is closely related to the Legendre equation.) If f(u) = g(2w - 1),

then -<Φαg = i/(l - w)/" + [n/2 - nu]f - (β - l)γ/ (differentiation with

respect to w). Thus ^Dαψα = 0 away from AT. For -1 <s < 1 we apply

Green's theorem in the region Ω = {x\x0 < s}, put Tδ = {x\x0 = s], and
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recall Δ, = % on 0-foπns. Thus if/ e C°°(Sn), then

f (/3ψα/3n - Wfβn)dm = f

= f
/
'a,

since <$„ = 6ϋπ + (/? - l)γ. (m = measure on Γ,). Now

2(1 - sψ-l)/2w"/2

ΪW2) '
since the radius of Ts is (1 - s2)1 / 2. Thus fTj ψa(df/dn)dm -»0 as s -+ 1 by

(2.3) (in this case d = (n - 2)/2; note 1 - s2 = (1 + ί)(l - s)). By orthogo-

nal invariance θψα/3n is constant along Γ5. At (x0, xl9 0, , 0) G Γ5,

3/3λi = ^o^i ~" * iA) = ^ o i s o

Letting j - ^ l w e find

/

by (2.3). Since ^Da is obviously self-adjoint, we then have only to

show that ψβ is integrable on Sn. By (2.3) it suffices to show (1 — JCQ)"^ or

equivalently h(x0) = (1 — x^y^ is integrable near N where d = n/2 — 1 (at

least if n > 3). But if x0 = cos θ, E = Sn n {x0 > 0}, then / £ h(xo)dS =

c /o/2(sin 0)-π+2(sin 0)"" 1 dθ.n = I or 2 is similarly dismissed.

For £ α , we do not know if there is an effective analogue of Green's

theorem; so in analogy to [3] we begin by defining, for A > 1, Φ^ =

(A - zoy0(A - zo)-\ If/ = f(zo) we have

-tj = (1 - |zo|
2)3oo/ - βzodof - γzo3o/ - βyf,

so that taΦA = ψA = βy(A2 - \)(A - zo)-<β+ι\A - zo)-<γ+1). We must

prove the following two results: (a) |1 - zo\~n is integrable on Sn, (b)/ ψA dS

-+ca as A -» 1. For we shall know from (a) that Φ^ -> φ as distributions by

dominated convergence, and from (b) that £ α φ = ca8 since the mass of ΨA
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concentrates at N. Both facts are consequences of the following: if a, b G C,

A > \J(A, a, b; z0) = (A - zo)-*(Λ - zQ)~\ then

(2.4) ί f(A, a, b; zo)dS = 2-n+ι/2πn+ιn\A^a+^F(a9 b; n + 1; A-2).

Indeed, if (2.4) is known, then for (a), if a — b = n/2 we should have d = -1

so that l in i^! JSn f(A, a, b; z0) dS exists. But, if z 0 = JC0 4- iy^ then

f(A, a, b; z0) = \A- z o | - - [{A - xof 4- yiγn/\

Thus /(A, a, b; z0) /* |1 — zo\~n which is hence integrable by the monotone

convergence theorem. Also (b) follows from (2.4) by (2.3).

To prove (2.4) we recall a well-known device: suppose s, t are (n + 1)-

tuples of nonnegative integers, and put/? = ^(|^| + | φ , where |,s| = Σ sr Then

/ = [ ξtdS(ζ) - (p 4- n)\~l Γe-W2l(\z\2)n+Pd\z\

n)\-χ ί zsz'e~W2dV

(Write the last integral as a product. Here δsί = Π δsί, s! = Π ,̂! and the twos

are caused by our choice of volume element.) In particular,

Γ
Js

qrq\ (q + π)!"1.
sn

If we expand (1 — ZQA'1)"0 and (1 — z^A'1)^ in power series and integrate

termwise, we then find (2.4), as desired.

It is perhaps curious that (2.3) plays such a crucial role in two such

different ways. However, one should be aware that hypergeometric functions

come up in many different contexts in analysis on the sphere.

If we are on Sn9 ± a Φ n, n + 2, (i.e., when ca φ 0), we say α is

admissible and put Φtt = c~ιφa. If we are o n S " , ± α Φn, n 4- 2, and

a Φ -n + 2, we say a is admissible and put Ψa = fe~ty«-

Now there is no natural notion of convolution of general functions onSn,

but if/ G L°°(Sn), Φ E L\Sn), and Φ = Φ(z0) we can define/* Φ e L

by

If U e ί/(n 4- 1), one trivially computes (/(/ * Φ) = U'f * Φ (recall C/g =

g o ί/). From this-and the way that the NJk, L arise from U(n 4- 1) (see the

discussion after (1.2))-one finds readily that if / is smooth, NJk(f * Φ)(z)
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exists for all z and equals (Njkf) * Φ(z); similarly for Njk and L. Thus/ • Φ is
smooth if / is, since the NJk, Njk, L span T(Sn) at each point. (Indeed,
Σ ZjNjk + 2izkL = dk - zk(z 3) so that Tl0 is in the span, etc.) Further,
since NJkNJk + NJkNJk = MjkMjk + MjkMjk as a computation shows, one has

If h is a function on Sn9 put λ(z) = h(z). It is obvious that if /, g E L°°,
and Φ as above, we have

f(g * Φ)(z)f(z)dV(z) - J

Thus, if g E £'(£„) we can define g * Φ E δ ' b y g * Φ(/) = g(f • Φ) (/ E
C0 0). If Φ is smooth on Sn9 one easily finds that g • Φ is smooth and
g • Φ(z) = g(Φ2) where Φ2(ξ) = Φ(z f ). If, instead, g is zero on some open
set U and Φ is smooth (respectively, real analytic) away from N, it is easy to
see that g * Φ is smooth (resp. real analytic) on U.

We define Ka: &' -> S ' by Ka(g) = g * Φα if a is admissible. Then we
have

Corollary 2.2. (a) taKa = Ka£a = I. (b) ta is locally solvable, injectiυe on
&' and hypoelliptic. (c) ta is (local) analytic hypoelliptic (i.e., if f E S',
taf = u w real analytic on U, then f is real analytic on U).

Proof. For (a), the duals on S' of £α, j ς : C 0 0 -> C 0 0 are e^, ΛΓ ;̂ so we
have only to show the identity on C0 0. But if / E C0 0, then £aKJ =
e α ( / * Φ α ) - £ α / * Φα = iςe α /, while KatJ(z) = Φ ^ ί e j ) (see notation
above) = (t_aΦa>2)(f) - c - ^ φ ^ X / ) - δz(f) = f(z). This gives (b) in a
simple standard way-see [3] for the same proofs on Hn. (c) is also standard
but we include a proof. £α has many noncharacteristic surfaces at each
point-e.g., by (1.4) it is easy to see that {Re zλ = 0} is noncharacteristic at N.
Thus by Cauchy-Kowalewski, if p E U, we can find g real analytic in a
neighborhood of p with £αg = u there. With p a suitable cutoff function,
£«(/ ~ PS) = 0 near/?, whence/ = pg + Kata(f - pg) is real analytic at/?.

Everything since Theorem 2.1 has an obvious analogue for 6Dα, a admissi-
ble.

We shall see in the next section how to derive analogous results for Δ,, •*>
on #-forms when a = n — 2q is admissible. As for nonadmissible values,
there is no point in worrying about w-forms; since \3b*= (-1)Λ * Q> by
Lemma 1.1 (a), questions about /z-forms are at once reduced to questions
about 0-forms. So we need only concern ourselves with tn and όDrt since

^ Λ - 2 ) = %•

In anticipation of an analogy with [5], we begin by setting, for 0 < r < 1,
Sr(z) = Q(l - rzo)^

+1>, Cn = 2»+ι/2n\(2πn+ιyι. If Qr(z) - Q(l - rzQT\
C'n = -2Cn/n, one has 5 r = (iL - n/2)Qr. Now Qr -> C > π in S ' as r -+ 1;
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thus Sr has a limit in S', say Sl9 and

(2.5) Sx = C'n(iL - n/2)Ψn.

It is then apparent that/ * Sr has a limit in C 0 0 if / G C0 0, and-by duality-in

S ' if/ G S ' ; this limit one calls/* SΊ = CJ(Cb = Cauchy-Szego map). We

define C/on 5 Λ + 1 - {|z| < 1} by putting Cf(z)=f* S | z |(z/|z|). Then Cf is

holomorphic on 5 n + 1 . If / = 0 near P e Sn, it is easy to see that Cf has a

holomorphic extension past P.

It is known that/ G L2=s> CJ G L2; we shall not need this.

If z G SΛ, let 0(z) = log[(l - zo)/(l - z0)], z0 * 1. We let Φπ(z) =

2"- 1 / 2 Γ(ΛI)7Γ Λ - 1 (1 - z0ΓΘ(z), Kng = g* Φn(g G S').

Theorem 23. (a) tnKn = Kntn = I - Cb.

(b) Suppose f G S' . Then db(CJ) = 0; / = CJ, iff dJ = 0; Q2 = Q ;

(/I*) = 0/βrα//g G C 0 0 n ker 9,, iff CJ = 0, ifff G ^ S / .

(c) IfP(ΞSn,f(Ξ&', then (i) ίAm? existe « 6 g ' wi7Λ Qfe" = / near P iff

(ii) CJ is real analytic near P, iff (iii) Cf has a holomorphic extension past P, iff

(iv) there exist vJk G S', (0 < / < k < n\ with / = Σ MjkvJk near P. (mien

n = 1, /Λw reduces to f = M01t>01 near /*; Λf01 w ίΛe analogue of Lewy's

unsolvable operator on Sv)

( d ) / / / e δ ' is real analytic near P, then Cf has a holomorphic extension

past P.

(e) Suppose f G &b&[. Then there is a unique u G &b&{ such that £]bu = /;

further u is smooth or real analytic on any open set where f is. In particular,

C 0 0 = Vx® V2 (orthogonal direct sum) where

Vx = ker db\coo = ker

Proof. For (a) one has only to show £nΦn = δ - S, for then one can

argue as Corollary 2.2(a). To prove this, one differentiates £ α φ α = caδ with

respect to a at a = n. That is, one divides this equation by α - n and lets

(real) a -+ n, using (2.5) and the dominated convergence theorem with the

estimate \(eiθa - l )/α| = 2|sin(0α/2)/α| < θ. For (b), we have \(f * Sr) = 0

for r < 1, so dbCJ= 0. T h u s / = CJ=*dJ= 0, while if 9*/= 0, 0 = ̂ 9 ^ /

= (/ - Cb)f. Since 9,(CJ) = 0, CJ = C # If (/|g) = 0 for all g G C 0 0 Π

ker 3A, (/ |QG) = 0 for all G G C0 0, so (Q/[G) = 0 for all G, and therefore

CJ = 0. If CJ = 0, then/ = (/ - Cb)f = ^ 3 ^ / G *hS[. Iff G ^ S / , clearly

(f\g) = 0 for all g G C 0 0 n Ker 3Λ. For (c), (iii) =̂> (ϋ) is trivial, (ϋ)=>(i)

follows from (a) and Cauchy-Kowalewski as in Theorem 3 of [5], (i) => (iv)

follows from the relation tn = ΣJ<k MjkMjk which in turn follows from

[Mjk, Mjk] = -zβj - zk\ + zjdj + zkdkj Φ k, and (iv) =» (iii) by Theorem 2
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of [5] with Ab = MJk9 one having only to note that (in) is a local condition on

/ and that CMjk = 0 since MJkΦ2 = 0 if Φ2(ζ) = Sr(z ξ). (d) follows from

(i) =» (iii) and Cauchy-Kowalewski. For (e), if u0 = KJ, then Q,w0 = /by (b)

and (a); thus Q>w = / if u = (/ - Cb)u0 since 9 6 Q = 0, and u E ^ S / . If

[2bv = 0, and v E ί^S/, then u = (/ - Cb)υ = Kn[Jbv = 0. If / is smooth

near P, so is w0. Then u0 = uι + u2 where ux is smooth and u2 = 0 near P.

Thus (/ - Ĉ Wj is smooth near P and (/ - Cb)u2 is real analytic near P, and

hence u is smooth near P. If / is real analytic near P, we can, by Cauchy-

Kowalewski, find g E &' real analytic near P with tng = / near P. Then

eΛ(w - s) = 0 near P, and u = (/ - C > = ^ β ^ w - g) + (/ - Cb)g

which is real analytic near P by (d), completing the proof.

For ^ one has a similar result. We put, if n > 1,

where £Λ = Γ(Λ - 1)2"V-' I / 2 Γ(Λ/2)- 1 , while if n = 1,

where Pj = (277-)"1. Let Q(x) = nJ?Λ. It is easy to see by induction on

n that nBn equals the reciprocal of the area of Sn, i.e., nBn =

T((n + l)/2)/2τr ( Λ + 1 ) / 2, so that if we define H: &'-*&'by Hf = f * Q, H

simply projects L2 onto the constant functions. Thus we have

Theorem 2.4. (a) Ψn E Lι(Sn). Define Jn: &'-± &' by JJ = f * Ψn. Then

(b) Suppose f ε S ' . ΓΛen (/ |β) = 0 iff Hf = 0, iff g E βS/.

(c) ^ r t w locally solvable, hypoelliptic and analytic hypoelliptic, C °° = Vx Φ

Vx = ker rf|c«, == ker A 5 | c . = ^ C 0 0 , F 2 = δ ί C 0 0 ^ 1 ) ) = Δ.C0 0 =

Proof. For (a), again one divides ^ ψ ^ = ba8 by a — n, and lets (real)

a —> n, except when n = 1 when one divides by (1 — a)2 and lets (real) a —» 1.

When /z > 1 one has only to check the validity of applying the dominated

convergence theorem to assert that

Σ v«[O + *o)/2] m ^ Σ *m[(i + χo)/2]m

1 1m—1

ώ Lι if V« = (z8 - ϊ)m(Y + l)m/[(«/2)mm!], (β, y as usual), and sm

(n - l)m/[(n/2)mm]. Invoking the estimate

(a)m -[Γ(m)/Γ(β)][Γ(α +
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if a is real, one finds \smj < mn/2~2T(β - l)~lT(y + I)"1 < C(d)Jm\ with
d = n/2 — 1 (some C > 0) if n > 2, so that the convergence is dominated by
C"(l — Xo)"** as desired. There are obvious modifications for n = 1 or 2. (b)
and (c) follow from (a) by methods we have already seen.

3. Solving Q,, Δs

The cases # = 0 and q = n are explained by Theorems 2.3 and 2.4. For
0 < q < n we let ^ = {/ e S,'| V = 0}. Clearly, Q - ^ -* ^ and if
η = Σ /y^(/) G ^ is tangential, we have Q η = Σ(£α/y)rfz(/), α = n - 2q.
We would be very disappointed if η' = Σ(KJj)dz(J) were not tangential and
in ^ so that d ^ ' = η. We are forced to conjecture and prove the following
lemma.

Lemma 3.1. Suppose η = Σfjdz(J) is tangential and in ^, Φ = Φ(z0) E
Ll(Sn).

(a) Then η' = Σ(/y * Φ)dz(J) is tangential and in ^ .
(b)//Φ== I, then η' = 0.
Proo/. (a) Φ may be approximated in L1 by a sequence of C 0 0 functions

Am; setting

/" hm{z0,Uz')dμ{U\

where z = (z0, z'), and μ is Haar measure on U(n\ we find Φm ̂  Φ in L1

also. Thus we may assume Φ is smooth on Sn.
First, we show that η' is tangential. For more clarity, we think of Φ as a

function on Sn and define <p: D -> C where D = (zo | |zo| < 1} by φ(z0) =
Φ(z0, z') if (z0, z') E 5 .̂ Then ψ is smooth on D and continuous on £>; thus,
by use of cutoff functions, we may assume φ is smooth on C and has compact
support within D.

Now since TJ' has smooth coefficients, we have only to show that <η', σ Λ
/?> = 0 for each z E Sn and each β E Λ ^ ^ Γ ^ C 1 ) ) where < > represents
the inner product on Λ^TJi) at z. We may assume β = </z(/), / =
(0, , q - 2); β = 1 if # = ί. Then we must show that

,) - 0

for all z, or that for each z, [η|τz] = 0 where

τ,(f)- i
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writing dξ in place of the usual dz. Now select ψ E C°°(Q (coordinate

with 8ψ/9w = φ, e.g.,

- W

see [6, p. 25]. Fix z E SH, ξ G C\ and put μ(f) - ψ(z - f )df(/). Then 3μ =

τx. Since μ = /Xj + σ Λ μ2, where j ^ restricted to Sn is tangential, we have

3/ι = 3/x, + 9|z|2 Λ 3μ2 = 3*Mi + σ Λ fe s ay; so [τj|τj = 0 as desired.
We next prove fy,τj' = 0. Put Φ*(z) = Φ(z f), and α = Λ - 2#. We claim

£α(Φ^)(z) actually depends only o n z f, equalling Ψ(z f), say. Indeed, if
ξ0 E £„ satisfies z J = N ξ0, we can find ί / 6 ( / ( n + 1) with MV = z,
ί/f0 = f. Since £α is invariant under U(n + 1), we have

as desired. Ψ is of course smooth in z if £ = N. Now by (1.3),
Σ(fj • ̂ ) ^ ( / ) + σ Λ fy,V. The first term on the right side is tangential by
the first part of the proof; so σ Λ ^hrf *s tangential, and hence 9bτ\' = 0.

For (b), if Φ = 1, fj * * =(T?ΊY) where γ = dz(J) = ± d(zkdz(J; k)) if
k E 7, so TJ' = 0.

There is of course an Rπ + 1 analogue of this lemma, which is easier since
one only has to solve dψ/dx = φ on R.

With the lemma proved, we are completely in the clear. Let %' = &b&[..
Lemma 3.2. Π2bhf ™ a n isomorphism for 0 < q < n, hypoelliptic and ana-

lytic hypoelliptic, with an analogous situation for Δs.

Proof. This follows at once from Corollary 2.2, Theorem 2.3(e) and
Lemma 3.1(a). The only small worry is the case q = n — 1 of the Rn + 1

analogue; but if η = Σfjdx(J) is tangential and Sη = 0, then Σ Hfjdx(J) =
0 by Lemma 3.1(b), so this case is also covered by Theorem 2.4.

Theorem 33. [Jb o n &q is a n isomorphism for 0 < q < n, hypoelliptic and

analytic hypoelliptic, with an analogous situation for Δ5.

Proof. We prove Q, is injective. Suppose « G S^, DftM = 0, Then ̂ Π ^ "
= Q A W = 0 a n d hu e %-\\ so &bu = 0 ; s o « G ί ; and \Jbu = 0; so
u = 0.

We prove Ub is onto. Suppose / G S^. Then bj E ^_x and therefore
there is a unique υx E ^_x with Obvι = ΰj. Also there is a unique v2 E 9̂ _j
with Π^,^ = ϋj. Thus υι = ϋbv3 wtih v3 = dbυ2. Now * 6 ( / - Π^^) = 0. So
/ ~ Dbvs e %> a n d there is a unique v4 E ?Γ̂  with/ - \Jbv3 = Π*^. Hence
« = t>3 + ϋ4 is the unique solution of \Z\bu = /.

Since vv v2, v3, and υ4 are all smooth or real analytic on any open set
where / is, the remaining statements follow.
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