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ALMOST FLAT MANIFOLDS

M. GROMOV

1. Introduction

1.1. We denote by V a connected ^-dimensional complete Riemannian

manifold, by d = d(V) the diameter of V, and by c+ = c+(V) and c~ = c~(V),
respectively, the upper and lower bounds of the sectional curvature of V. We
set c = c(V) = max (| c+1, | c~ |).

We say that F i s ε-flat, ε > 0, if cd2 < ε.

1.2. Examples.
a. Every compact flat manifold is ε-flat for any ε > 0.
b. Every compact nil-manifold possesses an ε-flat metric for any ε > 0.

{A manifold is called a nil-manifold if it admits a transitive action of a nilpotent
Lie group; see 4.5.)

The second example shows that for n > 3, ε > 0 there are infinitely many
ε-flat ^-dimensional manifolds with different fundamental groups.

1.3. Define inductively ext(x) = exp (eXi_λ(x)\ exo(x) — x, and set ε(ή) =
exp (—eXj(n)), where j = 200. (We are generous everywhere in this paper be-
cause the true value of the constants is unknown.)

1.4. Main Theorem. Let V be a compact έ(n)-flat manifold, and π its funda-
mental group. Then:

(a) There exists a maximal nilpotent normal divisor N C π
(b) ord(πlN)<ex,(n);
(c) the finite covering of V corresponding to N is dίjfeomorphic to a nil-

manifold.

Corollary. If V is έ(n)-flat, then its universal covering is diffeomorphic to Rn.
If V is έ(n)-flat and π is commutative, then V is diffeomorphic to a torus.

1.5. Manifolds of positive and almost positive curvature. For such manifolds
one expects the properties (a) and (b) from Main theorem 1.4, but we are able
to prove only the following:

(i) If V is a manifold of nonnegative sectional curvature (c~ > 0), then its
fundamental group π and every subgroup of π can be generated by 3n elements.

(ii) If d(V) < Of, c~(V) > -K,K>0, then π can be generated by N <
3n ex2(nK&) elements; if π is a free group and KQ)1 < ε(n), then π is generated
by one element.
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1.6. Manifolds of almost negative curvature. The universal coverings of such
manifolds are expected to be contractable. If n = 2, it is so for Fwith c+(V)
< 1, d(V) < \π (S. Mayers, see [4]), but for n = 3 we have

Counterexample. For given ε > 0 there exists a manifold V diffeomorphic
to the sphere S3 such that d (V) < ε, c+(V) < ε. (See [5].)

1.7. The volume and the injectivity radius. A slight modification of Cheeger's
arguments from [1], [2] shows that the lower bound on the volume vol (V) or
on the injectivity radius reduces drastically the number of almost flat manifolds
(compare with Examples 1.2):

(a) The number of distinct up to diffeomorphism manifolds with d(V)<l,
vol (V)> K~\ c(V) <K,K> 0, is less than ex6(n + K\ Cheeger [1].

(b) If d(V) < 1, vol (F) > K~\ K > 0 and c(V) < έ(n + K\ then V is
diffeomorphic to a flat manifold.

1.8. The second statement is a weak pinching theorem. For positive curva-
ture there is much better result:

If c+(V) < 1, c(V) > 0.97, then Fis diffeomorphic to a manifold of a con-
stant positive curvature (Grove, Karcher, Ruh [7]).

The following is known for the negative case:
If c+(V) < — 1, c~(V) > — 1 — Λ:, K > 0, then in the following three cases

V is diffeomorphic to a manifold of constant negative curvature:
(a) fc < (exΊ(n + rf(K)))"1; (E. Heintze, see [8]).
(b) K < (exΊ(n + vol(F)))"1 and n Φ 3 (for n = 3 it is unknown).
(c) n is even and K < (exQ(n + Iχ(F)l))"1, where χ(V) is the Euler char-

acteristic.
Proof. In view of the Margulis-Heintze theorem (see the next section) one

can apply to (a) Cheeger's arguments as in the previous section. About (b) see
[6]. The case (c) follows from " b " and the Gauss-Bonnet theorem.

1.9. About the proof of the main theorem. Our arguments imitate the proof
of the Bieberbach theorem (see [9]). The first application of the discrete group
technique to geometry is due to Margulis who proved (but has never published)
the following analog of the Kazdan-Margulis theorem (see [9]):

If V is compact, c+(V) < 0, c~(V) > - 1 , then vol(F) > C~\Cn < ex,(n).
(Margulis is not responsible for that particular Cn.)

This fact was independently discovered by Ernst Heintze (see [8]).
To prove that theorem Margulis established the following:
The Margulis Lemma. Let V be as above, and suppose a, β e π = πλ(V, vQ)

can be represented by loops of the length < C"1. If C > ex2(ri), there is a natural
number m such that am, βm C π generate a nίlpotent group.

The ideas of Margulis lying behind his lemma are crucial for our proof of
the Main Theorem. I am also very much indebted to Yu. Burago, J. Cheeger,
D. Gromoll, V. Eidlin, W. Meyer and J. Milnor for discussions having led to a
simplification of the proof. I am essentially thankful to Professor H. Karcher
for his constructive criticism and suggestions. In particular, the present versions
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of statements 2.3, 2.5, 2.6, 2.8.and 7.2 are due to him.

2. Almost positive curvature

2.1. For a group Γ with a function f —• ||^| | e R+ we denote the "ball"
(II IIΓΊO, rf by Γp c Γ. We say that Γ is discrete with respect to || || if all balls
are finite.

We call γl9 γ29 , γs e Γ a short basis (or short generators) and the sequence
of subgroups e = Γo C Γλ C C Γs = Γ a short filtration with respect to
|| ||, if Γt is generated by f1? , γt and | |/< + 1 | | is minimal for all γ from the
complement J Γ \ / V

2.2. From now on we fix a point v0 e ϊ7, denote the tangent space at v0 by
Γ, and set π = TΓ^F, Ί; 0 ) . For a geodesic Λ:[0,1]—>V with Λ(0) = vQ we denote by
ί(/Γ) e Γ the corresponding tangent vector with length (t(X)) = length (Λ). For
<* e π we denote by | |α | | the length of the shortest loop representing a.

2.3. Let a, β € π9 and ^, // be the corresponding shortest loops with φ the
angle between t{λ) and t(μ). Put ^ = max(| |α| |, \\β\\) and Λ:2 = max(0, — c~(V)).
If cos ^ > cosΛ fcp-(l + cosh κp)~ι (i.e., for K = 0 if φ < %π), then \\a~~^

Apply the Toponogov comparison theorem to the universal covering
V.

2.4. Proof of 1.5 (i). Take the short basis γl9 , γs e π and the corre-
sponding shortest loops λί9 , λs. From 2.3 it follows that all angles between
t(λi) and t(λjX 1 < / <j < s, are at least π/3 and so s < yol(Sn)/vo\(B^/6) < 3n.

2.5. If p > 2d(V), then the ball πp C π generates π, since every loop strictly
longer than p can be decomposed into two shorter ones.

2.6. Therefore we can estimate the number of generators in 1.5 (ii) by using
φ from cos φ — cosh (2fc@)-(l + cosh 2fc@)~ι by

s < VO\(S)/\O\(B;/2) < 3w coshw {κ2) .

For the last statement we need an algebraic fact.
2.7. For a group Γ with generators γl9 , γs we denote by Nk(γl9 , γs)

the smallest number N such that every subgroup in Γ generated by words of
length < k admits a system of N generators. Denote by Nk(Γ) the minimum
of all Nk(γl9 - , γs) with respect to all systems of generators of Γ.

If Γ is free and noncommutative, then Nk(Γ) > k. This is obvious and in
fact Nk(Γ) grows exponentially.

2.8. End of the proof of 1.5. For a short basis γλ9 , γs c π we conclude
as before Nk(γl9 , 7-,) < 3n - cosh71 (/c>k@). Now, if κ ® < 3"2r ι, then this
upper bound for Nk(γl9 , γs) is, for noncommutative π, incompatible with
k<Nk(γl9 . . . , r s ) , ( e . g . ? a t / : - 3 w ) .
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3. gr-isometries

3.1. A set in a metric space X is said to be d-dense if it intersects every ball
of radius δ. A discrete set Δ C X is said to be σ-uniformly d-dense if for any
two balls A, B c X of radius δ the numbers ij of points in A Π Δ, B ΠΔ satisfy

σ~ι < i/j < σ .

A map/from one metric space to another is called a ̂ -restricted #-isometry
if for any two points x, y with dist (x, y) < R we have

<r< dist(/(χ),/ω)^g

dist (x, y)

3.2. For a complete Riemannian C°°-manifold X, a discrete set Δ C X and
a finite C°°-function ψ:R+-> R+ we construct a map φ:X—>H= l\Δ) ( = the
space of /2-functions on J ) : (^(x)) (j) = ψ (dist (x, y)), x z X, y z Δ. Further
we fix ψ with properties: ψ is supported in the interval [0.1, 1] if x e [•£-,•§],
then ψ(x) = x and ψ(x) + |ψ'(x)| + |ψ"(x) | < 100, x e [0, 1],

3.3. Let Xx and X, be manifolds as above of dimension n, and Δλ C X, J 2

C X be σ-uniformly ^-dense sets. Denote by Ro the minimum of the injectivity
radii Rad (Xλ)9 Rad (X2), and by K the maximum of the curvatures c(Xλ) and
c(Z2). Let / : Δx -> J 2 be a bijective ^-restricted ^-isometry. If σ < 2, δ <
exp ( - lOn), R, Ro > 10, q < 1 + exp ( - 10/ι), ^ < exp ( - 10«), then there
exists a diίfeomorphism i7: Zj -^ X2.

Proof Using/: Δλ —> J 2 we identify J x with J 2 , and set 7/ = /2(^i) = /2(^2)
It is easy to see that the maps ψx: Xλ-+ H and φ2\X2~^H are smooth imbed-
dings, the image X[ of the first map is contained in a normal tubular neighbor-
hood of the image X2 of the second map, and the normal projection X[ —> Xζ
is a diffeomorphism.

3.4. Remark. Our construction for F is metrically invariant. So if/ com-
mutes with an isometrical action of a group in Δ1 and Δ2, then so does F. (We
suppose here that a group acts isometrically on Xγ and Z 2 , and Δl9 Δ2 are in-
variant sets.)

3.5. Notice that 1.7 (a) immediately follows from 3.3 and the Cheeger in-
equality: lϊd{V) < 1, then Rad (V) > vol (V) (ex2(n + TΓ)"1; see [1].

4. Lie groups

4.1. The group of motions. We normalize the biinvariant metric in O(n) by
the condition d(O(n)) ( = diam (O(n)) = 1, and denote by M(n) the group of
rigid motions of Rn with the metric induced by the decomposition M(n) =
O(n) X Rn. We denote the projections M(n) -> O(«) and Λf(/i) -* i?n by "rot"
and "trans" respectively. In all three groups we denote by \\α\\ the distance
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from a to the identity element, and by Ba, a>0, the ball of radius a centered
at the identity element.

By [a, β] we denote the commutator of a and β. For A e O(n) by Emax (A) C
Ra we denote the eigenspace corresponding to the (complex) eigenvalue λ max-
imizing the distance: dist (λ, 1).

4.2. The following properties of the commutators are obvious and well
known (see [9]):

(a) | |[a, β]\\ < C n | | α | H l j 8 | | , w h e r e a, β f r o m O(n) o r M(n), \\a\\, \\β\\<l a n d
Cn < ex2(n);

(b) Let A € O(n), b e £max (A), and a: x >-+ Ax, β: x *-+ x + b, x e Rn be the
motions from M(n). Set a, = [a, β], at = [a, at_^ Then | | ^ | | > /Γ* ||̂ 41|* | |6 | | .

Nilpotent groups

4.3. Let L be an ^-dimensional simply connected nilpotent Lie group, and
/ its Lie algebra. Equip / with an Euclidean structure, and L with the corres-
ponding left invariant metric. Expressing curvature of L in terms of / we have

4.4. If ||[JC,y] || < c \\x\\ \\y% x, y e /, c > 0, then the curvature c (L) satisfies
c(L) < 100c2.

4.5. Take a triangular basis xl9 , xn e / (i.e., [x, xt] e lί_1, x e /, and lt_i
is spanned by xl9 ^ x ^ O , and for x = Σl:=ιaiχi s e t II-̂ ll2 = Σ7=i μ^l μz
>0.

If μ%-\ < μni and μn is small, then the curvature c{L) is small because of 4.4,
and for given uniform discrete subgroup Γ C L the diameter d(L/Γ) is also
small. This provides the second example in 1.2.

4.6. For vectors xl9 , xk e Rn, k < « we denote by ^(x 1 ? , xfc) the
volume of the /^-dimensional parallelepiped spanned by xl9 , xfc. We say that
a system of independent vectors xl9- ,xk is regular if HxJ < 3 ί - 1 H^H, 1 < /
<j<k, and ®(xl9 -- ,xk)>An f] Li ||x<||, Λ"1 = «2(/i).

4.7. Consider an ^-dimensional lattice Λ (Z Rn equipped additionally with
the structure of a nilpotent group without torsion. Let λλ9 , λn C A be a basis
in J such that the sublattices At = {Σi=i w ^ } a r e a l s o invariant subgroups
with respect to the nilpotent group structure, [Λ, At] C At_l9 ί = 1, ,«, and

Realize Λ now (see [9]) as a uniform discrete subgroup in a nilpotent group
L and associate with the basis λί9 , λn 6 A C i£n a left invariant metric in L
as follows: take xl9 , xn e / with exp (x^) = ^ e i C I , equip / with the
Euclidean structure induced by the isomorphism Rn —> / extending ^ —> x ί5 and
take the corresponndig metric in L. For λ, μ z A (Z L we denote the distance
with respect to this metric by dL(λ, μ).

4.8. Suppose that for λ, μ € A c î w with μ ||, || μ \\ < p > 0 we have || [λ, μ] \\
< c\\λ\\ \\μ\\. If the basis λl9 , λn e A c i^n is regular and p/y y > βjc3(/i),
then c(L) < (c')\ c' = c exfa), and for A € A d Rn with ||^|| < (cex,(n))-1 we
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have q~ι < dL(e, λ)/\\λ\\ < q, where e e A C L is the identity element and q <

The product in the nilpotent group A C ZΓ is given by a polyinomial
P: A X A-* A of degree < «. Extending this polynomial to Rn X Z?n provides
on Rn the structure of a nilpotent Lie group isomorphic to L. The bracket in
the Lie algebra may be expressed in terms of the coefficients of P and so by an
obvious interpolation argument inequalities ||[λ, μ]\\<c\\λ\\ \\μ\\ in the ball in A
yield the analogous inequality for /:

\\\χ,y\\\< l O - V H x i i i M i , χ,yei.

This, together with 4.4, proves the first statement of the lemma and the same
interpolation arguments prove the second.

5. Pseudogroups

5.1. A pseudogroup is by definition a set Γ with a product a- β e Γ defined
for some pairs a, β € Γ and having the following properties :

There is the unique identity element e e Γ, and every γ <=. Γ has a unique in-
verse.

If the products (aβ)γ and a(βγ) are defined, they are equal and are written
as aβγ. Generally, the notation γλγ2 γk means that the product is defined for
any setting of brackets.

5.2. Example. A symmetric subset of a group, containing the identity ele-
ment, is a pseudogroup.

5.3. Any pseudogroup Γ can be viewed as a presentation (by generators
and relations) of a group π = π(Γ). If the natural map Γ —> π is injective, we
say that Γ is injective. The pseudogroups from the above example are injective.

5.4. A symmetric subset of a pseudogroup containing the identity is again
a pseudogroup, but we use the term "subpseudogroup" only for sets closed
with respect to the multiplication.

5.5. A function γ ^ \\γ\\ € R+,γ s Γ, is called a norm if it is symmetric
(Hf-1!! = HTΊI), positive outside the identity element, and \\aβ\\ < \\a\\ + \\β\\.

We introduce the radius rad (Γ) = max r 6 Γ ||?-||, and say that Γ is radial if
for a, 8 6 Γ with | |α | | + \\β\\ < rad (Γ) the product a-βis defined.

5.6. Example: the local fundamental pseudogroup. Denote by Ω the H-
space of all piecewise smooth loops in V based at vQ e V with the composition
denoted by φ o ψ for φ, ψ e Ω. Denote by Ωp9 p > 0 the set of loops of length
less than or equal to p and by Γ = πp the set of all geodesic loops in Ωp. We
denote by \\γ\\, γ e Γ, the length of γ. If p2c+(V) < 0.1 we define for a, β e Γ
with a o β e Ωp the product aβ e Γ: aβ is the shortest loop homotopic in Ωp to
a o β. The pseudogroup Γ so defined is discrete (see 2.1) and radial, and if p >
4d(V) then π(Γ) is canonically isomorphic to πγ(V\ v0); but it may be not injec-
tive (see 1.6).
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Our major concern is the injectivity for the almost flat case. To prove that
we shall later need the following two facts. For their proof note that a pseudo-
group is trivially injective if it can be described as a pseudogroup of transfor-
mations of some set.

5.7. Let Γ be discrete and radial (we use the notation from 3.1).
(a) If subpseudogroup Δ c Γ is injective and <5-dense in Γ9 then the ball

Γ'pCl Γ (with the induced pseudogroup structure) is injective for p < 0.1 rad(Γ)
- 10(5.

(b) Suppose N, A c Γ are injective subpseudogroups, N is invariant
(ΓNΓ~ι C N when the product is defined), the map (v, a) •-» v a ξ Γ9 v £ N,
a e A, is injective (where it is defined) and every γ e Γpd Γ, p < rad Γ9 admits
the decomposition γ = va9 v e N9 a e A. Then the ball ΓPo C f i s injective for

Po < 0.1 p.
5.8. Nilpotency. We say that a set A c Γ is nilpotent if in the sequence

Ao = A9At = [̂ 4, ̂ ^ J all commutators are defined and there exists a number
J such that Ad = {e}. A minimal such d is denoted by nil (̂ 4).

A system of generators γγ γs e T7 is called a nilpotent basis if all commu-
tators [γi9 γj], 1 < i,j < s, are defined and [γi9 γj\ 6 Γt_l9 where by Γt we de-
note the subseudogroup generated by γx γt.

Let Γ be a discrete pseudogroup of radius R, and A (Z Γp(Z Γ a symmetric
set containing the identity element. If A has a nilpotent basis αl9 , αs e A,
and R> p ex2{s), then nil (̂ 4) < s.

This is obvious.

6. Pseudogroups of motions

6.1. A map h: Γ —> G from a discrete radial pseudogroup to a Lie group
G (both with the norms || ||) is called an ε-homomorphism if

h(e) = e, Air1) = Wr))"1;

if αβγ = e,α,β,γe Γ, then \\h(α)h(β)h(γ)\\ <ε\\α\\ \\β\\.
6.2. Let r: Γ —> O(w) be an ε-homomorphism (about O(«) see 4.1), and let

p09 pl9 θ, μ be given numbers with 0 < p0 < pγ < rad Γ, 0 < 0, μ < 1.

If WΓ 1 < μN, N > (10 + θ~ιy\ k = dim O(/i) = \n(n - 1), and ^ε < 0.10,
then there exists a p, p0 < p < pλ9 such that the inverse image r~ι(Bθ) c Γ o f
the ball Bθ c O(Λ) is <5-dense in Γp(Z Γ with a < μ^.

Proof. This follows from the possibility of covering 0(ή) by TV balls of the
radius \θ.

6.3. Let r: Γ —> 0(«) be an ε-homomorphism with image in the ball Bθ c
0(n), 0 < exp(-/ι). If> < rad (Γ) andε < 0.1 (θp~2\ then | |r(^)| | < lOfy"1 | |r | | ,
γeΓ.

Proof. If α9 α
2 αι e Bθ, then H^H = i\\α\\. Given this, the inequality
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HKrOII < θ9 with i = ent O/||rll), yields the proof.
6.4. For an ε-homomorphism m: Γ —* M(ή) we set t(γ) = trans (m(γ)) e Rn

and r(γ) = rot (/wfr)) € 0(n), γeΓ.We suppose that \\t(γ)\\ = \\γ\\.
6.5. Let m be as above, and let θ, p be positive numbers. Denote by N c

Γpd Γ the pseudogroup generated in Γ, by Γ, Π r'\Bβ)9 Bθ c O(«). If 0 + ^
< exp (— ex2n), mά Γ > p ex3(d), d = 10fc, k = dim Λf(w) = \n(n + 1), and
ε < 0.01, then nil (N) < d.

Proof. In N take a short basis ^ , γp <= N with respect to the function
γ —> ||/w(rt||. As in 2.4 we conclude that/? < d; from 4.2 (a) it follows that this
basis is nilpotent, and applying 5.8 we finish the proof.

6.6. Let m be an ε-homomorphism as in 6.4, let Γp C Γ, p < 1 be the ball
with nil (Γp) < d, and let θ\ δ', δ, θ > 0 be real numbers with ex3(n + d + ̂ - 1 )
< (ε + ^ + (δ + (5 + 50//O))"1. If the set r " 1 ^ , ) C Γ is ^-dense in Γp, and
the image of t: Γ -+ Rn is d-dense in the ball Bp c i?71, then || r{γ) \\<θ,γs Γp.

Proof. Take x € ̂ ^ ( r ( ^ ) ) (see 4.1), γ e Γp, with | |* | | = \ρ and α e r~\Bθ,)
with ||ί(α) - x|| < δ + δ' + 2ε. Consider a, = [or, γ], , αr< = [«<.!, 7-], .
If IIKrtH > θ, then using 4.2 (b) we conclude: | | α < | | > h-'iθβ)1 | |α | | , / = 1, ,
d, but the condition nil (Γp) < J yields ||αrώ|| = | |e | | = 0, and the contradiction
proves the lemma.

6.7. A discrete set Γ d Rn equipped with a pseudogroup structure is called
an ε-lattice of radius R = R(Γ) = maxr€Γ | |^|| if the origin in Rn serves as the
identity element in Γ, the product aβ is defined for a, β <=. Γ with | |α | | + ||^8||
< $R, and \\aβ — a — β\\ < ε\\a\\ \\β\\ . Here || || means the norm in Rn but as
a function on Γ it may not satisfy the conditions in 5.5, and we do not sup-
pose that Γ (as a pseudogroup) has any norm at all. Notice also that Γ C Rn

is not necessarily symmetric: γ~ι Φ — γ.

Example. Let m: Γ -> M(n) be an ε-homomorphism as in 6.4 with \\r(γ)\\
< v\\γ\\,γ £ Γ, and let the map t: Γ -+Rn be injective. Then its image is an ε-
lattice with ε' < (ε + v) exp (n + 10).

6.8. For an ε-lattice Γ C Rn we call the system of generators γl9 , γk <=. Γ
a normal basis if the following conditions are satisfied:

1. If the commutator [γ, γt]9 γ e Γ9i = 1, ,k, is defined, then [γ, γt] e
Γ'ί.i, where /\ is the subpseudogroup generated by γl9 , γt.

2. If H7ΊI < exp (— ex2(n)) R(Γ), then there exists a unique representation

T — ΐi Ϊ2 ' ϊk '

3. The system of vectors γl9 , γk is regular (see 4.6).

6.9. Consider an ε-lattice Γ C Rn with a normal basis ?Ί, , γn e Γ. For

γ e Γ represented as γ = ^Γ1 ? ^ denote the sum γ = 2?-i wzΓi bY ^ =
A simple calculation shows

q-1 \\λ\\ < llrll < q U\\ , with 1 < q < 1 + r, τ > 0 ,
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If the commutator [a, β] <= Γ and λ(a)9 λ(β), λ ([a, β])9 a, βz Γ, are defined,
then \\λ([a, β])\\ < ε' \\λ{a)\\ \\λ{β)\\> where exΊ(n + (ε 'Γ) > e"1.

6.10. Let Γ C Rn be an ε-lattice of radius R. If Γ is d-dense in the ball BR

C Rn and (εR + δR'1)'1 > ex6(n), then there exists a normal basis γl9 , γn

i n Γ .
Proof. Take a nontrivial γλ e Γ d Rn with minimal norm, and consider

Rnl C 7?n orthogonal to yx. Obviously (compare with 6.5) γλ belongs to the
"center" of Γ. For γ € Γ with \\γ\\< ^R consider the trajectory {γ{γ}9 i = ,
— 1, 0, 1, , as far as it is defined, and take f e {γ\γ} with the properties:
(j> ϊi} > 0, (jϊιf, fi) < 0 Such a f exists and it is unique. Denote by γ' d
Rnl the orthogonal projection of f to Rn\ and by Γ' C i?71"1 the set of all
such ^7 e Rnl. Setting γ[γ'2 = (f 1/32)

/ we equip Γ 7 with a pseudogroup structure.
It is easy to see that Γf is ε^pseudogroup of radius R! where ε' < 20ε, i^x > \R.

Now, by induction having constructed the normal basis γ'2, , fn e Γ^ we
take γl9f29 , fn for the normal basis in Γ, and verfy the properties 1-3 in 6.8
again by an obvious induction.

6.11. Consider an ε-homomorphism m: Γ —> M(n) as in 6.4. If ε"1 >
ex2(n + 1), rad Γ > 10, then the restriction of t: Γ -> Rn to the unit ball Γp=1

— Γx C Γ is injective, and we identify /\ with the image of that restriction t:
Λ -^ Rn.

Let Γ x C i?w be d-dense in the unit ball Bλ c i?71 where (δ + ε)"1 > ex80(«).
Then there exists a subpseudogroup Nλ C ΓΊ with the following properties :

1. 7VX is d'-dense in B, with δ' < ex,(n)δ.
2. If γ e N, then ||r(γ)\\ <v\\γ\\ where exp7 (n + i;"1) = (ε + δ)~\
3. If | | r ( r ) | | < exp (-ex£ή)\ γ e Γl9 then γ e N. (Notice that θ > v.)
4. Both pseudogroups /\ and A^ are injective; the group 7r(Λ/\) C π(Γλ) is

a maximal nilpotent subgroup and the maximal invariant nilpotent subgroup
at the same time π(Nχ) has no torsion, rank (πiN^) = n and ord (πίΓ^/πiN^)
< exjjί).

Proof. Take the ball Γp C Γ with p = exp (— ex40(«)), and generate 7V\ by
the intersection Γp Π r-\Bθ), Bθ e O(n), θ = exp (—ex4(«)).

From 6.2 it follows that iVΊ is ^^-dense in Γλ with δ" = exp (— βx20(/i)), and
properties 2 and 3 for f e T7^ follow from 6.3, 6.5, 6.6. Property 2 shows that
Γp C /?w is an εMattice, and εr is small enough to apply 6.10 (see the example
in 6.7) and to construct a normal basis in Np. The existence of the normal basis,
together with 6.6, 5.7 and properties 2, 3, yields property 4 with the exception
of the last inequality, but that inequality is reduced now to the following ob-
vious fact:

If a maximal nilpotent subgroup N C π is invariant and has no torsion,
rank (N) = n and the group G = π/N is finite, then ord (G) < ex3(n).

Noticing that π(Γp) = π(Γλ) and π(Np) = π(Nλ) we extend all properties of
Γp to Γl9 again using 6.6. Notice in the end that the inequality ord (π(Γι)/π(N))

< ex3(n) yields property 1 with δ' < 3".
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7. The proof of the main theorem

7.1. We return now to the manifold V with a fixed point v0 e V (see 5.6).
We identify the tangent space of V at vQ with Rn, and denote the linear and the
affine holonomy maps by r: Ω -» 0(«) and m\Ω -* M (ri) respectively

Consider a contractable loop wefl,w:[0,l]-> Fand a deformation M^ : [0,1]
—• V9 with w£ <=. Ω, t e [0, 1], wt=0 = w and wt=1 the constant map. The family
wt can be viewed as a map of a 2-dimensional disk to V. Denote by S the area
of that map and denote by L the maximum of the lengths of wt9 t e [0, 1].

7.2. From | R(x, y)z | < 2 c (V) | x Λ v | | z | for the curvature tensor and as-
suming c(V) < ε we have

Together with simple comparison arguments (see [3]) it yields:
7.3. If c(V) < 10~10ε, 0 < ε < 1, then the restrictions of the maps r and m

to the local fundamental pseudogroup Γ = πp9 p < 10 (see 5.6) are ε-homo-
morphisms, m enjoys the properties from 6.4, and the image of t: Γ —> Rn is
^-dense in Bp c Rn with 3 < 2d(V).

7.4. Now everything is ready for the proof of 1.4. We can suppose that
(d(V) + c{V)Yι > exm(n), and can apply 6.11 to Γ = πp because of 7.3. This
gives (a) and (b) of 1.4.

Take N1 as in 6.11, and realize 7r(iVΊ) as a uniform discrete subgroup in a
nilpotent Lie group L. Take in N1dΓ1Cl Rn (see 6.11) (viewed as an ε-lattice)
a normal basis γl9 , γn9 and identify π(Ni) with the lattice Λ C Rn spanned
by ri,--, γn, matching γ = γ^1 γ™n to λ = Σ ? = 1 m ^ .

Now equip L with the metric associated with that basis (see 4.7), and consider
the map / from N = π(Nλ) c L to the universal covering (F, ι)0) of (V, v0),
given by/fr) = γ(vQ). (TV lies in TΓ^F, V0) and so acts in V.) Applying 4.8 and
6.9 we conclude that/ i s an ^-restricted #-isometry satisfying all properties of
3.3 (L corresponds to X1 in 3.3, V to X29 N to Δl9 and Im (/) to J 2), and apply-
ing 3.3, 3.4 we construct the diίfeomorphism F: L-+V commuting with the
action of TV and so inducing the diίfeomorphism of LjN to V/N.

8. Appendix: The proof of the Margulis theorem

8.1. The Margulis lemma follows (up to exrnonsense) from 7.3, 6.2, and
6.5. To prove the theorem we need two obvious facts about π = π(V9 v0) for
c+(V) < 0.

8.2. A. Every nilpotent subgroup of π is cyclic.
B. For every cyclic subgroup N(Zπ there exists an a e π such that

> 1, v € TV, (about || || see 2.2).
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8.3. Now take the shortest γ e πλ(V, v0). If \\γ\\~ι < ex2(ri)9 then the injec-

tivity radius at voeV satisfies Rad (V, v0) > j(ex2(n))~\ This yields the

Margulis theorem. Otherwise we take the maximal cyclic subgroup N dπ with

γ e N and a e π as in 8.2B. Realize a by a loop: w: [0, 1] —> F, and for v e TV

denote by 1̂ , ί e [0, 1], the shortest loop at the point w(t) e V homotopic to

the loop w^Jϊt-j oίo w l[0)ί], where wίQ^: [0, t]—>- V is the restriction of w and ΐ> is

the geodesic loop at v0 realizing v. By continuity there is a ί0 e [0, 1] such that

minυ S i V (H^ίJI) = (exaί^))"1- Using the Margulis lemma and 8.2A we conclude

that at the point w(t0) e Fthe length of any geodesic loop is at least (ex2(n))~\

and the proof is finished.

Those arguments (up to minor details) are due to Margulis, and for the

homogenous case to Kazdan and Margulis (see [9]).
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