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NATURAL TENSORS ON RIEMANNIAN MANIFOLDS

D. B. A. EPSTEIN

Suppose that for each differentiate manifold M (without boundary) and
each C°° metric g, we are given a C°° tensor field t{Mig) satisfying the following
naturality axiom:

If φ: (M, g) —> (TV, h) is an isometry of M onto an open subset of N, then

In these circumstances we say that / is a natural tensor.
Our objective is to elucidate the nature of natural tensors. It will emerge

that the situation is too complicated for there to be any hope of a complete
classification. Therefore we try to find additional conditions which can be
imposed on a natural tensor which will imply that it lies in a good class of
natural tensors.

Our main results are as follows. In § 5 we classify all natural tensors which
depend in a polynomial way of the oo-jet of g. In § 6 we show that it is
sufficient for the dependence on the oo-jet to be a differentiable dependence
(we demand C°°-dependence in Theorem 6.2, but the proof obviously goes
through with less differentiability), if in addition the tensor is homogeneous
(Definition 5.1): these two conditions imply polynomial dependence. In
Theorem 7.3 we prove a special result where only homogeneity is assumed
and nothing whatever concerning the dependence on the oo-jet of g. The fact
that this is not trivial is shown by the existence of an example of a natural
tensor depending only on the 4-jet of g, but with the dependence not even
continuous (Theorem 4.1). We observe in passing that the space of germs of
C°° Riemannian manifolds of dimension 2 can be parametrized in terms of
the orbits of a linear 0(2)-action on an infinite dimensional vector space
(Corollary 2.4). Finally we show that there is a unique "natural" connection
V for Riemannian manifolds-namely the Levi-Civita connection. In other words
the fact that V is torsion free and preserves the metric follows from the natu-
rality. (For a precise statement, see Theorem 5.6.)

This works was stimulated by G. Lusztig when he asked whether the Levi-
Civita connection was the unique natural connection. This was during lectures
on the work of Atiyah, Bott and Patodi [1] whose treatment of Gilkey's
theorem has heavily influenced this paper. In fact Gilkey's theorem deals with
the problem of classifying natural g-forms. Here we relax the condition that
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the tensors be forms and consider all tensors, not only antisymmetric ones.
P. Stredder [5] has taken further the characterization of the Levi-Civita con-
nection, by considering all natural differential operators. Natural tensors have
been extensively studied in the past. See for example the address by A. Nijenhuis
[4] to the International Congress of Mathematicians in 1958.

Thanks are due to G. Lusztig for many stimulating conversations, and to
J. N. Mather for explaining to me aspects of Whitney's extension theorem for
C°° functions.

1. Examples

We have the following examples of natural tensors:
a) The metric g. = g with values in Γ* <g) Γ*.
b) Under the isomorphism T ^ Γ*, g. corresponds to g' which has values

in T <g) Γ.
c) The Riemannian curvature tensor R, with values in (Γ*)®4 and its

covariant derivatives VnR in (τ*)®<»+4>.
d) We can tensor the above examples together, possibly repeating an ex-

ample several times.
e) We can permute the factors T and Γ*.
f) We can contract a copy of T against a copy of Γ*.
g) We can add the above examples with constant real coefficients.
Definition 1.1. A natural tensor formed as above is called a polynomial

tensor.
Not all natural tensors are polynomial. For example, the function

is a natural tensor of type (0,0), which depends on derivatives of g of all
orders, and is therefore not polynomial.

The following theorem shows that many natural tensors are polynomial.

Theorem 1.2. Let r > 0 and s > 0 be integers. Let FTj be a polynomial
with real coefficients for each r-tuple I = (/1? , ίr) and s-tuple J = (j19 - -, js)
of integers such that 1 < ip < m and 1 < jq < m for each p (1 < p < r) and
each q (1 < q < s). Suppose that the formulas

define a natural tensor in local coordinates. (The variables of which FJj is a
function are given by some finite jet of g at x. The hypothesis means in par-
ticular that we get the same answer for t{x) e Tx®

r (x) (Tx*)Θs no matter which
local coordinates we use for the computation.) Then t is a polynomial tensor.
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Remarks. 1) If / is polynomial tensor then classical formulas for the
curvature and Riemannian connection show that the converse is also true.

2) The condition here is the same as that in the exposition of Atiyah, Bott
and Patodi of Gilkey's theorem, because it is equivalent to take (det g)~ι as
an additional variable on one hand, or the variables gcd on the other hand.
However, the exposition of Atiyah, Bott and Patodi omits in error the square
root of the determinant of the metric. The methods of § 6 of our paper are
appropriate to this more general situation.

The proof of the above theorem and some corollaries will follow in § 5.

2. The space of oo-jets of g

A natural tensor is clearly determined locally. Therefore an equivalent
formulation of the problem is as follows. For each disk D(r) in Rm with centre
at 0 and radius r and for each Riemannian metric g on D(r) we suppose we
have a C°° tensor field t{D{rhg) on D(r) such that if φ: (D(r), g) —> (D(s), h) is
an isometry onto an open subset of D(s), then

( 2 1) ίMαxn,*) = tΦ{8)th)\φD{r) .

For t is then consistently denned when two such coordinate neighborhoods
overlap inside a general manifold (M, g).

Theorem 2.2. t{D{r)g)(0) depends only on the oo-jet of g at 0. (It is in-
dependent of the radius r.)

Proof. Let gλ and g2 be two metrics on a disk D with the same oo-jet at 0.
Let Vx = {x G D: xλ > m \xt\ for 2 < i < m) and V2 = {xeD\ — xx > m \xt\
for 2 < / < m}. Then Vx Π F 2 = {0}. By Whitney's extension theorem (see
e.g. Tougeron [6, Chapter 4, Proposition 4.7]), there is a C°° function on D(s),
which is equal to gλ on D(s) Π Vx and to g2 on D(s) Π V2. By symmetrizing
and going to a smaller neighborhood, we may assume that g is a Riemannian
metric on D(s). Then t(D(Shg) agrees with t{D{rhgx) on D{s) (Ί Vx and with
t{D(r),g2) on D(s) Π V2, and so all three agree at 0. q.e.d.

The above theorem shows that to understand our problem we need to
understand the space of oo-jets of g. It is convenient to restrict t still further,
which we can do without loss of generality, so that it takes its values on pairs
(D(r), g) where the coordinates of D{r) are normal coordinates arising from an
orthonormal basis at the origin. This means that the exponential map from the
tangent space at the origin to D(r) is regarded as the identity map. Of course
we continue to insist on (2.1) for arbitrary isometries.

Unless otherwise stated, we henceforth assume that (D(r),g) has
normal coordinates arising from the origin. We trivialise the tangent

^ " ^ bundle by parallel translation along radial geodesies, and use the
standard basis at the origin (el9 , em) with et — d/dx\
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The following beautiful formula seems to have been better known by dif-
ferential geometers 40 years ago than it is now. It was brought to the author's
attention by G. Lusztig.

Theorem 2.3. A necessary and sufficient condition for coordinates in an
open disk centred at the origin, to be normal coordinates arising from an
orthonormal basis at the origin, is that for each point x in the disk,

χ3 — χ i #

Proof. It is a standard result in differential geometry (see for example
Kobayashi and Nomizu [3, p. 165]), that the exponential map at a point x
preserves distances along the geodesic and also sends the orthogonal subspace
to a ray through the origin in the tangent space to a subspace which is orthogonal
to the corresponding geodesic. This means that

because y is equal to a multiple of x plus a vector orthogonal to x.
The converse can be proved by the reverse chain of reasoning. Alternatively

we can use the formula

Γ!?j = -~gkml- ιm -f — ψ ^ — — ~ — \ .
2* \ oX uX uX /

If we differentiate the formula gij{x) xj = x\ we obtain

If (y\ - -, ym) is fixed, then along the curve t{y\ , ym) = (JC1, , xm) we
have

d2xk , Γk dxi dx* = Γϊj χίχj

dt2 lJ dt dt t2

(δmί - gmί)xι - (δmj - gmJ)x')

ρkm
- ^ — ( x m — xm) = 0 .

It2

Thus each ray is a geodesic. From (2.4) we see that at the origin gίm = δίm.
Hence the coordinates are normal and arise from an orthonormal bases at the
origin, q.e.d.

We insert here an interesting consequence of this theorem, enabling us to
solve the "moduli problem" for two-dimensional Riemannian manifolds.



NATURAL TENSORS 635

Let v : R2 —> R be a germ at 0 of a C°° function. Then we obtain a Rieman-
nian metric g o n a neighborhood of zero in R2 by the formula

φ(v)(x,y) = g(x,y) = P 1 + ^ , y ) Γ
LO 1J L — x y A:2

- β a +

The space of such germs v has an obvious action of 0(2) by composing with
the action of 0(2) on R2.

Theorem 2.4. The map φ defines a map

φ: {Germs at 0 of C°° junctions R2 —> R} —> {Isomorphism classes of germs
at a point x of C°° Riemannian manifolds of dimension 2}

which is onto, and the inverse image of an isomorphism class is a single orbit
under 0(2).

Proof. An easy computation shows that if A e 0(2), then A gives an isometry
of the manifold with metric φ(vA) onto the manifold with metric φ(y). Since
φ(v) satisfies the conditions of Theorem 2.3, the coordinates are normal. If
φ(v) = φ(w), then the two sets of normal coordinates must differ by at most
an element of 0(2). So this shows that ψ is 1 — 1.

In order to show that φ is onto, we take normal coordinates and apply
Theorem 2.3. Then

+ §uy = x , 821X + S22y = y

Therefore gn — 1 = yh for some C°° function h and g12 = g2l = —xh. It
follows from the second equation that h = yv for some C°° function v. Then

gn = 1 + vy2 , gl2 = g21 = -xvv , g22 = 1 + vx2 .

So we have proved that the space of germs of two-dimensional Riemannian
manifolds is the quotient of an infinite dimensional representation space for
0(2) by the action of 0(2).

Theorem 2.3 also enables us to obtain explicit information about the Taylor
series for gij(x) in normal coordinates. We write the Taylor series (which is a
formal power series) in the form

hi + Σ giju-ir^1 -' *ίr ,
r>l

where the coefficients gijix...ir satisfy the following conditions:

(2.5.1) We have symmetry in the first two indices.
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(2.5.2) We have symmetry in the last r indices.

(2.5.3) Given a(l), , a(r + 1) with each a(s) satisfying 1 < a(s) < ra,
we have

The third condition follows immediately from Theorem 2.3. Since g^ ̂ ...^ =

w h e r e a = &> * ' ̂  a n d different
r\ dxa r\ dxa V dxι dxJ

normal coordinates are related by an element of 0(ra), we see that giJiim.mrr

defines without ambiguity a tensor of type (0, r + 2). In fact we have a natural
tensor by taking normal coordinates at each point in the manifold. We define
U £ ( F * ) Θ ( r + 2 ) , where V is the tangent space at 0, by

tr\ei'> Zj ) e i 1 > ' ' ' ? eir) — Sίji^. ir

Theorem 2.6. a) The set of elements of (y*)®{r+2) satisfying the symmetry
conditions corresponding to (2.5.1), (2.5.2) and (2.5.3) is an irreducible GLV-
module Yr with Young diagram having r squares in the first row and 2 squares
in the second row, except that if r = 1 the only element satisfying these con-
ditions is zero.

b) // fr e Yr (2 < r < oo) is an arbitrary sequence of elements then there
is a Riemannian metric whose Taylor series gives us the elements fr. {This is
a well-known result, first told to the author by R. Penrose.)

Proof. If r = 1, we have gίjk = gm and giJk + gίkj = 0. Hence

8ijk — 8jίk — —gjki — —gkjί = Skίj = Sίkj = ~~8ijk •>

and so gίjk = 0.
If r > 2, we define for each (r — 2)-tuple /

(2.6.1) Sijkll — Silkjl — Sikljl + Sjklil — Sjlkίl

Clearly SίjklI = —SjίklI = —SίjlkI and SίjklI is unchanged by permuting the
entries of /. Moreover the two Bianchi identities

Sijkll + Sikljl ~\~ ̂ iljkl = 0 ? ^ίjklrJ + ^ίjrklJ + $ijlrkJ = ^ ?

where / is an (r — 3)-tuple, follow from (2.5.1) and (2.5.2) by an easy com-
putation. But these are precisely the conditions which ensure that S is in the
subspace of (y*)®{r+2) with the Young diagram described in the theorem.

Given a function S of (r + 2)-tuples of integers / with 1 < i < m, which is
antisymmetric in the first two variables, in the third and fourth, which is sym-
metric in the lest (r — 2) variables, and which satisfies the two Bianchi identities
(so that S lies in space of the Young diagram) we define
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(2.6.2) Sίja(

A computation shows that (2.6.1) and (2.6.2) set up an isomorphism between
the vector subspace corresponding to the Young diagram on the one hand, and
the elements satisfying (2.5.1), (2.5.2) and (2.5.3). This proves part a) of
Theorem 2.6.

In order to prove b), let fr e Yr for 2 < r < oo, where we take V = Rm.
We then have coefficients gijίχ...ir e R. Let giά = gjt be a C°° function with
these coefficients giving the derivative at the origin by the formula

- ,..„,
for any r-tuple / = (/1? , /r) (r > 2). We also insist that g^(0) = <5O and

Sίj (0) = 0. This defines a Riemannian metric in a neighborhood of 0.
dxk

However the coordinates may not be normal.
We now show that if we change to normal coordinates for g then the oo-jet

of the change of coordinates is the identity at 0. The geodesic through the
origin with tangent at the origin akdjdxk has an oo-jet at the origin which can
be found recursively from the equation

d2xk

 Γlc dxι dxj

 π

+ L i J U

dt2 J dt dt

Since the oo-jet of gij(x)xj — xί is zero at the origin, we know that the oo-jet

of —%i±-χi + gik — dik is zero at the origin. We assume by induction that
dxk

t h e s o l u t i o n h a s t h e s a m e N - j e t a s ί - > / ( a 1 , - , a m ) . T h e (N — l ) - j e t o f
dx} dx*i

Γk

ti —t2 is then equal to that of
13 dt dt

! g *m/Jtemi_ + dg*±_ _ dgij \χiχj = 0 m

2 \ dχi dx1 dxm I

d2xk

Thus the (N — l)-jet of t2—^— is zero at the origin. It follows that the
dt2

(N + l)-jet of xk is equal to that of akt. This completes the induction. Hence
with respect to normal coordinates the coefficients gijix...ir are unaltered, which
proves the theorem.

Theorem 2.6 means that in a certain sense we can regard \~]r>2 Yr as the
space of oo-jets of Riemannian metrics at a point.
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3. Another description of a natural tensor

By trivalising the tangent bundle as described in (2.2), we have a map for
each C°° metric g on a disk D(s) such that the coordinates are normal at the
origin:

Here Yr is the representation space obtained from V = T0(D(r)) = Rm as
described in Theorem 2.6. The composition πr o j(g): D(s) —> Yr is clearly
C°° for each r.

Suppose we have a natural tensor t of type (p, q) — that is, taking its values
in sections of T®p (x) (Γ*) 9 . Then according to Theorem 2.2, / defines a map

1 1 1 r>2 x r * κ v2y Vκ 7

We have

(3.1) ioj(g) = tg.

Remark. We could identify V with F * by using the Riemannian metric g.
However we will not bother to do this.

Proposition 3.2. i is invariant under 0(m). {We are identifying Rm with V'.)
Proof. Let g be a Riemannian metric on D(s), whose jet at the origin is

j(g)(β), and suppose the coordinates of D(s) are normal with respect to the
origin. Let A e 0(m). Then

= AJ(g)(0) ,

so that

ΛjKg)(0) = ,4^(0) = tAJ0) by (2.1)

= ij(A*g)(0) = ΪAJ(g)(0) .

Since /(g)(0) is an arbitrary element of f]r>2

 Yr, the result follows.
In fact it is clear that if we have an 0(m)-invariant map t: f] r>2 Yr —>

j/(χ)2> g) (7*)®<z s u c h that t o j(g) is C°° for each C°° metric g o n a disk D(s) with
normal coordinates from the origin, then we have a natural tensor. Note that
there is no requirement for t to be continuous.

4. A counterexample

In this section we present a natural function (a tensor of type (0, 0)) on 2-
dimensional manifolds such that t depends only on 4-jet of g (in Y2 X Y3 X Y4)
and such that t is discontinuous.

Let ψ: R2 -> R be a function, which is C°° except at 0, is equal to 1 on
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{(0, b) I b Φ 0}, and is equal to zero on the two circles of radius one which are
tangent at the origin to the £-axis.

The natural function is denned by slightly modifying the formula:

2;ll4? ^12122 + (^1212;1 ~ 6 ) 2 + ^1212;224 + (^1212; 12 ~~ 10) 4 ) .

As it stands, this is not well defined, because we have used the coordinates of
R, VR and V2R with respect to a basis. So we must describe the basis in an
intrinsic way.

Now Λ2T* is one-dimensional and has an inner product on a Riemannian
manifold. Hence Λ2T* is canonically isomorphic to R, up to a sign (the orienta-
tion of T*) and Λ2T* (x) Λ2T* is canonically isomorphic to R, without ambiguity.
We consider the image a(VR) in T* of VR e (Γ*)®5 under the composition

a : (j*)®5 _ ^ A2T* g) A2T* ^ τ * ^ Γ * ^

Now F/? is function of the 3-jet g. (In fact the tensors sijkl and sijklm of
Theorem 2.6 are equal to the curvature R and the derivative VR of the
curvature.)

Let Xλ = {(y2,y3,y4) e Y 2 χ y 3 χ Y4: a(VR(y2, y3)) = 0}. This is a closed
subset of Y2 x Γ 3 X y 4. Outside Zi we define e1 to be the unit vector which
is a positive multiple of a(VR).

Let /3: (Γ*)®6 -* ̂ (2Γ* ® Λ2T* (x) Γ* (g) Γ* ^ T* (x) Γ*. We have two choices
for e2, depending on the orientation. Let

x2 = {(y2, y*> yi) β(Γ2R(y2, y^ yd){ex ®e2) = o or (y2, v3, v4) e xx),

where (^x, ̂ 2) is the dual basis to (e\ e2). The definition of X2 is independent
of the choice of e2. Outside X2, we define e2 so that

8) β2) > 0 .

Let ^ : Y2 X Y3 X Γ4 -^ R be a C°° function which is one outside a small
neighborhood of X2 and zero on a smaller neighborhood. We define our natural
function as the product φ-ψ outside X2 and zero otherwise.

Theorem 4.1. On any fixed C°° Riemannian manifold of dimension two, the
above function is C°°. However there is a C°° l-parameter family of Riemannian
metrics on a disk, such that the function is a discontinuous function of the
parameter (so that the function t of § 3 is discontinuous).

Proof. We prove the first statement by contradiction. Let x0 e M be a point
which has no neighborhood on which the function is C°°. Then at x0, we are
at (0,0) the point where ψ is not C°°. It follows that

*M212 ~ *M212;1 O = -*M212;11 = -*M212;22 = ^1212;12 ^ U = U .

Moreover Rι2l2;2 = 0 by our definition of a and e1. It is clear that this point is
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not in X2 and so the value of φ is 1 in a neighborhood of * 0. Moreover the basis
e19 e2 chosen by the process described above gives us the same basis as that
with respect to which we have already expressed R, FR and F2R. From the
Ricci identity and Rm2 = 0 we see that 7?1212;12 = 2?1212.21 = 10 at * 0 .

Now there is an elegant exposition by A. Gray [2] which enables us to
compute in normal coordinates near * 0. We denote by (*, y) the normal coor-
dinates arising from the basis (e19 e2) dual to (e19 e2) at * 0. Then, with r2 = x2 + y2,
we have in some neighborhood of x0

gn = 1 - xf - xf + 0(r5) , g22 = 1 - x* - x*y + 0(r5) ,

§u = &i = *y + * V + 0(r5) , Λ1212 - 6x + lOxy + 0(r3) ,

Λ1212;1 - 6 + lOy + 0(r2) , ^ 1 2 1 2 ; 2 = 10* + 0(r2) .

Let

u = dx ® dy (x) dx (g) dy + dy (x) dx (x) dy (x) dx

- dx®dy®dy®dx - dy®dx®dx®dy .

Then F # = (6 + \0y + <d(r2))u®dx + (10* + 0(r2))u®dy. Since the image
of u in yl2Γ* (8) ̂ ί2Γ* has length 4 det g = 4 + 0(r2),

= (6 + lOy + 0 ( r 2 ) ) ^ + (10* + 0(f))dy ,

and therefore

or

Hence

the sign of e2 being determined by continuity, since we know e2 = dy at * 0

We write S1212 or 51212;1 etc. when we wish to express FR with respect to the
basis (e\ e2). Since

S1212 = 6x + 0(r2) , and S1212;1 = 6 + lOy + 0(r2) ,

we can use as coordinates the functions a = Sm2 and β = JS12I2;I — 6 on M
near * 0. So near x0 where a = β = 0 our function is equal to

where ^ and σ are C°° functions depending on M, each with 3-jet zero. So in
some neighborhood of * 0 the function is identically zero and hence C°°. This
contradiction proves the first part of the theorem.
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Now let us consider the 1-parameter family gt of metrics defined by

ft,j = Γl 01 _ (χ + χy + ίχ2)ϊ f -xyl
U21 S22i Lθ l J l-xy x J

on the disk. By Theorem 2.3 we know the coordinates are normal at the origin
for each t.

From the expansion of giά in normal coordinates [2], we can read off at the
origin

^1212 = 0 9

*M212;1 = ^ 9 *M212;2 = " 5

•*M212;11 = ^ ^ J *M212;22 = = ^ ? -*M212;12 = = -*M212;21 = * ^ *

This gives e1 = ί/ c and e2 = dy at the origin (0, 0), for each t.
The natural function is therefore equal to

ψ((20ί) 4 ,0))= 1 if tφO

= 0 if ί = 0 .

This completes the proof of the properties of the counter example.

5. Polynomial tensors

Definition 5.1. We say a natural tensor t is homogeneous of weight k if
ί(Myλ2g) = λktiM,g) for each real Λ > 0. Clearly every polynomial tensor is the
sum of homogeneous tensors, (and the weights are always even). We see that
g. and VnR are of weight two and g is of weight minus two.

We now prove Theorem 1.2, restating it slightly.

Theorem 5.2. Let t be a natural tensor such that t: [jr>2 Yr -• V®p (x) ( F * ) ^
is the composition of the projection onto a finite product \\2<r<N Yr followed
by a polynomial map. Then t is a polynomial tensor {in the sense of § 1).

Proof. Let the polynomial referred to in the hypothesis be denoted
F: Π f = 2 ^ ^ ^ p ® ( F * ) ® 9 . By Proposition 3.2, F is 0(m)-invariant. We
can write F a s a sum of polynomials, each 0(m)-invariant, and each homo-
geneous in the coordinates of Yr for each r. The process of polarization allows
us to see that such a polynomial induced from an 0(m)-invariant linear map

Yfr2 <g) . (x) Ύ®r» -> V®p (x) (F*)®*

by composition with the diagonal map. Now Ύt is a GLV direct summand of
(j/*)®(i+2) a n ( j s o o u r m a p p j s indU Ced by a diagonal map followed by an
0(m)-invariant map
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Hermann WeyΓs results on O(m)-invariants (see Atiyah, Bott, Patodi [1])
can now be applied. We see that if we compute at a point x0 at which we have
taken normal coordinates, then t(x$\.\\)* is given by taking real linear com-
binations of expressions formed by multiplying the tensors gίt/<1...ίr in various
ways, multiplying by tensors such as gab or gcd (each equal to the Kronecker
symbol at JC0), and contracting an upper index against a lower one.

To complete the proof we need to know that the tensors fr formed from the
8ijίx. ίr a s explained in § 2 are in fact natural polynomial tensors. This can be
easily deduced from the formulas in Gray's paper [2]. For example, in the
notation of Theorem 2.6,

Here pr is a polynomial with rational coefficients formed from terms like
Rabcd;j1. .js (s < r) by multiplication and contraction. Of course in each mo-
nomial, the indices left over after contraction are precisely /, /', k, /, ί19 , ir9

in some order.
Now contraction can be effected by multiplying a gab and then summing

(since gab = δab in normal coordinates). It follows that fr is a natural poly-
nomial tensor in the language of § 1 (we have equality of fr with a polynomial
tensor in normal coordinates and hence in any coordinates). Similarly / is itself
a polynomial tensor. This completes the proof.

Remark 5.3. It fact fr is of weight two. This is seen by computing the

effect on giά = rgijίχ...ίr of multiplying g by λ2. Let normal co-
ax'1 dxlr

ordinates with respect to λ2g = h be denoted by (yι, , ym). Since the affine
connection is unchanged, the geodesies are unchanged. Hence the only change
is in the orthonormal basis. Since δi5 = h(d/dy\ d/dyj) = λ2g(d/dy\d/dyj) we
have (λd/dy1 = d/dx1), and so λdx1 — dyι and λxι = y\ With an obvious
notation, we have

Hence

m2g) = htjil...irdy* ® dy* ® rfy'1 ® ® dy**

= λ2giji, irdχί ® dχj ® d χ i l ® * ® dχίr = Wr(8)

Corollary 5.4. Let t be a natural polynomial tensor of type (u,l) (i.e.,
I ^ jr®u 0 (T*)®1). Suppose t is homogeneous of weight w and is not zero.
Then I — u>w. Moreover I — u = w if and only if t is formed from g. and
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g without making use of the curvature and its derivatives (in the description

in § 1).
Proof. Let a typical monomial appearing in / be constructed using A copies

of g., B copies g' and the tensors VUiR (i = 1, ,k), followed by contracting
C upper indices against C lower indices. Then

l = 2A + 4k + Σni-C , u = 2B - C , w = 2(A + k - B) .

Now / - u = 2(A + k - B) + 2k + Σnt > w. If / - u = w then k = 0,
and conversely.

Definition 5.5. By a natural connection we mean a connection FiMtg) on
the tangent bundle of M for each C°° Riemannian manifold (M, g), such that
the following naturality conditions are satisfied:

1) It φ: (M, g) -> (iV, A) is an isometry of M onto N, then F' = FiMtg)

and F " = F ^ ^ correspond under φ* — that is, φ*(V'xY) = F ^ ^ Γ if X and
y are vector fields on M.

2) If U is an open subset of M, then F ( ί 7 g ) is the restriction of FiMig) to U.
We say the natural connection is polynomial if / ^ is a polynomial in some

finite jet of g, where Γ\5 is as usual defined by

It also makes sense to talk of a natural connection being homogeneous. In this
case the weight must be zero since all connections have the same symbol.

Theorem 5.6. Let V be a natural connection which is polynomial and
homogeneous (of weight zero). Then V is the Riemannian connection (some-
times called the Levi-Civita connection).

Later we will strengthen this theorem so that the Γ\5 need only depend in a
C°° rather than a polynomial way on the oo-jet of g.

Proof. The difference between F and the Levi-Civita connection is a natural
polynomial tensor of type (2, 1), which is homogeneous of weight zero. Then
Corollary 5.4 shows that this tensor is zero.

6. C°° dependence of the oo -jet of g

Definition 6.1. We say that a function defined on f] r> 2 Yr with values in
a finite dimensional vector space is C°° if:

1) it is continuous with respect to the product topology,
2) it is C°° on each finite dimensional subspace YN (N — 2, 3, 4, •) where

YN is the set of elements of f] r^ 2 Yr with projection to Yr zero for each r > N.
Theorem 6.2. Let t be a natural tensor of type (/?, q) which is homogeneous

of weight w and nonzero. If t is a C°° function on f] r>2 Yr, then t is a poly-
nomial tensor (and so w is an even integer).

Proof. By writing out everything in coordinates with respect to the standard
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orthonormal basis, using (5.3.1), άyι = λdx\ λd/dy1 = d/dx\ and t(λ2g) =
λwt(g), we see that

(6.2.1) ?£::;*(. ..,λ-'8iJil...irr..) = r + ' - ^ ; : : : * ; ( , ^ r . ^ , . ) .

It follows that the Taylor series expansion of t \ YN, taken at the origin of YN,
has only a finite number of nonzero terms. Moreover the coefficient of

#7(1) * * Sl(k)

(where each /(/) is an (rt + 2)-tuple of integers each equal to 1 or 2 or m)
is nonzero only if

- l>i + * + rk] = w - q + p ,

which is really the same formula as that appearing in Corollary 5.4, with
q = /, p = u, τi — nt + 2. So the Taylor series of i\YN is unaltered by in-
creasing N once N > q — p — w, and we can talk of the "Taylor series of ?".
The Taylor series of t satisfies the same kind of equation as (6.2.1).

The difference δ between ik

rχ.\\k

r* and its Taylor series has all derivatives zero
at the origin and

(6.2.2) 3(. ,

where a = w + p — q. Now as λ —> + °° the left hand side is small compared
with λ~s for any value of s (if we restrict to YN). Hence δ\ YN = 0 for each
N. By continuity δ is identically zero. This proves that t satisfies the hypothesis
of Theorem 5.2.

Corollary 6.3. // V is a natural connection such that the Γ\j are C°° func-
tions on Πr>2 Yr Then V is the Levi-Civita connection.

7. Conjecture

The obvious problem is whether every natural tensor which is homogeneous
is also polynomial. The author has not been able to settle this. While there
may well be a counterexample, it seems to the author likely that if the follow-
ing condition is added then no counterexample should exist.

7.1. Axiom of analyticity. Suppose t is a natural tensor such that t(M,g)
is analytic whenever (M, g) is an analytic Riemannian manifold. Then we say
t is analytic. Note that this is entirely different from the assumption that t is
analytic.

7.2. Conjecture. Let / be a natural analytic homogeneous tensor. Then
t is a polynomial tensor.

The only result we have been able to obtain in this direction is the following
unsatisfactory theorem.
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Theorem 7.3. Let t be a natural tensor of type (p, q), which is homo-

geneous of weight w and is nonzero. Then w -\- p — q < 0. Moreover if w +

p = q, then t is polynomial and we are in the situation of Corollary 5.4.

Proof. Let ye [ j r > 2 F r be a fixed point with coordinates fe^...^). Let

xs = (1/5, 0, , 0) € Rm (s = 1, 2, 3, •)• At xs we place the oo-jet of g

corresponding to (e~rsgijίl...ίr), and at 0 e Rm we have the oo-jet of g corre-

sponding to (0) — namely the oo-jet of the flat metric. We now check that this

set of oo-jets satisfies the hypothesis of Whitney's extension theorem [6, p. 77],

and so there is a Riemannian metric g on a neighborhood of 0 with the stated

oo-jet at xs for each sufficiently large s and at 0.

Then t(g) is a C°° tensor on this neighborhood. By (6.2.1) (whose proof used

only homogeneity), we see that

We let s -> oo and see that either (w + P — q) < 0 or i(y) = 0. It w + p —

q = 0, then letting s —> oo shows that f (y) is equal to / applied to the flat metric.

Therefore t(y) is a constant, independent of y, in F 0 P ® (K*)®?. This shows

that t satisfies the hypothesis of Theorem 5.2.
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